Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-09-12 12:02 -0400 (Fri, 12 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4715
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4535
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4519
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4543
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 252/2322HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-09-11 13:45 -0400 (Thu, 11 Sep 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on nebbiolo2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-09-11 21:32:48 -0400 (Thu, 11 Sep 2025)
EndedAt: 2025-09-11 21:33:21 -0400 (Thu, 11 Sep 2025)
EllapsedTime: 33.1 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 Patched (2025-08-23 r88802)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.22-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.22-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.22-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.291   0.056   0.381 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478419 25.6    1047111   56   639600 34.2
Vcells 885237  6.8    8388608   64  2081604 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Sep 11 21:33:08 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Sep 11 21:33:08 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x5c3a42b36c80>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Sep 11 21:33:09 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Sep 11 21:33:09 2025"
> 
> ColMode(tmp2)
<pointer: 0x5c3a42b36c80>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]       [,3]       [,4]
[1,] 99.3853294  2.0063817 -1.2785517 -0.3285324
[2,]  0.2731118 -1.4783057  1.1252973 -1.2693548
[3,]  1.0150892  0.2633765 -0.5302628 -0.2070237
[4,] -2.5250839  0.8896854  1.3224248  1.6301032
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 99.3853294 2.0063817 1.2785517 0.3285324
[2,]  0.2731118 1.4783057 1.1252973 1.2693548
[3,]  1.0150892 0.2633765 0.5302628 0.2070237
[4,]  2.5250839 0.8896854 1.3224248 1.6301032
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
         [,1]      [,2]      [,3]      [,4]
[1,] 9.969219 1.4164680 1.1307306 0.5731775
[2,] 0.522601 1.2158560 1.0608003 1.1266565
[3,] 1.007516 0.5132022 0.7281914 0.4549985
[4,] 1.589051 0.9432314 1.1499673 1.2767549
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.07752 41.17106 37.58586 31.06031
[2,]  30.49912 38.63687 36.73330 37.53592
[3,]  36.09025 30.39540 32.81218 29.75701
[4,]  43.41560 35.32200 37.82210 39.39765
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x5c3a44d0f3a0>
> exp(tmp5)
<pointer: 0x5c3a44d0f3a0>
> log(tmp5,2)
<pointer: 0x5c3a44d0f3a0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.388
> Min(tmp5)
[1] 55.00556
> mean(tmp5)
[1] 72.83498
> Sum(tmp5)
[1] 14567
> Var(tmp5)
[1] 850.9
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.18888 72.41788 70.03424 70.73675 72.70807 71.64663 69.69933 69.77953
 [9] 68.35965 70.77887
> rowSums(tmp5)
 [1] 1843.778 1448.358 1400.685 1414.735 1454.161 1432.933 1393.987 1395.591
 [9] 1367.193 1415.577
> rowVars(tmp5)
 [1] 7833.80945   57.94609   70.33740   60.14723   76.58209   44.24438
 [7]   68.53178   83.95971  110.46128   51.46278
> rowSd(tmp5)
 [1] 88.508810  7.612233  8.386740  7.755465  8.751119  6.651645  8.278392
 [8]  9.162953 10.510056  7.173756
> rowMax(tmp5)
 [1] 466.38800  84.86995  91.28839  90.36388  85.43869  83.28103  85.69060
 [8]  88.34894  88.41146  88.68808
> rowMin(tmp5)
 [1] 59.19957 56.74204 59.73133 59.72819 55.20151 60.55002 56.62186 57.36589
 [9] 55.00556 57.84904
> 
> colMeans(tmp5)
 [1] 110.66593  71.11155  72.20714  68.43076  70.29106  71.24332  71.01976
 [8]  72.80232  69.75994  70.07007  70.27160  75.01652  68.08197  67.21718
[15]  71.05922  70.13532  74.38947  72.07255  69.18799  71.66598
> colSums(tmp5)
 [1] 1106.6593  711.1155  722.0714  684.3076  702.9106  712.4332  710.1976
 [8]  728.0232  697.5994  700.7007  702.7160  750.1652  680.8197  672.1718
[15]  710.5922  701.3532  743.8947  720.7255  691.8799  716.6598
> colVars(tmp5)
 [1] 15683.69896   109.68069    37.31613    63.37754    53.79172    95.84037
 [7]    65.02957    65.30123    46.85157   100.97542    72.77446    79.07704
[13]    98.05243   100.19107    45.94753    68.76226    74.63176    81.87308
[19]    36.77105    82.25396
> colSd(tmp5)
 [1] 125.234576  10.472855   6.108693   7.961001   7.334284   9.789809
 [7]   8.064092   8.080918   6.844821  10.048652   8.530795   8.892527
[13]   9.902143  10.009549   6.778461   8.292301   8.638967   9.048374
[19]   6.063913   9.069397
> colMax(tmp5)
 [1] 466.38800  85.69217  81.99887  82.00105  85.43869  91.28839  86.13737
 [8]  88.41146  83.34228  86.66484  85.69060  88.34894  84.86995  85.98454
[15]  79.69690  83.28103  88.68808  85.64531  75.65549  85.23941
> colMin(tmp5)
 [1] 63.47993 55.20151 64.56793 58.16198 60.55002 57.53497 60.19681 62.18380
 [9] 60.62123 56.11844 58.91719 63.93643 55.00556 56.74204 62.39546 57.84904
[17] 59.13379 59.32919 58.03331 57.36589
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.18888 72.41788 70.03424 70.73675 72.70807 71.64663 69.69933 69.77953
 [9] 68.35965       NA
> rowSums(tmp5)
 [1] 1843.778 1448.358 1400.685 1414.735 1454.161 1432.933 1393.987 1395.591
 [9] 1367.193       NA
> rowVars(tmp5)
 [1] 7833.80945   57.94609   70.33740   60.14723   76.58209   44.24438
 [7]   68.53178   83.95971  110.46128   44.54520
> rowSd(tmp5)
 [1] 88.508810  7.612233  8.386740  7.755465  8.751119  6.651645  8.278392
 [8]  9.162953 10.510056  6.674219
> rowMax(tmp5)
