Back to Build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2026-02-10 11:32 -0500 (Tue, 10 Feb 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4862
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 255/2351HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2026-02-09 13:40 -0500 (Mon, 09 Feb 2026)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
See other builds for BufferedMatrix in R Universe.


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2026-02-09 21:50:54 -0500 (Mon, 09 Feb 2026)
EndedAt: 2026-02-09 21:51:19 -0500 (Mon, 09 Feb 2026)
EllapsedTime: 25.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ...* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.23-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.23-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.23-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.255   0.045   0.288 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478920 25.6    1048721 56.1   639242 34.2
Vcells 885815  6.8    8388608 64.0  2083259 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Feb  9 21:51:09 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Feb  9 21:51:09 2026"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x56f6b2532c10>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Feb  9 21:51:09 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Feb  9 21:51:10 2026"
> 
> ColMode(tmp2)
<pointer: 0x56f6b2532c10>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]        [,3]       [,4]
[1,] 99.8419660 -0.1834200 -0.55825226 -0.2614510
[2,]  0.5488346  0.0272046  2.16968232  0.4993689
[3,] -0.6865014  0.9822156 -1.47524277  1.4023917
[4,] -1.3201243 -0.6055049  0.02014368 -1.4205803
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]       [,3]      [,4]
[1,] 99.8419660 0.1834200 0.55825226 0.2614510
[2,]  0.5488346 0.0272046 2.16968232 0.4993689
[3,]  0.6865014 0.9822156 1.47524277 1.4023917
[4,]  1.3201243 0.6055049 0.02014368 1.4205803
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9920952 0.4282756 0.7471628 0.5113228
[2,] 0.7408337 0.1649382 1.4729842 0.7066604
[3,] 0.8285538 0.9910679 1.2145957 1.1842262
[4,] 1.1489666 0.7781419 0.1419284 1.1918810
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.76292 29.46618 33.02988 30.37468
[2,]  32.95717 26.67659 41.89952 32.56597
[3,]  33.97204 35.89289 38.62120 38.24465
[4,]  37.80979 33.38692 26.43943 38.33939
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x56f6b3389ff0>
> exp(tmp5)
<pointer: 0x56f6b3389ff0>
> log(tmp5,2)
<pointer: 0x56f6b3389ff0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 467.8146
> Min(tmp5)
[1] 53.33496
> mean(tmp5)
[1] 71.7357
> Sum(tmp5)
[1] 14347.14
> Var(tmp5)
[1] 848.1862
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.85520 70.73580 72.25330 69.08982 69.67466 68.27075 68.75889 71.25892
 [9] 68.54850 68.91118
> rowSums(tmp5)
 [1] 1797.104 1414.716 1445.066 1381.796 1393.493 1365.415 1375.178 1425.178
 [9] 1370.970 1378.224
> rowVars(tmp5)
 [1] 7954.06692   82.31822   70.56843   69.54357   63.46967   56.13657
 [7]   37.69431   61.22649   47.74611   40.79724
> rowSd(tmp5)
 [1] 89.185576  9.072939  8.400502  8.339279  7.966786  7.492434  6.139570
 [8]  7.824736  6.909856  6.387272
> rowMax(tmp5)
 [1] 467.81457  87.20837  86.63527  83.51657  83.23255  79.22237  83.51217
 [8]  80.75805  82.01795  79.89841
> rowMin(tmp5)
 [1] 53.85879 55.52382 55.89992 53.33496 58.97909 56.23941 59.56733 56.82825
 [9] 58.67988 58.80613
> 
> colMeans(tmp5)
 [1] 110.15859  67.85858  72.59247  68.02431  65.80914  67.18629  69.01292
 [8]  70.28354  69.48377  67.91797  71.41273  71.31037  70.31806  66.65259
[15]  72.73875  69.82613  72.97448  70.84966  71.02671  69.27698
> colSums(tmp5)
 [1] 1101.5859  678.5858  725.9247  680.2431  658.0914  671.8629  690.1292
 [8]  702.8354  694.8377  679.1797  714.1273  713.1037  703.1806  666.5259
[15]  727.3875  698.2613  729.7448  708.4966  710.2671  692.7698
> colVars(tmp5)
 [1] 15831.33736    53.87358    98.20447    59.37630    43.20492    47.92327
 [7]    87.21015    28.38722    66.59832    78.06083    54.26083    73.02149
[13]    27.48116    36.22880    80.16264    54.01339    17.13851   111.67203
[19]    56.06681    36.22533
> colSd(tmp5)
 [1] 125.822642   7.339863   9.909817   7.705602   6.573045   6.922664
 [7]   9.338637   5.327966   8.160779   8.835204   7.366195   8.545261
[13]   5.242248   6.019037   8.953359   7.349381   4.139869  10.567499
[19]   7.487777   6.018748
> colMax(tmp5)
 [1] 467.81457  78.23800  87.20837  79.79842  75.97772  75.08203  83.45091
 [8]  80.70181  86.63527  82.09925  84.55911  83.23255  78.14614  77.03542
[15]  83.51657  79.28935  79.20430  83.51217  79.22237  76.01281
> colMin(tmp5)
 [1] 63.11071 55.52382 55.03020 56.23941 57.07089 56.81860 56.62251 62.22861
 [9] 58.67988 53.33496 59.49586 55.89992 61.54318 58.80613 61.02433 58.83419
[17] 66.79046 53.85879 58.68625 59.01300
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 89.85520 70.73580 72.25330 69.08982 69.67466       NA 68.75889 71.25892
 [9] 68.54850 68.91118
> rowSums(tmp5)
 [1] 1797.104 1414.716 1445.066 1381.796 1393.493       NA 1375.178 1425.178
 [9] 1370.970 1378.224
> rowVars(tmp5)
 [1] 7954.06692   82.31822   70.56843   69.54357   63.46967   55.73454
 [7]   37.69431   61.22649   47.74611   40.79724
> rowSd(tmp5)
 [1] 89.185576  9.072939  8.400502  8.339279  7.966786  7.465557  6.139570
 [8]  7.824736  6.909856  6.387272
> rowMax(tmp5)
 [1] 467.81457  87.20837  86.63527  83.51657  83.23255        NA  83.51217
 [8]  80.75805  82.01795  79.89841
> rowMin(tmp5)
