Back to Build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2026-02-09 11:32 -0500 (Mon, 09 Feb 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4858
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 254/2347HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2026-02-08 13:40 -0500 (Sun, 08 Feb 2026)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
See other builds for BufferedMatrix in R Universe.


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2026-02-08 21:53:24 -0500 (Sun, 08 Feb 2026)
EndedAt: 2026-02-08 21:53:49 -0500 (Sun, 08 Feb 2026)
EllapsedTime: 25.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ...* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.23-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.23-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.23-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.234   0.053   0.277 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478920 25.6    1048721 56.1   639242 34.2
Vcells 885815  6.8    8388608 64.0  2083259 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Sun Feb  8 21:53:39 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Sun Feb  8 21:53:39 2026"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x63854f4c2c10>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Sun Feb  8 21:53:40 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Sun Feb  8 21:53:40 2026"
> 
> ColMode(tmp2)
<pointer: 0x63854f4c2c10>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
          [,1]      [,2]       [,3]       [,4]
[1,] 99.070128  2.878964 -1.5807104  0.3357334
[2,] -1.832117  1.524782  0.8405199 -0.2655306
[3,]  1.029965  1.641595 -0.1569280 -0.2812053
[4,] -2.052064 -1.272292 -1.4682255 -0.3355713
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]      [,3]      [,4]
[1,] 99.070128 2.878964 1.5807104 0.3357334
[2,]  1.832117 1.524782 0.8405199 0.2655306
[3,]  1.029965 1.641595 0.1569280 0.2812053
[4,]  2.052064 1.272292 1.4682255 0.3355713
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
         [,1]     [,2]      [,3]      [,4]
[1,] 9.953398 1.696751 1.2572630 0.5794250
[2,] 1.353557 1.234821 0.9167987 0.5152966
[3,] 1.014872 1.281247 0.3961414 0.5302880
[4,] 1.432503 1.127959 1.2117035 0.5792851
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.60411 44.84647 39.15334 31.12998
[2,]  40.36769 38.87299 35.00851 30.41850
[3,]  36.17868 39.45407 29.11834 30.58408
[4,]  41.37709 37.55188 38.58526 31.12842
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x638550319ff0>
> exp(tmp5)
<pointer: 0x638550319ff0>
> log(tmp5,2)
<pointer: 0x638550319ff0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 465.4027
> Min(tmp5)
[1] 53.13072
> mean(tmp5)
[1] 72.97132
> Sum(tmp5)
[1] 14594.26
> Var(tmp5)
[1] 851.7418
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.80880 72.06410 68.00636 70.63952 71.05916 71.07118 70.76601 71.33391
 [9] 73.05993 71.90425
> rowSums(tmp5)
 [1] 1796.176 1441.282 1360.127 1412.790 1421.183 1421.424 1415.320 1426.678
 [9] 1461.199 1438.085
> rowVars(tmp5)
 [1] 7898.36055   57.15780   61.69419   66.35695   71.13993   55.52687
 [7]  133.20398   78.33571   72.18635   79.15485
> rowSd(tmp5)
 [1] 88.872721  7.560278  7.854565  8.145977  8.434449  7.451635 11.541403
 [8]  8.850746  8.496255  8.896901
> rowMax(tmp5)
 [1] 465.40265  84.02005  82.96912  86.12100  86.38893  82.03783  88.54803
 [8]  86.92908  91.08784  91.35591
> rowMin(tmp5)
 [1] 55.82041 58.50404 54.04644 60.13283 55.37783 56.23677 53.13072 54.72357
 [9] 58.83862 55.17682
> 
> colMeans(tmp5)
 [1] 112.99383  78.16606  73.45808  71.81050  67.98368  69.28545  72.76919
 [8]  68.20796  72.00197  70.46779  67.16862  71.09576  69.28093  71.39162
