Back to Build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2026-02-11 11:32 -0500 (Wed, 11 Feb 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4862
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 255/2351HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2026-02-10 13:40 -0500 (Tue, 10 Feb 2026)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
See other builds for BufferedMatrix in R Universe.


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2026-02-10 22:05:56 -0500 (Tue, 10 Feb 2026)
EndedAt: 2026-02-10 22:06:21 -0500 (Tue, 10 Feb 2026)
EllapsedTime: 25.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ...* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.23-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.23-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.23-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.243   0.053   0.282 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478920 25.6    1048721 56.1   639242 34.2
Vcells 885815  6.8    8388608 64.0  2083259 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Feb 10 22:06:12 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Feb 10 22:06:12 2026"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x6326aca5fc10>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Feb 10 22:06:12 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Feb 10 22:06:12 2026"
> 
> ColMode(tmp2)
<pointer: 0x6326aca5fc10>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
             [,1]       [,2]       [,3]       [,4]
[1,] 103.25019723  1.7744272  1.8475228 -1.5666461
[2,]   0.33394897 -0.3700987 -0.2551698  1.4321956
[3,]   0.04075809 -0.7627099  0.4673697 -1.7627697
[4,]   0.24887899  0.4178389  0.6209557  0.5460812
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
             [,1]      [,2]      [,3]      [,4]
[1,] 103.25019723 1.7744272 1.8475228 1.5666461
[2,]   0.33394897 0.3700987 0.2551698 1.4321956
[3,]   0.04075809 0.7627099 0.4673697 1.7627697
[4,]   0.24887899 0.4178389 0.6209557 0.5460812
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.1612104 1.3320763 1.3592361 1.2516573
[2,]  0.5778832 0.6083573 0.5051433 1.1967437
[3,]  0.2018863 0.8733326 0.6836445 1.3276934
[4,]  0.4988777 0.6464046 0.7880074 0.7389731
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 229.86230 40.09519 40.43988 39.08322
[2,]  31.11278 31.45367 30.30660 38.39963
[3,]  27.05962 34.49604 32.30381 40.03970
[4,]  30.23766 31.88189 33.50103 32.93581
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x6326ad8b6ff0>
> exp(tmp5)
<pointer: 0x6326ad8b6ff0>
> log(tmp5,2)
<pointer: 0x6326ad8b6ff0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 478.4283
> Min(tmp5)
[1] 53.15372
> mean(tmp5)
[1] 73.26542
> Sum(tmp5)
[1] 14653.08
> Var(tmp5)
[1] 913.0567
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 93.45476 71.64790 72.92216 69.72684 70.21538 73.34009 70.14849 71.82510
 [9] 69.62722 69.74629
> rowSums(tmp5)
 [1] 1869.095 1432.958 1458.443 1394.537 1404.308 1466.802 1402.970 1436.502
 [9] 1392.544 1394.926
> rowVars(tmp5)
 [1] 8279.42533   78.10806   61.76589   80.93600   91.29139  110.25754
 [7]  111.74824   70.74326   56.00148  128.49145
> rowSd(tmp5)
 [1] 90.991348  8.837876  7.859128  8.996444  9.554653 10.500359 10.571104
 [8]  8.410901  7.483413 11.335407
> rowMax(tmp5)
 [1] 478.42826  87.88044  85.46296  89.33790  91.74074  93.66437  90.73477
 [8]  89.20385  81.53648  89.23193
> rowMin(tmp5)
 [1] 62.35924 60.27181 56.32106 53.51333 54.05240 53.15372 54.84701 59.28783
 [9] 57.36553 56.29603
> 
> colMeans(tmp5)
 [1] 106.71176  70.35262  73.90481  71.55630  65.25806  73.22691  71.46853
 [8]  66.62448  74.21386  77.55140  76.23961  64.26134  74.40106  69.59408
[15]  73.59965  75.01930  68.34540  73.26884  67.14465  72.56581
> colSums(tmp5)
 [1] 1067.1176  703.5262  739.0481  715.5630  652.5806  732.2691  714.6853
 [8]  666.2448  742.1386  775.5140  762.3961  642.6134  744.0106  695.9408
[15]  735.9965  750.1930  683.4540  732.6884  671.4465  725.6581
> colVars(tmp5)
 [1] 17099.89708    64.85723    62.23164    59.75722    33.86334   108.11747
 [7]   154.21657    66.90095    50.02917   121.42255    33.90447    93.02393
[13]   109.28425    76.64877    61.07269    55.41544   133.46678    72.25885
[19]    46.45492    95.62278
> colSd(tmp5)
 [1] 130.766575   8.053399   7.888703   7.730279   5.819221  10.397955
 [7]  12.418396   8.179300   7.073130  11.019190   5.822754   9.644892
[13]  10.453911   8.754928   7.814902   7.444155  11.552783   8.500520
[19]   6.815785   9.778690
> colMax(tmp5)
 [1] 478.42826  83.45288  84.17032  83.33740  77.36471  90.73477  91.74074
 [8]  81.51817  84.44481  89.33790  85.85768  85.46296  89.20385  85.28588
[15]  79.63098  85.44681  93.66437  82.89166  79.87404  86.03873
> colMin(tmp5)
 [1] 56.32106 60.12536 63.07922 60.97245 57.58318 61.15408 56.16573 58.41502
 [9] 65.15011 58.68787 68.15354 53.15372 60.10805 55.71327 55.71793 63.91120
[17] 54.84701 61.65823 53.51333 57.36553
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 93.45476 71.64790 72.92216 69.72684       NA 73.34009 70.14849 71.82510
 [9] 69.62722 69.74629
> rowSums(tmp5)
 [1] 1869.095 1432.958 1458.443 1394.537       NA 1466.802 1402.970 1436.502
 [9] 1392.544 1394.926
> rowVars(tmp5)
 [1] 8279.42533   78.10806   61.76589   80.93600   95.79277  110.25754
 [7]  111.74824   70.74326   56.00148  128.49145
> rowSd(tmp5)
 [1] 90.991348  8.837876  7.859128  8.996444  9.787378 10.500359 10.571104
 [8]  8.410901  7.483413 11.335407
> rowMax(tmp5)
 [1] 478.42826  87.88044  85.46296  89.33790        NA  93.66437  90.73477
 [8]  89.20385  81.53648  89.23193
> rowMin(tmp5)
 [1] 62.35924 60.27181 56.32106 53.51333       NA 53.15372 54.84701 59.28783
