Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-10-04 12:04 -0400 (Sat, 04 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4853
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4640
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4585
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4576
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 255/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-10-03 13:45 -0400 (Fri, 03 Oct 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on lconway

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-10-03 20:14:06 -0400 (Fri, 03 Oct 2025)
EndedAt: 2025-10-03 20:15:53 -0400 (Fri, 03 Oct 2025)
EllapsedTime: 107.1 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.349   0.164   1.026 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480848 25.7    1056620 56.5         NA   634462 33.9
Vcells 891079  6.8    8388608 64.0      98304  2108714 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Oct  3 20:14:33 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Oct  3 20:14:35 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x6000014f0000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Oct  3 20:14:57 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Oct  3 20:15:06 2025"
> 
> ColMode(tmp2)
<pointer: 0x6000014f0000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 100.1350371  0.8899675  1.3344697 -0.2978747
[2,]  -0.7536186  0.3160780 -0.3901509 -1.3669053
[3,]  -1.3211423 -0.5326859  0.3488565 -0.2710958
[4,]  -2.0893570 -1.0574809 -0.9759696 -1.0960386
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 100.1350371 0.8899675 1.3344697 0.2978747
[2,]   0.7536186 0.3160780 0.3901509 1.3669053
[3,]   1.3211423 0.5326859 0.3488565 0.2710958
[4,]   2.0893570 1.0574809 0.9759696 1.0960386
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0067496 0.9433809 1.1551925 0.5457790
[2,]  0.8681121 0.5622082 0.6246206 1.1691473
[3,]  1.1494095 0.7298533 0.5906408 0.5206686
[4,]  1.4454608 1.0283389 0.9879117 1.0469186
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.20253 35.32378 37.88639 30.75566
[2,]  34.43474 30.93816 31.63636 38.05838
[3,]  37.81524 32.83122 31.25526 30.47778
[4,]  41.54397 36.34087 35.85509 36.56522
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x60000148c000>
> exp(tmp5)
<pointer: 0x60000148c000>
> log(tmp5,2)
<pointer: 0x60000148c000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 468.7296
> Min(tmp5)
[1] 52.70643
> mean(tmp5)
[1] 72.57445
> Sum(tmp5)
[1] 14514.89
> Var(tmp5)
[1] 858.924
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.12531 69.89441 68.88114 71.86156 72.23242 69.46276 71.19256 71.41417
 [9] 69.90018 69.78001
> rowSums(tmp5)
 [1] 1822.506 1397.888 1377.623 1437.231 1444.648 1389.255 1423.851 1428.283
 [9] 1398.004 1395.600
> rowVars(tmp5)
 [1] 7990.05335   32.06318   52.07127   81.37500   65.27253   81.90928
 [7]   39.30670   81.22517  111.09577   47.53449
> rowSd(tmp5)
 [1] 89.387098  5.662436  7.216043  9.020809  8.079142  9.050374  6.269505
 [8]  9.012501 10.540198  6.894526
> rowMax(tmp5)
 [1] 468.72957  79.21353  89.32686  92.46954  87.43026  87.40443  82.09539
 [8]  93.23663  89.48723  80.32273
> rowMin(tmp5)
 [1] 55.17250 60.70070 59.58938 54.86675 59.85713 52.70643 58.23078 58.16003
 [9] 56.04469 54.90356
> 
> colMeans(tmp5)
 [1] 114.12094  69.49870  73.10844  70.01738  68.26291  72.48166  68.69330
 [8]  72.79237  70.31845  68.37975  70.68204  71.24801  69.93996  67.58666
[15]  68.96986  73.49264  65.79734  72.27483  73.59242  70.23139
> colSums(tmp5)
 [1] 1141.2094  694.9870  731.0844  700.1738  682.6291  724.8166  686.9330
 [8]  727.9237  703.1845  683.7975  706.8204  712.4801  699.3996  675.8666
[15]  689.6986  734.9264  657.9734  722.7483  735.9242  702.3139
> colVars(tmp5)
 [1] 15621.59488    62.38136    38.84457    43.68457    31.14518   105.92563
 [7]    53.76819    99.16162    63.28959    45.77778    70.54898    92.00909
[13]    27.68823    86.22705    61.29760    75.47886    86.74629    60.74801
[19]    13.80629   137.94036
> colSd(tmp5)
 [1] 124.986379   7.898187   6.232541   6.609430   5.580786  10.292018
 [7]   7.332679   9.957993   7.955475   6.765928   8.399344   9.592137
[13]   5.261960   9.285852   7.829278   8.687857   9.313769   7.794101
[19]   3.715682  11.744801
> colMax(tmp5)
 [1] 468.72957  86.62760  83.93860  79.21353  77.30409  93.23663  81.29089
 [8]  92.46954  82.09539  82.36802  82.03802  89.32686  77.90148  87.43026
[15]  78.08278  89.48723  90.61744  83.22688  78.38948  86.65859
> colMin(tmp5)
 [1] 56.37072 61.51214 65.05374 59.85713 60.57730 52.70643 58.80045 58.67892
 [9] 57.13086 60.34153 56.04469 61.15827 59.13263 55.24168 55.17250 58.64707
[17] 58.23078 58.16003 67.47609 54.86675
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1]       NA 69.89441 68.88114 71.86156 72.23242 69.46276 71.19256 71.41417
 [9] 69.90018 69.78001
> rowSums(tmp5)
 [1]       NA 1397.888 1377.623 1437.231 1444.648 1389.255 1423.851 1428.283
 [9] 1398.004 1395.600
> rowVars(tmp5)
 [1] 8366.36493   32.06318   52.07127   81.37500   65.27253   81.90928
 [7]   39.30670   81.22517  111.09577   47.53449
> rowSd(tmp5)
 [1] 91.467836  5.662436  7.216043  9.020809  8.079142  9.050374  6.269505
 [8]  9.012501 10.540198  6.894526
> rowMax(tmp5)
 [1]       NA 79.21353 89.32686 92.46954 87.43026 87.40443 82.09539 93.23663
 [9] 89.48723 80.32273
> rowMin(tmp5)
 [1]       NA 60.70070 59.58938 54.86675 59.85713 52.70643 58.23078 58.16003
 [9] 56.04469 54.90356
> 
> colMeans(tmp5)
 [1] 114.12094  69.49870  73.10844  70.01738  68.26291  72.48166  68.69330