 [1] 466.38800  84.86995  91.28839  90.36388  85.43869  83.28103  85.69060
 [8]  88.34894  88.41146        NA
> rowMin(tmp5)
 [1] 59.19957 56.74204 59.73133 59.72819 55.20151 60.55002 56.62186 57.36589
 [9] 55.00556       NA
> 
> colMeans(tmp5)
 [1] 110.66593  71.11155  72.20714  68.43076  70.29106  71.24332  71.01976
 [8]  72.80232  69.75994  70.07007  70.27160  75.01652  68.08197  67.21718
[15]  71.05922        NA  74.38947  72.07255  69.18799  71.66598
> colSums(tmp5)
 [1] 1106.6593  711.1155  722.0714  684.3076  702.9106  712.4332  710.1976
 [8]  728.0232  697.5994  700.7007  702.7160  750.1652  680.8197  672.1718
[15]  710.5922        NA  743.8947  720.7255  691.8799  716.6598
> colVars(tmp5)
 [1] 15683.69896   109.68069    37.31613    63.37754    53.79172    95.84037
 [7]    65.02957    65.30123    46.85157   100.97542    72.77446    79.07704
[13]    98.05243   100.19107    45.94753          NA    74.63176    81.87308
[19]    36.77105    82.25396
> colSd(tmp5)
 [1] 125.234576  10.472855   6.108693   7.961001   7.334284   9.789809
 [7]   8.064092   8.080918   6.844821  10.048652   8.530795   8.892527
[13]   9.902143  10.009549   6.778461         NA   8.638967   9.048374
[19]   6.063913   9.069397
> colMax(tmp5)
 [1] 466.38800  85.69217  81.99887  82.00105  85.43869  91.28839  86.13737
 [8]  88.41146  83.34228  86.66484  85.69060  88.34894  84.86995  85.98454
[15]  79.69690        NA  88.68808  85.64531  75.65549  85.23941
> colMin(tmp5)
 [1] 63.47993 55.20151 64.56793 58.16198 60.55002 57.53497 60.19681 62.18380
 [9] 60.62123 56.11844 58.91719 63.93643 55.00556 56.74204 62.39546       NA
[17] 59.13379 59.32919 58.03331 57.36589
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.388
> Min(tmp5,na.rm=TRUE)
[1] 55.00556
> mean(tmp5,na.rm=TRUE)
[1] 72.91029
> Sum(tmp5,na.rm=TRUE)
[1] 14509.15
> Var(tmp5,na.rm=TRUE)
[1] 854.0575
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.18888 72.41788 70.03424 70.73675 72.70807 71.64663 69.69933 69.77953
 [9] 68.35965 71.45938
> rowSums(tmp5,na.rm=TRUE)
 [1] 1843.778 1448.358 1400.685 1414.735 1454.161 1432.933 1393.987 1395.591
 [9] 1367.193 1357.728
> rowVars(tmp5,na.rm=TRUE)
 [1] 7833.80945   57.94609   70.33740   60.14723   76.58209   44.24438
 [7]   68.53178   83.95971  110.46128   44.54520
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.508810  7.612233  8.386740  7.755465  8.751119  6.651645  8.278392
 [8]  9.162953 10.510056  6.674219
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.38800  84.86995  91.28839  90.36388  85.43869  83.28103  85.69060
 [8]  88.34894  88.41146  88.68808
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.19957 56.74204 59.73133 59.72819 55.20151 60.55002 56.62186 57.36589
 [9] 55.00556 60.19681
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 110.66593  71.11155  72.20714  68.43076  70.29106  71.24332  71.01976
 [8]  72.80232  69.75994  70.07007  70.27160  75.01652  68.08197  67.21718
[15]  71.05922  71.50046  74.38947  72.07255  69.18799  71.66598
> colSums(tmp5,na.rm=TRUE)
 [1] 1106.6593  711.1155  722.0714  684.3076  702.9106  712.4332  710.1976
 [8]  728.0232  697.5994  700.7007  702.7160  750.1652  680.8197  672.1718
[15]  710.5922  643.5042  743.8947  720.7255  691.8799  716.6598
> colVars(tmp5,na.rm=TRUE)
 [1] 15683.69896   109.68069    37.31613    63.37754    53.79172    95.84037
 [7]    65.02957    65.30123    46.85157   100.97542    72.77446    79.07704
[13]    98.05243   100.19107    45.94753    56.39190    74.63176    81.87308
[19]    36.77105    82.25396
> colSd(tmp5,na.rm=TRUE)
 [1] 125.234576  10.472855   6.108693   7.961001   7.334284   9.789809
 [7]   8.064092   8.080918   6.844821  10.048652   8.530795   8.892527
[13]   9.902143  10.009549   6.778461   7.509454   8.638967   9.048374
[19]   6.063913   9.069397
> colMax(tmp5,na.rm=TRUE)
 [1] 466.38800  85.69217  81.99887  82.00105  85.43869  91.28839  86.13737
 [8]  88.41146  83.34228  86.66484  85.69060  88.34894  84.86995  85.98454
[15]  79.69690  83.28103  88.68808  85.64531  75.65549  85.23941
> colMin(tmp5,na.rm=TRUE)
 [1] 63.47993 55.20151 64.56793 58.16198 60.55002 57.53497 60.19681 62.18380
 [9] 60.62123 56.11844 58.91719 63.93643 55.00556 56.74204 62.39546 61.61191
[17] 59.13379 59.32919 58.03331 57.36589
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.18888 72.41788 70.03424 70.73675 72.70807 71.64663 69.69933 69.77953
 [9] 68.35965      NaN
> rowSums(tmp5,na.rm=TRUE)
 [1] 1843.778 1448.358 1400.685 1414.735 1454.161 1432.933 1393.987 1395.591
 [9] 1367.193    0.000
> rowVars(tmp5,na.rm=TRUE)
 [1] 7833.80945   57.94609   70.33740   60.14723   76.58209   44.24438
 [7]   68.53178   83.95971  110.46128         NA
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.508810  7.612233  8.386740  7.755465  8.751119  6.651645  8.278392
 [8]  9.162953 10.510056        NA
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.38800  84.86995  91.28839  90.36388  85.43869  83.28103  85.69060
 [8]  88.34894  88.41146        NA
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.19957 56.74204 59.73133 59.72819 55.20151 60.55002 56.62186 57.36589
 [9] 55.00556       NA
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.98079  71.74197  72.44801  68.93934  70.40132  70.95123  72.22231
 [8]  72.71047  69.67414  69.82756  70.15321  73.98809  67.05732  66.67486
[15]  71.13161       NaN  72.80073  72.95841  69.07310  72.03381
> colSums(tmp5,na.rm=TRUE)
 [1] 1034.8271  645.6778  652.0321  620.4541  633.6119  638.5611  650.0007
 [8]  654.3943  627.0673  628.4480  631.3789  665.8928  603.5159  600.0738
[15]  640.1845    0.0000  655.2066  656.6257  621.6579  648.3043