 [1] 53.85879 55.52382 55.89992 53.33496 58.97909       NA 59.56733 56.82825
 [9] 58.67988 58.80613
> 
> colMeans(tmp5)
 [1] 110.15859        NA  72.59247  68.02431  65.80914  67.18629  69.01292
 [8]  70.28354  69.48377  67.91797  71.41273  71.31037  70.31806  66.65259
[15]  72.73875  69.82613  72.97448  70.84966  71.02671  69.27698
> colSums(tmp5)
 [1] 1101.5859        NA  725.9247  680.2431  658.0914  671.8629  690.1292
 [8]  702.8354  694.8377  679.1797  714.1273  713.1037  703.1806  666.5259
[15]  727.3875  698.2613  729.7448  708.4966  710.2671  692.7698
> colVars(tmp5)
 [1] 15831.33736          NA    98.20447    59.37630    43.20492    47.92327
 [7]    87.21015    28.38722    66.59832    78.06083    54.26083    73.02149
[13]    27.48116    36.22880    80.16264    54.01339    17.13851   111.67203
[19]    56.06681    36.22533
> colSd(tmp5)
 [1] 125.822642         NA   9.909817   7.705602   6.573045   6.922664
 [7]   9.338637   5.327966   8.160779   8.835204   7.366195   8.545261
[13]   5.242248   6.019037   8.953359   7.349381   4.139869  10.567499
[19]   7.487777   6.018748
> colMax(tmp5)
 [1] 467.81457        NA  87.20837  79.79842  75.97772  75.08203  83.45091
 [8]  80.70181  86.63527  82.09925  84.55911  83.23255  78.14614  77.03542
[15]  83.51657  79.28935  79.20430  83.51217  79.22237  76.01281
> colMin(tmp5)
 [1] 63.11071       NA 55.03020 56.23941 57.07089 56.81860 56.62251 62.22861
 [9] 58.67988 53.33496 59.49586 55.89992 61.54318 58.80613 61.02433 58.83419
[17] 66.79046 53.85879 58.68625 59.01300
> 
> Max(tmp5,na.rm=TRUE)
[1] 467.8146
> Min(tmp5,na.rm=TRUE)
[1] 53.33496
> mean(tmp5,na.rm=TRUE)
[1] 71.7921
> Sum(tmp5,na.rm=TRUE)
[1] 14286.63
> Var(tmp5,na.rm=TRUE)
[1] 851.8305
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.85520 70.73580 72.25330 69.08982 69.67466 68.67913 68.75889 71.25892
 [9] 68.54850 68.91118
> rowSums(tmp5,na.rm=TRUE)
 [1] 1797.104 1414.716 1445.066 1381.796 1393.493 1304.903 1375.178 1425.178
 [9] 1370.970 1378.224
> rowVars(tmp5,na.rm=TRUE)
 [1] 7954.06692   82.31822   70.56843   69.54357   63.46967   55.73454
 [7]   37.69431   61.22649   47.74611   40.79724
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.185576  9.072939  8.400502  8.339279  7.966786  7.465557  6.139570
 [8]  7.824736  6.909856  6.387272
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.81457  87.20837  86.63527  83.51657  83.23255  79.22237  83.51217
 [8]  80.75805  82.01795  79.89841
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.85879 55.52382 55.89992 53.33496 58.97909 56.23941 59.56733 56.82825
 [9] 58.67988 58.80613
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 110.15859  68.67491  72.59247  68.02431  65.80914  67.18629  69.01292
 [8]  70.28354  69.48377  67.91797  71.41273  71.31037  70.31806  66.65259
[15]  72.73875  69.82613  72.97448  70.84966  71.02671  69.27698
> colSums(tmp5,na.rm=TRUE)
 [1] 1101.5859  618.0742  725.9247  680.2431  658.0914  671.8629  690.1292
 [8]  702.8354  694.8377  679.1797  714.1273  713.1037  703.1806  666.5259
[15]  727.3875  698.2613  729.7448  708.4966  710.2671  692.7698
> colVars(tmp5,na.rm=TRUE)
 [1] 15831.33736    53.11081    98.20447    59.37630    43.20492    47.92327
 [7]    87.21015    28.38722    66.59832    78.06083    54.26083    73.02149
[13]    27.48116    36.22880    80.16264    54.01339    17.13851   111.67203
[19]    56.06681    36.22533
> colSd(tmp5,na.rm=TRUE)
 [1] 125.822642   7.287717   9.909817   7.705602   6.573045   6.922664
 [7]   9.338637   5.327966   8.160779   8.835204   7.366195   8.545261
[13]   5.242248   6.019037   8.953359   7.349381   4.139869  10.567499
[19]   7.487777   6.018748
> colMax(tmp5,na.rm=TRUE)
 [1] 467.81457  78.23800  87.20837  79.79842  75.97772  75.08203  83.45091
 [8]  80.70181  86.63527  82.09925  84.55911  83.23255  78.14614  77.03542
[15]  83.51657  79.28935  79.20430  83.51217  79.22237  76.01281
> colMin(tmp5,na.rm=TRUE)
 [1] 63.11071 55.52382 55.03020 56.23941 57.07089 56.81860 56.62251 62.22861
 [9] 58.67988 53.33496 59.49586 55.89992 61.54318 58.80613 61.02433 58.83419
[17] 66.79046 53.85879 58.68625 59.01300
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.85520 70.73580 72.25330 69.08982 69.67466      NaN 68.75889 71.25892
 [9] 68.54850 68.91118
> rowSums(tmp5,na.rm=TRUE)
 [1] 1797.104 1414.716 1445.066 1381.796 1393.493    0.000 1375.178 1425.178
 [9] 1370.970 1378.224
> rowVars(tmp5,na.rm=TRUE)
 [1] 7954.06692   82.31822   70.56843   69.54357   63.46967         NA
 [7]   37.69431   61.22649   47.74611   40.79724
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.185576  9.072939  8.400502  8.339279  7.966786        NA  6.139570
 [8]  7.824736  6.909856  6.387272
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.81457  87.20837  86.63527  83.51657  83.23255        NA  83.51217
 [8]  80.75805  82.01795  79.89841
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.85879 55.52382 55.89992 53.33496 58.97909       NA 59.56733 56.82825
 [9] 58.67988 58.80613
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 113.95062       NaN  74.13308  69.33375  66.04025  68.33825  68.73957
 [8]  70.83394  69.11862  67.29573  71.44241  71.66551  69.60599  66.71262
[15]  73.36503  69.95398  72.28228  72.28275  70.11608  68.52855
> colSums(tmp5,na.rm=TRUE)
 [1] 1025.5556    0.0000  667.1978  624.0037  594.3622  615.0443  618.6561
 [8]  637.5054  622.0676  605.6615  642.9817  644.9896  626.4539  600.4136
[15]  660.2853  629.5858  650.5405  650.5448  631.0448  616.7569
> colVars(tmp5,na.rm=TRUE)
 [1] 17648.48567          NA    83.77820    47.50889    48.00463    38.98466
 [7]    97.27078    28.52757    73.42317    83.46257    61.03353    80.73026