[15]  73.41652  70.33782  69.78600  68.39024  72.86081  68.55363
> colSums(tmp5)
 [1] 1129.9383  781.6606  734.5808  718.1050  679.8368  692.8545  727.6919
 [8]  682.0796  720.0197  704.6779  671.6862  710.9576  692.8093  713.9162
[15]  734.1652  703.3782  697.8600  683.9024  728.6081  685.5363
> colVars(tmp5)
 [1] 15427.99836   115.20666    69.67804    96.23654    48.42286    76.09781
 [7]    91.90031    42.01141    80.90922    68.28889    38.54009    75.34558
[13]    38.04016   100.45501    34.37333    80.92562    96.59092   123.70343
[19]    34.23925    83.02953
> colSd(tmp5)
 [1] 124.209494  10.733437   8.347337   9.810022   6.958653   8.723406
 [7]   9.586465   6.481621   8.994955   8.263709   6.208066   8.680183
[13]   6.167670  10.022725   5.862877   8.995867   9.828068  11.122204
[19]   5.851431   9.112054
> colMax(tmp5)
 [1] 465.40265  93.34206  86.49979  88.54803  74.32154  79.26058  86.38893
 [8]  74.67464  82.96912  87.48403  76.68147  86.92908  80.24342  86.40000
[15]  79.59010  79.75334  84.61987  91.35591  80.23750  83.19632
> colMin(tmp5)
 [1] 54.52315 60.53888 60.60601 63.31212 56.23677 55.17682 59.21648 54.04644
 [9] 56.02792 60.62312 54.72357 59.11276 57.20782 57.16756 63.29984 55.37783
[17] 58.69361 53.13072 60.75290 55.82041
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 89.80880 72.06410 68.00636       NA 71.05916 71.07118 70.76601 71.33391
 [9] 73.05993 71.90425
> rowSums(tmp5)
 [1] 1796.176 1441.282 1360.127       NA 1421.183 1421.424 1415.320 1426.678
 [9] 1461.199 1438.085
> rowVars(tmp5)
 [1] 7898.36055   57.15780   61.69419   69.28237   71.13993   55.52687
 [7]  133.20398   78.33571   72.18635   79.15485
> rowSd(tmp5)
 [1] 88.872721  7.560278  7.854565  8.323603  8.434449  7.451635 11.541403
 [8]  8.850746  8.496255  8.896901
> rowMax(tmp5)
 [1] 465.40265  84.02005  82.96912        NA  86.38893  82.03783  88.54803
 [8]  86.92908  91.08784  91.35591
> rowMin(tmp5)
 [1] 55.82041 58.50404 54.04644       NA 55.37783 56.23677 53.13072 54.72357
 [9] 58.83862 55.17682
> 
> colMeans(tmp5)
 [1] 112.99383  78.16606  73.45808  71.81050        NA  69.28545  72.76919
 [8]  68.20796  72.00197  70.46779  67.16862  71.09576  69.28093  71.39162
[15]  73.41652  70.33782  69.78600  68.39024  72.86081  68.55363
> colSums(tmp5)
 [1] 1129.9383  781.6606  734.5808  718.1050        NA  692.8545  727.6919
 [8]  682.0796  720.0197  704.6779  671.6862  710.9576  692.8093  713.9162
[15]  734.1652  703.3782  697.8600  683.9024  728.6081  685.5363
> colVars(tmp5)
 [1] 15427.99836   115.20666    69.67804    96.23654          NA    76.09781
 [7]    91.90031    42.01141    80.90922    68.28889    38.54009    75.34558
[13]    38.04016   100.45501    34.37333    80.92562    96.59092   123.70343
[19]    34.23925    83.02953
> colSd(tmp5)
 [1] 124.209494  10.733437   8.347337   9.810022         NA   8.723406
 [7]   9.586465   6.481621   8.994955   8.263709   6.208066   8.680183
[13]   6.167670  10.022725   5.862877   8.995867   9.828068  11.122204
[19]   5.851431   9.112054
> colMax(tmp5)
 [1] 465.40265  93.34206  86.49979  88.54803        NA  79.26058  86.38893
 [8]  74.67464  82.96912  87.48403  76.68147  86.92908  80.24342  86.40000
[15]  79.59010  79.75334  84.61987  91.35591  80.23750  83.19632
> colMin(tmp5)
 [1] 54.52315 60.53888 60.60601 63.31212       NA 55.17682 59.21648 54.04644
 [9] 56.02792 60.62312 54.72357 59.11276 57.20782 57.16756 63.29984 55.37783
[17] 58.69361 53.13072 60.75290 55.82041
> 
> Max(tmp5,na.rm=TRUE)
[1] 465.4027
> Min(tmp5,na.rm=TRUE)
[1] 53.13072
> mean(tmp5,na.rm=TRUE)
[1] 72.96491
> Sum(tmp5,na.rm=TRUE)
[1] 14520.02
> Var(tmp5,na.rm=TRUE)
[1] 856.0353