 [8]  72.79237        NA  68.37975  70.68204  71.24801  69.93996  67.58666
[15]  68.96986  73.49264  65.79734  72.27483  73.59242  70.23139
> colSums(tmp5)
 [1] 1141.2094  694.9870  731.0844  700.1738  682.6291  724.8166  686.9330
 [8]  727.9237        NA  683.7975  706.8204  712.4801  699.3996  675.8666
[15]  689.6986  734.9264  657.9734  722.7483  735.9242  702.3139
> colVars(tmp5)
 [1] 15621.59488    62.38136    38.84457    43.68457    31.14518   105.92563
 [7]    53.76819    99.16162          NA    45.77778    70.54898    92.00909
[13]    27.68823    86.22705    61.29760    75.47886    86.74629    60.74801
[19]    13.80629   137.94036
> colSd(tmp5)
 [1] 124.986379   7.898187   6.232541   6.609430   5.580786  10.292018
 [7]   7.332679   9.957993         NA   6.765928   8.399344   9.592137
[13]   5.261960   9.285852   7.829278   8.687857   9.313769   7.794101
[19]   3.715682  11.744801
> colMax(tmp5)
 [1] 468.72957  86.62760  83.93860  79.21353  77.30409  93.23663  81.29089
 [8]  92.46954        NA  82.36802  82.03802  89.32686  77.90148  87.43026
[15]  78.08278  89.48723  90.61744  83.22688  78.38948  86.65859
> colMin(tmp5)
 [1] 56.37072 61.51214 65.05374 59.85713 60.57730 52.70643 58.80045 58.67892
 [9]       NA 60.34153 56.04469 61.15827 59.13263 55.24168 55.17250 58.64707
[17] 58.23078 58.16003 67.47609 54.86675
> 
> Max(tmp5,na.rm=TRUE)
[1] 468.7296
> Min(tmp5,na.rm=TRUE)
[1] 52.70643
> mean(tmp5,na.rm=TRUE)
[1] 72.65206
> Sum(tmp5,na.rm=TRUE)
[1] 14457.76
> Var(tmp5,na.rm=TRUE)
[1] 862.0513
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.91449 69.89441 68.88114 71.86156 72.23242 69.46276 71.19256 71.41417
 [9] 69.90018 69.78001
> rowSums(tmp5,na.rm=TRUE)
 [1] 1765.375 1397.888 1377.623 1437.231 1444.648 1389.255 1423.851 1428.283
 [9] 1398.004 1395.600
> rowVars(tmp5,na.rm=TRUE)
 [1] 8366.36493   32.06318   52.07127   81.37500   65.27253   81.90928
 [7]   39.30670   81.22517  111.09577   47.53449
> rowSd(tmp5,na.rm=TRUE)
 [1] 91.467836  5.662436  7.216043  9.020809  8.079142  9.050374  6.269505
 [8]  9.012501 10.540198  6.894526
> rowMax(tmp5,na.rm=TRUE)
 [1] 468.72957  79.21353  89.32686  92.46954  87.43026  87.40443  82.09539
 [8]  93.23663  89.48723  80.32273
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.17250 60.70070 59.58938 54.86675 59.85713 52.70643 58.23078 58.16003
 [9] 56.04469 54.90356
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.12094  69.49870  73.10844  70.01738  68.26291  72.48166  68.69330
 [8]  72.79237  71.78374  68.37975  70.68204  71.24801  69.93996  67.58666
[15]  68.96986  73.49264  65.79734  72.27483  73.59242  70.23139
> colSums(tmp5,na.rm=TRUE)
 [1] 1141.2094  694.9870  731.0844  700.1738  682.6291  724.8166  686.9330
 [8]  727.9237  646.0537  683.7975  706.8204  712.4801  699.3996  675.8666
[15]  689.6986  734.9264  657.9734  722.7483  735.9242  702.3139
> colVars(tmp5,na.rm=TRUE)
 [1] 15621.59488    62.38136    38.84457    43.68457    31.14518   105.92563
 [7]    53.76819    99.16162    47.04627    45.77778    70.54898    92.00909
[13]    27.68823    86.22705    61.29760    75.47886    86.74629    60.74801
[19]    13.80629   137.94036
> colSd(tmp5,na.rm=TRUE)
 [1] 124.986379   7.898187   6.232541   6.609430   5.580786  10.292018
 [7]   7.332679   9.957993   6.859028   6.765928   8.399344   9.592137
[13]   5.261960   9.285852   7.829278   8.687857   9.313769   7.794101
[19]   3.715682  11.744801
> colMax(tmp5,na.rm=TRUE)
 [1] 468.72957  86.62760  83.93860  79.21353  77.30409  93.23663  81.29089
 [8]  92.46954  82.09539  82.36802  82.03802  89.32686  77.90148  87.43026
[15]  78.08278  89.48723  90.61744  83.22688  78.38948  86.65859
> colMin(tmp5,na.rm=TRUE)
 [1] 56.37072 61.51214 65.05374 59.85713 60.57730 52.70643 58.80045 58.67892
 [9] 61.90216 60.34153 56.04469 61.15827 59.13263 55.24168 55.17250 58.64707
[17] 58.23078 58.16003 67.47609 54.86675
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1]      NaN 69.89441 68.88114 71.86156 72.23242 69.46276 71.19256 71.41417
 [9] 69.90018 69.78001
> rowSums(tmp5,na.rm=TRUE)
 [1]    0.000 1397.888 1377.623 1437.231 1444.648 1389.255 1423.851 1428.283
 [9] 1398.004 1395.600
> rowVars(tmp5,na.rm=TRUE)
 [1]        NA  32.06318  52.07127  81.37500  65.27253  81.90928  39.30670
 [8]  81.22517 111.09577  47.53449
> rowSd(tmp5,na.rm=TRUE)
 [1]        NA  5.662436  7.216043  9.020809  8.079142  9.050374  6.269505
 [8]  9.012501 10.540198  6.894526
> rowMax(tmp5,na.rm=TRUE)
 [1]       NA 79.21353 89.32686 92.46954 87.43026 87.40443 82.09539 93.23663
 [9] 89.48723 80.32273
> rowMin(tmp5,na.rm=TRUE)
 [1]       NA 60.70070 59.58938 54.86675 59.85713 52.70643 58.23078 58.16003
 [9] 56.04469 54.90356
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 74.71998 69.05169 72.46987 70.68443 68.26311 71.79504 68.01242 74.36053
 [9]      NaN 68.19625 70.56398 70.01873 69.51765 68.95832 70.50290 73.60028
[17] 63.03955 71.05793 73.55892 70.10958
> colSums(tmp5,na.rm=TRUE)
 [1] 672.4798 621.4652 652.2289 636.1599 614.3680 646.1554 612.1117 669.2447
 [9]   0.0000 613.7662 635.0758 630.1686 625.6589 620.6249 634.5261 662.4026
[17] 567.3559 639.5214 662.0303 630.9862
> colVars(tmp5,na.rm=TRUE)
 [1] 109.39418  67.93105  39.11272  44.13931  35.03832 113.86254  55.27369
 [8]  83.89164        NA  51.12118  79.21081  86.51011  29.14285  75.83898
[15]  42.51991  84.78336  12.02881  51.68216  15.51945 155.01599
> colSd(tmp5,na.rm=TRUE)
 [1] 10.459167  8.242030  6.254017  6.643743  5.919318 10.670639  7.434627
 [8]  9.159238        NA  7.149908  8.900046  9.301081  5.398412  8.708558
[15]  6.520729  9.207788  3.468257  7.189030  3.939474 12.450542