[13]    25.21208    40.71686    85.77042    60.58117    13.89047   102.52631
[19]    53.74617    34.45191
> colSd(tmp5,na.rm=TRUE)
 [1] 132.847603         NA   9.153043   6.892669   6.928538   6.243770
 [7]   9.862595   5.341121   8.568732   9.135785   7.812396   8.985002
[13]   5.021163   6.380977   9.261232   7.783391   3.726992  10.125528
[19]   7.331178   5.869575
> colMax(tmp5,na.rm=TRUE)
 [1] 467.81457      -Inf  87.20837  79.79842  75.97772  75.08203  83.45091
 [8]  80.70181  86.63527  82.09925  84.55911  83.23255  78.14614  77.03542
[15]  83.51657  79.28935  76.26407  83.51217  78.10534  75.75297
> colMin(tmp5,na.rm=TRUE)
 [1] 63.11071      Inf 55.03020 59.20224 57.07089 56.82825 56.62251 62.22861
 [9] 58.67988 53.33496 59.49586 55.89992 61.54318 58.80613 61.02433 58.83419
[17] 66.79046 53.85879 58.68625 59.01300
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 196.7353 249.1305 187.9525 245.2392 273.8683 261.8747 174.9513 144.2682
 [9] 227.1499 186.1059
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 196.7353 249.1305 187.9525 245.2392 273.8683 261.8747 174.9513 144.2682
 [9] 227.1499 186.1059
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  0.000000e+00 -1.136868e-13  4.263256e-14  0.000000e+00  1.136868e-13
 [6]  8.526513e-14 -2.842171e-13  1.421085e-13 -8.526513e-14  0.000000e+00
[11]  0.000000e+00 -8.526513e-14  2.842171e-14  0.000000e+00 -3.410605e-13
[16]  5.684342e-14  8.526513e-14 -1.136868e-13 -5.684342e-14  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
6   10 
3   2 
7   20 
4   19 
10   3 
4   2 
10   16 
2   18 
1   20 
4   19 
9   16 
8   9 
6   7 
1   7 
10   15 
7   2 
9   10 
10   12 
1   1 
10   7 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.398965
> Min(tmp)
[1] -2.050961
> mean(tmp)
[1] 0.2344369
> Sum(tmp)
[1] 23.44369
> Var(tmp)
[1] 0.8566784
> 
> rowMeans(tmp)
[1] 0.2344369
> rowSums(tmp)
[1] 23.44369
> rowVars(tmp)
[1] 0.8566784
> rowSd(tmp)
[1] 0.9255692
> rowMax(tmp)
[1] 2.398965
> rowMin(tmp)
[1] -2.050961
> 
> colMeans(tmp)
  [1]  0.02130937 -0.91641372  1.86211396  1.55787533  0.44628552 -1.06798907
  [7]  0.13395170 -0.70774490 -0.24961314 -0.58280212  1.55986240 -0.24932970
 [13]  0.28952198  0.10612284  0.95021485 -0.31350270 -0.04399344  1.33204053
 [19]  0.41631027 -0.17264587 -0.79223044  0.51866163  2.19260409  0.86595735
 [25]  1.01868336 -0.57018015  0.25250128  1.13588504 -0.39441858  0.15746474
 [31]  0.91428394 -0.64277981 -0.62764247  1.40093438  0.08106506  2.39896533
 [37] -0.11864038 -0.16917905  1.53215217 -1.68508796 -0.42979956  0.01878607
 [43]  0.18258156  0.32931903  0.58614838  0.54195617  0.09868817  0.02152417
 [49]  0.60738146  1.14970045  0.30136579  0.84397975  1.89784363  0.84975101
 [55] -0.45069350 -1.53156394  0.17755147  0.50601468 -0.66713260 -0.84648411
 [61]  0.89900079  0.08841236 -0.30239512 -0.39098673  0.85871312 -0.33050989
 [67]  1.89785277  0.57155190 -1.47549713  0.31659351  1.05555150  0.95640578
 [73] -2.05096137  1.01439482  0.10197020 -1.51364697 -0.35155399  1.62392302
 [79]  1.17893759  0.02138937  0.16211315  1.12035310 -1.72436155  1.10381822
 [85]  0.32852923  1.09613532  0.07192557  0.45654677 -0.55727629 -1.48176821
 [91] -0.13126593  0.38024903 -0.13484917  1.89944058  0.79694484  1.36098009
 [97] -1.02558046 -0.30139735 -0.87332860  0.69984601
> colSums(tmp)
  [1]  0.02130937 -0.91641372  1.86211396  1.55787533  0.44628552 -1.06798907
  [7]  0.13395170 -0.70774490 -0.24961314 -0.58280212  1.55986240 -0.24932970
 [13]  0.28952198  0.10612284  0.95021485 -0.31350270 -0.04399344  1.33204053
 [19]  0.41631027 -0.17264587 -0.79223044  0.51866163  2.19260409  0.86595735
 [25]  1.01868336 -0.57018015  0.25250128  1.13588504 -0.39441858  0.15746474
 [31]  0.91428394 -0.64277981 -0.62764247  1.40093438  0.08106506  2.39896533
 [37] -0.11864038 -0.16917905  1.53215217 -1.68508796 -0.42979956  0.01878607
 [43]  0.18258156  0.32931903  0.58614838  0.54195617  0.09868817  0.02152417
 [49]  0.60738146  1.14970045  0.30136579  0.84397975  1.89784363  0.84975101
 [55] -0.45069350 -1.53156394  0.17755147  0.50601468 -0.66713260 -0.84648411
 [61]  0.89900079  0.08841236 -0.30239512 -0.39098673  0.85871312 -0.33050989
 [67]  1.89785277  0.57155190 -1.47549713  0.31659351  1.05555150  0.95640578
 [73] -2.05096137  1.01439482  0.10197020 -1.51364697 -0.35155399  1.62392302
 [79]  1.17893759  0.02138937  0.16211315  1.12035310 -1.72436155  1.10381822
 [85]  0.32852923  1.09613532  0.07192557  0.45654677 -0.55727629 -1.48176821
 [91] -0.13126593  0.38024903 -0.13484917  1.89944058  0.79694484  1.36098009
 [97] -1.02558046 -0.30139735 -0.87332860  0.69984601
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.02130937 -0.91641372  1.86211396  1.55787533  0.44628552 -1.06798907
  [7]  0.13395170 -0.70774490 -0.24961314 -0.58280212  1.55986240 -0.24932970
 [13]  0.28952198  0.10612284  0.95021485 -0.31350270 -0.04399344  1.33204053
 [19]  0.41631027 -0.17264587 -0.79223044  0.51866163  2.19260409  0.86595735
 [25]  1.01868336 -0.57018015  0.25250128  1.13588504 -0.39441858  0.15746474
 [31]  0.91428394 -0.64277981 -0.62764247  1.40093438  0.08106506  2.39896533
 [37] -0.11864038 -0.16917905  1.53215217 -1.68508796 -0.42979956  0.01878607
 [43]  0.18258156  0.32931903  0.58614838  0.54195617  0.09868817  0.02152417
 [49]  0.60738146  1.14970045  0.30136579  0.84397975  1.89784363  0.84975101
 [55] -0.45069350 -1.53156394  0.17755147  0.50601468 -0.66713260 -0.84648411
 [61]  0.89900079  0.08841236 -0.30239512 -0.39098673  0.85871312 -0.33050989