 [9] 57.36553 56.29603
> 
> colMeans(tmp5)
 [1] 106.71176  70.35262  73.90481  71.55630  65.25806  73.22691  71.46853
 [8]  66.62448  74.21386  77.55140  76.23961  64.26134  74.40106  69.59408
[15]  73.59965  75.01930  68.34540  73.26884        NA  72.56581
> colSums(tmp5)
 [1] 1067.1176  703.5262  739.0481  715.5630  652.5806  732.2691  714.6853
 [8]  666.2448  742.1386  775.5140  762.3961  642.6134  744.0106  695.9408
[15]  735.9965  750.1930  683.4540  732.6884        NA  725.6581
> colVars(tmp5)
 [1] 17099.89708    64.85723    62.23164    59.75722    33.86334   108.11747
 [7]   154.21657    66.90095    50.02917   121.42255    33.90447    93.02393
[13]   109.28425    76.64877    61.07269    55.41544   133.46678    72.25885
[19]          NA    95.62278
> colSd(tmp5)
 [1] 130.766575   8.053399   7.888703   7.730279   5.819221  10.397955
 [7]  12.418396   8.179300   7.073130  11.019190   5.822754   9.644892
[13]  10.453911   8.754928   7.814902   7.444155  11.552783   8.500520
[19]         NA   9.778690
> colMax(tmp5)
 [1] 478.42826  83.45288  84.17032  83.33740  77.36471  90.73477  91.74074
 [8]  81.51817  84.44481  89.33790  85.85768  85.46296  89.20385  85.28588
[15]  79.63098  85.44681  93.66437  82.89166        NA  86.03873
> colMin(tmp5)
 [1] 56.32106 60.12536 63.07922 60.97245 57.58318 61.15408 56.16573 58.41502
 [9] 65.15011 58.68787 68.15354 53.15372 60.10805 55.71327 55.71793 63.91120
[17] 54.84701 61.65823       NA 57.36553
> 
> Max(tmp5,na.rm=TRUE)
[1] 478.4283
> Min(tmp5,na.rm=TRUE)
[1] 53.15372
> mean(tmp5,na.rm=TRUE)
[1] 73.29644
> Sum(tmp5,na.rm=TRUE)
[1] 14585.99
> Var(tmp5,na.rm=TRUE)
[1] 917.4747
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 93.45476 71.64790 72.92216 69.72684 70.37975 73.34009 70.14849 71.82510
 [9] 69.62722 69.74629
> rowSums(tmp5,na.rm=TRUE)
 [1] 1869.095 1432.958 1458.443 1394.537 1337.215 1466.802 1402.970 1436.502
 [9] 1392.544 1394.926
> rowVars(tmp5,na.rm=TRUE)
 [1] 8279.42533   78.10806   61.76589   80.93600   95.79277  110.25754
 [7]  111.74824   70.74326   56.00148  128.49145
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.991348  8.837876  7.859128  8.996444  9.787378 10.500359 10.571104
 [8]  8.410901  7.483413 11.335407
> rowMax(tmp5,na.rm=TRUE)
 [1] 478.42826  87.88044  85.46296  89.33790  91.74074  93.66437  90.73477
 [8]  89.20385  81.53648  89.23193
> rowMin(tmp5,na.rm=TRUE)
 [1] 62.35924 60.27181 56.32106 53.51333 54.05240 53.15372 54.84701 59.28783
 [9] 57.36553 56.29603
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 106.71176  70.35262  73.90481  71.55630  65.25806  73.22691  71.46853
 [8]  66.62448  74.21386  77.55140  76.23961  64.26134  74.40106  69.59408
[15]  73.59965  75.01930  68.34540  73.26884  67.15046  72.56581
> colSums(tmp5,na.rm=TRUE)
 [1] 1067.1176  703.5262  739.0481  715.5630  652.5806  732.2691  714.6853
 [8]  666.2448  742.1386  775.5140  762.3961  642.6134  744.0106  695.9408
[15]  735.9965  750.1930  683.4540  732.6884  604.3542  725.6581
> colVars(tmp5,na.rm=TRUE)
 [1] 17099.89708    64.85723    62.23164    59.75722    33.86334   108.11747
 [7]   154.21657    66.90095    50.02917   121.42255    33.90447    93.02393
[13]   109.28425    76.64877    61.07269    55.41544   133.46678    72.25885
[19]    52.26140    95.62278
> colSd(tmp5,na.rm=TRUE)
 [1] 130.766575   8.053399   7.888703   7.730279   5.819221  10.397955
 [7]  12.418396   8.179300   7.073130  11.019190   5.822754   9.644892
[13]  10.453911   8.754928   7.814902   7.444155  11.552783   8.500520
[19]   7.229205   9.778690
> colMax(tmp5,na.rm=TRUE)
 [1] 478.42826  83.45288  84.17032  83.33740  77.36471  90.73477  91.74074
 [8]  81.51817  84.44481  89.33790  85.85768  85.46296  89.20385  85.28588
[15]  79.63098  85.44681  93.66437  82.89166  79.87404  86.03873
> colMin(tmp5,na.rm=TRUE)
 [1] 56.32106 60.12536 63.07922 60.97245 57.58318 61.15408 56.16573 58.41502
 [9] 65.15011 58.68787 68.15354 53.15372 60.10805 55.71327 55.71793 63.91120
[17] 54.84701 61.65823 53.51333 57.36553
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 93.45476 71.64790 72.92216 69.72684      NaN 73.34009 70.14849 71.82510
 [9] 69.62722 69.74629
> rowSums(tmp5,na.rm=TRUE)
 [1] 1869.095 1432.958 1458.443 1394.537    0.000 1466.802 1402.970 1436.502
 [9] 1392.544 1394.926
> rowVars(tmp5,na.rm=TRUE)
 [1] 8279.42533   78.10806   61.76589   80.93600         NA  110.25754
 [7]  111.74824   70.74326   56.00148  128.49145
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.991348  8.837876  7.859128  8.996444        NA 10.500359 10.571104
 [8]  8.410901  7.483413 11.335407
> rowMax(tmp5,na.rm=TRUE)
 [1] 478.42826  87.88044  85.46296  89.33790        NA  93.66437  90.73477
 [8]  89.20385  81.53648  89.23193
> rowMin(tmp5,na.rm=TRUE)
 [1] 62.35924 60.27181 56.32106 53.51333       NA 53.15372 54.84701 59.28783
 [9] 57.36553 56.29603
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 111.94364  71.40042  74.78025  71.84202  63.91288  73.81831  69.21606
 [8]  67.02652  73.07709  78.33091  75.87988  65.39566  75.98917  70.19062
[15]  73.53782  75.33579  68.89034  72.33172       NaN  72.03678
> colSums(tmp5,na.rm=TRUE)
 [1] 1007.4928  642.6038  673.0223  646.5782  575.2159  664.3648  622.9445
 [8]  603.2387  657.6938  704.9781  682.9189  588.5610  683.9026  631.7156
[15]  661.8404  678.0221  620.0131  650.9855    0.0000  648.3310
> colVars(tmp5,na.rm=TRUE)
 [1] 18929.44269    60.61320    61.38873    66.30845    17.73919   117.69739
 [7]   116.41549    73.44516    41.74499   129.76457    36.68665    90.17659
[13]    94.57114    82.22641    68.66378    61.21552   146.80933    71.41157
[19]          NA   104.42703
> colSd(tmp5,na.rm=TRUE)