> colMax(tmp5,na.rm=TRUE)
 [1] 87.40443 86.62760 83.93860 79.21353 77.30409 93.23663 81.29089 92.46954
 [9]     -Inf 82.36802 82.03802 89.32686 77.90148 87.43026 78.08278 89.48723
[17] 68.98824 82.03776 78.38948 86.65859
> colMin(tmp5,na.rm=TRUE)
 [1] 56.37072 61.51214 65.05374 59.85713 60.57730 52.70643 58.80045 65.43795
 [9]      Inf 60.34153 56.04469 61.15827 59.13263 57.31077 59.58938 58.64707
[17] 58.23078 58.16003 67.47609 54.86675
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 115.5153 276.2037 264.6181 185.0226 301.8971 341.3106 334.5905 174.1891
 [9] 213.9664 252.1835
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 115.5153 276.2037 264.6181 185.0226 301.8971 341.3106 334.5905 174.1891
 [9] 213.9664 252.1835
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -8.526513e-14  0.000000e+00 -2.842171e-14  0.000000e+00 -2.273737e-13
 [6] -1.989520e-13  0.000000e+00 -2.842171e-14 -2.842171e-13  1.989520e-13
[11]  5.684342e-14 -1.136868e-13 -4.263256e-14  2.557954e-13  1.136868e-13
[16]  0.000000e+00  1.705303e-13  1.136868e-13 -1.705303e-13  1.705303e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
1   3 
3   15 
3   12 
8   7 
6   19 
7   10 
10   18 
8   13 
2   2 
4   5 
10   19 
5   16 
2   9 
8   6 
10   13 
1   6 
10   15 
2   7 
4   17 
3   8 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.343709
> Min(tmp)
[1] -2.541929
> mean(tmp)
[1] 0.06856189
> Sum(tmp)
[1] 6.856189
> Var(tmp)
[1] 0.8936837
> 
> rowMeans(tmp)
[1] 0.06856189
> rowSums(tmp)
[1] 6.856189
> rowVars(tmp)
[1] 0.8936837
> rowSd(tmp)
[1] 0.9453484
> rowMax(tmp)
[1] 2.343709
> rowMin(tmp)
[1] -2.541929
> 
> colMeans(tmp)
  [1]  1.37424833 -1.22154926  0.47146717 -0.60922046 -0.08865752 -2.54192943
  [7]  1.16010620 -1.40348184  0.72359506 -0.87480330 -0.30359068  0.87486147
 [13]  0.53320255  0.02041864  0.06176743  0.81708522  0.39858377  0.16884615
 [19]  0.03656321  1.18813694  0.24930566 -1.73397707  2.34370944  0.34179872
 [25] -0.86425816  0.94471829 -0.44361456 -1.81846136  0.83473410  0.29331579
 [31] -0.16482094  0.86767653 -1.17745311 -1.10455046  1.60579290 -0.39828295
 [37]  1.11526211  0.53935092 -1.92814755  1.32162612  0.38436012 -0.00344075
 [43] -0.80209697 -0.52971021 -0.06190106  0.06379537  0.58084694  0.36790561
 [49]  0.43443622 -1.30677618  0.29725991 -0.67318042 -1.13427831  1.09042956
 [55] -0.34838373  0.86262268  0.77354636  1.36436048  0.73312782 -0.44838105
 [61] -0.92896743  0.23963646  0.40261149 -0.42079731 -0.20245398  0.49104694
 [67]  0.09440153 -0.65693385  0.87727651 -0.11857076  2.14496660  0.96535381
 [73]  1.15433090  0.86526477 -1.24782022 -0.84852428 -0.20079969  0.61786375
 [79]  0.57956587  0.88229941  0.22798452  1.59719778  1.85868002 -0.76438481
 [85] -0.74740415  1.02358478  0.58011304 -1.29767074 -0.73116051 -1.24348950
 [91]  0.24238004  0.47933272  0.83884592  0.04036964 -1.19065982  0.38206588
 [97] -1.23160212 -1.25778728  0.15506609 -0.04893999
> colSums(tmp)
  [1]  1.37424833 -1.22154926  0.47146717 -0.60922046 -0.08865752 -2.54192943
  [7]  1.16010620 -1.40348184  0.72359506 -0.87480330 -0.30359068  0.87486147
 [13]  0.53320255  0.02041864  0.06176743  0.81708522  0.39858377  0.16884615
 [19]  0.03656321  1.18813694  0.24930566 -1.73397707  2.34370944  0.34179872
 [25] -0.86425816  0.94471829 -0.44361456 -1.81846136  0.83473410  0.29331579
 [31] -0.16482094  0.86767653 -1.17745311 -1.10455046  1.60579290 -0.39828295
 [37]  1.11526211  0.53935092 -1.92814755  1.32162612  0.38436012 -0.00344075
 [43] -0.80209697 -0.52971021 -0.06190106  0.06379537  0.58084694  0.36790561
 [49]  0.43443622 -1.30677618  0.29725991 -0.67318042 -1.13427831  1.09042956
 [55] -0.34838373  0.86262268  0.77354636  1.36436048  0.73312782 -0.44838105
 [61] -0.92896743  0.23963646  0.40261149 -0.42079731 -0.20245398  0.49104694
 [67]  0.09440153 -0.65693385  0.87727651 -0.11857076  2.14496660  0.96535381
 [73]  1.15433090  0.86526477 -1.24782022 -0.84852428 -0.20079969  0.61786375
 [79]  0.57956587  0.88229941  0.22798452  1.59719778  1.85868002 -0.76438481
 [85] -0.74740415  1.02358478  0.58011304 -1.29767074 -0.73116051 -1.24348950
 [91]  0.24238004  0.47933272  0.83884592  0.04036964 -1.19065982  0.38206588
 [97] -1.23160212 -1.25778728  0.15506609 -0.04893999
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  1.37424833 -1.22154926  0.47146717 -0.60922046 -0.08865752 -2.54192943
  [7]  1.16010620 -1.40348184  0.72359506 -0.87480330 -0.30359068  0.87486147
 [13]  0.53320255  0.02041864  0.06176743  0.81708522  0.39858377  0.16884615
 [19]  0.03656321  1.18813694  0.24930566 -1.73397707  2.34370944  0.34179872
 [25] -0.86425816  0.94471829 -0.44361456 -1.81846136  0.83473410  0.29331579
 [31] -0.16482094  0.86767653 -1.17745311 -1.10455046  1.60579290 -0.39828295
 [37]  1.11526211  0.53935092 -1.92814755  1.32162612  0.38436012 -0.00344075
 [43] -0.80209697 -0.52971021 -0.06190106  0.06379537  0.58084694  0.36790561
 [49]  0.43443622 -1.30677618  0.29725991 -0.67318042 -1.13427831  1.09042956
 [55] -0.34838373  0.86262268  0.77354636  1.36436048  0.73312782 -0.44838105
 [61] -0.92896743  0.23963646  0.40261149 -0.42079731 -0.20245398  0.49104694
 [67]  0.09440153 -0.65693385  0.87727651 -0.11857076  2.14496660  0.96535381
 [73]  1.15433090  0.86526477 -1.24782022 -0.84852428 -0.20079969  0.61786375
 [79]  0.57956587  0.88229941  0.22798452  1.59719778  1.85868002 -0.76438481
 [85] -0.74740415  1.02358478  0.58011304 -1.29767074 -0.73116051 -1.24348950
 [91]  0.24238004  0.47933272  0.83884592  0.04036964 -1.19065982  0.38206588
 [97] -1.23160212 -1.25778728  0.15506609 -0.04893999