 [67]  1.89785277  0.57155190 -1.47549713  0.31659351  1.05555150  0.95640578
 [73] -2.05096137  1.01439482  0.10197020 -1.51364697 -0.35155399  1.62392302
 [79]  1.17893759  0.02138937  0.16211315  1.12035310 -1.72436155  1.10381822
 [85]  0.32852923  1.09613532  0.07192557  0.45654677 -0.55727629 -1.48176821
 [91] -0.13126593  0.38024903 -0.13484917  1.89944058  0.79694484  1.36098009
 [97] -1.02558046 -0.30139735 -0.87332860  0.69984601
> colMin(tmp)
  [1]  0.02130937 -0.91641372  1.86211396  1.55787533  0.44628552 -1.06798907
  [7]  0.13395170 -0.70774490 -0.24961314 -0.58280212  1.55986240 -0.24932970
 [13]  0.28952198  0.10612284  0.95021485 -0.31350270 -0.04399344  1.33204053
 [19]  0.41631027 -0.17264587 -0.79223044  0.51866163  2.19260409  0.86595735
 [25]  1.01868336 -0.57018015  0.25250128  1.13588504 -0.39441858  0.15746474
 [31]  0.91428394 -0.64277981 -0.62764247  1.40093438  0.08106506  2.39896533
 [37] -0.11864038 -0.16917905  1.53215217 -1.68508796 -0.42979956  0.01878607
 [43]  0.18258156  0.32931903  0.58614838  0.54195617  0.09868817  0.02152417
 [49]  0.60738146  1.14970045  0.30136579  0.84397975  1.89784363  0.84975101
 [55] -0.45069350 -1.53156394  0.17755147  0.50601468 -0.66713260 -0.84648411
 [61]  0.89900079  0.08841236 -0.30239512 -0.39098673  0.85871312 -0.33050989
 [67]  1.89785277  0.57155190 -1.47549713  0.31659351  1.05555150  0.95640578
 [73] -2.05096137  1.01439482  0.10197020 -1.51364697 -0.35155399  1.62392302
 [79]  1.17893759  0.02138937  0.16211315  1.12035310 -1.72436155  1.10381822
 [85]  0.32852923  1.09613532  0.07192557  0.45654677 -0.55727629 -1.48176821
 [91] -0.13126593  0.38024903 -0.13484917  1.89944058  0.79694484  1.36098009
 [97] -1.02558046 -0.30139735 -0.87332860  0.69984601
> colMedians(tmp)
  [1]  0.02130937 -0.91641372  1.86211396  1.55787533  0.44628552 -1.06798907
  [7]  0.13395170 -0.70774490 -0.24961314 -0.58280212  1.55986240 -0.24932970
 [13]  0.28952198  0.10612284  0.95021485 -0.31350270 -0.04399344  1.33204053
 [19]  0.41631027 -0.17264587 -0.79223044  0.51866163  2.19260409  0.86595735
 [25]  1.01868336 -0.57018015  0.25250128  1.13588504 -0.39441858  0.15746474
 [31]  0.91428394 -0.64277981 -0.62764247  1.40093438  0.08106506  2.39896533
 [37] -0.11864038 -0.16917905  1.53215217 -1.68508796 -0.42979956  0.01878607
 [43]  0.18258156  0.32931903  0.58614838  0.54195617  0.09868817  0.02152417
 [49]  0.60738146  1.14970045  0.30136579  0.84397975  1.89784363  0.84975101
 [55] -0.45069350 -1.53156394  0.17755147  0.50601468 -0.66713260 -0.84648411
 [61]  0.89900079  0.08841236 -0.30239512 -0.39098673  0.85871312 -0.33050989
 [67]  1.89785277  0.57155190 -1.47549713  0.31659351  1.05555150  0.95640578
 [73] -2.05096137  1.01439482  0.10197020 -1.51364697 -0.35155399  1.62392302
 [79]  1.17893759  0.02138937  0.16211315  1.12035310 -1.72436155  1.10381822
 [85]  0.32852923  1.09613532  0.07192557  0.45654677 -0.55727629 -1.48176821
 [91] -0.13126593  0.38024903 -0.13484917  1.89944058  0.79694484  1.36098009
 [97] -1.02558046 -0.30139735 -0.87332860  0.69984601
> colRanges(tmp)
           [,1]       [,2]     [,3]     [,4]      [,5]      [,6]      [,7]
[1,] 0.02130937 -0.9164137 1.862114 1.557875 0.4462855 -1.067989 0.1339517
[2,] 0.02130937 -0.9164137 1.862114 1.557875 0.4462855 -1.067989 0.1339517
           [,8]       [,9]      [,10]    [,11]      [,12]    [,13]     [,14]
[1,] -0.7077449 -0.2496131 -0.5828021 1.559862 -0.2493297 0.289522 0.1061228
[2,] -0.7077449 -0.2496131 -0.5828021 1.559862 -0.2493297 0.289522 0.1061228
         [,15]      [,16]       [,17]    [,18]     [,19]      [,20]      [,21]
[1,] 0.9502149 -0.3135027 -0.04399344 1.332041 0.4163103 -0.1726459 -0.7922304
[2,] 0.9502149 -0.3135027 -0.04399344 1.332041 0.4163103 -0.1726459 -0.7922304
         [,22]    [,23]     [,24]    [,25]      [,26]     [,27]    [,28]
[1,] 0.5186616 2.192604 0.8659573 1.018683 -0.5701801 0.2525013 1.135885
[2,] 0.5186616 2.192604 0.8659573 1.018683 -0.5701801 0.2525013 1.135885
          [,29]     [,30]     [,31]      [,32]      [,33]    [,34]      [,35]
[1,] -0.3944186 0.1574647 0.9142839 -0.6427798 -0.6276425 1.400934 0.08106506
[2,] -0.3944186 0.1574647 0.9142839 -0.6427798 -0.6276425 1.400934 0.08106506
        [,36]      [,37]      [,38]    [,39]     [,40]      [,41]      [,42]
[1,] 2.398965 -0.1186404 -0.1691791 1.532152 -1.685088 -0.4297996 0.01878607
[2,] 2.398965 -0.1186404 -0.1691791 1.532152 -1.685088 -0.4297996 0.01878607
         [,43]    [,44]     [,45]     [,46]      [,47]      [,48]     [,49]
[1,] 0.1825816 0.329319 0.5861484 0.5419562 0.09868817 0.02152417 0.6073815
[2,] 0.1825816 0.329319 0.5861484 0.5419562 0.09868817 0.02152417 0.6073815
      [,50]     [,51]     [,52]    [,53]    [,54]      [,55]     [,56]
[1,] 1.1497 0.3013658 0.8439798 1.897844 0.849751 -0.4506935 -1.531564
[2,] 1.1497 0.3013658 0.8439798 1.897844 0.849751 -0.4506935 -1.531564
         [,57]     [,58]      [,59]      [,60]     [,61]      [,62]      [,63]
[1,] 0.1775515 0.5060147 -0.6671326 -0.8464841 0.8990008 0.08841236 -0.3023951
[2,] 0.1775515 0.5060147 -0.6671326 -0.8464841 0.8990008 0.08841236 -0.3023951
          [,64]     [,65]      [,66]    [,67]     [,68]     [,69]     [,70]
[1,] -0.3909867 0.8587131 -0.3305099 1.897853 0.5715519 -1.475497 0.3165935
[2,] -0.3909867 0.8587131 -0.3305099 1.897853 0.5715519 -1.475497 0.3165935
        [,71]     [,72]     [,73]    [,74]     [,75]     [,76]     [,77]
[1,] 1.055551 0.9564058 -2.050961 1.014395 0.1019702 -1.513647 -0.351554
[2,] 1.055551 0.9564058 -2.050961 1.014395 0.1019702 -1.513647 -0.351554
        [,78]    [,79]      [,80]     [,81]    [,82]     [,83]    [,84]
