Back to Build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2026-02-07 11:32 -0500 (Sat, 07 Feb 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4858
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 254/2347HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2026-02-06 13:40 -0500 (Fri, 06 Feb 2026)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
See other builds for BufferedMatrix in R Universe.


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2026-02-06 21:46:58 -0500 (Fri, 06 Feb 2026)
EndedAt: 2026-02-06 21:47:23 -0500 (Fri, 06 Feb 2026)
EllapsedTime: 25.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ...* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.23-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.23-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.23-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.246   0.048   0.280 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478920 25.6    1048721 56.1   639242 34.2
Vcells 885815  6.8    8388608 64.0  2083259 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Feb  6 21:47:14 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Feb  6 21:47:14 2026"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x56319dae5c10>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Feb  6 21:47:14 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Feb  6 21:47:14 2026"
> 
> ColMode(tmp2)
<pointer: 0x56319dae5c10>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 100.2674411 -2.0201317  1.1207801 -0.1653873
[2,]   0.2361541 -0.1345513 -1.2952099  1.3268739
[3,]   1.2362816  0.1694328  0.1073152 -0.1863126
[4,]   0.3495083  0.3046006 -0.8175188  0.1916981
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 100.2674411 2.0201317 1.1207801 0.1653873
[2,]   0.2361541 0.1345513 1.2952099 1.3268739
[3,]   1.2362816 0.1694328 0.1073152 0.1863126
[4,]   0.3495083 0.3046006 0.8175188 0.1916981
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0133631 1.4213134 1.0586690 0.4066784
[2,]  0.4859569 0.3668123 1.1380729 1.1519001
[3,]  1.1118820 0.4116221 0.3275900 0.4316394
[4,]  0.5911923 0.5519064 0.9041675 0.4378334
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.40107 41.23327 36.70747 29.23217
[2,]  30.09572 28.80267 37.67594 37.84588
[3,]  37.35510 29.28565 28.38322 29.50271
[4,]  31.26143 30.82366 34.85919 29.57003
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x56319e93cff0>
> exp(tmp5)
<pointer: 0x56319e93cff0>
> log(tmp5,2)
<pointer: 0x56319e93cff0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.1428
> Min(tmp5)
[1] 52.40844
> mean(tmp5)
[1] 73.14933
> Sum(tmp5)
[1] 14629.87
> Var(tmp5)
[1] 868.772
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.96596 72.20512 71.67436 67.94108 72.29483 69.26677 70.97917 68.67278
 [9] 74.41100 71.08228
> rowSums(tmp5)
 [1] 1859.319 1444.102 1433.487 1358.822 1445.897 1385.335 1419.583 1373.456
 [9] 1488.220 1421.646
> rowVars(tmp5)
 [1] 7917.45589   81.11991   90.92159   50.50190   71.68398   50.93477
 [7]   73.22527   83.73527  104.56606   81.08839
> rowSd(tmp5)
 [1] 88.980087  9.006659  9.535281  7.106469  8.466639  7.136860  8.557176
 [8]  9.150698 10.225755  9.004909
> rowMax(tmp5)
 [1] 469.14280  95.18876  92.28138  83.07962  93.72959  80.19430  86.79965
 [8]  85.02854  97.10158  89.05219
> rowMin(tmp5)
 [1] 56.36732 59.09256 53.93334 57.73775 58.79752 54.21947 52.40844 53.28897
 [9] 54.72785 58.88723
> 
> colMeans(tmp5)
 [1] 109.29673  68.77636  69.83817  68.02037  69.35899  71.23155  75.88670
 [8]  71.98740  70.30148  69.65364  72.04493  74.75459  72.51610  73.19087
[15]  69.13967  69.50824  70.38914  72.69700  74.87776  69.51699
> colSums(tmp5)
 [1] 1092.9673  687.7636  698.3817  680.2037  693.5899  712.3155  758.8670
 [8]  719.8740  703.0148  696.5364  720.4493  747.5459  725.1610  731.9087
[15]  691.3967  695.0824  703.8914  726.9700  748.7776  695.1699
> colVars(tmp5)
 [1] 16047.10243   104.30380   121.66158    44.98377    80.64463    91.53409
 [7]    58.75172   114.85580   135.36178    57.52560    92.66252    87.11006
[13]    72.62116    73.16414    56.59973    69.01745    71.75034    19.61038
[19]   133.08831    46.29346
> colSd(tmp5)
 [1] 126.677158  10.212923  11.030031   6.706994   8.980236   9.567345
 [7]   7.664967  10.717080  11.634508   7.584563   9.626137   9.333277
[13]   8.521805   8.553604   7.523279   8.307674   8.470557   4.428360
[19]  11.536391   6.803930
> colMax(tmp5)
 [1] 469.14280  86.79965  88.59474  78.77123  86.98941  84.36239  89.05219
 [8]  93.72959  84.95982  83.07962  92.28138  95.18876  85.02854  84.91135
[15]  78.00910  79.24967  81.73180  80.32318  97.10158  81.77795
> colMin(tmp5)
 [1] 55.69381 57.43086 54.72785 60.84293 58.79752 56.36732 67.47332 59.40155
 [9] 52.40844 54.21947 63.16384 59.61157 59.38105 58.45515 58.33086 53.28897
[17] 53.93334 64.97116 61.20557 60.97288
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.96596 72.20512 71.67436 67.94108 72.29483 69.26677 70.97917 68.67278
 [9]       NA 71.08228
> rowSums(tmp5)
 [1] 1859.319 1444.102 1433.487 1358.822 1445.897 1385.335 1419.583 1373.456
 [9]       NA 1421.646
> rowVars(tmp5)
 [1] 7917.45589   81.11991   90.92159   50.50190   71.68398   50.93477
 [7]   73.22527   83.73527  102.62960   81.08839
> rowSd(tmp5)
 [1] 88.980087  9.006659  9.535281  7.106469  8.466639  7.136860  8.557176
 [8]  9.150698 10.130627  9.004909
> rowMax(tmp5)
 [1] 469.14280  95.18876  92.28138  83.07962  93.72959  80.19430  86.79965
 [8]  85.02854        NA  89.05219
> rowMin(tmp5)
 [1] 56.36732 59.09256 53.93334 57.73775 58.79752 54.21947 52.40844 53.28897
 [9]       NA 58.88723
> 
> colMeans(tmp5)
 [1] 109.29673  68.77636  69.83817  68.02037  69.35899  71.23155  75.88670