> colMin(tmp)
  [1]  1.37424833 -1.22154926  0.47146717 -0.60922046 -0.08865752 -2.54192943
  [7]  1.16010620 -1.40348184  0.72359506 -0.87480330 -0.30359068  0.87486147
 [13]  0.53320255  0.02041864  0.06176743  0.81708522  0.39858377  0.16884615
 [19]  0.03656321  1.18813694  0.24930566 -1.73397707  2.34370944  0.34179872
 [25] -0.86425816  0.94471829 -0.44361456 -1.81846136  0.83473410  0.29331579
 [31] -0.16482094  0.86767653 -1.17745311 -1.10455046  1.60579290 -0.39828295
 [37]  1.11526211  0.53935092 -1.92814755  1.32162612  0.38436012 -0.00344075
 [43] -0.80209697 -0.52971021 -0.06190106  0.06379537  0.58084694  0.36790561
 [49]  0.43443622 -1.30677618  0.29725991 -0.67318042 -1.13427831  1.09042956
 [55] -0.34838373  0.86262268  0.77354636  1.36436048  0.73312782 -0.44838105
 [61] -0.92896743  0.23963646  0.40261149 -0.42079731 -0.20245398  0.49104694
 [67]  0.09440153 -0.65693385  0.87727651 -0.11857076  2.14496660  0.96535381
 [73]  1.15433090  0.86526477 -1.24782022 -0.84852428 -0.20079969  0.61786375
 [79]  0.57956587  0.88229941  0.22798452  1.59719778  1.85868002 -0.76438481
 [85] -0.74740415  1.02358478  0.58011304 -1.29767074 -0.73116051 -1.24348950
 [91]  0.24238004  0.47933272  0.83884592  0.04036964 -1.19065982  0.38206588
 [97] -1.23160212 -1.25778728  0.15506609 -0.04893999
> colMedians(tmp)
  [1]  1.37424833 -1.22154926  0.47146717 -0.60922046 -0.08865752 -2.54192943
  [7]  1.16010620 -1.40348184  0.72359506 -0.87480330 -0.30359068  0.87486147
 [13]  0.53320255  0.02041864  0.06176743  0.81708522  0.39858377  0.16884615
 [19]  0.03656321  1.18813694  0.24930566 -1.73397707  2.34370944  0.34179872
 [25] -0.86425816  0.94471829 -0.44361456 -1.81846136  0.83473410  0.29331579
 [31] -0.16482094  0.86767653 -1.17745311 -1.10455046  1.60579290 -0.39828295
 [37]  1.11526211  0.53935092 -1.92814755  1.32162612  0.38436012 -0.00344075
 [43] -0.80209697 -0.52971021 -0.06190106  0.06379537  0.58084694  0.36790561
 [49]  0.43443622 -1.30677618  0.29725991 -0.67318042 -1.13427831  1.09042956
 [55] -0.34838373  0.86262268  0.77354636  1.36436048  0.73312782 -0.44838105
 [61] -0.92896743  0.23963646  0.40261149 -0.42079731 -0.20245398  0.49104694
 [67]  0.09440153 -0.65693385  0.87727651 -0.11857076  2.14496660  0.96535381
 [73]  1.15433090  0.86526477 -1.24782022 -0.84852428 -0.20079969  0.61786375
 [79]  0.57956587  0.88229941  0.22798452  1.59719778  1.85868002 -0.76438481
 [85] -0.74740415  1.02358478  0.58011304 -1.29767074 -0.73116051 -1.24348950
 [91]  0.24238004  0.47933272  0.83884592  0.04036964 -1.19065982  0.38206588
 [97] -1.23160212 -1.25778728  0.15506609 -0.04893999
> colRanges(tmp)
         [,1]      [,2]      [,3]       [,4]        [,5]      [,6]     [,7]
[1,] 1.374248 -1.221549 0.4714672 -0.6092205 -0.08865752 -2.541929 1.160106
[2,] 1.374248 -1.221549 0.4714672 -0.6092205 -0.08865752 -2.541929 1.160106
          [,8]      [,9]      [,10]      [,11]     [,12]     [,13]      [,14]
[1,] -1.403482 0.7235951 -0.8748033 -0.3035907 0.8748615 0.5332026 0.02041864
[2,] -1.403482 0.7235951 -0.8748033 -0.3035907 0.8748615 0.5332026 0.02041864
          [,15]     [,16]     [,17]     [,18]      [,19]    [,20]     [,21]
[1,] 0.06176743 0.8170852 0.3985838 0.1688461 0.03656321 1.188137 0.2493057
[2,] 0.06176743 0.8170852 0.3985838 0.1688461 0.03656321 1.188137 0.2493057
         [,22]    [,23]     [,24]      [,25]     [,26]      [,27]     [,28]
[1,] -1.733977 2.343709 0.3417987 -0.8642582 0.9447183 -0.4436146 -1.818461
[2,] -1.733977 2.343709 0.3417987 -0.8642582 0.9447183 -0.4436146 -1.818461
         [,29]     [,30]      [,31]     [,32]     [,33]    [,34]    [,35]
[1,] 0.8347341 0.2933158 -0.1648209 0.8676765 -1.177453 -1.10455 1.605793
[2,] 0.8347341 0.2933158 -0.1648209 0.8676765 -1.177453 -1.10455 1.605793
         [,36]    [,37]     [,38]     [,39]    [,40]     [,41]       [,42]
[1,] -0.398283 1.115262 0.5393509 -1.928148 1.321626 0.3843601 -0.00344075
[2,] -0.398283 1.115262 0.5393509 -1.928148 1.321626 0.3843601 -0.00344075
         [,43]      [,44]       [,45]      [,46]     [,47]     [,48]     [,49]
[1,] -0.802097 -0.5297102 -0.06190106 0.06379537 0.5808469 0.3679056 0.4344362
[2,] -0.802097 -0.5297102 -0.06190106 0.06379537 0.5808469 0.3679056 0.4344362
         [,50]     [,51]      [,52]     [,53]   [,54]      [,55]     [,56]
[1,] -1.306776 0.2972599 -0.6731804 -1.134278 1.09043 -0.3483837 0.8626227
[2,] -1.306776 0.2972599 -0.6731804 -1.134278 1.09043 -0.3483837 0.8626227
         [,57]   [,58]     [,59]     [,60]      [,61]     [,62]     [,63]
[1,] 0.7735464 1.36436 0.7331278 -0.448381 -0.9289674 0.2396365 0.4026115
[2,] 0.7735464 1.36436 0.7331278 -0.448381 -0.9289674 0.2396365 0.4026115
          [,64]     [,65]     [,66]      [,67]      [,68]     [,69]      [,70]
[1,] -0.4207973 -0.202454 0.4910469 0.09440153 -0.6569339 0.8772765 -0.1185708
[2,] -0.4207973 -0.202454 0.4910469 0.09440153 -0.6569339 0.8772765 -0.1185708
        [,71]     [,72]    [,73]     [,74]    [,75]      [,76]      [,77]
[1,] 2.144967 0.9653538 1.154331 0.8652648 -1.24782 -0.8485243 -0.2007997
[2,] 2.144967 0.9653538 1.154331 0.8652648 -1.24782 -0.8485243 -0.2007997
         [,78]     [,79]     [,80]     [,81]    [,82]   [,83]      [,84]
[1,] 0.6178638 0.5795659 0.8822994 0.2279845 1.597198 1.85868 -0.7643848
[2,] 0.6178638 0.5795659 0.8822994 0.2279845 1.597198 1.85868 -0.7643848
          [,85]    [,86]    [,87]     [,88]      [,89]     [,90]   [,91]
[1,] -0.7474041 1.023585 0.580113 -1.297671 -0.7311605 -1.243489 0.24238
[2,] -0.7474041 1.023585 0.580113 -1.297671 -0.7311605 -1.243489 0.24238