[1,] 1.623923 1.178938 0.02138937 0.1621132 1.120353 -1.724362 1.103818
[2,] 1.623923 1.178938 0.02138937 0.1621132 1.120353 -1.724362 1.103818
         [,85]    [,86]      [,87]     [,88]      [,89]     [,90]      [,91]
[1,] 0.3285292 1.096135 0.07192557 0.4565468 -0.5572763 -1.481768 -0.1312659
[2,] 0.3285292 1.096135 0.07192557 0.4565468 -0.5572763 -1.481768 -0.1312659
        [,92]      [,93]    [,94]     [,95]   [,96]    [,97]      [,98]
[1,] 0.380249 -0.1348492 1.899441 0.7969448 1.36098 -1.02558 -0.3013973
[2,] 0.380249 -0.1348492 1.899441 0.7969448 1.36098 -1.02558 -0.3013973
          [,99]   [,100]
[1,] -0.8733286 0.699846
[2,] -0.8733286 0.699846
> 
> 
> Max(tmp2)
[1] 2.413419
> Min(tmp2)
[1] -1.998134
> mean(tmp2)
[1] -0.07530286
> Sum(tmp2)
[1] -7.530286
> Var(tmp2)
[1] 0.8105996
> 
> rowMeans(tmp2)
  [1] -0.382340114  0.006741407  0.569594465 -0.732851657  0.455991568
  [6] -1.358252989 -0.378636686 -0.215674135 -0.849953724  0.185041399
 [11]  0.067356620  0.277455946 -0.028734481 -0.060157471 -1.076572384
 [16] -0.248897975 -1.063013589 -0.982227952  0.469867121 -1.128834796
 [21]  0.480268605 -0.033323142  1.333811602 -1.017461694  1.563189708
 [26] -1.423352021  0.140898511  0.266016457  0.891375571  0.174279774
 [31] -0.008629186 -0.943368957 -0.210070913 -1.998134052 -0.234275066
 [36]  0.616793858  0.876883676 -0.505181607  1.193970036 -1.656884520
 [41]  0.913826519 -0.073575928  0.384566735 -1.584040301  2.413419439
 [46] -1.293980176  0.622687445  1.609593875 -1.215875848 -0.218102955
 [51] -0.883277732 -1.879893039 -0.735449821  0.241260763  0.306313106
 [56] -1.274299635  0.285158234  0.614739647  0.776256310  0.742506048
 [61]  0.941915692 -0.042117084 -0.492931320 -0.604587576  0.199002308
 [66] -0.790250665  1.268106206 -1.796308696  0.148762064 -0.634801920
 [71] -0.350186263  1.004042613  0.458849939 -1.660637527  0.738071756
 [76]  1.955368672 -0.297296388 -0.457060914  1.864843260  0.811024267
 [81] -0.206784650  0.133361228 -0.583508175 -0.456492661 -0.941222840
 [86] -0.651886378 -0.580758565  0.247223086 -0.045709176 -0.127340713
 [91]  0.381178555  0.414383163  0.401576793 -1.107091752 -0.102349620
 [96]  0.712924438 -0.491269685 -0.685359198  1.774017391 -0.663525302
> rowSums(tmp2)
  [1] -0.382340114  0.006741407  0.569594465 -0.732851657  0.455991568
  [6] -1.358252989 -0.378636686 -0.215674135 -0.849953724  0.185041399
 [11]  0.067356620  0.277455946 -0.028734481 -0.060157471 -1.076572384
 [16] -0.248897975 -1.063013589 -0.982227952  0.469867121 -1.128834796
 [21]  0.480268605 -0.033323142  1.333811602 -1.017461694  1.563189708
 [26] -1.423352021  0.140898511  0.266016457  0.891375571  0.174279774
 [31] -0.008629186 -0.943368957 -0.210070913 -1.998134052 -0.234275066
 [36]  0.616793858  0.876883676 -0.505181607  1.193970036 -1.656884520
 [41]  0.913826519 -0.073575928  0.384566735 -1.584040301  2.413419439
 [46] -1.293980176  0.622687445  1.609593875 -1.215875848 -0.218102955
 [51] -0.883277732 -1.879893039 -0.735449821  0.241260763  0.306313106
 [56] -1.274299635  0.285158234  0.614739647  0.776256310  0.742506048
 [61]  0.941915692 -0.042117084 -0.492931320 -0.604587576  0.199002308
 [66] -0.790250665  1.268106206 -1.796308696  0.148762064 -0.634801920
 [71] -0.350186263  1.004042613  0.458849939 -1.660637527  0.738071756
 [76]  1.955368672 -0.297296388 -0.457060914  1.864843260  0.811024267
 [81] -0.206784650  0.133361228 -0.583508175 -0.456492661 -0.941222840
 [86] -0.651886378 -0.580758565  0.247223086 -0.045709176 -0.127340713
 [91]  0.381178555  0.414383163  0.401576793 -1.107091752 -0.102349620
 [96]  0.712924438 -0.491269685 -0.685359198  1.774017391 -0.663525302
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.382340114  0.006741407  0.569594465 -0.732851657  0.455991568
  [6] -1.358252989 -0.378636686 -0.215674135 -0.849953724  0.185041399
 [11]  0.067356620  0.277455946 -0.028734481 -0.060157471 -1.076572384
 [16] -0.248897975 -1.063013589 -0.982227952  0.469867121 -1.128834796
 [21]  0.480268605 -0.033323142  1.333811602 -1.017461694  1.563189708
 [26] -1.423352021  0.140898511  0.266016457  0.891375571  0.174279774
 [31] -0.008629186 -0.943368957 -0.210070913 -1.998134052 -0.234275066
 [36]  0.616793858  0.876883676 -0.505181607  1.193970036 -1.656884520
 [41]  0.913826519 -0.073575928  0.384566735 -1.584040301  2.413419439
 [46] -1.293980176  0.622687445  1.609593875 -1.215875848 -0.218102955
 [51] -0.883277732 -1.879893039 -0.735449821  0.241260763  0.306313106
 [56] -1.274299635  0.285158234  0.614739647  0.776256310  0.742506048
 [61]  0.941915692 -0.042117084 -0.492931320 -0.604587576  0.199002308
 [66] -0.790250665  1.268106206 -1.796308696  0.148762064 -0.634801920
 [71] -0.350186263  1.004042613  0.458849939 -1.660637527  0.738071756
 [76]  1.955368672 -0.297296388 -0.457060914  1.864843260  0.811024267
 [81] -0.206784650  0.133361228 -0.583508175 -0.456492661 -0.941222840
 [86] -0.651886378 -0.580758565  0.247223086 -0.045709176 -0.127340713
 [91]  0.381178555  0.414383163  0.401576793 -1.107091752 -0.102349620
 [96]  0.712924438 -0.491269685 -0.685359198  1.774017391 -0.663525302
> rowMin(tmp2)
  [1] -0.382340114  0.006741407  0.569594465 -0.732851657  0.455991568
  [6] -1.358252989 -0.378636686 -0.215674135 -0.849953724  0.185041399
 [11]  0.067356620  0.277455946 -0.028734481 -0.060157471 -1.076572384
 [16] -0.248897975 -1.063013589 -0.982227952  0.469867121 -1.128834796
 [21]  0.480268605 -0.033323142  1.333811602 -1.017461694  1.563189708
 [26] -1.423352021  0.140898511  0.266016457  0.891375571  0.174279774