 [1] 137.584311   7.785448   7.835096   8.143000   4.211791  10.848843
 [7]  10.789601   8.570015   6.461036  11.391425   6.056951   9.496136
[13]   9.724769   9.067878   8.286361   7.824035  12.116490   8.450537
[19]         NA  10.218954
> colMax(tmp5,na.rm=TRUE)
 [1] 478.42826  83.45288  84.17032  83.33740  71.03587  90.73477  88.44831
 [8]  81.51817  83.86977  89.33790  85.85768  85.46296  89.20385  85.28588
[15]  79.63098  85.44681  93.66437  82.89166      -Inf  86.03873
> colMin(tmp5,na.rm=TRUE)
 [1] 56.32106 60.12536 63.07922 60.97245 57.58318 61.15408 56.16573 58.41502
 [9] 65.15011 58.68787 68.15354 53.15372 63.50311 55.71327 55.71793 63.91120
[17] 54.84701 61.65823      Inf 57.36553
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 268.3958 393.5003 223.4936 102.2698 398.0461 176.7499 329.6991 355.8267
 [9] 153.3083 274.5586
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 268.3958 393.5003 223.4936 102.2698 398.0461 176.7499 329.6991 355.8267
 [9] 153.3083 274.5586
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.273737e-13 -4.263256e-14  8.526513e-14  1.136868e-13  8.526513e-14
 [6] -4.263256e-14 -5.684342e-14  1.421085e-14 -1.421085e-13  0.000000e+00
[11] -4.547474e-13 -2.842171e-14  1.705303e-13 -2.842171e-14  2.842171e-14
[16]  5.684342e-14  0.000000e+00 -5.684342e-14 -5.684342e-14  3.979039e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   14 
6   19 
3   12 
3   1 
10   7 
4   3 
6   12 
2   19 
9   15 
6   8 
4   1 
2   1 
7   17 
5   3 
7   19 
10   5 
2   19 
5   5 
6   18 
5   5 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.502765
> Min(tmp)
[1] -2.303369
> mean(tmp)
[1] -0.2075978
> Sum(tmp)
[1] -20.75978
> Var(tmp)
[1] 0.9594013
> 
> rowMeans(tmp)
[1] -0.2075978
> rowSums(tmp)
[1] -20.75978
> rowVars(tmp)
[1] 0.9594013
> rowSd(tmp)
[1] 0.9794903
> rowMax(tmp)
[1] 2.502765
> rowMin(tmp)
[1] -2.303369
> 
> colMeans(tmp)
  [1] -0.4513459190  0.7058436977 -1.8482978010  0.4115979761  0.9804038606
  [6]  0.8588039470  0.9458366053 -1.6256720924 -2.1668210933 -1.0201350504
 [11]  1.4333260010 -0.3471372689 -1.5657653991  0.2599744672  0.1975237752
 [16] -0.3565775985  0.7851591794 -0.2941426513 -1.4243592320 -0.6374372443
 [21] -1.3414624845 -0.2863120634  0.0968957448 -0.7558123132 -0.4057970338
 [26]  0.3076045899 -1.3005702656 -1.9521376650 -0.1925081546  0.1863755098
 [31]  0.0136494369 -1.2741585970  0.1885122560  1.0437396801 -1.0962511368
 [36] -1.1024941845 -0.6685106325 -0.0163152138 -1.4634988251  0.3966661271
 [41]  0.0088651126  1.3180590386  0.7313883122 -0.5329600997  0.1377411124
 [46]  1.1872828745  0.0653856932 -0.3840682784  0.8852027761  0.6670487159
 [51] -0.9272430062 -1.0587966927  0.5715833804 -0.1751469930 -0.2081315397
 [56] -0.1599823073  0.6296111043 -0.3997890472 -0.4222270231 -0.4437277840
 [61]  0.2039737043  0.9671317654 -0.0134416953 -2.3033685364  0.0087641883
 [66]  1.3075420827 -1.6777091464 -0.3191070024  2.0842670044  0.3991175770
 [71]  1.3352611275 -1.2310292187 -1.1890809401  1.2364581274  0.2959005287
 [76] -0.5452923959  0.2327399173 -1.2188189989 -0.5611518991 -2.1993686817
 [81]  0.0485511582  0.3232029685 -0.9567371164  1.4500181895 -1.2112621299
 [86] -0.1512687748  1.3530858302 -1.2907413567 -1.0077154000  0.0845998325
 [91] -1.5406579388  0.0260577236 -0.6801216759 -1.1139841587 -0.0009720163
 [96] -0.2061212840  0.4039955785 -1.0295513406 -1.2841992806  2.5027653007
> colSums(tmp)
  [1] -0.4513459190  0.7058436977 -1.8482978010  0.4115979761  0.9804038606
  [6]  0.8588039470  0.9458366053 -1.6256720924 -2.1668210933 -1.0201350504
 [11]  1.4333260010 -0.3471372689 -1.5657653991  0.2599744672  0.1975237752
 [16] -0.3565775985  0.7851591794 -0.2941426513 -1.4243592320 -0.6374372443
 [21] -1.3414624845 -0.2863120634  0.0968957448 -0.7558123132 -0.4057970338
 [26]  0.3076045899 -1.3005702656 -1.9521376650 -0.1925081546  0.1863755098
 [31]  0.0136494369 -1.2741585970  0.1885122560  1.0437396801 -1.0962511368
 [36] -1.1024941845 -0.6685106325 -0.0163152138 -1.4634988251  0.3966661271
 [41]  0.0088651126  1.3180590386  0.7313883122 -0.5329600997  0.1377411124
 [46]  1.1872828745  0.0653856932 -0.3840682784  0.8852027761  0.6670487159
 [51] -0.9272430062 -1.0587966927  0.5715833804 -0.1751469930 -0.2081315397
 [56] -0.1599823073  0.6296111043 -0.3997890472 -0.4222270231 -0.4437277840
 [61]  0.2039737043  0.9671317654 -0.0134416953 -2.3033685364  0.0087641883
 [66]  1.3075420827 -1.6777091464 -0.3191070024  2.0842670044  0.3991175770
 [71]  1.3352611275 -1.2310292187 -1.1890809401  1.2364581274  0.2959005287
 [76] -0.5452923959  0.2327399173 -1.2188189989 -0.5611518991 -2.1993686817
 [81]  0.0485511582  0.3232029685 -0.9567371164  1.4500181895 -1.2112621299
 [86] -0.1512687748  1.3530858302 -1.2907413567 -1.0077154000  0.0845998325
 [91] -1.5406579388  0.0260577236 -0.6801216759 -1.1139841587 -0.0009720163
 [96] -0.2061212840  0.4039955785 -1.0295513406 -1.2841992806  2.5027653007
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.4513459190  0.7058436977 -1.8482978010  0.4115979761  0.9804038606
  [6]  0.8588039470  0.9458366053 -1.6256720924 -2.1668210933 -1.0201350504
 [11]  1.4333260010 -0.3471372689 -1.5657653991  0.2599744672  0.1975237752
 [16] -0.3565775985  0.7851591794 -0.2941426513 -1.4243592320 -0.6374372443
 [21] -1.3414624845 -0.2863120634  0.0968957448 -0.7558123132 -0.4057970338
 [26]  0.3076045899 -1.3005702656 -1.9521376650 -0.1925081546  0.1863755098
 [31]  0.0136494369 -1.2741585970  0.1885122560  1.0437396801 -1.0962511368
 [36] -1.1024941845 -0.6685106325 -0.0163152138 -1.4634988251  0.3966661271
 [41]  0.0088651126  1.3180590386  0.7313883122 -0.5329600997  0.1377411124