         [,92]     [,93]      [,94]    [,95]     [,96]     [,97]     [,98]
[1,] 0.4793327 0.8388459 0.04036964 -1.19066 0.3820659 -1.231602 -1.257787
[2,] 0.4793327 0.8388459 0.04036964 -1.19066 0.3820659 -1.231602 -1.257787
         [,99]      [,100]
[1,] 0.1550661 -0.04893999
[2,] 0.1550661 -0.04893999
> 
> 
> Max(tmp2)
[1] 2.385248
> Min(tmp2)
[1] -2.159963
> mean(tmp2)
[1] -0.05339583
> Sum(tmp2)
[1] -5.339583
> Var(tmp2)
[1] 0.8868495
> 
> rowMeans(tmp2)
  [1]  0.5247988698 -1.2670554828 -0.0882511096 -0.5147057194 -0.2572635014
  [6] -1.4385261186 -0.3985378663 -2.0316195008 -0.2583707590  0.6352600390
 [11] -0.4833325069  0.6429629181  0.2608351652  1.3294791119 -0.2862908781
 [16]  0.3048819450  0.3696229783  0.5386258216 -0.3169734376 -0.4764593494
 [21]  0.7076097015  1.7234026833  1.3428408163  1.3910456121 -1.9936051667
 [26]  0.7300789217  0.5687201638  0.0063981888  0.9590081564  0.1207004461
 [31] -0.2475614751  1.2713268271 -0.4026824422 -0.8925303956 -0.1001761356
 [36]  0.5726246361 -0.5583938731  0.7342358136  0.4858309133  0.2426668603
 [41] -1.5330547939  0.2919730372  0.2466824628 -0.9080120214 -0.5234857403
 [46]  0.2523069724 -1.1501511725 -0.3678154686  1.7403073201  1.5897378632
 [51] -0.7618286116 -1.4962761979 -0.5351172534  0.2810369109  0.6710330711
 [56] -0.0004623161  1.3406230774  0.6174916299  0.9290233446 -2.1599625810
 [61] -0.6754000682  1.3373155025  2.3852478094 -1.8043124892 -0.9087370034
 [66] -1.1207691309 -0.3576962690  0.6772611993 -0.2255161425 -1.5483694770
 [71] -0.4297785632  1.2682249767 -0.7550354156 -1.3844607828  1.0542356841
 [76] -0.7150077165  1.4831966282 -1.6916152689  0.0792549616 -0.0346406724
 [81] -0.5229745312 -0.3922081979 -1.0179798553  0.3945916108  0.8123625746
 [86]  0.1594514702  0.3485431591 -1.4428642153 -0.1148584306 -0.5479754694
 [91] -0.9056043241 -0.3733445984  1.1401481115 -0.7760514592  0.3900424556
 [96]  0.5450309059 -0.2212007523 -0.8251375756  0.0160570117 -0.6136793948
> rowSums(tmp2)
  [1]  0.5247988698 -1.2670554828 -0.0882511096 -0.5147057194 -0.2572635014
  [6] -1.4385261186 -0.3985378663 -2.0316195008 -0.2583707590  0.6352600390
 [11] -0.4833325069  0.6429629181  0.2608351652  1.3294791119 -0.2862908781
 [16]  0.3048819450  0.3696229783  0.5386258216 -0.3169734376 -0.4764593494
 [21]  0.7076097015  1.7234026833  1.3428408163  1.3910456121 -1.9936051667
 [26]  0.7300789217  0.5687201638  0.0063981888  0.9590081564  0.1207004461
 [31] -0.2475614751  1.2713268271 -0.4026824422 -0.8925303956 -0.1001761356
 [36]  0.5726246361 -0.5583938731  0.7342358136  0.4858309133  0.2426668603
 [41] -1.5330547939  0.2919730372  0.2466824628 -0.9080120214 -0.5234857403
 [46]  0.2523069724 -1.1501511725 -0.3678154686  1.7403073201  1.5897378632
 [51] -0.7618286116 -1.4962761979 -0.5351172534  0.2810369109  0.6710330711
 [56] -0.0004623161  1.3406230774  0.6174916299  0.9290233446 -2.1599625810
 [61] -0.6754000682  1.3373155025  2.3852478094 -1.8043124892 -0.9087370034
 [66] -1.1207691309 -0.3576962690  0.6772611993 -0.2255161425 -1.5483694770
 [71] -0.4297785632  1.2682249767 -0.7550354156 -1.3844607828  1.0542356841
 [76] -0.7150077165  1.4831966282 -1.6916152689  0.0792549616 -0.0346406724
 [81] -0.5229745312 -0.3922081979 -1.0179798553  0.3945916108  0.8123625746
 [86]  0.1594514702  0.3485431591 -1.4428642153 -0.1148584306 -0.5479754694
 [91] -0.9056043241 -0.3733445984  1.1401481115 -0.7760514592  0.3900424556
 [96]  0.5450309059 -0.2212007523 -0.8251375756  0.0160570117 -0.6136793948
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.5247988698 -1.2670554828 -0.0882511096 -0.5147057194 -0.2572635014
  [6] -1.4385261186 -0.3985378663 -2.0316195008 -0.2583707590  0.6352600390
 [11] -0.4833325069  0.6429629181  0.2608351652  1.3294791119 -0.2862908781
 [16]  0.3048819450  0.3696229783  0.5386258216 -0.3169734376 -0.4764593494
 [21]  0.7076097015  1.7234026833  1.3428408163  1.3910456121 -1.9936051667
 [26]  0.7300789217  0.5687201638  0.0063981888  0.9590081564  0.1207004461
 [31] -0.2475614751  1.2713268271 -0.4026824422 -0.8925303956 -0.1001761356
 [36]  0.5726246361 -0.5583938731  0.7342358136  0.4858309133  0.2426668603
 [41] -1.5330547939  0.2919730372  0.2466824628 -0.9080120214 -0.5234857403
 [46]  0.2523069724 -1.1501511725 -0.3678154686  1.7403073201  1.5897378632
 [51] -0.7618286116 -1.4962761979 -0.5351172534  0.2810369109  0.6710330711
 [56] -0.0004623161  1.3406230774  0.6174916299  0.9290233446 -2.1599625810
 [61] -0.6754000682  1.3373155025  2.3852478094 -1.8043124892 -0.9087370034
 [66] -1.1207691309 -0.3576962690  0.6772611993 -0.2255161425 -1.5483694770
 [71] -0.4297785632  1.2682249767 -0.7550354156 -1.3844607828  1.0542356841
 [76] -0.7150077165  1.4831966282 -1.6916152689  0.0792549616 -0.0346406724
 [81] -0.5229745312 -0.3922081979 -1.0179798553  0.3945916108  0.8123625746
 [86]  0.1594514702  0.3485431591 -1.4428642153 -0.1148584306 -0.5479754694
 [91] -0.9056043241 -0.3733445984  1.1401481115 -0.7760514592  0.3900424556
 [96]  0.5450309059 -0.2212007523 -0.8251375756  0.0160570117 -0.6136793948
> rowMin(tmp2)
  [1]  0.5247988698 -1.2670554828 -0.0882511096 -0.5147057194 -0.2572635014
  [6] -1.4385261186 -0.3985378663 -2.0316195008 -0.2583707590  0.6352600390
 [11] -0.4833325069  0.6429629181  0.2608351652  1.3294791119 -0.2862908781
 [16]  0.3048819450  0.3696229783  0.5386258216 -0.3169734376 -0.4764593494
 [21]  0.7076097015  1.7234026833  1.3428408163  1.3910456121 -1.9936051667
 [26]  0.7300789217  0.5687201638  0.0063981888  0.9590081564  0.1207004461