 [8]  71.98740  70.30148  69.65364        NA  74.75459  72.51610  73.19087
[15]  69.13967  69.50824  70.38914  72.69700  74.87776  69.51699
> colSums(tmp5)
 [1] 1092.9673  687.7636  698.3817  680.2037  693.5899  712.3155  758.8670
 [8]  719.8740  703.0148  696.5364        NA  747.5459  725.1610  731.9087
[15]  691.3967  695.0824  703.8914  726.9700  748.7776  695.1699
> colVars(tmp5)
 [1] 16047.10243   104.30380   121.66158    44.98377    80.64463    91.53409
 [7]    58.75172   114.85580   135.36178    57.52560          NA    87.11006
[13]    72.62116    73.16414    56.59973    69.01745    71.75034    19.61038
[19]   133.08831    46.29346
> colSd(tmp5)
 [1] 126.677158  10.212923  11.030031   6.706994   8.980236   9.567345
 [7]   7.664967  10.717080  11.634508   7.584563         NA   9.333277
[13]   8.521805   8.553604   7.523279   8.307674   8.470557   4.428360
[19]  11.536391   6.803930
> colMax(tmp5)
 [1] 469.14280  86.79965  88.59474  78.77123  86.98941  84.36239  89.05219
 [8]  93.72959  84.95982  83.07962        NA  95.18876  85.02854  84.91135
[15]  78.00910  79.24967  81.73180  80.32318  97.10158  81.77795
> colMin(tmp5)
 [1] 55.69381 57.43086 54.72785 60.84293 58.79752 56.36732 67.47332 59.40155
 [9] 52.40844 54.21947       NA 59.61157 59.38105 58.45515 58.33086 53.28897
[17] 53.93334 64.97116 61.20557 60.97288
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.1428
> Min(tmp5,na.rm=TRUE)
[1] 52.40844
> mean(tmp5,na.rm=TRUE)
[1] 73.08516
> Sum(tmp5,na.rm=TRUE)
[1] 14543.95
> Var(tmp5,na.rm=TRUE)
[1] 872.3319
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.96596 72.20512 71.67436 67.94108 72.29483 69.26677 70.97917 68.67278
 [9] 73.80528 71.08228
> rowSums(tmp5,na.rm=TRUE)
 [1] 1859.319 1444.102 1433.487 1358.822 1445.897 1385.335 1419.583 1373.456
 [9] 1402.300 1421.646
> rowVars(tmp5,na.rm=TRUE)
 [1] 7917.45589   81.11991   90.92159   50.50190   71.68398   50.93477
 [7]   73.22527   83.73527  102.62960   81.08839
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.980087  9.006659  9.535281  7.106469  8.466639  7.136860  8.557176
 [8]  9.150698 10.130627  9.004909
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.14280  95.18876  92.28138  83.07962  93.72959  80.19430  86.79965
 [8]  85.02854  97.10158  89.05219
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.36732 59.09256 53.93334 57.73775 58.79752 54.21947 52.40844 53.28897
 [9] 54.72785 58.88723
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.29673  68.77636  69.83817  68.02037  69.35899  71.23155  75.88670
 [8]  71.98740  70.30148  69.65364  70.50328  74.75459  72.51610  73.19087
[15]  69.13967  69.50824  70.38914  72.69700  74.87776  69.51699
> colSums(tmp5,na.rm=TRUE)
 [1] 1092.9673  687.7636  698.3817  680.2037  693.5899  712.3155  758.8670
 [8]  719.8740  703.0148  696.5364  634.5295  747.5459  725.1610  731.9087
[15]  691.3967  695.0824  703.8914  726.9700  748.7776  695.1699
> colVars(tmp5,na.rm=TRUE)
 [1] 16047.10243   104.30380   121.66158    44.98377    80.64463    91.53409
 [7]    58.75172   114.85580   135.36178    57.52560    77.50775    87.11006
[13]    72.62116    73.16414    56.59973    69.01745    71.75034    19.61038
[19]   133.08831    46.29346
> colSd(tmp5,na.rm=TRUE)
 [1] 126.677158  10.212923  11.030031   6.706994   8.980236   9.567345
 [7]   7.664967  10.717080  11.634508   7.584563   8.803849   9.333277
[13]   8.521805   8.553604   7.523279   8.307674   8.470557   4.428360
[19]  11.536391   6.803930
> colMax(tmp5,na.rm=TRUE)
 [1] 469.14280  86.79965  88.59474  78.77123  86.98941  84.36239  89.05219
 [8]  93.72959  84.95982  83.07962  92.28138  95.18876  85.02854  84.91135
[15]  78.00910  79.24967  81.73180  80.32318  97.10158  81.77795
> colMin(tmp5,na.rm=TRUE)
 [1] 55.69381 57.43086 54.72785 60.84293 58.79752 56.36732 67.47332 59.40155
 [9] 52.40844 54.21947 63.16384 59.61157 59.38105 58.45515 58.33086 53.28897
[17] 53.93334 64.97116 61.20557 60.97288
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.96596 72.20512 71.67436 67.94108 72.29483 69.26677 70.97917 68.67278
 [9]      NaN 71.08228
> rowSums(tmp5,na.rm=TRUE)
 [1] 1859.319 1444.102 1433.487 1358.822 1445.897 1385.335 1419.583 1373.456
 [9]    0.000 1421.646
> rowVars(tmp5,na.rm=TRUE)
 [1] 7917.45589   81.11991   90.92159   50.50190   71.68398   50.93477
 [7]   73.22527   83.73527         NA   81.08839
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.980087  9.006659  9.535281  7.106469  8.466639  7.136860  8.557176
 [8]  9.150698        NA  9.004909
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.14280  95.18876  92.28138  83.07962  93.72959  80.19430  86.79965
 [8]  85.02854        NA  89.05219
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.36732 59.09256 53.93334 57.73775 58.79752 54.21947 52.40844 53.28897
 [9]       NA 58.88723
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.72681  69.00893  71.51709  67.64652  69.31775  69.81417  74.63951
 [8]  71.54906  68.67278  69.74948       NaN  74.63990  72.27780  74.82818
[15]  69.88071  68.80183  69.76189  73.17504  72.40845  69.26378
> colSums(tmp5,na.rm=TRUE)
 [1] 1014.5413  621.0804  643.6539  608.8187  623.8597  628.3275  671.7556
 [8]  643.9416  618.0550  627.7453    0.0000  671.7591  650.5002  673.4536
[15]  628.9264  619.2165  627.8570  658.5754  651.6760  623.3740
> colVars(tmp5,na.rm=TRUE)
 [1] 17920.62909   116.73326   105.15794    49.03445    90.70607    80.37493
 [7]    48.59658   127.05125   122.43939    64.61296          NA    97.85081
[13]    81.05997    52.15109    57.49677    72.03074    76.29289    19.49071
[19]    81.12736    51.35886
> colSd(tmp5,na.rm=TRUE)
 [1] 133.867954  10.804317  10.254655   7.002460   9.523974   8.965207