 [46]  1.1872828745  0.0653856932 -0.3840682784  0.8852027761  0.6670487159
 [51] -0.9272430062 -1.0587966927  0.5715833804 -0.1751469930 -0.2081315397
 [56] -0.1599823073  0.6296111043 -0.3997890472 -0.4222270231 -0.4437277840
 [61]  0.2039737043  0.9671317654 -0.0134416953 -2.3033685364  0.0087641883
 [66]  1.3075420827 -1.6777091464 -0.3191070024  2.0842670044  0.3991175770
 [71]  1.3352611275 -1.2310292187 -1.1890809401  1.2364581274  0.2959005287
 [76] -0.5452923959  0.2327399173 -1.2188189989 -0.5611518991 -2.1993686817
 [81]  0.0485511582  0.3232029685 -0.9567371164  1.4500181895 -1.2112621299
 [86] -0.1512687748  1.3530858302 -1.2907413567 -1.0077154000  0.0845998325
 [91] -1.5406579388  0.0260577236 -0.6801216759 -1.1139841587 -0.0009720163
 [96] -0.2061212840  0.4039955785 -1.0295513406 -1.2841992806  2.5027653007
> colMin(tmp)
  [1] -0.4513459190  0.7058436977 -1.8482978010  0.4115979761  0.9804038606
  [6]  0.8588039470  0.9458366053 -1.6256720924 -2.1668210933 -1.0201350504
 [11]  1.4333260010 -0.3471372689 -1.5657653991  0.2599744672  0.1975237752
 [16] -0.3565775985  0.7851591794 -0.2941426513 -1.4243592320 -0.6374372443
 [21] -1.3414624845 -0.2863120634  0.0968957448 -0.7558123132 -0.4057970338
 [26]  0.3076045899 -1.3005702656 -1.9521376650 -0.1925081546  0.1863755098
 [31]  0.0136494369 -1.2741585970  0.1885122560  1.0437396801 -1.0962511368
 [36] -1.1024941845 -0.6685106325 -0.0163152138 -1.4634988251  0.3966661271
 [41]  0.0088651126  1.3180590386  0.7313883122 -0.5329600997  0.1377411124
 [46]  1.1872828745  0.0653856932 -0.3840682784  0.8852027761  0.6670487159
 [51] -0.9272430062 -1.0587966927  0.5715833804 -0.1751469930 -0.2081315397
 [56] -0.1599823073  0.6296111043 -0.3997890472 -0.4222270231 -0.4437277840
 [61]  0.2039737043  0.9671317654 -0.0134416953 -2.3033685364  0.0087641883
 [66]  1.3075420827 -1.6777091464 -0.3191070024  2.0842670044  0.3991175770
 [71]  1.3352611275 -1.2310292187 -1.1890809401  1.2364581274  0.2959005287
 [76] -0.5452923959  0.2327399173 -1.2188189989 -0.5611518991 -2.1993686817
 [81]  0.0485511582  0.3232029685 -0.9567371164  1.4500181895 -1.2112621299
 [86] -0.1512687748  1.3530858302 -1.2907413567 -1.0077154000  0.0845998325
 [91] -1.5406579388  0.0260577236 -0.6801216759 -1.1139841587 -0.0009720163
 [96] -0.2061212840  0.4039955785 -1.0295513406 -1.2841992806  2.5027653007
> colMedians(tmp)
  [1] -0.4513459190  0.7058436977 -1.8482978010  0.4115979761  0.9804038606
  [6]  0.8588039470  0.9458366053 -1.6256720924 -2.1668210933 -1.0201350504
 [11]  1.4333260010 -0.3471372689 -1.5657653991  0.2599744672  0.1975237752
 [16] -0.3565775985  0.7851591794 -0.2941426513 -1.4243592320 -0.6374372443
 [21] -1.3414624845 -0.2863120634  0.0968957448 -0.7558123132 -0.4057970338
 [26]  0.3076045899 -1.3005702656 -1.9521376650 -0.1925081546  0.1863755098
 [31]  0.0136494369 -1.2741585970  0.1885122560  1.0437396801 -1.0962511368
 [36] -1.1024941845 -0.6685106325 -0.0163152138 -1.4634988251  0.3966661271
 [41]  0.0088651126  1.3180590386  0.7313883122 -0.5329600997  0.1377411124
 [46]  1.1872828745  0.0653856932 -0.3840682784  0.8852027761  0.6670487159
 [51] -0.9272430062 -1.0587966927  0.5715833804 -0.1751469930 -0.2081315397
 [56] -0.1599823073  0.6296111043 -0.3997890472 -0.4222270231 -0.4437277840
 [61]  0.2039737043  0.9671317654 -0.0134416953 -2.3033685364  0.0087641883
 [66]  1.3075420827 -1.6777091464 -0.3191070024  2.0842670044  0.3991175770
 [71]  1.3352611275 -1.2310292187 -1.1890809401  1.2364581274  0.2959005287
 [76] -0.5452923959  0.2327399173 -1.2188189989 -0.5611518991 -2.1993686817
 [81]  0.0485511582  0.3232029685 -0.9567371164  1.4500181895 -1.2112621299
 [86] -0.1512687748  1.3530858302 -1.2907413567 -1.0077154000  0.0845998325
 [91] -1.5406579388  0.0260577236 -0.6801216759 -1.1139841587 -0.0009720163
 [96] -0.2061212840  0.4039955785 -1.0295513406 -1.2841992806  2.5027653007
> colRanges(tmp)
           [,1]      [,2]      [,3]     [,4]      [,5]      [,6]      [,7]
[1,] -0.4513459 0.7058437 -1.848298 0.411598 0.9804039 0.8588039 0.9458366
[2,] -0.4513459 0.7058437 -1.848298 0.411598 0.9804039 0.8588039 0.9458366
          [,8]      [,9]     [,10]    [,11]      [,12]     [,13]     [,14]
[1,] -1.625672 -2.166821 -1.020135 1.433326 -0.3471373 -1.565765 0.2599745
[2,] -1.625672 -2.166821 -1.020135 1.433326 -0.3471373 -1.565765 0.2599745
         [,15]      [,16]     [,17]      [,18]     [,19]      [,20]     [,21]
[1,] 0.1975238 -0.3565776 0.7851592 -0.2941427 -1.424359 -0.6374372 -1.341462
[2,] 0.1975238 -0.3565776 0.7851592 -0.2941427 -1.424359 -0.6374372 -1.341462
          [,22]      [,23]      [,24]     [,25]     [,26]    [,27]     [,28]
[1,] -0.2863121 0.09689574 -0.7558123 -0.405797 0.3076046 -1.30057 -1.952138
[2,] -0.2863121 0.09689574 -0.7558123 -0.405797 0.3076046 -1.30057 -1.952138
          [,29]     [,30]      [,31]     [,32]     [,33]   [,34]     [,35]
[1,] -0.1925082 0.1863755 0.01364944 -1.274159 0.1885123 1.04374 -1.096251
[2,] -0.1925082 0.1863755 0.01364944 -1.274159 0.1885123 1.04374 -1.096251
         [,36]      [,37]       [,38]     [,39]     [,40]       [,41]    [,42]
[1,] -1.102494 -0.6685106 -0.01631521 -1.463499 0.3966661 0.008865113 1.318059
[2,] -1.102494 -0.6685106 -0.01631521 -1.463499 0.3966661 0.008865113 1.318059
         [,43]      [,44]     [,45]    [,46]      [,47]      [,48]     [,49]
[1,] 0.7313883 -0.5329601 0.1377411 1.187283 0.06538569 -0.3840683 0.8852028
[2,] 0.7313883 -0.5329601 0.1377411 1.187283 0.06538569 -0.3840683 0.8852028
         [,50]     [,51]     [,52]     [,53]     [,54]      [,55]      [,56]
[1,] 0.6670487 -0.927243 -1.058797 0.5715834 -0.175147 -0.2081315 -0.1599823
[2,] 0.6670487 -0.927243 -1.058797 0.5715834 -0.175147 -0.2081315 -0.1599823