 [31] -0.2475614751  1.2713268271 -0.4026824422 -0.8925303956 -0.1001761356
 [36]  0.5726246361 -0.5583938731  0.7342358136  0.4858309133  0.2426668603
 [41] -1.5330547939  0.2919730372  0.2466824628 -0.9080120214 -0.5234857403
 [46]  0.2523069724 -1.1501511725 -0.3678154686  1.7403073201  1.5897378632
 [51] -0.7618286116 -1.4962761979 -0.5351172534  0.2810369109  0.6710330711
 [56] -0.0004623161  1.3406230774  0.6174916299  0.9290233446 -2.1599625810
 [61] -0.6754000682  1.3373155025  2.3852478094 -1.8043124892 -0.9087370034
 [66] -1.1207691309 -0.3576962690  0.6772611993 -0.2255161425 -1.5483694770
 [71] -0.4297785632  1.2682249767 -0.7550354156 -1.3844607828  1.0542356841
 [76] -0.7150077165  1.4831966282 -1.6916152689  0.0792549616 -0.0346406724
 [81] -0.5229745312 -0.3922081979 -1.0179798553  0.3945916108  0.8123625746
 [86]  0.1594514702  0.3485431591 -1.4428642153 -0.1148584306 -0.5479754694
 [91] -0.9056043241 -0.3733445984  1.1401481115 -0.7760514592  0.3900424556
 [96]  0.5450309059 -0.2212007523 -0.8251375756  0.0160570117 -0.6136793948
> 
> colMeans(tmp2)
[1] -0.05339583
> colSums(tmp2)
[1] -5.339583
> colVars(tmp2)
[1] 0.8868495
> colSd(tmp2)
[1] 0.9417269
> colMax(tmp2)
[1] 2.385248
> colMin(tmp2)
[1] -2.159963
> colMedians(tmp2)
[1] -0.09421362
> colRanges(tmp2)
          [,1]
[1,] -2.159963
[2,]  2.385248
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.5532897  1.2866853  3.6985147 -1.4002734 -0.1451046 -5.7328908
 [7] -1.0335640  0.7043571  0.6798846  2.9701007
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -2.1425828
[2,] -0.9363101
[3,] -0.1374779
[4,]  0.1980758
[5,]  1.3218487
> 
> rowApply(tmp,sum)
 [1] -4.793066570 -1.583800864  2.576662298  0.936971418  1.245600209
 [6]  1.905950366 -0.002146498 -4.453270033  4.199168269 -1.557648740
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    4    6    8    5    2    5    6    1    2    10
 [2,]   10    2    4    9    1    7   10    4    8     1
 [3,]    7    7    6    1   10    6    5    9   10     8
 [4,]    6    8    7    2    7    1    9    2    7     3
 [5,]    2    9    5   10    5    8    1    7    1     7
 [6,]    1    3    3    3    3    3    3    5    6     9
 [7,]    3    1   10    7    4    2    8    8    9     2
 [8,]    8    5    2    4    8   10    2    6    5     6
 [9,]    5   10    1    8    9    4    4   10    3     4
[10,]    9    4    9    6    6    9    7    3    4     5
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -3.23597511  1.14417843 -1.93172236 -3.74161294 -0.18153840 -0.70947813
 [7] -0.08530823 -1.03360775  3.40481788 -1.10322215  1.59279157  3.01701415
[13]  1.61988217  1.48696612  0.40869568  1.53716905 -2.57831044 -0.20642231
[19]  1.94555093  1.04929501
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.40931729
[2,] -1.07273863
[3,] -1.06823382
[4,]  0.04292886
[5,]  0.27138577
> 
> rowApply(tmp,sum)
[1]  0.9141387 -1.7051123  0.4910469  6.5881456 -3.8890558
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    2   12    2   12    3
[2,]    9    8   12    7   20
[3,]    6   17    3    6   11
[4,]    4   18    1   13    2
[5,]   15    3    8   14   10
> 
> 
> as.matrix(tmp)
            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,] -1.06823382 -0.2489135 -0.6620995 -0.8907158  0.6645524 -0.3717638
[2,]  0.04292886 -0.1244079  0.3810188  0.5341061 -1.1634848  1.3625523
[3,] -1.07273863  0.2231606 -0.9791836 -2.3254609 -0.2440683 -0.4401199
[4,]  0.27138577 -0.2659103 -0.4439049  0.3587471  0.8690998 -0.1732840
[5,] -1.40931729  1.5602496 -0.2275532 -1.4182895 -0.3076376 -1.0868627
           [,7]       [,8]        [,9]      [,10]      [,11]       [,12]
[1,] -0.5663220  0.3013246  0.23408272 -0.9820135 -0.1870946  2.21343391
[2,] -0.1955366 -1.5084570  0.03606253 -0.5662933 -1.1353084  0.04231363
[3,] -0.5059887  0.3003233 -0.07979476 -0.2350476  1.9884002  0.73671110
[4,]  1.9036533 -0.9312823  1.90444170  1.2709887  1.9806120 -0.53133359
[5,] -0.7211143  0.8044837  1.31002568 -0.5908564 -1.0538176  0.55588910
           [,13]      [,14]       [,15]       [,16]      [,17]      [,18]
[1,]  1.03748413  0.9402574 -1.22190698  0.21768496  0.4955056  0.6652531
[2,]  0.09526681 -1.4140306  1.79983202 -0.04844939 -0.4790159  0.2011701
[3,]  0.60672518  0.4153697 -0.79216208  1.34848038 -0.3245332  0.8207481
[4,] -0.80364405  0.2711942 -0.06950908  0.10428102 -1.1859958  1.6464191
[5,]  0.68405010  1.2741754  0.69244181 -0.08482792 -1.0842712 -3.5400127
           [,19]      [,20]
[1,]  1.19558159 -0.8519582
[2,]  0.25300513  0.1816153
[3,] -0.04737211  1.0975982
[4,] -0.60983585  1.0220228
[5,]  1.15417217 -0.3999831
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  650  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1    col2      col3        col4       col5      col6      col7
row1 -0.271999 1.83751 0.1871419 -0.07252006 -0.5761689 -1.915576 0.7034023
         col8       col9     col10    col11     col12    col13    col14
row1 1.336635 -0.4784231 0.5661791 1.000245 -1.337266 0.100466 1.623654
         col15     col16     col17    col18      col19    col20
row1 0.7222578 -1.597578 0.2481085 1.380764 -0.1543093 1.084624
> tmp[,"col10"]
           col10
row1  0.56617909
row2  0.03191982
row3  0.71759508
row4  1.68621103
row5 -1.58079689
> tmp[c("row1","row5"),]
           col1      col2       col3        col4       col5      col6
row1 -0.2719990 1.8375097  0.1871419 -0.07252006 -0.5761689 -1.915576
row5 -0.6844711 0.9184235 -0.2716007 -0.30379036 -0.0983985 -1.186250
           col7     col8       col9      col10     col11     col12     col13
row1  0.7034023 1.336635 -0.4784231  0.5661791 1.0002447 -1.337266  0.100466