 [31] -0.008629186 -0.943368957 -0.210070913 -1.998134052 -0.234275066
 [36]  0.616793858  0.876883676 -0.505181607  1.193970036 -1.656884520
 [41]  0.913826519 -0.073575928  0.384566735 -1.584040301  2.413419439
 [46] -1.293980176  0.622687445  1.609593875 -1.215875848 -0.218102955
 [51] -0.883277732 -1.879893039 -0.735449821  0.241260763  0.306313106
 [56] -1.274299635  0.285158234  0.614739647  0.776256310  0.742506048
 [61]  0.941915692 -0.042117084 -0.492931320 -0.604587576  0.199002308
 [66] -0.790250665  1.268106206 -1.796308696  0.148762064 -0.634801920
 [71] -0.350186263  1.004042613  0.458849939 -1.660637527  0.738071756
 [76]  1.955368672 -0.297296388 -0.457060914  1.864843260  0.811024267
 [81] -0.206784650  0.133361228 -0.583508175 -0.456492661 -0.941222840
 [86] -0.651886378 -0.580758565  0.247223086 -0.045709176 -0.127340713
 [91]  0.381178555  0.414383163  0.401576793 -1.107091752 -0.102349620
 [96]  0.712924438 -0.491269685 -0.685359198  1.774017391 -0.663525302
> 
> colMeans(tmp2)
[1] -0.07530286
> colSums(tmp2)
[1] -7.530286
> colVars(tmp2)
[1] 0.8105996
> colSd(tmp2)
[1] 0.900333
> colMax(tmp2)
[1] 2.413419
> colMin(tmp2)
[1] -1.998134
> colMedians(tmp2)
[1] -0.05293332
> colRanges(tmp2)
          [,1]
[1,] -1.998134
[2,]  2.413419
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  4.77810768  2.56443540  1.86424106 -0.05336547  2.63350535  1.57142189
 [7]  5.23055619 -1.52971578 -2.81368349  0.14668675
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.5801935
[2,] -0.1019080
[3,]  0.3371274
[4,]  0.8905617
[5,]  2.5166817
> 
> rowApply(tmp,sum)
 [1] -2.350822 -1.626213  5.054294  5.803449  6.835652 -2.161086  4.150728
 [8]  4.355145  1.626255 -7.295212
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    6    5   10    4    5    1    7    9    8     7
 [2,]    8    3    8    5    1    8    9    4   10     5
 [3,]    7    8    1    8    6   10    5    8    7     2
 [4,]    9    1    5    6    3    7    8    3    6     8
 [5,]    3    7    2    7    8    9    6    1    9    10
 [6,]    5    6    7   10    2    2   10    6    1     3
 [7,]   10    9    4    2    9    4    4   10    3     9
 [8,]    4    2    9    1    4    5    1    7    4     4
 [9,]    2    4    6    3   10    3    2    2    2     6
[10,]    1   10    3    9    7    6    3    5    5     1
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  3.5860036 -1.1195326  1.0507028 -4.8183409  1.9003189 -1.8557699
 [7] -2.2644766  0.6882289  1.7601174  0.0811381  1.4563552 -0.5046370
[13] -2.5673194 -1.4763017  1.7237372  1.1268569 -1.7077246  2.7283043
[19] -1.3999607 -0.7209947
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.2130385
[2,]  0.7960627
[3,]  0.8219021
[4,]  1.0853682
[5,]  1.0957091
> 
> rowApply(tmp,sum)
[1]  4.036045  2.063288  2.547613 -5.008950 -5.971292
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   19   17   18    8   19
[2,]    6   13    8    2   12
[3,]   20   12   14    1   15
[4,]   10    2    4   13    2
[5,]    3   18   20   20    4
> 
> 
> as.matrix(tmp)
           [,1]        [,2]       [,3]        [,4]       [,5]       [,6]
[1,]  1.0957091 -0.30154198  1.7624489  0.05419026 -0.7546641 -0.9737141
[2,]  0.7960627  0.57661818  0.5147885 -1.69419643  0.9269720 -0.4984098
[3,]  1.0853682 -0.07037012  0.3486791 -0.73713786  1.3964055 -0.7815193
[4,] -0.2130385 -1.43425863 -2.0585624  0.01542932  1.4968078  0.5463434
[5,]  0.8219021  0.11001993  0.4833487 -2.45662623 -1.1652022 -0.1484701
            [,7]        [,8]        [,9]      [,10]      [,11]       [,12]
[1,]  0.78616488  1.01207978  0.58115604 -0.5563321  0.4447366 -0.37457778
[2,] -2.17705591  1.08576247  0.66893467  0.2829633 -0.2329006 -0.07356773
[3,] -0.33846579 -0.02636065 -0.35945502  1.2579919  0.3144496  0.13077152
[4,] -0.01274921 -1.16067554 -0.01901442 -1.3400275  0.4885714  0.10949782
[5,] -0.52237062 -0.22257718  0.88849616  0.4365425  0.4414983 -0.29676084
          [,13]       [,14]       [,15]        [,16]      [,17]      [,18]
[1,] -1.5729674 -0.27949114  1.02670313  0.876135965  0.6777614  0.7984176
[2,]  1.2548148 -0.86594758 -0.62355891  0.385074528  0.4160142  0.7741720
[3,] -0.2188321 -0.98222643  0.55296143  0.008122575 -1.1802331  1.0679011
[4,] -1.0396035 -0.01788697  0.06366241  0.500241944 -1.1840984 -0.6293145
[5,] -0.9907311  0.66925046  0.70396915 -0.642718160 -0.4371688  0.7171282
           [,19]       [,20]
[1,] -0.20555771 -0.06061179
[2,] -0.20357831  0.75032623
[3,]  0.84264173  0.23692058
[4,] -0.06432096  0.94404675
[5,] -1.76914541 -2.59167652
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1       col2      col3      col4        col5      col6      col7
row1 -1.613773 -0.1320024 0.7879719 -2.702181 -0.01341889 -1.033312 0.7792418
           col8       col9     col10       col11      col12     col13
row1 -0.2841118 -0.5366416 0.3670929 -0.04554056 -0.9814208 0.6665063
          col14      col15     col16    col17      col18     col19     col20
row1 -0.4338424 -0.7449505 -0.107615 1.611785 -0.2919989 -2.577741 0.1921591
> tmp[,"col10"]
          col10
row1  0.3670929
row2 -1.5062104
row3 -1.1490040
row4  1.5199186
row5 -0.6590130
> tmp[c("row1","row5"),]
           col1       col2       col3        col4        col5      col6
row1 -1.6137728 -0.1320024  0.7879719 -2.70218120 -0.01341889 -1.033312
row5  0.2810942  1.1404490 -0.5406964 -0.02855981  0.60662141 -1.611542
          col7       col8       col9      col10       col11      col12
row1 0.7792418 -0.2841118 -0.5366416  0.3670929 -0.04554056 -0.9814208
row5 0.7040955  0.6606479  0.3670589 -0.6590130 -0.93586687 -0.8821104