> colVars(tmp5,na.rm=TRUE)
 [1] 17434.70911   118.91959    41.32794    68.38982    60.37891   106.86062
 [7]    56.88935    73.36899    52.62521   112.93571    81.71359    77.06294
[13]    98.49756   109.40627    51.63201          NA    55.56486    83.27870
[19]    41.21894    91.01360
> colSd(tmp5,na.rm=TRUE)
 [1] 132.040559  10.905026   6.428681   8.269814   7.770386  10.337341
 [7]   7.542503   8.565570   7.254324  10.627121   9.039557   8.778550
[13]   9.924594  10.459745   7.185542         NA   7.454184   9.125716
[19]   6.420198   9.540105
> colMax(tmp5,na.rm=TRUE)
 [1] 466.38800  85.69217  81.99887  82.00105  85.43869  91.28839  86.13737
 [8]  88.41146  83.34228  86.66484  85.69060  88.34894  84.86995  85.98454
[15]  79.69690      -Inf  84.61875  85.64531  75.65549  85.23941
> colMin(tmp5,na.rm=TRUE)
 [1] 63.47993 55.20151 64.56793 58.16198 60.55002 57.53497 61.57094 62.18380
 [9] 60.62123 56.11844 58.91719 63.93643 55.00556 56.74204 62.39546      Inf
[17] 59.13379 59.32919 58.03331 57.36589
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 209.6439 217.8540 308.6283 169.8479 204.2188 173.5316 214.8722 262.1217
 [9] 327.4268 324.7652
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 209.6439 217.8540 308.6283 169.8479 204.2188 173.5316 214.8722 262.1217
 [9] 327.4268 324.7652
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -8.526513e-14  0.000000e+00 -1.705303e-13  4.263256e-14 -1.136868e-13
 [6] -8.526513e-14 -1.136868e-13 -1.705303e-13  0.000000e+00  5.684342e-14
[11]  8.526513e-14  0.000000e+00  1.705303e-13 -5.684342e-14  2.842171e-13
[16]  2.842171e-14 -1.421085e-13 -1.136868e-13  8.526513e-14 -1.705303e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
2   11 
3   10 
10   11 
1   20 
7   17 
6   14 
3   5 
8   9 
4   6 
6   14 
8   20 
2   8 
7   8 
1   8 
6   10 
2   20 
9   6 
2   11 
4   18 
4   16 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.48983
> Min(tmp)
[1] -2.631003
> mean(tmp)
[1] -0.0999567
> Sum(tmp)
[1] -9.99567
> Var(tmp)
[1] 1.026765
> 
> rowMeans(tmp)
[1] -0.0999567
> rowSums(tmp)
[1] -9.99567
> rowVars(tmp)
[1] 1.026765
> rowSd(tmp)
[1] 1.013294
> rowMax(tmp)
[1] 2.48983
> rowMin(tmp)
[1] -2.631003
> 
> colMeans(tmp)
  [1]  0.08349181  0.66131435  0.12286197 -0.79309294 -0.77818967 -0.94187259
  [7] -0.16329676  0.96310478  0.06528991 -0.45112337  0.31147401 -0.10675120
 [13]  0.39859376  1.81868307 -1.47721034 -0.08158485  0.23961541 -0.95198190
 [19] -1.93722362  0.27780367 -0.09322979  1.18492797  1.33916411  1.61984546
 [25] -0.88589976  0.77208273 -0.17620932 -0.68403638 -1.53189190 -1.07509931
 [31]  0.45249572  0.82553152 -0.70349303  0.99546247  1.97665469 -1.35878548
 [37]  0.70312544 -1.07928156  0.21038717 -1.57904617  0.18313847  0.41000682
 [43]  1.13086768  1.04163828 -1.50202068  0.22480681 -0.19336280  1.67112836
 [49] -0.71443976 -1.12518238 -0.80025552  0.16920676 -0.11613539 -1.03514100
 [55] -1.43211867 -0.64080187  0.78226873 -0.14162619 -0.29339820 -1.09960057
 [61]  0.41428431  2.48983020  0.95583626 -1.86459549 -2.63100307 -0.67022206
 [67]  0.47475764  0.91247724 -0.38809517  1.51776284  1.09112062  0.46801969
 [73]  0.67743411 -2.15420162 -0.20917683  1.61829420  0.31368481 -0.83000351
 [79]  0.27365820 -0.92921285  0.02823556  0.20394886  0.62378135 -1.15800393
 [85] -0.78640236 -0.69193515 -0.47937901  0.44691053  0.40083616 -1.69601444
 [91] -2.39320740 -1.17962743 -0.86960432 -0.26174955 -0.51686369 -0.03600270
 [97] -0.13150674  1.17948809  0.33890798  0.76027958
> colSums(tmp)
  [1]  0.08349181  0.66131435  0.12286197 -0.79309294 -0.77818967 -0.94187259
  [7] -0.16329676  0.96310478  0.06528991 -0.45112337  0.31147401 -0.10675120
 [13]  0.39859376  1.81868307 -1.47721034 -0.08158485  0.23961541 -0.95198190
 [19] -1.93722362  0.27780367 -0.09322979  1.18492797  1.33916411  1.61984546
 [25] -0.88589976  0.77208273 -0.17620932 -0.68403638 -1.53189190 -1.07509931
 [31]  0.45249572  0.82553152 -0.70349303  0.99546247  1.97665469 -1.35878548
 [37]  0.70312544 -1.07928156  0.21038717 -1.57904617  0.18313847  0.41000682
 [43]  1.13086768  1.04163828 -1.50202068  0.22480681 -0.19336280  1.67112836
 [49] -0.71443976 -1.12518238 -0.80025552  0.16920676 -0.11613539 -1.03514100
 [55] -1.43211867 -0.64080187  0.78226873 -0.14162619 -0.29339820 -1.09960057
 [61]  0.41428431  2.48983020  0.95583626 -1.86459549 -2.63100307 -0.67022206
 [67]  0.47475764  0.91247724 -0.38809517  1.51776284  1.09112062  0.46801969
 [73]  0.67743411 -2.15420162 -0.20917683  1.61829420  0.31368481 -0.83000351
 [79]  0.27365820 -0.92921285  0.02823556  0.20394886  0.62378135 -1.15800393
 [85] -0.78640236 -0.69193515 -0.47937901  0.44691053  0.40083616 -1.69601444
 [91] -2.39320740 -1.17962743 -0.86960432 -0.26174955 -0.51686369 -0.03600270
 [97] -0.13150674  1.17948809  0.33890798  0.76027958
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.08349181  0.66131435  0.12286197 -0.79309294 -0.77818967 -0.94187259
  [7] -0.16329676  0.96310478  0.06528991 -0.45112337  0.31147401 -0.10675120
 [13]  0.39859376  1.81868307 -1.47721034 -0.08158485  0.23961541 -0.95198190
 [19] -1.93722362  0.27780367 -0.09322979  1.18492797  1.33916411  1.61984546
 [25] -0.88589976  0.77208273 -0.17620932 -0.68403638 -1.53189190 -1.07509931
 [31]  0.45249572  0.82553152 -0.70349303  0.99546247  1.97665469 -1.35878548
 [37]  0.70312544 -1.07928156  0.21038717 -1.57904617  0.18313847  0.41000682
 [43]  1.13086768  1.04163828 -1.50202068  0.22480681 -0.19336280  1.67112836
 [49] -0.71443976 -1.12518238 -0.80025552  0.16920676 -0.11613539 -1.03514100