row5 -0.9412547 1.080572 -1.0195631 -1.5807969 0.5229275 -2.320877 -1.365918
         col14     col15     col16      col17     col18      col19    col20
row1 1.6236541 0.7222578 -1.597578  0.2481085 1.3807642 -0.1543093 1.084624
row5 0.2591514 0.4934986  0.424135 -0.9995451 0.1973945 -0.5447175 1.102980
> tmp[,c("col6","col20")]
           col6      col20
row1 -1.9155757  1.0846243
row2 -0.2595834  0.5726342
row3 -1.5093014  0.3671150
row4  0.8349610 -1.6101951
row5 -1.1862498  1.1029797
> tmp[c("row1","row5"),c("col6","col20")]
          col6    col20
row1 -1.915576 1.084624
row5 -1.186250 1.102980
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.10068 50.94239 50.30777 50.49161 49.78562 104.5447 50.63794 50.06215
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.20981 51.21073 49.79486 49.26808 49.10775 50.74364 49.44501 49.57954
        col17    col18    col19    col20
row1 51.12687 50.68646 51.20249 104.1737
> tmp[,"col10"]
        col10
row1 51.21073
row2 32.18101
row3 30.00238
row4 28.60047
row5 50.72133
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.10068 50.94239 50.30777 50.49161 49.78562 104.5447 50.63794 50.06215
row5 50.94032 50.82423 50.73919 51.32049 51.48745 104.1253 50.47871 51.15346
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.20981 51.21073 49.79486 49.26808 49.10775 50.74364 49.44501 49.57954
row5 48.93308 50.72133 50.74471 51.63396 51.79909 50.36088 50.28831 48.59502
        col17    col18    col19    col20
row1 51.12687 50.68646 51.20249 104.1737
row5 49.94676 50.59349 48.96082 104.5118
> tmp[,c("col6","col20")]
          col6     col20
row1 104.54471 104.17366
row2  75.71247  74.19595
row3  75.38797  75.22600
row4  74.49164  74.61590
row5 104.12527 104.51184
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.5447 104.1737
row5 104.1253 104.5118
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.5447 104.1737
row5 104.1253 104.5118
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.4817247
[2,] -0.7169241
[3,]  0.1158945
[4,]  1.1786875
[5,]  0.8657594
> tmp[,c("col17","col7")]
           col17        col7
[1,] -0.04712513  0.22549778
[2,] -0.27076094 -0.71407169
[3,] -0.13840687  0.01207812
[4,] -2.46255158 -1.32279363
[5,] -0.09653401  1.48797753
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -0.6066193 -1.4389115
[2,] -1.7587332 -0.5383647
[3,]  0.8282928  1.1260147
[4,]  0.7423792 -0.6466440
[5,] -1.6854108  1.4780472
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.6066193
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.6066193
[2,] -1.7587332
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]        [,4]       [,5]       [,6]
row3  0.5390591  1.3892606  0.5298021 -0.05704755 -0.2103104  0.5368080
row1 -0.9850864 -0.2422609 -0.5223963 -0.29014184  0.4671415 -0.5450529
          [,7]      [,8]       [,9]      [,10]      [,11]     [,12]      [,13]
row3 0.1196960  1.110557 0.04499211  0.2870999 -2.1463050  1.060978  0.7644989
row1 0.9723276 -1.083835 1.70107094 -1.1671984 -0.2996484 -1.064139 -0.4243573
         [,14]      [,15]      [,16]      [,17]     [,18]      [,19]     [,20]
row3 1.5647473  0.7279107 -0.2376230 -0.8382043 -1.959844  0.4843118 1.3117731
row1 0.1369843 -0.2485320  0.8872633  1.4300202 -0.373529 -0.8183141 0.6356996
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]        [,3]      [,4]   [,5]      [,6]      [,7]
row2 0.2968485 0.4589965 -0.02869562 0.5006295 0.5599 0.3393799 0.1281122
          [,8]      [,9]     [,10]
row2 -1.213469 -0.690289 0.1157335
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]        [,2]      [,3]      [,4]      [,5]       [,6]      [,7]
row5 -1.364293 -0.06432233 -1.568778 0.5210967 0.3017092 -0.1148236 -1.089536
           [,8]       [,9]     [,10]     [,11]     [,12]     [,13]     [,14]
row5 -0.9463265 -0.3499173 -1.142863 0.9510244 0.2223914 -1.115326 0.2180306
          [,15]       [,16]      [,17]      [,18]     [,19]     [,20]
row5 -0.5046038 -0.05503176 -0.2647715 -0.2217711 -0.966274 0.8834886
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x6000014ac060>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a5346785dc"
 [2] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a578854964"
 [3] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a57695820c"
 [4] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a5518d1ea6"
 [5] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a57d74e1e" 
 [6] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a548499797"
 [7] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a5577f5f94"
 [8] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a56b5c1a6c"
 [9] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a56bcadf84"
[10] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a554188a65"
[11] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a517261805"
[12] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a545f2fc22"
[13] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a55387400e"
[14] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a5547e81f9"
[15] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM92a53d872dc5"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600001440120>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600001440120>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600001440120>
> rowMedians(tmp)
  [1]  0.395887835  0.087216643 -0.363134253  0.499431473 -0.264986156
  [6] -0.332004898  0.247148651  0.192050624 -0.106957453  0.582363795
 [11] -0.138101848  0.796370756 -0.007714322  0.001302642  0.170303253
 [16] -0.028180430  0.181421742 -0.232853858  0.146041197 -0.072769271