 [7]   6.971124  11.271701  11.065233   8.038219         NA   9.891957
[13]   9.003331   7.221571   7.582663   8.487092   8.734580   4.414829
[19]   9.007073   7.166510
> colMax(tmp5,na.rm=TRUE)
 [1] 469.14280  86.79965  88.59474  78.77123  86.98941  84.36239  89.05219
 [8]  93.72959  82.89721  83.07962      -Inf  95.18876  85.02854  84.91135
[15]  78.00910  79.24967  81.73180  80.32318  83.25374  81.77795
> colMin(tmp5,na.rm=TRUE)
 [1] 55.69381 57.43086 58.08185 60.84293 58.79752 56.36732 67.47332 59.40155
 [9] 52.40844 54.21947      Inf 59.61157 59.38105 64.39275 58.33086 53.28897
[17] 53.93334 64.97116 61.20557 60.97288
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 219.8528 174.9335 213.5619 259.6254 187.1300 326.7886 141.8389 326.7513
 [9] 271.0319 311.2193
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 219.8528 174.9335 213.5619 259.6254 187.1300 326.7886 141.8389 326.7513
 [9] 271.0319 311.2193
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  8.526513e-14  0.000000e+00 -8.526513e-14  8.526513e-14 -5.684342e-14
 [6]  1.989520e-13  1.136868e-13  0.000000e+00 -1.705303e-13  2.842171e-14
[11]  1.705303e-13  4.263256e-14  5.684342e-14  5.684342e-14  5.684342e-14
[16] -2.842171e-14 -2.842171e-14  0.000000e+00  5.684342e-14  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
6   15 
9   13 
1   12 
8   1 
3   13 
7   12 
2   6 
3   2 
2   20 
2   18 
5   20 
9   4 
9   3 
10   4 
6   18 
5   1 
10   11 
6   10 
1   11 
2   13 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.304563
> Min(tmp)
[1] -2.172589
> mean(tmp)
[1] 0.06702426
> Sum(tmp)
[1] 6.702426
> Var(tmp)
[1] 0.7842928
> 
> rowMeans(tmp)
[1] 0.06702426
> rowSums(tmp)
[1] 6.702426
> rowVars(tmp)
[1] 0.7842928
> rowSd(tmp)
[1] 0.8856031
> rowMax(tmp)
[1] 2.304563
> rowMin(tmp)
[1] -2.172589
> 
> colMeans(tmp)
  [1]  0.277509948 -1.273504923  0.463775660 -1.380399472 -0.875700122
  [6]  1.141896150  0.460233748 -0.516264628 -0.360646047  0.731895153
 [11]  1.981075376  0.492292938  0.575882729  2.304562646  1.096079584
 [16]  0.963649524 -0.242242400 -1.122525685 -0.309862937  1.726636278
 [21]  0.101968380 -0.215320631 -1.352586286  0.153624277 -0.802669036
 [26] -0.014764115  0.631985569 -1.828974171 -0.682484333 -1.311762272
 [31]  0.840019939  1.094290258  1.575319698 -0.393471014  0.889180376
 [36]  0.715311577  1.400191351  0.263439924  0.506173947 -0.209960299
 [41] -0.813843569  0.806981665  0.507101586 -0.132557583  1.085733180
 [46] -0.843483599 -0.111934526 -0.080905739  0.246731668 -0.225656710
 [51] -0.391916128 -0.363208950 -1.476831933  0.984150124 -0.140594009
 [56]  0.632574259  0.913107010 -0.138856115  0.843314561 -0.374247379
 [61]  0.425524120  1.352158065 -0.417200568  0.813693381  1.583998424
 [66]  0.244211553 -0.857485235 -0.399963825 -0.211508829 -2.165940466
 [71]  0.614462658 -0.124386682  0.014276420  1.077636940  0.001223263
 [76] -0.049442774 -0.964467292 -0.821349989  0.480022636  0.329185034
 [81]  1.303526952  0.200703805 -0.742898309  0.017642656  0.950317096
 [86] -0.424828714  0.299815239 -1.481872131  0.470423240  0.553486350
 [91]  0.009641107 -0.113141542 -2.172588911  0.133753993 -0.711352958
 [96]  0.389789426  0.469622664 -0.990565549  0.382584776 -1.185794285
> colSums(tmp)
  [1]  0.277509948 -1.273504923  0.463775660 -1.380399472 -0.875700122
  [6]  1.141896150  0.460233748 -0.516264628 -0.360646047  0.731895153
 [11]  1.981075376  0.492292938  0.575882729  2.304562646  1.096079584
 [16]  0.963649524 -0.242242400 -1.122525685 -0.309862937  1.726636278
 [21]  0.101968380 -0.215320631 -1.352586286  0.153624277 -0.802669036
 [26] -0.014764115  0.631985569 -1.828974171 -0.682484333 -1.311762272
 [31]  0.840019939  1.094290258  1.575319698 -0.393471014  0.889180376
 [36]  0.715311577  1.400191351  0.263439924  0.506173947 -0.209960299
 [41] -0.813843569  0.806981665  0.507101586 -0.132557583  1.085733180
 [46] -0.843483599 -0.111934526 -0.080905739  0.246731668 -0.225656710
 [51] -0.391916128 -0.363208950 -1.476831933  0.984150124 -0.140594009
 [56]  0.632574259  0.913107010 -0.138856115  0.843314561 -0.374247379
 [61]  0.425524120  1.352158065 -0.417200568  0.813693381  1.583998424
 [66]  0.244211553 -0.857485235 -0.399963825 -0.211508829 -2.165940466
 [71]  0.614462658 -0.124386682  0.014276420  1.077636940  0.001223263
 [76] -0.049442774 -0.964467292 -0.821349989  0.480022636  0.329185034
 [81]  1.303526952  0.200703805 -0.742898309  0.017642656  0.950317096
 [86] -0.424828714  0.299815239 -1.481872131  0.470423240  0.553486350
 [91]  0.009641107 -0.113141542 -2.172588911  0.133753993 -0.711352958
 [96]  0.389789426  0.469622664 -0.990565549  0.382584776 -1.185794285
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.277509948 -1.273504923  0.463775660 -1.380399472 -0.875700122
  [6]  1.141896150  0.460233748 -0.516264628 -0.360646047  0.731895153
 [11]  1.981075376  0.492292938  0.575882729  2.304562646  1.096079584
 [16]  0.963649524 -0.242242400 -1.122525685 -0.309862937  1.726636278
 [21]  0.101968380 -0.215320631 -1.352586286  0.153624277 -0.802669036
 [26] -0.014764115  0.631985569 -1.828974171 -0.682484333 -1.311762272
 [31]  0.840019939  1.094290258  1.575319698 -0.393471014  0.889180376
 [36]  0.715311577  1.400191351  0.263439924  0.506173947 -0.209960299
 [41] -0.813843569  0.806981665  0.507101586 -0.132557583  1.085733180
 [46] -0.843483599 -0.111934526 -0.080905739  0.246731668 -0.225656710
 [51] -0.391916128 -0.363208950 -1.476831933  0.984150124 -0.140594009
 [56]  0.632574259  0.913107010 -0.138856115  0.843314561 -0.374247379
 [61]  0.425524120  1.352158065 -0.417200568  0.813693381  1.583998424
 [66]  0.244211553 -0.857485235 -0.399963825 -0.211508829 -2.165940466