 [55] -1.43211867 -0.64080187  0.78226873 -0.14162619 -0.29339820 -1.09960057
 [61]  0.41428431  2.48983020  0.95583626 -1.86459549 -2.63100307 -0.67022206
 [67]  0.47475764  0.91247724 -0.38809517  1.51776284  1.09112062  0.46801969
 [73]  0.67743411 -2.15420162 -0.20917683  1.61829420  0.31368481 -0.83000351
 [79]  0.27365820 -0.92921285  0.02823556  0.20394886  0.62378135 -1.15800393
 [85] -0.78640236 -0.69193515 -0.47937901  0.44691053  0.40083616 -1.69601444
 [91] -2.39320740 -1.17962743 -0.86960432 -0.26174955 -0.51686369 -0.03600270
 [97] -0.13150674  1.17948809  0.33890798  0.76027958
> colMin(tmp)
  [1]  0.08349181  0.66131435  0.12286197 -0.79309294 -0.77818967 -0.94187259
  [7] -0.16329676  0.96310478  0.06528991 -0.45112337  0.31147401 -0.10675120
 [13]  0.39859376  1.81868307 -1.47721034 -0.08158485  0.23961541 -0.95198190
 [19] -1.93722362  0.27780367 -0.09322979  1.18492797  1.33916411  1.61984546
 [25] -0.88589976  0.77208273 -0.17620932 -0.68403638 -1.53189190 -1.07509931
 [31]  0.45249572  0.82553152 -0.70349303  0.99546247  1.97665469 -1.35878548
 [37]  0.70312544 -1.07928156  0.21038717 -1.57904617  0.18313847  0.41000682
 [43]  1.13086768  1.04163828 -1.50202068  0.22480681 -0.19336280  1.67112836
 [49] -0.71443976 -1.12518238 -0.80025552  0.16920676 -0.11613539 -1.03514100
 [55] -1.43211867 -0.64080187  0.78226873 -0.14162619 -0.29339820 -1.09960057
 [61]  0.41428431  2.48983020  0.95583626 -1.86459549 -2.63100307 -0.67022206
 [67]  0.47475764  0.91247724 -0.38809517  1.51776284  1.09112062  0.46801969
 [73]  0.67743411 -2.15420162 -0.20917683  1.61829420  0.31368481 -0.83000351
 [79]  0.27365820 -0.92921285  0.02823556  0.20394886  0.62378135 -1.15800393
 [85] -0.78640236 -0.69193515 -0.47937901  0.44691053  0.40083616 -1.69601444
 [91] -2.39320740 -1.17962743 -0.86960432 -0.26174955 -0.51686369 -0.03600270
 [97] -0.13150674  1.17948809  0.33890798  0.76027958
> colMedians(tmp)
  [1]  0.08349181  0.66131435  0.12286197 -0.79309294 -0.77818967 -0.94187259
  [7] -0.16329676  0.96310478  0.06528991 -0.45112337  0.31147401 -0.10675120
 [13]  0.39859376  1.81868307 -1.47721034 -0.08158485  0.23961541 -0.95198190
 [19] -1.93722362  0.27780367 -0.09322979  1.18492797  1.33916411  1.61984546
 [25] -0.88589976  0.77208273 -0.17620932 -0.68403638 -1.53189190 -1.07509931
 [31]  0.45249572  0.82553152 -0.70349303  0.99546247  1.97665469 -1.35878548
 [37]  0.70312544 -1.07928156  0.21038717 -1.57904617  0.18313847  0.41000682
 [43]  1.13086768  1.04163828 -1.50202068  0.22480681 -0.19336280  1.67112836
 [49] -0.71443976 -1.12518238 -0.80025552  0.16920676 -0.11613539 -1.03514100
 [55] -1.43211867 -0.64080187  0.78226873 -0.14162619 -0.29339820 -1.09960057
 [61]  0.41428431  2.48983020  0.95583626 -1.86459549 -2.63100307 -0.67022206
 [67]  0.47475764  0.91247724 -0.38809517  1.51776284  1.09112062  0.46801969
 [73]  0.67743411 -2.15420162 -0.20917683  1.61829420  0.31368481 -0.83000351
 [79]  0.27365820 -0.92921285  0.02823556  0.20394886  0.62378135 -1.15800393
 [85] -0.78640236 -0.69193515 -0.47937901  0.44691053  0.40083616 -1.69601444
 [91] -2.39320740 -1.17962743 -0.86960432 -0.26174955 -0.51686369 -0.03600270
 [97] -0.13150674  1.17948809  0.33890798  0.76027958
> colRanges(tmp)
           [,1]      [,2]     [,3]       [,4]       [,5]       [,6]       [,7]
[1,] 0.08349181 0.6613143 0.122862 -0.7930929 -0.7781897 -0.9418726 -0.1632968
[2,] 0.08349181 0.6613143 0.122862 -0.7930929 -0.7781897 -0.9418726 -0.1632968
          [,8]       [,9]      [,10]    [,11]      [,12]     [,13]    [,14]
[1,] 0.9631048 0.06528991 -0.4511234 0.311474 -0.1067512 0.3985938 1.818683
[2,] 0.9631048 0.06528991 -0.4511234 0.311474 -0.1067512 0.3985938 1.818683
        [,15]       [,16]     [,17]      [,18]     [,19]     [,20]       [,21]
[1,] -1.47721 -0.08158485 0.2396154 -0.9519819 -1.937224 0.2778037 -0.09322979
[2,] -1.47721 -0.08158485 0.2396154 -0.9519819 -1.937224 0.2778037 -0.09322979
        [,22]    [,23]    [,24]      [,25]     [,26]      [,27]      [,28]
[1,] 1.184928 1.339164 1.619845 -0.8858998 0.7720827 -0.1762093 -0.6840364
[2,] 1.184928 1.339164 1.619845 -0.8858998 0.7720827 -0.1762093 -0.6840364
         [,29]     [,30]     [,31]     [,32]     [,33]     [,34]    [,35]
[1,] -1.531892 -1.075099 0.4524957 0.8255315 -0.703493 0.9954625 1.976655
[2,] -1.531892 -1.075099 0.4524957 0.8255315 -0.703493 0.9954625 1.976655
         [,36]     [,37]     [,38]     [,39]     [,40]     [,41]     [,42]
[1,] -1.358785 0.7031254 -1.079282 0.2103872 -1.579046 0.1831385 0.4100068
[2,] -1.358785 0.7031254 -1.079282 0.2103872 -1.579046 0.1831385 0.4100068
        [,43]    [,44]     [,45]     [,46]      [,47]    [,48]      [,49]
[1,] 1.130868 1.041638 -1.502021 0.2248068 -0.1933628 1.671128 -0.7144398
[2,] 1.130868 1.041638 -1.502021 0.2248068 -0.1933628 1.671128 -0.7144398
         [,50]      [,51]     [,52]      [,53]     [,54]     [,55]      [,56]
[1,] -1.125182 -0.8002555 0.1692068 -0.1161354 -1.035141 -1.432119 -0.6408019
[2,] -1.125182 -0.8002555 0.1692068 -0.1161354 -1.035141 -1.432119 -0.6408019
         [,57]      [,58]      [,59]     [,60]     [,61]   [,62]     [,63]
[1,] 0.7822687 -0.1416262 -0.2933982 -1.099601 0.4142843 2.48983 0.9558363
[2,] 0.7822687 -0.1416262 -0.2933982 -1.099601 0.4142843 2.48983 0.9558363
         [,64]     [,65]      [,66]     [,67]     [,68]      [,69]    [,70]
[1,] -1.864595 -2.631003 -0.6702221 0.4747576 0.9124772 -0.3880952 1.517763
[2,] -1.864595 -2.631003 -0.6702221 0.4747576 0.9124772 -0.3880952 1.517763
        [,71]     [,72]     [,73]     [,74]      [,75]    [,76]     [,77]