 [21] -0.274464327  0.076645848  0.107888766 -0.031694930 -0.155023760
 [26] -0.045688517 -0.100126154  0.272991458 -0.046261609 -0.117126793
 [31] -0.521701142  0.465987055  0.558089408  0.402224917  0.170236962
 [36]  0.141928608  0.026781510 -0.140907724  0.099749060 -0.884848985
 [41] -0.176955236  0.047507287  0.205412493 -0.366130592  0.156034094
 [46]  0.350572758 -0.069681499  0.046504103 -0.232545268 -0.230844585
 [51]  0.396083300 -0.439369267 -0.214314322  0.044664815 -0.036354574
 [56] -0.410061265 -0.108630028 -1.106263114 -0.200476688 -0.171180594
 [61] -0.286065812  0.130888322 -0.245179411 -0.049679783  0.539756956
 [66] -0.609732589 -0.645852109  0.168481253 -0.319460581  0.225587055
 [71] -0.252895047  0.097635954  0.310074111 -0.160273723  0.279391719
 [76]  0.325045449 -0.661775361 -0.128760051 -0.203863756 -0.001605704
 [81] -0.050948627  0.426000793  0.067984555  0.072222344  0.015778275
 [86]  0.170920541  0.224743063  0.039064268  0.187071802 -0.227694488
 [91] -0.240029446  0.164074932  0.071267131 -0.142390367 -0.102125471
 [96]  0.116084674 -0.583154643  0.382243091 -0.012854710  0.212620738
[101] -0.104868594 -0.001334872 -0.051813024  0.093804080  0.190045844
[106] -0.430138202 -0.129473094  0.419012697  0.053821948  0.400394889
[111] -0.143528988 -0.115501840  0.014081497 -0.070354247  0.044057957
[116] -0.248396751 -0.179488266 -0.210258381 -0.136377347 -0.156923757
[121]  0.237653277  0.453570328  0.102038770  0.212997244 -0.094646659
[126] -0.501668252  0.675355370  0.382879343 -0.324216343 -0.511563163
[131]  0.432346290 -0.026144202  0.128515990  0.039940579 -0.289588824
[136] -0.244482805 -0.084889106 -0.015113343  0.493036932 -0.193558566
[141] -0.261948104 -0.422693040 -0.035072884 -0.263286238 -0.502540663
[146] -0.028232316  0.208760070  0.363903889  0.257784554 -0.055668050
[151]  0.453827527  0.073808732  0.130559699  0.326719622 -0.184594932
[156] -0.078767381  0.087594881  0.026651985 -0.598186711  0.079993554
[161]  0.180122831  0.495451457  0.363896559  0.024910412  0.019767186
[166]  0.072164161  0.661317318 -0.076918002  0.026253759 -0.443703128
[171]  0.179374866 -0.196487230  0.084765372  0.130075993  0.539305227
[176] -0.174253050 -0.164264930 -0.568689161 -0.043635520 -0.026751714
[181]  0.221585178 -0.401428940  0.368820958 -0.307610047  0.091104333
[186] -0.429606096 -0.378861634  0.185484105 -0.728844034 -0.055887448
[191]  0.048986974  0.362121025  0.361142791 -0.392179965  0.109784633
[196] -0.024759474 -0.131739036  0.388659552 -0.189416213 -0.217101310
[201] -0.365012617 -0.069553334 -0.391730902  0.607271984  0.738831190
[206]  0.583732531 -0.346875499 -0.025140631  0.020062891  0.231214350
[211] -0.435296994 -0.509922525  0.272810798 -0.101381926 -0.061411188
[216]  0.252270641 -0.480581980  0.193536465  0.402830469 -0.405642824
[221] -0.253458943 -0.339090804  0.280956135 -0.462893364  0.160464593
[226] -0.079636951 -0.406756248  0.114778814  0.146848331 -0.532783463
> 
> proc.time()
   user  system elapsed 
  2.858  16.976  75.036 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003dbc300>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003dbc300>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003dbc300>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600003dbc300>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600003de0000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003de0000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600003de0000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003de0000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003de0000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003de0180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003de0180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003de0180>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600003de0180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003de0180>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600003de0180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003de0180>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600003de0180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003de0180>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003db8180>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600003db8180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003db8180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003db8180>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilea5dc43a4948c" "BufferedMatrixFilea5dc6b1b271b"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilea5dc43a4948c" "BufferedMatrixFilea5dc6b1b271b"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003db83c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003db83c0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600003db83c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600003db83c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600003db83c0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600003db83c0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003de4000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003de4000>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600003de4000>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600003de4000>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003de4180>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003de4180>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.304   0.146   0.436 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.360   0.104   0.472 

Example timings