 [71]  0.614462658 -0.124386682  0.014276420  1.077636940  0.001223263
 [76] -0.049442774 -0.964467292 -0.821349989  0.480022636  0.329185034
 [81]  1.303526952  0.200703805 -0.742898309  0.017642656  0.950317096
 [86] -0.424828714  0.299815239 -1.481872131  0.470423240  0.553486350
 [91]  0.009641107 -0.113141542 -2.172588911  0.133753993 -0.711352958
 [96]  0.389789426  0.469622664 -0.990565549  0.382584776 -1.185794285
> colMin(tmp)
  [1]  0.277509948 -1.273504923  0.463775660 -1.380399472 -0.875700122
  [6]  1.141896150  0.460233748 -0.516264628 -0.360646047  0.731895153
 [11]  1.981075376  0.492292938  0.575882729  2.304562646  1.096079584
 [16]  0.963649524 -0.242242400 -1.122525685 -0.309862937  1.726636278
 [21]  0.101968380 -0.215320631 -1.352586286  0.153624277 -0.802669036
 [26] -0.014764115  0.631985569 -1.828974171 -0.682484333 -1.311762272
 [31]  0.840019939  1.094290258  1.575319698 -0.393471014  0.889180376
 [36]  0.715311577  1.400191351  0.263439924  0.506173947 -0.209960299
 [41] -0.813843569  0.806981665  0.507101586 -0.132557583  1.085733180
 [46] -0.843483599 -0.111934526 -0.080905739  0.246731668 -0.225656710
 [51] -0.391916128 -0.363208950 -1.476831933  0.984150124 -0.140594009
 [56]  0.632574259  0.913107010 -0.138856115  0.843314561 -0.374247379
 [61]  0.425524120  1.352158065 -0.417200568  0.813693381  1.583998424
 [66]  0.244211553 -0.857485235 -0.399963825 -0.211508829 -2.165940466
 [71]  0.614462658 -0.124386682  0.014276420  1.077636940  0.001223263
 [76] -0.049442774 -0.964467292 -0.821349989  0.480022636  0.329185034
 [81]  1.303526952  0.200703805 -0.742898309  0.017642656  0.950317096
 [86] -0.424828714  0.299815239 -1.481872131  0.470423240  0.553486350
 [91]  0.009641107 -0.113141542 -2.172588911  0.133753993 -0.711352958
 [96]  0.389789426  0.469622664 -0.990565549  0.382584776 -1.185794285
> colMedians(tmp)
  [1]  0.277509948 -1.273504923  0.463775660 -1.380399472 -0.875700122
  [6]  1.141896150  0.460233748 -0.516264628 -0.360646047  0.731895153
 [11]  1.981075376  0.492292938  0.575882729  2.304562646  1.096079584
 [16]  0.963649524 -0.242242400 -1.122525685 -0.309862937  1.726636278
 [21]  0.101968380 -0.215320631 -1.352586286  0.153624277 -0.802669036
 [26] -0.014764115  0.631985569 -1.828974171 -0.682484333 -1.311762272
 [31]  0.840019939  1.094290258  1.575319698 -0.393471014  0.889180376
 [36]  0.715311577  1.400191351  0.263439924  0.506173947 -0.209960299
 [41] -0.813843569  0.806981665  0.507101586 -0.132557583  1.085733180
 [46] -0.843483599 -0.111934526 -0.080905739  0.246731668 -0.225656710
 [51] -0.391916128 -0.363208950 -1.476831933  0.984150124 -0.140594009
 [56]  0.632574259  0.913107010 -0.138856115  0.843314561 -0.374247379
 [61]  0.425524120  1.352158065 -0.417200568  0.813693381  1.583998424
 [66]  0.244211553 -0.857485235 -0.399963825 -0.211508829 -2.165940466
 [71]  0.614462658 -0.124386682  0.014276420  1.077636940  0.001223263
 [76] -0.049442774 -0.964467292 -0.821349989  0.480022636  0.329185034
 [81]  1.303526952  0.200703805 -0.742898309  0.017642656  0.950317096
 [86] -0.424828714  0.299815239 -1.481872131  0.470423240  0.553486350
 [91]  0.009641107 -0.113141542 -2.172588911  0.133753993 -0.711352958
 [96]  0.389789426  0.469622664 -0.990565549  0.382584776 -1.185794285
> colRanges(tmp)
          [,1]      [,2]      [,3]      [,4]       [,5]     [,6]      [,7]
[1,] 0.2775099 -1.273505 0.4637757 -1.380399 -0.8757001 1.141896 0.4602337
[2,] 0.2775099 -1.273505 0.4637757 -1.380399 -0.8757001 1.141896 0.4602337
           [,8]      [,9]     [,10]    [,11]     [,12]     [,13]    [,14]
[1,] -0.5162646 -0.360646 0.7318952 1.981075 0.4922929 0.5758827 2.304563
[2,] -0.5162646 -0.360646 0.7318952 1.981075 0.4922929 0.5758827 2.304563
       [,15]     [,16]      [,17]     [,18]      [,19]    [,20]     [,21]
[1,] 1.09608 0.9636495 -0.2422424 -1.122526 -0.3098629 1.726636 0.1019684
[2,] 1.09608 0.9636495 -0.2422424 -1.122526 -0.3098629 1.726636 0.1019684
          [,22]     [,23]     [,24]     [,25]       [,26]     [,27]     [,28]
[1,] -0.2153206 -1.352586 0.1536243 -0.802669 -0.01476412 0.6319856 -1.828974
[2,] -0.2153206 -1.352586 0.1536243 -0.802669 -0.01476412 0.6319856 -1.828974
          [,29]     [,30]     [,31]   [,32]   [,33]     [,34]     [,35]
[1,] -0.6824843 -1.311762 0.8400199 1.09429 1.57532 -0.393471 0.8891804
[2,] -0.6824843 -1.311762 0.8400199 1.09429 1.57532 -0.393471 0.8891804
         [,36]    [,37]     [,38]     [,39]      [,40]      [,41]     [,42]
[1,] 0.7153116 1.400191 0.2634399 0.5061739 -0.2099603 -0.8138436 0.8069817
[2,] 0.7153116 1.400191 0.2634399 0.5061739 -0.2099603 -0.8138436 0.8069817
         [,43]      [,44]    [,45]      [,46]      [,47]       [,48]     [,49]
[1,] 0.5071016 -0.1325576 1.085733 -0.8434836 -0.1119345 -0.08090574 0.2467317
[2,] 0.5071016 -0.1325576 1.085733 -0.8434836 -0.1119345 -0.08090574 0.2467317
          [,50]      [,51]      [,52]     [,53]     [,54]     [,55]     [,56]
[1,] -0.2256567 -0.3919161 -0.3632089 -1.476832 0.9841501 -0.140594 0.6325743
[2,] -0.2256567 -0.3919161 -0.3632089 -1.476832 0.9841501 -0.140594 0.6325743
        [,57]      [,58]     [,59]      [,60]     [,61]    [,62]      [,63]
[1,] 0.913107 -0.1388561 0.8433146 -0.3742474 0.4255241 1.352158 -0.4172006
[2,] 0.913107 -0.1388561 0.8433146 -0.3742474 0.4255241 1.352158 -0.4172006
         [,64]    [,65]     [,66]      [,67]      [,68]      [,69]    [,70]
[1,] 0.8136934 1.583998 0.2442116 -0.8574852 -0.3999638 -0.2115088 -2.16594
[2,] 0.8136934 1.583998 0.2442116 -0.8574852 -0.3999638 -0.2115088 -2.16594
         [,71]      [,72]      [,73]    [,74]       [,75]       [,76]
[1,] 0.6144627 -0.1243867 0.01427642 1.077637 0.001223263 -0.04944277