[1,] 1.091121 0.4680197 0.6774341 -2.154202 -0.2091768 1.618294 0.3136848
[2,] 1.091121 0.4680197 0.6774341 -2.154202 -0.2091768 1.618294 0.3136848
          [,78]     [,79]      [,80]      [,81]     [,82]     [,83]     [,84]
[1,] -0.8300035 0.2736582 -0.9292129 0.02823556 0.2039489 0.6237814 -1.158004
[2,] -0.8300035 0.2736582 -0.9292129 0.02823556 0.2039489 0.6237814 -1.158004
          [,85]      [,86]     [,87]     [,88]     [,89]     [,90]     [,91]
[1,] -0.7864024 -0.6919351 -0.479379 0.4469105 0.4008362 -1.696014 -2.393207
[2,] -0.7864024 -0.6919351 -0.479379 0.4469105 0.4008362 -1.696014 -2.393207
         [,92]      [,93]      [,94]      [,95]      [,96]      [,97]    [,98]
[1,] -1.179627 -0.8696043 -0.2617496 -0.5168637 -0.0360027 -0.1315067 1.179488
[2,] -1.179627 -0.8696043 -0.2617496 -0.5168637 -0.0360027 -0.1315067 1.179488
        [,99]    [,100]
[1,] 0.338908 0.7602796
[2,] 0.338908 0.7602796
> 
> 
> Max(tmp2)
[1] 2.567815
> Min(tmp2)
[1] -2.669983
> mean(tmp2)
[1] -0.1223424
> Sum(tmp2)
[1] -12.23424
> Var(tmp2)
[1] 1.284041
> 
> rowMeans(tmp2)
  [1] -0.39842219  1.44308671 -2.66998323 -2.10162557 -1.27899437  0.28160105
  [7]  0.35177361  0.35625475 -0.59586816  0.69645651 -0.21904756 -0.04399607
 [13] -1.39149994  0.19064957 -0.80112617 -0.24345932  0.80608478 -0.83664321
 [19] -1.96809745 -0.26733196  0.13360992 -0.23757627  0.96575176 -1.85240354
 [25]  0.26344718  1.13326071 -0.66668265  2.00663718  1.82096195 -1.64109103
 [31] -0.17352881 -0.33920540 -0.32243317 -2.09240678  1.08836956  0.62962263
 [37]  1.81272830 -0.57054676 -0.13146089 -0.33188930  0.22296521 -0.17159556
 [43]  1.85958353  0.79612272  1.66625598 -0.59022792  0.80936669  1.61115821
 [49] -0.94179457  0.59037634  1.61159045  0.28650219 -1.09744529  1.23048215
 [55] -2.45403253  0.50562321  0.87121171 -1.09334371  2.04531405  0.08572927
 [61] -0.66886821 -1.64716957  0.39405566 -0.76089087  0.71495543 -1.74092827
 [67] -1.39855310 -1.05321647 -0.86911598 -0.83515984 -0.28073579  0.05872497
 [73]  0.06227767 -0.50751289  0.87689399 -1.30518443  1.35117396 -1.13402581
 [79]  1.44899113 -0.23128006 -0.90053399  0.79940264 -0.93248974  2.56781485
 [85] -0.42402362  0.28131269 -0.16331388  1.64045186 -1.28254847 -0.69035334
 [91] -1.42659605 -1.04641575 -0.98165849 -2.00107028  0.77834281 -0.92994467
 [97] -1.73435220  1.07605888 -0.44187020  0.45429296
> rowSums(tmp2)
  [1] -0.39842219  1.44308671 -2.66998323 -2.10162557 -1.27899437  0.28160105
  [7]  0.35177361  0.35625475 -0.59586816  0.69645651 -0.21904756 -0.04399607
 [13] -1.39149994  0.19064957 -0.80112617 -0.24345932  0.80608478 -0.83664321
 [19] -1.96809745 -0.26733196  0.13360992 -0.23757627  0.96575176 -1.85240354
 [25]  0.26344718  1.13326071 -0.66668265  2.00663718  1.82096195 -1.64109103
 [31] -0.17352881 -0.33920540 -0.32243317 -2.09240678  1.08836956  0.62962263
 [37]  1.81272830 -0.57054676 -0.13146089 -0.33188930  0.22296521 -0.17159556
 [43]  1.85958353  0.79612272  1.66625598 -0.59022792  0.80936669  1.61115821
 [49] -0.94179457  0.59037634  1.61159045  0.28650219 -1.09744529  1.23048215
 [55] -2.45403253  0.50562321  0.87121171 -1.09334371  2.04531405  0.08572927
 [61] -0.66886821 -1.64716957  0.39405566 -0.76089087  0.71495543 -1.74092827
 [67] -1.39855310 -1.05321647 -0.86911598 -0.83515984 -0.28073579  0.05872497
 [73]  0.06227767 -0.50751289  0.87689399 -1.30518443  1.35117396 -1.13402581
 [79]  1.44899113 -0.23128006 -0.90053399  0.79940264 -0.93248974  2.56781485
 [85] -0.42402362  0.28131269 -0.16331388  1.64045186 -1.28254847 -0.69035334
 [91] -1.42659605 -1.04641575 -0.98165849 -2.00107028  0.77834281 -0.92994467
 [97] -1.73435220  1.07605888 -0.44187020  0.45429296
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.39842219  1.44308671 -2.66998323 -2.10162557 -1.27899437  0.28160105
  [7]  0.35177361  0.35625475 -0.59586816  0.69645651 -0.21904756 -0.04399607
 [13] -1.39149994  0.19064957 -0.80112617 -0.24345932  0.80608478 -0.83664321
 [19] -1.96809745 -0.26733196  0.13360992 -0.23757627  0.96575176 -1.85240354
 [25]  0.26344718  1.13326071 -0.66668265  2.00663718  1.82096195 -1.64109103
 [31] -0.17352881 -0.33920540 -0.32243317 -2.09240678  1.08836956  0.62962263
 [37]  1.81272830 -0.57054676 -0.13146089 -0.33188930  0.22296521 -0.17159556
 [43]  1.85958353  0.79612272  1.66625598 -0.59022792  0.80936669  1.61115821
 [49] -0.94179457  0.59037634  1.61159045  0.28650219 -1.09744529  1.23048215
 [55] -2.45403253  0.50562321  0.87121171 -1.09334371  2.04531405  0.08572927
 [61] -0.66886821 -1.64716957  0.39405566 -0.76089087  0.71495543 -1.74092827
 [67] -1.39855310 -1.05321647 -0.86911598 -0.83515984 -0.28073579  0.05872497
 [73]  0.06227767 -0.50751289  0.87689399 -1.30518443  1.35117396 -1.13402581
 [79]  1.44899113 -0.23128006 -0.90053399  0.79940264 -0.93248974  2.56781485
 [85] -0.42402362  0.28131269 -0.16331388  1.64045186 -1.28254847 -0.69035334
 [91] -1.42659605 -1.04641575 -0.98165849 -2.00107028  0.77834281 -0.92994467
 [97] -1.73435220  1.07605888 -0.44187020  0.45429296
> rowMin(tmp2)
  [1] -0.39842219  1.44308671 -2.66998323 -2.10162557 -1.27899437  0.28160105
  [7]  0.35177361  0.35625475 -0.59586816  0.69645651 -0.21904756 -0.04399607
 [13] -1.39149994  0.19064957 -0.80112617 -0.24345932  0.80608478 -0.83664321
 [19] -1.96809745 -0.26733196  0.13360992 -0.23757627  0.96575176 -1.85240354
 [25]  0.26344718  1.13326071 -0.66668265  2.00663718  1.82096195 -1.64109103
 [31] -0.17352881 -0.33920540 -0.32243317 -2.09240678  1.08836956  0.62962263
 [37]  1.81272830 -0.57054676 -0.13146089 -0.33188930  0.22296521 -0.17159556