         [,57]     [,58]     [,59]      [,60]     [,61]     [,62]      [,63]
[1,] 0.6296111 -0.399789 -0.422227 -0.4437278 0.2039737 0.9671318 -0.0134417
[2,] 0.6296111 -0.399789 -0.422227 -0.4437278 0.2039737 0.9671318 -0.0134417
         [,64]       [,65]    [,66]     [,67]     [,68]    [,69]     [,70]
[1,] -2.303369 0.008764188 1.307542 -1.677709 -0.319107 2.084267 0.3991176
[2,] -2.303369 0.008764188 1.307542 -1.677709 -0.319107 2.084267 0.3991176
        [,71]     [,72]     [,73]    [,74]     [,75]      [,76]     [,77]
[1,] 1.335261 -1.231029 -1.189081 1.236458 0.2959005 -0.5452924 0.2327399
[2,] 1.335261 -1.231029 -1.189081 1.236458 0.2959005 -0.5452924 0.2327399
         [,78]      [,79]     [,80]      [,81]    [,82]      [,83]    [,84]
[1,] -1.218819 -0.5611519 -2.199369 0.04855116 0.323203 -0.9567371 1.450018
[2,] -1.218819 -0.5611519 -2.199369 0.04855116 0.323203 -0.9567371 1.450018
         [,85]      [,86]    [,87]     [,88]     [,89]      [,90]     [,91]
[1,] -1.211262 -0.1512688 1.353086 -1.290741 -1.007715 0.08459983 -1.540658
[2,] -1.211262 -0.1512688 1.353086 -1.290741 -1.007715 0.08459983 -1.540658
          [,92]      [,93]     [,94]         [,95]      [,96]     [,97]
[1,] 0.02605772 -0.6801217 -1.113984 -0.0009720163 -0.2061213 0.4039956
[2,] 0.02605772 -0.6801217 -1.113984 -0.0009720163 -0.2061213 0.4039956
         [,98]     [,99]   [,100]
[1,] -1.029551 -1.284199 2.502765
[2,] -1.029551 -1.284199 2.502765
> 
> 
> Max(tmp2)
[1] 4.1584
> Min(tmp2)
[1] -3.66543
> mean(tmp2)
[1] 0.05414988
> Sum(tmp2)
[1] 5.414988
> Var(tmp2)
[1] 1.000964
> 
> rowMeans(tmp2)
  [1]  1.45670667 -1.23832195 -0.26220012  0.26685589  0.07766190 -0.48954514
  [7]  0.09732799 -0.89800570 -0.35867870  0.38320191  0.92442932  0.72757969
 [13] -0.29563160 -1.44233759 -1.52727510  0.69185187 -0.23752123  1.97135330
 [19] -1.25033786 -0.02021103 -0.03402031  0.80310758  0.53217569 -0.07850816
 [25]  0.25051739 -0.07605238  0.51382358  0.31393098  0.19186456 -1.37756434
 [31] -3.66543008 -1.06671081 -0.67804918  4.15840022 -0.07333890 -0.07362571
 [37]  1.03871858  1.49044049  0.10872192  1.17626408  0.45856479  0.40860719
 [43] -0.33561711  0.50579301  1.52063816  0.58940001  1.56875518  0.70760672
 [49]  0.06280082 -0.34536729  0.29300516  2.23144588 -0.90643680 -0.74146014
 [55]  0.11363824 -1.29706644 -0.05567947 -1.51292267 -1.02230286  0.90641535
 [61] -1.03000818  0.66088023  1.01739644  0.98543876 -0.21556750  0.36917456
 [67]  0.11561755 -0.43591745  0.69767793 -1.66861862  0.69866335 -0.41203893
 [73]  0.18052291  0.88354154 -0.97647239  1.52115900 -1.00164661 -1.15887442
 [79] -0.59990705  0.41193891 -0.80102119  0.06079291 -0.88890023  0.05263724
 [85] -0.08439891  0.23206150 -0.46820974  0.82909009 -1.56943502  0.88257420
 [91]  0.11620410  0.58850175  0.29774358  0.98528718 -0.73559770  0.45520172
 [97]  0.65770925 -0.44818072 -0.14071784  0.16930038
> rowSums(tmp2)
  [1]  1.45670667 -1.23832195 -0.26220012  0.26685589  0.07766190 -0.48954514
  [7]  0.09732799 -0.89800570 -0.35867870  0.38320191  0.92442932  0.72757969
 [13] -0.29563160 -1.44233759 -1.52727510  0.69185187 -0.23752123  1.97135330
 [19] -1.25033786 -0.02021103 -0.03402031  0.80310758  0.53217569 -0.07850816
 [25]  0.25051739 -0.07605238  0.51382358  0.31393098  0.19186456 -1.37756434
 [31] -3.66543008 -1.06671081 -0.67804918  4.15840022 -0.07333890 -0.07362571
 [37]  1.03871858  1.49044049  0.10872192  1.17626408  0.45856479  0.40860719
 [43] -0.33561711  0.50579301  1.52063816  0.58940001  1.56875518  0.70760672
 [49]  0.06280082 -0.34536729  0.29300516  2.23144588 -0.90643680 -0.74146014
 [55]  0.11363824 -1.29706644 -0.05567947 -1.51292267 -1.02230286  0.90641535
 [61] -1.03000818  0.66088023  1.01739644  0.98543876 -0.21556750  0.36917456
 [67]  0.11561755 -0.43591745  0.69767793 -1.66861862  0.69866335 -0.41203893
 [73]  0.18052291  0.88354154 -0.97647239  1.52115900 -1.00164661 -1.15887442
 [79] -0.59990705  0.41193891 -0.80102119  0.06079291 -0.88890023  0.05263724
 [85] -0.08439891  0.23206150 -0.46820974  0.82909009 -1.56943502  0.88257420
 [91]  0.11620410  0.58850175  0.29774358  0.98528718 -0.73559770  0.45520172
 [97]  0.65770925 -0.44818072 -0.14071784  0.16930038
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.45670667 -1.23832195 -0.26220012  0.26685589  0.07766190 -0.48954514
  [7]  0.09732799 -0.89800570 -0.35867870  0.38320191  0.92442932  0.72757969
 [13] -0.29563160 -1.44233759 -1.52727510  0.69185187 -0.23752123  1.97135330
 [19] -1.25033786 -0.02021103 -0.03402031  0.80310758  0.53217569 -0.07850816
 [25]  0.25051739 -0.07605238  0.51382358  0.31393098  0.19186456 -1.37756434
 [31] -3.66543008 -1.06671081 -0.67804918  4.15840022 -0.07333890 -0.07362571
 [37]  1.03871858  1.49044049  0.10872192  1.17626408  0.45856479  0.40860719
 [43] -0.33561711  0.50579301  1.52063816  0.58940001  1.56875518  0.70760672
 [49]  0.06280082 -0.34536729  0.29300516  2.23144588 -0.90643680 -0.74146014
 [55]  0.11363824 -1.29706644 -0.05567947 -1.51292267 -1.02230286  0.90641535
 [61] -1.03000818  0.66088023  1.01739644  0.98543876 -0.21556750  0.36917456
 [67]  0.11561755 -0.43591745  0.69767793 -1.66861862  0.69866335 -0.41203893
 [73]  0.18052291  0.88354154 -0.97647239  1.52115900 -1.00164661 -1.15887442
 [79] -0.59990705  0.41193891 -0.80102119  0.06079291 -0.88890023  0.05263724
 [85] -0.08439891  0.23206150 -0.46820974  0.82909009 -1.56943502  0.88257420
 [91]  0.11620410  0.58850175  0.29774358  0.98528718 -0.73559770  0.45520172
 [97]  0.65770925 -0.44818072 -0.14071784  0.16930038
> rowMin(tmp2)
  [1]  1.45670667 -1.23832195 -0.26220012  0.26685589  0.07766190 -0.48954514