[2,] 0.6144627 -0.1243867 0.01427642 1.077637 0.001223263 -0.04944277
          [,77]    [,78]     [,79]    [,80]    [,81]     [,82]      [,83]
[1,] -0.9644673 -0.82135 0.4800226 0.329185 1.303527 0.2007038 -0.7428983
[2,] -0.9644673 -0.82135 0.4800226 0.329185 1.303527 0.2007038 -0.7428983
          [,84]     [,85]      [,86]     [,87]     [,88]     [,89]     [,90]
[1,] 0.01764266 0.9503171 -0.4248287 0.2998152 -1.481872 0.4704232 0.5534864
[2,] 0.01764266 0.9503171 -0.4248287 0.2998152 -1.481872 0.4704232 0.5534864
           [,91]      [,92]     [,93]    [,94]     [,95]     [,96]     [,97]
[1,] 0.009641107 -0.1131415 -2.172589 0.133754 -0.711353 0.3897894 0.4696227
[2,] 0.009641107 -0.1131415 -2.172589 0.133754 -0.711353 0.3897894 0.4696227
          [,98]     [,99]    [,100]
[1,] -0.9905655 0.3825848 -1.185794
[2,] -0.9905655 0.3825848 -1.185794
> 
> 
> Max(tmp2)
[1] 2.366417
> Min(tmp2)
[1] -1.921036
> mean(tmp2)
[1] 0.03446079
> Sum(tmp2)
[1] 3.446079
> Var(tmp2)
[1] 0.7743917
> 
> rowMeans(tmp2)
  [1]  0.361144647 -0.044943814 -0.147284955  1.306709753 -0.705167970
  [6]  0.263392578  1.336188580  0.176821554 -0.635963584  0.551828057
 [11]  0.727149177  1.178476238  0.789892141 -1.921035611 -0.189793965
 [16]  0.401644006 -0.029969739  0.724667590 -1.020340616  1.354216004
 [21] -0.284926196  0.593449421 -0.527840931 -0.429262624  1.110679494
 [26] -0.501223690  0.262651953 -0.186179361 -0.810559663 -0.476873980
 [31] -0.384238246  0.513126909 -1.871486025 -0.272131157  0.173060131
 [36]  0.146883994  0.597290035 -0.452068904  1.070220574 -0.140738110
 [41] -0.274500150 -0.387235065 -0.650784940  1.046065282 -1.131290370
 [46]  0.513608168  1.095444883 -0.525932156 -0.387302078 -1.256437706
 [51]  0.788296269 -0.418828297  1.174425224 -0.559556628 -0.709528951
 [56] -0.182364448  0.253285231 -0.478165680  0.184912280  1.721897860
 [61]  1.474714478 -0.356696718 -1.491743177 -0.480352528 -0.231931252
 [66] -0.764951572  1.054967780  0.621953654 -0.845312169 -0.582176219
 [71]  1.229807837 -1.725815549 -0.727847431 -0.203404108 -0.436963260
 [76]  2.366416880 -0.599960713  0.577755475  2.239674226 -0.238031110
 [81] -1.138982226 -0.868526706 -0.067380481 -1.122592137 -0.649705235
 [86]  2.142695772  1.168606755 -0.660404175  0.717097373 -1.470115334
 [91]  0.652593915 -0.195291418 -0.411797642 -0.020027364  0.054560061
 [96]  0.332755188  1.030024941 -0.254320055  0.005919801  0.897391136
> rowSums(tmp2)
  [1]  0.361144647 -0.044943814 -0.147284955  1.306709753 -0.705167970
  [6]  0.263392578  1.336188580  0.176821554 -0.635963584  0.551828057
 [11]  0.727149177  1.178476238  0.789892141 -1.921035611 -0.189793965
 [16]  0.401644006 -0.029969739  0.724667590 -1.020340616  1.354216004
 [21] -0.284926196  0.593449421 -0.527840931 -0.429262624  1.110679494
 [26] -0.501223690  0.262651953 -0.186179361 -0.810559663 -0.476873980
 [31] -0.384238246  0.513126909 -1.871486025 -0.272131157  0.173060131
 [36]  0.146883994  0.597290035 -0.452068904  1.070220574 -0.140738110
 [41] -0.274500150 -0.387235065 -0.650784940  1.046065282 -1.131290370
 [46]  0.513608168  1.095444883 -0.525932156 -0.387302078 -1.256437706
 [51]  0.788296269 -0.418828297  1.174425224 -0.559556628 -0.709528951
 [56] -0.182364448  0.253285231 -0.478165680  0.184912280  1.721897860
 [61]  1.474714478 -0.356696718 -1.491743177 -0.480352528 -0.231931252
 [66] -0.764951572  1.054967780  0.621953654 -0.845312169 -0.582176219
 [71]  1.229807837 -1.725815549 -0.727847431 -0.203404108 -0.436963260
 [76]  2.366416880 -0.599960713  0.577755475  2.239674226 -0.238031110
 [81] -1.138982226 -0.868526706 -0.067380481 -1.122592137 -0.649705235
 [86]  2.142695772  1.168606755 -0.660404175  0.717097373 -1.470115334
 [91]  0.652593915 -0.195291418 -0.411797642 -0.020027364  0.054560061
 [96]  0.332755188  1.030024941 -0.254320055  0.005919801  0.897391136
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.361144647 -0.044943814 -0.147284955  1.306709753 -0.705167970
  [6]  0.263392578  1.336188580  0.176821554 -0.635963584  0.551828057
 [11]  0.727149177  1.178476238  0.789892141 -1.921035611 -0.189793965
 [16]  0.401644006 -0.029969739  0.724667590 -1.020340616  1.354216004
 [21] -0.284926196  0.593449421 -0.527840931 -0.429262624  1.110679494
 [26] -0.501223690  0.262651953 -0.186179361 -0.810559663 -0.476873980
 [31] -0.384238246  0.513126909 -1.871486025 -0.272131157  0.173060131
 [36]  0.146883994  0.597290035 -0.452068904  1.070220574 -0.140738110
 [41] -0.274500150 -0.387235065 -0.650784940  1.046065282 -1.131290370
 [46]  0.513608168  1.095444883 -0.525932156 -0.387302078 -1.256437706
 [51]  0.788296269 -0.418828297  1.174425224 -0.559556628 -0.709528951
 [56] -0.182364448  0.253285231 -0.478165680  0.184912280  1.721897860
 [61]  1.474714478 -0.356696718 -1.491743177 -0.480352528 -0.231931252
 [66] -0.764951572  1.054967780  0.621953654 -0.845312169 -0.582176219
 [71]  1.229807837 -1.725815549 -0.727847431 -0.203404108 -0.436963260
 [76]  2.366416880 -0.599960713  0.577755475  2.239674226 -0.238031110
 [81] -1.138982226 -0.868526706 -0.067380481 -1.122592137 -0.649705235
 [86]  2.142695772  1.168606755 -0.660404175  0.717097373 -1.470115334
 [91]  0.652593915 -0.195291418 -0.411797642 -0.020027364  0.054560061
 [96]  0.332755188  1.030024941 -0.254320055  0.005919801  0.897391136
> rowMin(tmp2)
  [1]  0.361144647 -0.044943814 -0.147284955  1.306709753 -0.705167970
  [6]  0.263392578  1.336188580  0.176821554 -0.635963584  0.551828057
 [11]  0.727149177  1.178476238  0.789892141 -1.921035611 -0.189793965
 [16]  0.401644006 -0.029969739  0.724667590 -1.020340616  1.354216004
 [21] -0.284926196  0.593449421 -0.527840931 -0.429262624  1.110679494