 [43]  1.85958353  0.79612272  1.66625598 -0.59022792  0.80936669  1.61115821
 [49] -0.94179457  0.59037634  1.61159045  0.28650219 -1.09744529  1.23048215
 [55] -2.45403253  0.50562321  0.87121171 -1.09334371  2.04531405  0.08572927
 [61] -0.66886821 -1.64716957  0.39405566 -0.76089087  0.71495543 -1.74092827
 [67] -1.39855310 -1.05321647 -0.86911598 -0.83515984 -0.28073579  0.05872497
 [73]  0.06227767 -0.50751289  0.87689399 -1.30518443  1.35117396 -1.13402581
 [79]  1.44899113 -0.23128006 -0.90053399  0.79940264 -0.93248974  2.56781485
 [85] -0.42402362  0.28131269 -0.16331388  1.64045186 -1.28254847 -0.69035334
 [91] -1.42659605 -1.04641575 -0.98165849 -2.00107028  0.77834281 -0.92994467
 [97] -1.73435220  1.07605888 -0.44187020  0.45429296
> 
> colMeans(tmp2)
[1] -0.1223424
> colSums(tmp2)
[1] -12.23424
> colVars(tmp2)
[1] 1.284041
> colSd(tmp2)
[1] 1.133155
> colMax(tmp2)
[1] 2.567815
> colMin(tmp2)
[1] -2.669983
> colMedians(tmp2)
[1] -0.2251638
> colRanges(tmp2)
          [,1]
[1,] -2.669983
[2,]  2.567815
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.8158730  2.7419922  1.5524214 -3.8668337 -4.7775229  1.8920532
 [7]  1.5953054 -4.1664408 -3.4564761  0.6648133
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.7419526
[2,] -0.4786664
[3,]  0.1112070
[4,]  0.7188855
[5,]  1.6824859
> 
> rowApply(tmp,sum)
 [1] -2.2885492  1.2371885 -2.3643075 -5.9689892 -3.5890871  5.3512794
 [7]  6.4495871 -0.1996096 -6.5420601  1.9097328
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    4    7    5   10    4    9    6    4   10     8
 [2,]    2    9    9    4    7    6    4   10    7     9
 [3,]    8   10    4    8    5    5    2    3    4    10
 [4,]    7    6    1    6    3    2    9    5    5     2
 [5,]    3    2    8    2    2    3    8    1    2     5
 [6,]    5    3    7    5    8   10    3    8    8     7
 [7,]   10    4    6    3   10    7   10    2    9     4
 [8,]    9    1    2    9    1    1    5    7    1     3
 [9,]    6    8    3    1    6    4    7    6    3     1
[10,]    1    5   10    7    9    8    1    9    6     6
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.6788128  2.9185257 -4.7992213 -1.1961474 -1.9899140  1.0892889
 [7]  0.2076836  5.2955748  1.4454283  0.5164286 -0.4715985 -0.9220077
[13]  0.4724257  1.8144715  1.6600603  0.7149185 -5.0761858 -0.4664524
[19]  1.2304243  5.5371682
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.2899925
[2,] -0.1679384
[3,]  0.5699118
[4,]  0.7553801
[5,]  0.8114518
> 
> rowApply(tmp,sum)
[1]  5.3215218 -2.3938916 -1.4521827  0.5964409  7.5877957
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    8    8   18   17   12
[2,]   20   12   11    6    9
[3,]    4    1    7    8    3
[4,]    7   14    1   16    8
[5,]   12   10    6    3    5
> 
> 
> as.matrix(tmp)
           [,1]        [,2]       [,3]        [,4]        [,5]        [,6]
[1,] -0.2899925  2.60130532 -0.9627931 -0.37675749  0.41644697  0.81237017
[2,] -0.1679384  0.16015052 -1.8601966  0.30002704  0.03583804  0.09484788
[3,]  0.7553801  0.07491018 -0.5488665 -1.37451487 -0.72940918 -0.83114016
[4,]  0.5699118 -0.50278347 -0.3037838  0.34271207 -0.84437852  0.20152903
[5,]  0.8114518  0.58494317 -1.1235813 -0.08761418 -0.86841134  0.81168199
           [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
[1,]  0.7302840  1.9453633 -0.9899673 -0.4542081  0.2641599  1.6598015
[2,]  0.5065092 -0.3067937  0.7278929 -1.0004521 -0.6852953 -1.4973280
[3,]  0.7209183  0.3741333  0.4897910  0.3253611  0.2980971  0.5974438
[4,] -0.8122640  1.3653364 -0.8779825  0.1040143  0.1416556 -0.1643232
[5,] -0.9377640  1.9175354  2.0956942  1.5417135 -0.4902158 -1.5176018
          [,13]      [,14]       [,15]      [,16]      [,17]      [,18]
[1,] -1.2822922 -0.1463311  0.94951781  0.1144042 -1.4750489  0.9574907
[2,]  1.2392371 -0.4135676  0.29849109  0.4975226 -1.6983743  0.7837675
[3,] -1.1127292  1.2999273 -0.35090095 -0.2057750 -0.8712593 -0.9238176
[4,]  0.1294739 -0.4673270  0.09170923 -1.1085399 -0.7381164  0.1890104
[5,]  1.4987361  1.5417699  0.67124315  1.4173065 -0.2933869 -1.4729035
           [,19]     [,20]
[1,] -0.89663337 1.7444018
[2,]  0.01267789 0.5790927
[3,] -0.27969747 0.8399652
[4,]  1.78517020 1.4954168
[5,]  0.60890707 0.8782916
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  648  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1       col2        col3      col4      col5      col6      col7
row1 -0.4966553 -0.6445326 -0.09548601 0.3020167 0.7315967 -1.663407 -1.389796
           col8     col9     col10    col11      col12   col13     col14
row1 -0.4519395 1.812755 0.8421936 1.271327 -0.3391066 1.55416 -2.554508
        col15    col16      col17      col18    col19      col20
row1 1.219478 1.274115 -0.8952192 -0.5624194 1.118618 -0.1623155
> tmp[,"col10"]
           col10
row1  0.84219355
row2 -0.21163156
row3 -0.05235694
row4 -0.74862447
row5  1.23489140
> tmp[c("row1","row5"),]
           col1       col2        col3      col4       col5       col6
row1 -0.4966553 -0.6445326 -0.09548601 0.3020167  0.7315967 -1.6634075
row5 -0.5816583 -0.0626789  0.34511122 1.4837769 -0.3288981 -0.1080029
          col7       col8       col9     col10     col11      col12    col13
row1 -1.389796 -0.4519395  1.8127553 0.8421936  1.271327 -0.3391066 1.554160
row5 -1.239167  0.9189653 -0.6860295 1.2348914 -1.394413  1.7720411 1.291002
         col14      col15      col16      col17      col18     col19      col20
row1 -2.554508  1.2194781  1.2741154 -0.8952192 -0.5624194  1.118618 -0.1623155
row5 -1.304167 -0.2231469 -0.2737343 -1.5335691  0.1109472 -0.279102  0.6998162