  [7]  0.09732799 -0.89800570 -0.35867870  0.38320191  0.92442932  0.72757969
 [13] -0.29563160 -1.44233759 -1.52727510  0.69185187 -0.23752123  1.97135330
 [19] -1.25033786 -0.02021103 -0.03402031  0.80310758  0.53217569 -0.07850816
 [25]  0.25051739 -0.07605238  0.51382358  0.31393098  0.19186456 -1.37756434
 [31] -3.66543008 -1.06671081 -0.67804918  4.15840022 -0.07333890 -0.07362571
 [37]  1.03871858  1.49044049  0.10872192  1.17626408  0.45856479  0.40860719
 [43] -0.33561711  0.50579301  1.52063816  0.58940001  1.56875518  0.70760672
 [49]  0.06280082 -0.34536729  0.29300516  2.23144588 -0.90643680 -0.74146014
 [55]  0.11363824 -1.29706644 -0.05567947 -1.51292267 -1.02230286  0.90641535
 [61] -1.03000818  0.66088023  1.01739644  0.98543876 -0.21556750  0.36917456
 [67]  0.11561755 -0.43591745  0.69767793 -1.66861862  0.69866335 -0.41203893
 [73]  0.18052291  0.88354154 -0.97647239  1.52115900 -1.00164661 -1.15887442
 [79] -0.59990705  0.41193891 -0.80102119  0.06079291 -0.88890023  0.05263724
 [85] -0.08439891  0.23206150 -0.46820974  0.82909009 -1.56943502  0.88257420
 [91]  0.11620410  0.58850175  0.29774358  0.98528718 -0.73559770  0.45520172
 [97]  0.65770925 -0.44818072 -0.14071784  0.16930038
> 
> colMeans(tmp2)
[1] 0.05414988
> colSums(tmp2)
[1] 5.414988
> colVars(tmp2)
[1] 1.000964
> colSd(tmp2)
[1] 1.000482
> colMax(tmp2)
[1] 4.1584
> colMin(tmp2)
[1] -3.66543
> colMedians(tmp2)
[1] 0.103025
> colRanges(tmp2)
         [,1]
[1,] -3.66543
[2,]  4.15840
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.3668452 -4.1740156 -0.3149860 -3.1721980  0.3938155  3.1463483
 [7]  3.4545400 -4.2894388  0.5466714 -1.6840506
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.9626257
[2,] -0.6544952
[3,] -0.1550132
[4,]  1.1926177
[5,]  2.2580173
> 
> rowApply(tmp,sum)
 [1]  0.04064713  1.53920341 -3.38513740 -0.60884739 -3.15516388 -1.56261658
 [7]  0.46064958  4.67997294 -2.25043394 -0.48474259
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    4   10    4    3   10    9    1    9    3     3
 [2,]    3    2    3    1    9    4    7    2    4    10
 [3,]    9    3    5    2    8    6    3    7    8     5
 [4,]    5    4    6    9    4    1    9    1    9     2
 [5,]   10    7   10    8    2   10    4    4    5     1
 [6,]    6    9    7    5    6    8    6   10    1     6
 [7,]    1    5    9   10    7    7    8    6    7     8
 [8,]    7    8    1    6    3    3    2    5    2     9
 [9,]    2    6    8    4    1    5    5    8   10     7
[10,]    8    1    2    7    5    2   10    3    6     4
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.12019094  0.36333815  4.02290346 -1.82392621 -0.09672638  0.12640195
 [7] -2.37226877  0.72052764  1.73951287 -2.74033511 -2.54292923 -0.96228055
[13]  1.44384366 -4.15040635 -0.70420956 -1.04206237  0.48606759  1.96591072
[19] -1.66033546  2.39671082
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.3448411
[2,] -0.6573813
[3,] -0.2924016
[4,]  0.3570849
[5,]  0.8173481
> 
> rowApply(tmp,sum)
[1] -1.224878  5.135461 -5.790259 -1.736302 -2.334476
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   11   15    9    8    2
[2,]   16   12   18    3    9
[3,]    9   20   19   11   15
[4,]    5    2   11    9   16
[5,]   18    7    1   18    7
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,]  0.3570849  0.9760625  0.2003739 -0.9092514  1.1052485  1.0099107
[2,]  0.8173481  0.2763488  2.4637071 -1.0670125 -0.3033049 -0.6318345
[3,] -0.2924016  0.6771472  1.1368205 -0.1875926 -1.8151613  0.2039389
[4,] -0.6573813 -1.3858783 -0.1308243 -0.2294879  1.5597092  0.3677789
[5,] -1.3448411 -0.1803421  0.3528262  0.5694182 -0.6432179 -0.8233920
           [,7]        [,8]       [,9]      [,10]      [,11]      [,12]
[1,] -0.6275094  0.83862337  0.2832565 -3.9079076  0.6587988 -1.4580147
[2,] -0.4833299  0.34378707  1.2036520  0.1061586 -2.0225129  1.4225882
[3,] -1.2017335  0.41612067  0.1857258  2.1427094 -0.1818223 -1.2424124
[4,]  0.3884794 -0.89560058 -1.2640242 -1.3869476 -1.2027748  0.4951374
[5,] -0.4481754  0.01759711  1.3309028  0.3056521  0.2053820 -0.1795791
           [,13]      [,14]       [,15]      [,16]       [,17]      [,18]
[1,]  1.63061134 -1.7967326  1.67878922 -0.2658724  0.55977287  0.3654087
[2,]  0.22696820  1.5215979 -0.33352761  0.2746132 -0.47288724  1.4283251
[3,] -1.62633766 -1.0875702  0.03142705 -0.7135984 -0.04770441 -0.5592075
[4,] -0.05638595 -2.0527699 -0.90058972  1.9688517 -0.13493630  0.5679725
[5,]  1.26898773 -0.7349316 -1.18030850 -2.3060566  0.58182267  0.1634119
          [,19]        [,20]
[1,] -0.8425654 -1.080965696
[2,]  0.3625938  0.002182719
[3,] -1.3537238 -0.274883117
[4,]  0.9949431  2.218426326
[5,] -0.8215830  1.531950592
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  651  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
         col1       col2      col3       col4     col5      col6       col7
row1 1.187562 -0.1482833 0.5270975 -0.4770158 1.229963 -0.156982 -0.6763929
           col8     col9      col10     col11      col12    col13       col14
row1 0.08611634 -1.20818 -0.4699955 -0.186151 -0.8757517 1.419919 -0.01319815
         col15      col16      col17      col18      col19      col20
row1 0.3325902 -0.1435268 -0.6801297 -0.8800394 -0.6113697 -0.9050935
> tmp[,"col10"]
          col10
row1 -0.4699955
row2 -0.5101180
row3 -1.2444046
row4 -0.2923781
row5 -1.7446334
> tmp[c("row1","row5"),]
          col1       col2       col3       col4      col5       col6       col7
row1  1.187562 -0.1482833  0.5270975 -0.4770158 1.2299634 -0.1569820 -0.6763929
row5 -1.272610 -0.4331226 -0.4515506  0.3995332 0.9151638  0.3028421 -2.2182931
           col8       col9      col10     col11      col12    col13       col14