         col13      col14      col15     col16     col17      col18      col19
row1 0.6665063 -0.4338424 -0.7449505 -0.107615  1.611785 -0.2919989 -2.5777411
row5 1.2461642 -1.5473192 -0.6051050 -0.777648 -1.117461 -1.0332106  0.7509638
         col20
row1 0.1921591
row5 1.6142972
> tmp[,c("col6","col20")]
           col6      col20
row1 -1.0333116  0.1921591
row2  0.7275324  1.6871417
row3  1.5923132 -0.9148914
row4 -0.9665272  0.4594312
row5 -1.6115423  1.6142972
> tmp[c("row1","row5"),c("col6","col20")]
          col6     col20
row1 -1.033312 0.1921591
row5 -1.611542 1.6142972
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.89809 49.48299 51.28316 50.21842 49.50399 104.7073 50.40848 51.71874
         col9    col10    col11    col12    col13    col14   col15    col16
row1 51.49507 49.69753 49.87447 51.39491 50.50795 50.31166 50.8131 49.62133
        col17    col18    col19   col20
row1 47.71277 50.37442 48.42127 105.087
> tmp[,"col10"]
        col10
row1 49.69753
row2 30.26756
row3 30.26355
row4 30.24750
row5 50.15436
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.89809 49.48299 51.28316 50.21842 49.50399 104.7073 50.40848 51.71874
row5 49.23567 50.32134 49.94572 49.04075 49.54136 105.3382 50.08279 48.69893
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.49507 49.69753 49.87447 51.39491 50.50795 50.31166 50.81310 49.62133
row5 51.59099 50.15436 50.61951 48.02459 50.47863 50.42955 50.80021 49.21622
        col17    col18    col19    col20
row1 47.71277 50.37442 48.42127 105.0870
row5 49.41002 50.49995 51.51961 104.5125
> tmp[,c("col6","col20")]
          col6     col20
row1 104.70731 105.08702
row2  74.27977  74.67291
row3  74.57207  74.27751
row4  74.78593  75.34686
row5 105.33818 104.51253
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.7073 105.0870
row5 105.3382 104.5125
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.7073 105.0870
row5 105.3382 104.5125
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -1.7728030
[2,]  0.9523584
[3,] -0.3678743
[4,]  0.1562010
[5,] -1.8707753
> tmp[,c("col17","col7")]
           col17       col7
[1,] -1.09079372  1.0383915
[2,] -0.98152792  0.5236887
[3,]  0.30233454 -0.5730707
[4,] -0.02277115 -0.5634838
[5,] -2.13304635 -1.6478657
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,] -0.3634048 -2.72655809
[2,] -0.4411377 -1.08122340
[3,]  0.3441874 -0.05778761
[4,]  0.5081646  1.14692322
[5,] -0.2927763 -0.87037236
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.3634048
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.3634048
[2,] -0.4411377
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]       [,2]      [,3]      [,4]      [,5]       [,6]       [,7]
row3 -0.807467  0.1251941 0.7861939 0.1052407 2.4672204 -0.4731026  0.1910149
row1  1.432132 -0.6916714 1.3863594 0.8097726 0.2324317 -0.7857803 -0.4255443
           [,8]       [,9]      [,10]      [,11]      [,12]     [,13]
row3  1.1192471 0.88049674 -2.2034763  0.7093856 -0.5973446 0.2885669
row1 -0.7163788 0.07478265  0.4369316 -0.4750539  0.1742576 0.9706547
          [,14]     [,15]       [,16]      [,17]     [,18]      [,19]    [,20]
row3  1.2842401 0.2708063 -0.09620846 -0.6204183 -1.896444  0.1258688 1.791092
row1 -0.7785003 0.7958023 -1.07765603 -0.3032172  0.299622 -0.4436870 1.415151
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]       [,3]       [,4]      [,5]      [,6]      [,7]
row2 0.1331908 -1.088522 -0.3665468 -0.4702601 0.9479708 0.1990776 0.2394215
          [,8]       [,9]      [,10]
row2 0.4861752 -0.3683462 -0.4187234
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]      [,2]      [,3]     [,4]      [,5]       [,6]      [,7]
row5 -0.7181379 0.4638987 -1.022694 1.710183 -1.419181 -0.8248925 0.1297698
         [,8]       [,9]     [,10]    [,11]    [,12]      [,13]     [,14]
row5 0.840334 -0.5845149 0.8439647 1.713627 1.955423 -0.6509489 0.3639789
        [,15]      [,16]     [,17]      [,18]       [,19]     [,20]
row5 2.213673 -0.4716059 -1.115354 -0.3278352 -0.08145126 0.4971046
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x56f6b4a91450>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f1744cfebf61"
 [2] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f1747a894be3"
 [3] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f17470d29bd1"
 [4] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f17456f457d0"
 [5] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f174638b37be"
 [6] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f17426eb7094"
 [7] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f174153dfc1b"
 [8] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f174588718d6"
 [9] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f1741577dc57"
[10] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f17411b558b8"
[11] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f17416313b9d"
[12] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f17480683ae" 
[13] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f17419c51deb"
[14] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f174e04ff87" 
[15] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15f17458e2872d"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x56f6b4d2ef10>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x56f6b4d2ef10>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x56f6b4d2ef10>
> rowMedians(tmp)
  [1] -0.419449563  0.687438066  0.487226524  0.129207624  0.097609797
  [6]  0.070099263 -0.337576792  0.050612225 -0.249754933  0.027008399
 [11] -0.214410990  0.234099012  0.096908459 -0.377083200 -0.835340776
 [16]  0.211850170 -0.028814648 -0.160544260  0.075858879 -0.263506380