> tmp[,c("col6","col20")]
            col6      col20
row1 -1.66340749 -0.1623155
row2  0.04104185  1.1371448
row3  0.73921454  0.8854254
row4  1.09267765  1.2885610
row5 -0.10800290  0.6998162
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -1.6634075 -0.1623155
row5 -0.1080029  0.6998162
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.98693 48.13325 51.41788 50.77548 50.15318 105.3712 49.89959 48.96278
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.10141 50.12562 50.36441 49.28615 49.67396 48.74442 48.53864 49.75988
        col17    col18  col19    col20
row1 49.44328 49.41167 49.321 104.0341
> tmp[,"col10"]
        col10
row1 50.12562
row2 29.34350
row3 29.70485
row4 31.34687
row5 50.41938
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.98693 48.13325 51.41788 50.77548 50.15318 105.3712 49.89959 48.96278
row5 49.34489 49.99450 50.36888 50.72468 49.45673 105.5288 51.77939 49.03793
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.10141 50.12562 50.36441 49.28615 49.67396 48.74442 48.53864 49.75988
row5 51.24934 50.41938 50.46324 49.34234 51.62001 50.26185 52.36608 50.64999
        col17    col18    col19    col20
row1 49.44328 49.41167 49.32100 104.0341
row5 52.11048 48.22274 51.26861 103.4910
> tmp[,c("col6","col20")]
          col6     col20
row1 105.37120 104.03413
row2  75.35574  73.73538
row3  74.62206  74.69886
row4  76.86333  73.56039
row5 105.52882 103.49104
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.3712 104.0341
row5 105.5288 103.4910
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.3712 104.0341
row5 105.5288 103.4910
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,]  1.31757525
[2,] -0.19278635
[3,] -0.04810002
[4,]  0.51891224
[5,]  0.62803683
> tmp[,c("col17","col7")]
           col17       col7
[1,] -0.24039335  1.0610334
[2,] -0.05934842 -0.3223124
[3,]  0.17573525  1.6898220
[4,] -0.62073449  0.4645138
[5,]  0.54775321  0.4393705
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,] -0.18013874  1.6960538
[2,] -0.08805444  1.9091614
[3,] -1.25804860  0.5085924
[4,]  0.50674638 -0.3953899
[5,]  0.61705843 -0.1923113
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.1801387
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
            col6
[1,] -0.18013874
[2,] -0.08805444
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]     [,3]      [,4]       [,5]       [,6]       [,7]
row3 -0.1790593 0.04892586 2.120194 0.6485359 0.02813546 -1.4415978 -0.3259282
row1 -0.7873420 0.02719068 1.117043 0.3968590 0.71611053 -0.5119372  1.4727437
         [,8]       [,9]      [,10]      [,11]     [,12]      [,13]     [,14]
row3 1.147292 -0.3041584 -0.2595771  0.2673461 0.3720443 -0.3240708 0.3132865
row1 1.153406 -0.5246035 -0.6981682 -0.1573326 1.1422796  2.6648601 0.9063209
           [,15]      [,16]      [,17]     [,18]     [,19]     [,20]
row3 -0.07533429  0.2315692  0.6728923 1.7669569 0.8640659 0.7406626
row1  2.16241997 -0.9959674 -0.5328560 0.1293411 0.7958679 0.8355598
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]     [,2]        [,3]      [,4]      [,5]     [,6]     [,7]
row2 0.6283811 1.559143 -0.06046234 -1.085817 -1.504275 1.031493 1.412903
          [,8]      [,9]     [,10]
row2 0.2870592 0.5614883 -1.715477
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]     [,2]      [,3]    [,4]        [,5]      [,6]     [,7]
row5 0.2416451 0.730337 0.3604192 1.90354 -0.05652059 0.2294636 1.063647
          [,8]      [,9]      [,10]    [,11]       [,12]    [,13]     [,14]
row5 -1.423616 -1.060215 -0.7995713 1.171406 0.004377038 0.210339 0.3060232
          [,15]     [,16]   [,17]      [,18]     [,19]     [,20]
row5 -0.2761388 -1.453532 0.59785 -0.4891519 0.5549799 0.8110363
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x5c3a44b7af40>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e17a188823"
 [2] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e12e366357"
 [3] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e17de2fdf6"
 [4] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e1708be615"
 [5] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e149569625"
 [6] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e1ea2da12" 
 [7] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e13676a770"
 [8] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e17ebc5475"
 [9] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e12c0ad456"
[10] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e1a2fab0e" 
[11] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e127e55e2" 
[12] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e1417c356e"
[13] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e117bdbc09"
[14] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e14ae12c68"
[15] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe86e143cb68a3"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x5c3a4509d5e0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x5c3a4509d5e0>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x5c3a4509d5e0>
> rowMedians(tmp)
  [1] -0.4220938435  0.1867219930 -0.1815998263  0.5447588735 -0.4289376143
  [6] -0.0228857206  0.0878368479  0.0358165271 -0.3421853160 -0.2660432999
 [11] -0.2232612659 -0.4367972110  0.1320410028  0.3808627307  0.1008512644
 [16]  0.1055527263 -0.1101168536  0.0325281937 -0.0080339546  0.3445124723
 [21]  0.2293032468  0.9255950554 -0.4235289851  0.1653435356 -0.2771703099
 [26]  0.2101141272  0.6663504376  0.2603034007 -0.0222730530  0.3511506044
 [31]  0.0145064289  0.1185845458  0.3054880676  0.4167562124 -0.5623175435