row1 0.08611634 -1.2081799 -0.4699955 -0.186151 -0.8757517 1.419919 -0.01319815
row5 0.20118637  0.4258008 -1.7446334 -1.418265 -1.3128421 1.251933  0.57962055
          col15      col16      col17      col18       col19      col20
row1  0.3325902 -0.1435268 -0.6801297 -0.8800394 -0.61136972 -0.9050935
row5 -0.1630239  0.2733601 -1.8246137  0.1540070  0.01001247 -0.3046335
> tmp[,c("col6","col20")]
           col6       col20
row1 -0.1569820 -0.90509355
row2 -0.9260267  0.64301405
row3 -1.0691967 -0.17571455
row4  1.4044907  0.08977226
row5  0.3028421 -0.30463347
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -0.1569820 -0.9050935
row5  0.3028421 -0.3046335
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 52.15538 49.42385 49.47545 49.81027 50.05698 105.7043 48.84015 49.99581
         col9    col10    col11    col12    col13   col14    col15    col16
row1 50.01798 50.29859 50.48741 50.29821 51.32974 50.9015 49.66863 48.99009
        col17    col18    col19  col20
row1 51.53496 49.55495 50.91217 106.08
> tmp[,"col10"]
        col10
row1 50.29859
row2 28.87227
row3 30.38123
row4 28.62542
row5 50.33475
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 52.15538 49.42385 49.47545 49.81027 50.05698 105.7043 48.84015 49.99581
row5 50.12531 51.50236 47.86841 49.55948 49.47367 106.2496 50.98486 50.62003
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.01798 50.29859 50.48741 50.29821 51.32974 50.90150 49.66863 48.99009
row5 48.13627 50.33475 49.67927 49.44867 49.69019 51.31833 49.43566 49.95042
        col17    col18    col19    col20
row1 51.53496 49.55495 50.91217 106.0800
row5 49.60653 49.78212 52.23113 103.4131
> tmp[,c("col6","col20")]
          col6     col20
row1 105.70430 106.08004
row2  75.53729  74.53993
row3  76.07564  73.67710
row4  73.86678  73.62085
row5 106.24959 103.41314
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.7043 106.0800
row5 106.2496 103.4131
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.7043 106.0800
row5 106.2496 103.4131
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  1.6169749
[2,] -0.4412306
[3,]  0.1713205
[4,]  1.0999159
[5,] -0.1286210
> tmp[,c("col17","col7")]
           col17       col7
[1,]  1.17674509 -0.5940657
[2,] -0.03749119  1.8851458
[3,]  0.69338060  1.0664164
[4,] -0.87911905  1.2269432
[5,] -1.09277006 -0.6877787
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,] -0.08183236 -0.4540721
[2,]  0.85975606  0.5319379
[3,]  0.13756682  1.1907510
[4,]  0.38183349  0.1670834
[5,] -0.17858292  0.8178784
> subBufferedMatrix(tmp,1,c("col6"))[,1]
            col1
[1,] -0.08183236
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
            col6
[1,] -0.08183236
[2,]  0.85975606
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]      [,3]      [,4]       [,5]       [,6]      [,7]
row3 -0.4729188 -1.625232 0.5598228 0.4999326 -0.4686921 -0.9052419  1.266698
row1  1.3383266 -1.574624 1.6913132 0.2326645  0.4094532 -0.2192057 -1.433461
           [,8]       [,9]     [,10]      [,11]       [,12]      [,13]
row3 -0.5668105  0.7471025 0.4344456 -0.4511289 -0.69150846 -0.4213870
row1 -0.6117869 -0.1380779 0.3820073 -0.5333948  0.04674602  0.1688086
         [,14]      [,15]     [,16]     [,17]        [,18]    [,19]     [,20]
row3 0.5869142 -0.1304237 0.4289000  1.714978  0.423767887 0.185927 0.9520739
row1 2.1011641 -0.6098338 0.9299977 -0.867097 -0.003918369 1.799899 0.1407644
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
         [,1]       [,2]      [,3]       [,4]       [,5]     [,6]       [,7]
row2 -0.14901 -0.4706223 0.4738479 -0.2086472 -0.3237672 -2.20734 -0.2561184
          [,8]     [,9]       [,10]
row2 0.5823298 1.802262 0.003808159
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]       [,2]      [,3]       [,4]      [,5]      [,6]      [,7]
row5 0.9344229 -0.6666013 0.2872504 -0.5955257 0.1035907 0.6452714 -2.674775
            [,8]      [,9]     [,10]     [,11]      [,12]       [,13]
row5 -0.08117419 -1.068237 0.3787669 -1.279216 -0.3455009 -0.09356636
          [,14]    [,15]     [,16]    [,17]     [,18]      [,19]      [,20]
row5 -0.6744334 1.023061 -1.549873 1.614763 -1.812694 -0.5671445 -0.9202876
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x6326aebfa840>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f46dcf2cd1"
 [2] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f45666fffa"
 [3] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f44967d906"
 [4] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f4395b453f"
 [5] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f430c308bd"
 [6] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f4638b3dcd"
 [7] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f433c20cc0"
 [8] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f461b8febc"
 [9] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f4572aa1a2"
[10] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f43b08712" 
[11] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f467863c85"
[12] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f4478a9919"
[13] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f4668d92c4"
[14] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f422f2a545"
[15] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d61f462a9db66"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x6326ad517bb0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x6326ad517bb0>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x6326ad517bb0>
> rowMedians(tmp)
  [1] -0.574813494 -0.256389030  0.412854281 -0.062521687 -0.145301612
  [6]  0.313559208 -0.400150026 -0.318462323 -0.008995540  0.440794346
 [11]  0.014244248  0.245737929  0.408561669 -0.060141218 -0.009303269