 [21] -0.337954604  0.051428556  0.007664767 -0.156318414  0.106786801
 [26]  0.104449167  0.306068718  0.014015575 -0.580989715  0.058316136
 [31] -0.016069674  0.190211272 -0.013167330 -0.238622434 -0.020791127
 [36] -0.210090337  0.211127652  0.007248371 -0.110674971 -0.015494312
 [41]  0.256604994 -0.421959000 -0.266760987  0.790979910 -0.300690195
 [46]  0.153564243  0.260672333 -0.277750156  0.308771873  0.223785172
 [51]  0.190842437  0.425549553  0.564778321  0.471082484 -0.383164354
 [56] -0.148580177 -0.112518471 -0.064904528 -0.003762056 -0.317834846
 [61] -0.492800684  0.304726502  0.183512141 -0.312675728 -0.115406962
 [66] -0.925817385 -0.216237595  0.523622594 -0.127998699 -1.046780216
 [71] -0.425643870 -0.281458022 -0.148912789  0.010600196  0.368219589
 [76]  0.195876217 -0.155073198 -0.202557579  0.139677459  0.179220994
 [81]  0.394373353  0.108831911  0.093387928 -0.377649612 -0.148589329
 [86] -0.089125056 -0.177933763 -0.168354434 -0.183201715  0.123866517
 [91]  0.074597872  0.084149425  0.114163520 -0.349102489  0.079646380
 [96]  0.379528840  0.167050792 -0.506050217 -0.088667240  0.292203512
[101]  0.633378773 -0.188412024 -0.126795438  0.602255726  0.013990747
[106] -0.137032925  0.054894552  0.255056985 -0.259908653 -0.320354562
[111] -0.100771975  0.431127334 -0.158937424  0.105312762 -0.057080625
[116]  0.306070754 -0.026609924 -0.064235333  0.295186002  0.136899173
[121] -0.243333973 -0.268791476 -0.101302883 -0.269336952 -0.080223848
[126]  0.272972960 -0.037260531 -0.056842012  0.743732294 -0.167527546
[131]  0.211305908 -0.142390328 -0.195206105 -0.384299504 -0.028249619
[136] -0.047361823 -0.160988811 -0.234578672  0.014997377 -0.075599945
[141] -0.001090192  0.271972723  0.696701052  0.494687271 -0.454559324
[146] -0.232900713  0.590001690  0.008515171  0.232319574 -0.689857964
[151] -0.243282138 -0.060671908 -0.771635929  0.136725805 -0.097922860
[156]  0.291180240  0.094748378  0.097117143 -0.381730623  0.189682714
[161]  0.063768129 -0.294655056  0.200683910  0.085478212  0.360160917
[166]  0.632356924  0.174510925 -0.442588464  0.257659372 -0.383333298
[171] -0.041017877 -0.015118158  0.164964585  0.533683518  0.583261736
[176]  0.484090474  0.124593454  0.401019165 -0.221016887 -0.283722638
[181] -0.017470309 -0.743386291  0.714072286 -0.018494567 -0.636462364
[186]  0.346986659 -0.169406278  0.242243185  0.318631250 -0.157174109
[191]  0.193473140 -0.135394506 -0.175611509 -0.079604435 -0.463811823
[196] -0.039711939  0.216540876  0.277719653  0.107222964 -0.060042118
[201] -0.184539240 -0.150292653  0.048523895 -0.458947867 -0.012181379
[206]  0.503100469 -0.047230623  0.073401673  0.365717408 -0.605215600
[211] -0.217956711  0.327522414 -0.523792025  0.117360576 -0.355575185
[216] -0.025995303 -0.025391073 -0.087995687 -0.143277071  0.048753022
[221] -0.405461036 -0.043615903  0.196654485  0.370720002  0.140851229
[226] -0.793502082  0.289626198 -0.003935531  0.015164096  0.042113306
> 
> proc.time()
   user  system elapsed 
  1.386   1.462   2.835 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6117f627fc10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6117f627fc10>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6117f627fc10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6117f627fc10>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x6117f6f422d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f6f422d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x6117f6f422d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f6f422d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6117f6f422d0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f7617d70>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f7617d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6117f7617d70>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6117f7617d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6117f7617d70>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6117f7617d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6117f7617d70>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6117f7617d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6117f7617d70>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f718b370>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x6117f718b370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f718b370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f718b370>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile15f2611d4d50ca" "BufferedMatrixFile15f261347b5de7"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile15f2611d4d50ca" "BufferedMatrixFile15f261347b5de7"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f70d6ff0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f70d6ff0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6117f70d6ff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6117f70d6ff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x6117f70d6ff0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x6117f70d6ff0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f72b93d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6117f72b93d0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6117f72b93d0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6117f72b93d0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6117f8a6afb0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6117f8a6afb0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.285   0.046   0.318 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.248   0.046   0.282 

Example timings