 [36]  0.1944265392  0.0033414768 -0.2620471503 -0.1495498751  0.0687957154
 [41]  0.1493021402 -0.1989493357  0.0275442907 -0.4362474283 -0.3376534270
 [46]  0.2311721086  0.0279192233 -0.7573618251 -0.1331417551  0.3534846412
 [51]  0.0319204534  0.2287122406  0.5243643543 -0.1282179722  0.5077549356
 [56] -0.0336027417 -0.4230196195  0.2390295560 -0.1306460318  0.0489509740
 [61] -0.3195528247 -0.2523441574  0.4851368707 -0.2137640174 -0.1876130256
 [66]  0.0517574324 -0.2948513339  0.1338287093  0.2854301812 -0.0097840889
 [71]  0.0812160806 -0.5070151412  0.1724286131  0.2087642602  0.0618048447
 [76] -0.6892896025 -0.5009675823 -0.5268718185 -0.3976362406  0.1292946142
 [81] -0.0482831526  0.4817126939 -0.0384972823  0.4157400674  0.0967877216
 [86]  0.0255779693 -0.1567992887  0.0751268753  0.0081494520 -0.1332408991
 [91] -0.4424459761 -0.2488458379 -0.2570838575 -0.5029158602  0.2093977422
 [96] -0.3832617542  0.0592731609  0.0080792378 -0.2748917908 -0.0510537083
[101] -0.4494143523 -0.1070157461  0.1387088959  0.3308979727 -0.0428416447
[106] -0.6660430019  0.3036069493 -0.0816314717 -0.7290109878  0.1668572630
[111]  0.0594117588 -0.2460506476  0.0291900759  0.4156672865 -0.1774835378
[116] -0.3919296745  0.2367456609 -0.0174360772 -0.2250231069  0.7278580836
[121]  0.3253370508  0.3679946664 -0.4611494947  0.1525457083 -0.0205665071
[126] -0.1440703209  0.4026740229  0.8326433874 -0.0198679565 -0.3326043611
[131] -0.4834289262  0.1914700701  0.3233154518  0.4584600216  0.3350209065
[136]  0.0446886005 -0.3155036935 -0.4918620375  0.2047261972  0.0310643620
[141]  0.0301877162  0.5957882313  0.2822583526 -0.5569239745  0.4674724690
[146]  0.2066356083 -0.0050545060 -0.2441272194 -0.6464700282 -0.1492685959
[151] -0.0283408498  0.3294945020  0.0809828510  0.2358536133  0.5072278692
[156] -0.1625023423 -0.1587127545 -0.1786053573 -0.0379014723 -0.4913194284
[161]  0.3180922621 -0.0238278310 -0.2105404918 -0.4202629684  0.0186802492
[166]  0.1396233597  0.3219325747 -0.2068816671 -0.5125066420 -0.2977023412
[171]  0.0806326249 -0.3579165254 -0.2700017704 -0.0105598683 -0.0547516480
[176]  0.1677661327 -0.1133534311  0.5684745518 -0.5620032242 -0.0303722087
[181]  0.0431597372  0.3029624596 -0.0743963702 -0.0617217307  0.5868886917
[186]  0.2019596031  0.7327805412 -0.0407976695  0.0410392032  0.4262006446
[191]  0.2234541145 -0.1052206761 -0.4261047225 -0.1003034659  0.2818383231
[196]  0.0390645348  0.5196119872 -0.1175658301  0.0004517748 -0.2424121188
[201]  0.4642747734  0.1671026786  0.3539938505  0.2875509494  0.1284652256
[206] -0.1701114840 -0.1951609441 -0.1384763261 -0.5175008753  0.2877362496
[211]  0.0063152200 -0.4629121411  0.1094144362 -0.3060451809 -0.0238321446
[216]  0.4716421438 -0.0376513558  0.3073326573 -0.1822228515  0.0287675563
[221]  0.0456251874  0.0768919087 -0.4066351732 -0.2462117383 -0.0568486428
[226] -0.4848761446  0.1433721715  0.3340389324 -0.3022067732  0.0087681562
> 
> proc.time()
   user  system elapsed 
  1.521   0.765   2.308 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x61b2800fac80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x61b2800fac80>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x61b2800fac80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x61b2800fac80>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x61b27fd91a00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b27fd91a00>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x61b27fd91a00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b27fd91a00>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61b27fd91a00>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b27fe5c660>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b27fe5c660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61b27fe5c660>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x61b27fe5c660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61b27fe5c660>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x61b27fe5c660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61b27fe5c660>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x61b27fe5c660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61b27fe5c660>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b28037e3d0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x61b28037e3d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b28037e3d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b28037e3d0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilee87ee468621b4" "BufferedMatrixFilee87ee7efc8ef5"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilee87ee468621b4" "BufferedMatrixFilee87ee7efc8ef5"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b2824db460>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b2824db460>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x61b2824db460>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x61b2824db460>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x61b2824db460>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x61b2824db460>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b281b12e60>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61b281b12e60>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x61b281b12e60>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x61b281b12e60>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x61b280985710>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x61b280985710>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.315   0.038   0.342 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.309   0.054   0.361 

Example timings