 [16]  0.204792795 -0.059044373  0.370130326 -0.163451732  0.137374217
 [21]  0.469930160  0.301103502  0.365964429 -0.072626286  0.102282910
 [26]  0.107395872 -0.011204977 -0.543634727  0.053017212 -0.199354097
 [31] -0.085268639 -0.056116569 -0.273650206  0.621088959 -0.362301830
 [36] -0.594589691  0.358395285  0.117304861  0.247688330  0.283937417
 [41]  0.012971686 -0.056472900 -0.725338720  0.120640736 -0.514147099
 [46] -0.183487215 -0.472101109  0.236129792 -0.255831989  0.275906496
 [51]  0.072050629  0.217008611 -0.289690531 -0.353314848  0.252854576
 [56]  0.234181400 -0.006128633  0.172913520 -0.185051178  0.047698463
 [61] -0.359630150  0.366039745 -0.080496934  0.132961205  0.232958401
 [66]  0.529107831 -0.225501874  0.127801842  0.830071325 -0.519230901
 [71] -0.045461061 -0.081587414  0.158250168  0.349230167  0.026104768
 [76]  0.121213074  0.105208812  0.124672513 -0.217983167  0.817025367
 [81] -0.290203782 -0.223454532 -0.060383045  0.229592569 -0.096819450
 [86]  0.195978281 -0.174845165 -0.029634030  0.212884311  0.168438584
 [91] -0.340615196 -0.287456352  0.048965849 -0.292394870 -0.952298152
 [96]  0.006371762 -0.050051046 -0.612702086 -0.151405515  0.133950871
[101] -0.163444181 -0.788270756 -0.263753103  0.212612721  0.134508725
[106]  0.241412058  0.081805835 -0.216830041 -0.144046337  0.666354404
[111]  0.462554276  0.023586508 -0.701841513  0.344837098  0.333267951
[116]  0.026472098 -0.601482285 -0.231507064  0.208063977  0.028839785
[121] -0.137490597 -0.291154215 -0.382736851  0.228663459  0.053562442
[126] -0.132255919 -0.129423492  0.058562623 -0.234014233  0.139682841
[131] -0.332992214  0.026333886 -0.237283017  0.557248713  0.298705057
[136] -0.568471742 -0.188999435  0.338005238  0.198696269 -0.071540794
[141]  0.554341747 -0.327523271 -0.314445274  0.543589573 -0.150578193
[146]  0.162789083 -0.025121063 -0.258613010 -0.001288013  0.382007556
[151]  0.169280633 -0.098389477  0.125901687  0.136459272 -0.100339909
[156]  0.328911266  0.139957949 -0.474159538  0.407323925  0.165407512
[161] -0.046749904 -0.567204040 -0.270746001 -0.199062552  0.264604721
[166] -0.285267246  0.191673220  0.065386537  0.061820301 -0.379580001
[171]  0.157842068  0.146064649 -0.133844725 -0.258918826 -0.195053813
[176] -0.289586909 -0.681768192  0.161238299  0.048339899  0.001635042
[181]  0.334072111  0.088235130 -0.411954114  0.422842399  0.798747579
[186]  0.111683287  0.184654344 -0.064452113  0.206830780  0.052633530
[191] -0.211760651  0.210981623 -0.666521405 -0.357333314  0.517434332
[196] -0.151274740  0.133665209  0.025568376  0.388056950  0.573406262
[201]  0.295467060 -0.555532063  0.455301476 -0.004842882 -0.252116372
[206] -0.075695237  0.539786221 -0.247884496 -0.039414960 -0.305693459
[211] -0.054418788 -0.563572714  0.076818433  0.513892429 -0.297602662
[216]  0.677532976 -0.026249771 -0.137334546 -0.142227962 -0.130825729
[221]  0.149750750 -0.723568875 -0.093397507  0.412762185 -0.412164268
[226] -0.095679673  0.107969411 -0.599945325  0.123264639 -0.319107733
> 
> proc.time()
   user  system elapsed 
  1.337   1.470   2.794 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60ae11653c10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60ae11653c10>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60ae11653c10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x60ae11653c10>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x60ae123162d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae123162d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x60ae123162d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae123162d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60ae123162d0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae129ebd70>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae129ebd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60ae129ebd70>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x60ae129ebd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60ae129ebd70>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x60ae129ebd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60ae129ebd70>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x60ae129ebd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60ae129ebd70>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae1255f370>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x60ae1255f370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae1255f370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae1255f370>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1d63e1379d6d5"  "BufferedMatrixFile1d63e14742ac12"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1d63e1379d6d5"  "BufferedMatrixFile1d63e14742ac12"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae124aaff0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae124aaff0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60ae124aaff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60ae124aaff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x60ae124aaff0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x60ae124aaff0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae1268d3d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60ae1268d3d0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x60ae1268d3d0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x60ae1268d3d0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60ae13e3efb0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60ae13e3efb0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.254   0.059   0.301 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.242   0.047   0.275 

Example timings