 [26] -0.501223690  0.262651953 -0.186179361 -0.810559663 -0.476873980
 [31] -0.384238246  0.513126909 -1.871486025 -0.272131157  0.173060131
 [36]  0.146883994  0.597290035 -0.452068904  1.070220574 -0.140738110
 [41] -0.274500150 -0.387235065 -0.650784940  1.046065282 -1.131290370
 [46]  0.513608168  1.095444883 -0.525932156 -0.387302078 -1.256437706
 [51]  0.788296269 -0.418828297  1.174425224 -0.559556628 -0.709528951
 [56] -0.182364448  0.253285231 -0.478165680  0.184912280  1.721897860
 [61]  1.474714478 -0.356696718 -1.491743177 -0.480352528 -0.231931252
 [66] -0.764951572  1.054967780  0.621953654 -0.845312169 -0.582176219
 [71]  1.229807837 -1.725815549 -0.727847431 -0.203404108 -0.436963260
 [76]  2.366416880 -0.599960713  0.577755475  2.239674226 -0.238031110
 [81] -1.138982226 -0.868526706 -0.067380481 -1.122592137 -0.649705235
 [86]  2.142695772  1.168606755 -0.660404175  0.717097373 -1.470115334
 [91]  0.652593915 -0.195291418 -0.411797642 -0.020027364  0.054560061
 [96]  0.332755188  1.030024941 -0.254320055  0.005919801  0.897391136
> 
> colMeans(tmp2)
[1] 0.03446079
> colSums(tmp2)
[1] 3.446079
> colVars(tmp2)
[1] 0.7743917
> colSd(tmp2)
[1] 0.8799953
> colMax(tmp2)
[1] 2.366417
> colMin(tmp2)
[1] -1.921036
> colMedians(tmp2)
[1] -0.1648247
> colRanges(tmp2)
          [,1]
[1,] -1.921036
[2,]  2.366417
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.6542590 -1.0211476 -0.3059891  0.2481150 -2.2789044  4.8959884
 [7]  2.1567923 -6.7600135 -1.4502992 -0.5952058
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.72808767
[2,] -1.14800126
[3,] -0.03581517
[4,]  0.52385244
[5,]  1.05682454
> 
> rowApply(tmp,sum)
 [1] -3.6396924 -1.2281720  2.0964975 -0.7725646  1.6629778 -1.4776292
 [7] -3.6054608 -2.2976202  2.1029697 -0.6062288
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    8    1    7    7    2    1    9    5    6     2
 [2,]    1    6    9    1    3    6    6    9    8     5
 [3,]    9    3    3    9    8    3    2    6    4     7
 [4,]    3    5    1    5    7   10    7   10    9     1
 [5,]    6    4    5    3    9    2    8    7    2     6
 [6,]   10    8   10    8    6    4   10    2   10     8
 [7,]    7    7    2   10    1    7    5    8    5    10
 [8,]    5   10    4    4    4    8    1    3    1     3
 [9,]    2    2    8    2   10    9    3    4    7     4
[10,]    4    9    6    6    5    5    4    1    3     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.45648526  1.73424417 -2.20371394  1.14413078  1.50564797  0.22833747
 [7]  0.77270134  3.97346161 -3.08075012  2.30367384  2.25352247  0.70840219
[13] -0.53315145 -1.11211658  0.45949498  0.93056297  5.79189110 -0.85682370
[19] -0.04732654 -2.08413204
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.04890867
[2,] -0.39767567
[3,]  0.02487967
[4,]  0.47989216
[5,]  2.39829778
> 
> rowApply(tmp,sum)
[1]  6.973259  3.972922 -4.157214 -1.604673  8.160248
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   20   10   17    9    3
[2,]   10    6   18   10   16
[3,]   15    4    8    8    1
[4,]    9   19    3   17    6
[5,]   17   15    5    7   13
> 
> 
> as.matrix(tmp)
            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,]  2.39829778  0.3265672  0.8590908  0.2767211  1.3660965 -1.3676119
[2,]  0.02487967 -0.5988072 -0.9346145  1.8106263  1.0947383  0.2962638
[3,]  0.47989216  0.7486077 -0.2896172 -1.4084699 -1.1038701 -0.2562275
[4,] -0.39767567 -0.1788724 -0.4349024  0.8590563 -0.4976744  1.2068738
[5,] -1.04890867  1.4367488 -1.4036707 -0.3938031  0.6463576  0.3490392
           [,7]        [,8]       [,9]      [,10]      [,11]       [,12]
[1,] -0.3656611  1.09011102 -0.3650464 -0.1474504  0.8012592 -0.21602289
[2,]  1.3293814 -0.04954965 -1.7653506  1.1226414  0.4726672  0.27429554
[3,] -1.5393379  0.18960001  0.8109239  1.6395281 -0.2710968  0.34746085
[4,]  0.5269574  0.82448896 -0.9620723 -0.8906931 -0.8825677  0.01894686
[5,]  0.8213615  1.91881127 -0.7992047  0.5796479  2.1332606  0.28372182
           [,13]      [,14]       [,15]      [,16]      [,17]      [,18]
[1,]  0.37432114  1.5477352 -0.75671943  1.6447156  0.3379600 -0.8255771
[2,] -0.68819465 -0.1319878 -0.28056664  1.6711959  2.5331268  0.4302201
[3,]  0.06811958 -1.1327795  0.15215216 -1.5550940 -0.0856038 -0.4455560
[4,] -1.74567155 -1.5913128  1.29086354  0.3575397  1.1584761  0.5341019
[5,]  1.45827404  0.1962282  0.05376535 -1.1877942  1.8479320 -0.5500126
          [,19]      [,20]
[1,]  0.6986443 -0.7041716
[2,] -1.3620748 -1.2759689
[3,] -0.9546104  0.4487647
[4,]  0.2869402 -1.0874757
[5,]  1.2837742  0.5347195
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
         col1      col2       col3        col4      col5      col6     col7
row1 0.288544 0.8806084 -0.6486825 -0.05497758 0.1138274 0.7493727 1.613709
            col8      col9    col10    col11       col12     col13     col14
row1 -0.05683388 0.8243875 1.224737 1.220652 -0.06234471 -0.702963 -1.184665
         col15     col16    col17   col18       col19      col20
row1 0.7281059 -1.111488 1.837093 0.34356 0.006061209 -0.9973569
> tmp[,"col10"]
          col10
row1  1.2247370
row2  0.1101949
row3  0.5114613
row4 -0.1803548
row5  0.7372365
> tmp[c("row1","row5"),]
         col1       col2       col3        col4      col5      col6      col7
row1 0.288544  0.8806084 -0.6486825 -0.05497758 0.1138274 0.7493727 1.6137089
row5 1.097208 -0.9847174  0.0941206  0.72777033 0.6943951 1.5348100 0.5410248
            col8      col9     col10      col11       col12     col13
row1 -0.05683388 0.8243875 1.2247370  1.2206518 -0.06234471 -0.702963
row5 -0.70084407 0.5857553 0.7372365 -0.6708168 -0.41759530  0.226441
          col14      col15      col16    col17      col18        col19
row1 -1.1846653  0.7281059 -1.1114878 1.837093  0.3435600  0.006061209
row5  0.6139361 -0.9561946  0.6149774 1.070296 -0.3071099 -0.420654194
          col20
row1 -0.9973569
row5 -0.9308498
> tmp[,c("col6","col20")]
           col6      col20
row1  0.7493727 -0.9973569
row2 -0.2067862 -0.2403308
row3  2.1782126 -0.1639437
row4  2.2806999  0.2452493
row5  1.5348100 -0.9308498
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 0.7493727 -0.9973569
row5 1.5348100 -0.9308498
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.82494 50.51435 50.40758 51.39183 50.59588 104.9012 48.52211 49.64359
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.56737 52.94712 48.23979 51.10924 48.31986 49.60051 51.05094 49.07681
        col17  col18    col19    col20
row1 50.88772 49.913 50.72213 103.8628
> tmp[,"col10"]
        col10
row1 52.94712
row2 31.12326
row3 30.32166
row4 29.61767
row5 50.70305
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.82494 50.51435 50.40758 51.39183 50.59588 104.9012 48.52211 49.64359
row5 51.26608 48.74864 50.02375 48.72163 49.76972 107.0156 48.59092 50.36650
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.56737 52.94712 48.23979 51.10924 48.31986 49.60051 51.05094 49.07681
row5 49.81661 50.70305 49.36506 49.41488 51.57060 48.78918 49.24724 50.57799
        col17    col18    col19    col20
row1 50.88772 49.91300 50.72213 103.8628
row5 51.15576 52.50865 49.24355 107.2537
> tmp[,c("col6","col20")]
          col6     col20
row1 104.90122 103.86284
row2  73.83175  74.28797
row3  75.24597  75.26436
row4  75.47793  72.67434
row5 107.01560 107.25373
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.9012 103.8628
row5 107.0156 107.2537
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.9012 103.8628
row5 107.0156 107.2537
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,] -2.28118979
[2,] -0.28289093
[3,]  0.22456977
[4,] -0.01475561
[5,] -0.01006036
> tmp[,c("col17","col7")]
           col17        col7
[1,] -0.28384024  0.41010854
[2,] -0.04147827  1.11392815
[3,]  0.67531674  0.67137121
[4,]  1.17910216 -0.46851966
[5,] -1.55604514  0.09558389
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,]  0.76923461 -0.8059447
[2,] -1.17369558 -0.1770124
[3,]  0.65307048  1.8548570
[4,] -0.07035001  1.2266671
[5,]  0.12043193  0.5489471
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.7692346
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,]  0.7692346
[2,] -1.1736956
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]        [,2]      [,3]      [,4]       [,5]      [,6]       [,7]
row3 -0.2872639  0.46123724 0.1415220 -1.144984 -0.3473999 0.5086992 -1.0125869
row1  0.2680187 -0.01071945 0.2042803 -1.882176  1.3858047 0.6256796  0.6811562
          [,8]     [,9]      [,10]      [,11]     [,12]      [,13]     [,14]
row3 -0.914610 1.221137  0.7181841 -0.7916093 0.6180256 -0.9783019 1.7572427
row1  1.738643 1.557227 -1.3243001 -0.3672759 0.3237074 -0.2269556 0.4391079
          [,15]      [,16]      [,17]     [,18]     [,19]     [,20]
row3 -1.1193949  0.4734714 -1.2115881 0.9821194 0.1773118 2.3984569
row1 -0.6761497 -1.5660979 -0.3650001 0.8678884 1.6562933 0.9497439
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]     [,3]     [,4]     [,5]     [,6]       [,7]
row2 -1.632757 -1.327844 1.312737 1.215388 1.488126 1.128037 -0.1266257
          [,8]     [,9]       [,10]
row2 -2.148173 1.173047 -0.07774509
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]      [,2]      [,3]     [,4]     [,5]      [,6]        [,7]
row5 -0.8549513 0.1843258 0.1594422 1.460532 2.480385 0.2332209 -0.06036653
         [,8]    [,9]     [,10]      [,11]      [,12]      [,13]     [,14]
row5 1.176595 1.85673 0.4136958 -0.1002366 -0.3858318 -0.5042934 0.3900698
          [,15]      [,16]     [,17]      [,18]     [,19]     [,20]
row5 -0.8611021 -0.2549557 -1.592027 -0.2144404 -1.050599 0.9662919
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x56319f2ac810>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c1176283" 
 [2] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c1e4d20eb"
 [3] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c1fc9e327"
 [4] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c6aba77bf"
 [5] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c7cd943ee"
 [6] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c3c84f0f0"
 [7] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c30bdee88"
 [8] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c39cd6060"
 [9] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c13113869"
[10] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c7708d894"
[11] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c6a096129"
[12] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c531a8ad1"
[13] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c5a3ba48c"
[14] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242cd2bfe01" 
[15] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM19242c1bad2e6c"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x56319f05e370>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x56319f05e370>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x56319f05e370>
> rowMedians(tmp)
  [1] -0.2391174192 -0.3100443634  0.5045823666 -0.5397491724 -0.0932649798
  [6] -0.2299235015  0.1308693206 -0.3654946577 -0.3363846724  0.5047770716
 [11] -0.4222460360 -0.4927375042 -0.5026067893 -0.1404803223 -0.0419073400
 [16] -0.0687767511  0.5543020547 -0.1115577993 -0.2215879484 -0.0181787862
 [21]  0.4691655653  0.6831485235  0.2838444833 -0.6500514002  0.1833916068
 [26]  0.3099413869 -0.1079552888  0.0127984252  0.1932421686 -0.5678855787
 [31]  0.2580402803  0.3038362257  0.5992116681  0.1995745900  0.0786729628
 [36] -0.1095246683  0.1251976220 -0.6274903040 -0.4515622981  0.9011710448
 [41]  0.0945305207  0.1253320433 -0.0190601973 -0.2261729334 -0.0720021550
 [46]  0.4834423262 -0.1136598853 -0.2258938656  0.0808323193  0.2747147005
 [51] -0.2094893215  0.5029473357 -0.5690112353 -0.4272372436 -0.2641626470
 [56] -0.2690817792 -0.0067798618 -0.5521761985 -0.1414127365 -0.1876056266
 [61] -0.5071202155 -0.1947818643  0.2101072391 -0.2949483191 -0.4599097072
 [66]  0.2570691800  0.0658099212 -0.0005460543  0.4563432249  0.3037257828
 [71] -0.0702522711  0.0790744195  0.6160899911 -0.1866532356 -0.3282619887
 [76]  0.3377528736 -0.2817188542  0.0777294575 -0.0645238392 -0.1156974749
 [81] -0.0887578232 -0.0369806583 -0.2636325592  0.2326670909 -0.3114593234
 [86] -0.3793331288  0.0801301750 -0.2551538281  1.1065632491  0.1583363312
 [91] -0.0181075412  0.2080365861  0.3018200722  0.2406123239 -0.4301198852
 [96] -0.5625075405 -0.4111308356 -0.6007050402  0.5490754966 -0.1906108779
[101] -0.3793067296  0.1732379517  0.4198876101  0.5664517302 -0.0144531610
[106] -0.2571519715  0.2793807417 -0.4719722911 -0.5612775624 -0.0066439443
[111]  0.5013618687  0.0546688941  0.2668222924  0.3171120206  0.0757162432
[116]  0.0872093701 -0.2799154000  0.2191137596 -0.1741500916 -0.5720998876
[121]  0.7197664522  0.3794314201 -0.4130084888 -0.4504097020  0.3931578481
[126]  0.2224138237  0.1403784604 -0.3733431873  0.3679580091  0.2409530212
[131]  0.2105978572 -0.7458688226  0.0812585790 -0.2256804614  0.3215967411
[136] -0.0312492265 -0.0122481529  0.1997955148 -0.0275943657  0.0495758665
[141]  0.0280100841  0.4651903470 -0.4321422292  0.1015419785  0.4459785046
[146] -0.4421706227  0.0318906699  0.0704014176  0.3022873678 -0.5327465498
[151]  0.6957696793 -0.0376772608 -0.0055501393  0.3811434507 -0.2162825747
[156] -0.0683765267 -0.0212762759 -0.1071628348  0.4011248157 -0.4958777694
[161]  0.2656594743  0.0787777141 -0.1084430673 -0.1574044406  0.5261377049
[166] -0.1776340897  0.2539375479 -0.1244126117 -0.4446301553 -0.2408954198
[171]  0.1263954651 -0.2294212276 -0.1587402191 -0.2001581711 -0.4424020803
[176]  0.0093331363  0.0990431523  0.4088646989  0.6266746553  0.1915524386
[181] -0.2855518889  0.6112998615  0.4249221094  0.2489787503 -0.1620418056
[186]  0.0222624693 -0.1991540522 -0.1393782026  0.2070287496  0.2199410666
[191] -0.1392599544 -0.4365050002 -0.0268259279 -0.3325936473  0.2311619609
[196]  0.2539166941  0.2002496466 -0.0377902099  0.3967248225 -0.1475407919
[201]  0.0755526030  0.0120578991  0.4944310489  0.3329177036  0.3562245314
[206]  0.2656159846  0.2834585954  0.0993228050  0.3022806284  0.2220881853
[211]  0.0176875515 -0.1617923185  0.4189541560  0.4043649114  0.0108375951
[216] -0.1601408867  0.1121778382  0.4169823127 -0.1065192192  0.0134635405
[221] -0.3025670913  0.0970625623 -0.1946490158  0.0476901337  0.3705559709
[226]  0.5307558659 -0.2745079540  0.1468534711 -0.4997746443  0.1576504158
> 
> proc.time()
   user  system elapsed 
  1.326   1.455   2.768 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5631353f4c10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5631353f4c10>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5631353f4c10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x5631353f4c10>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x5631360b72d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5631360b72d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x5631360b72d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5631360b72d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5631360b72d0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x56313678cd70>
> .Call("R_bm_AddColumn",P)
<pointer: 0x56313678cd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x56313678cd70>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x56313678cd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x56313678cd70>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x56313678cd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x56313678cd70>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x56313678cd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x56313678cd70>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x563136300370>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x563136300370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x563136300370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x563136300370>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1924eb3234d358" "BufferedMatrixFile1924eb36e5da96"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1924eb3234d358" "BufferedMatrixFile1924eb36e5da96"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x56313624bff0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x56313624bff0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x56313624bff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x56313624bff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x56313624bff0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x56313624bff0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x56313642e3d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x56313642e3d0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x56313642e3d0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x56313642e3d0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x563137bdffb0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x563137bdffb0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.245   0.052   0.286 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.245   0.040   0.273 

Example timings