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.80880 72.06410 68.00636 70.44965 71.05916 71.07118 70.76601 71.33391
 [9] 73.05993 71.90425
> rowSums(tmp5,na.rm=TRUE)
 [1] 1796.176 1441.282 1360.127 1338.543 1421.183 1421.424 1415.320 1426.678
 [9] 1461.199 1438.085
> rowVars(tmp5,na.rm=TRUE)
 [1] 7898.36055   57.15780   61.69419   69.28237   71.13993   55.52687
 [7]  133.20398   78.33571   72.18635   79.15485
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.872721  7.560278  7.854565  8.323603  8.434449  7.451635 11.541403
 [8]  8.850746  8.496255  8.896901
> rowMax(tmp5,na.rm=TRUE)
 [1] 465.40265  84.02005  82.96912  86.12100  86.38893  82.03783  88.54803
 [8]  86.92908  91.08784  91.35591
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.82041 58.50404 54.04644 60.13283 55.37783 56.23677 53.13072 54.72357
 [9] 58.83862 55.17682
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.99383  78.16606  73.45808  71.81050  67.28775  69.28545  72.76919
 [8]  68.20796  72.00197  70.46779  67.16862  71.09576  69.28093  71.39162
[15]  73.41652  70.33782  69.78600  68.39024  72.86081  68.55363
> colSums(tmp5,na.rm=TRUE)
 [1] 1129.9383  781.6606  734.5808  718.1050  605.5897  692.8545  727.6919
 [8]  682.0796  720.0197  704.6779  671.6862  710.9576  692.8093  713.9162
[15]  734.1652  703.3782  697.8600  683.9024  728.6081  685.5363
> colVars(tmp5,na.rm=TRUE)
 [1] 15427.99836   115.20666    69.67804    96.23654    49.02710    76.09781
 [7]    91.90031    42.01141    80.90922    68.28889    38.54009    75.34558
[13]    38.04016   100.45501    34.37333    80.92562    96.59092   123.70343
[19]    34.23925    83.02953
> colSd(tmp5,na.rm=TRUE)
 [1] 124.209494  10.733437   8.347337   9.810022   7.001935   8.723406
 [7]   9.586465   6.481621   8.994955   8.263709   6.208066   8.680183
[13]   6.167670  10.022725   5.862877   8.995867   9.828068  11.122204
[19]   5.851431   9.112054
> colMax(tmp5,na.rm=TRUE)
 [1] 465.40265  93.34206  86.49979  88.54803  74.32154  79.26058  86.38893
 [8]  74.67464  82.96912  87.48403  76.68147  86.92908  80.24342  86.40000
[15]  79.59010  79.75334  84.61987  91.35591  80.23750  83.19632
> colMin(tmp5,na.rm=TRUE)
 [1] 54.52315 60.53888 60.60601 63.31212 56.23677 55.17682 59.21648 54.04644
 [9] 56.02792 60.62312 54.72357 59.11276 57.20782 57.16756 63.29984 55.37783
[17] 58.69361 53.13072 60.75290 55.82041
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.80880 72.06410 68.00636      NaN 71.05916 71.07118 70.76601 71.33391
 [9] 73.05993 71.90425
> rowSums(tmp5,na.rm=TRUE)
 [1] 1796.176 1441.282 1360.127    0.000 1421.183 1421.424 1415.320 1426.678
 [9] 1461.199 1438.085
> rowVars(tmp5,na.rm=TRUE)
 [1] 7898.36055   57.15780   61.69419         NA   71.13993   55.52687
 [7]  133.20398   78.33571   72.18635   79.15485
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.872721  7.560278  7.854565        NA  8.434449  7.451635 11.541403
 [8]  8.850746  8.496255  8.896901
> rowMax(tmp5,na.rm=TRUE)
 [1] 465.40265  84.02005  82.96912        NA  86.38893  82.03783  88.54803
 [8]  86.92908  91.08784  91.35591
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.82041 58.50404 54.04644       NA 55.37783 56.23677 53.13072 54.72357
 [9] 58.83862 55.17682
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.97970  78.16680  72.69674  72.59058       NaN  68.21525  73.78747
 [8]  67.83021  71.76763  70.42307  67.93991  71.91241  69.45343  72.37410
[15]  73.09721  71.17381  70.85858  67.92079  74.20613  66.92666
> colSums(tmp5,na.rm=TRUE)
 [1] 1043.8173  703.5012  654.2707  653.3153    0.0000  613.9373  664.0872
 [8]  610.4719  645.9087  633.8076  611.4592  647.2117  625.0809  651.3669
[15]  657.8749  640.5643  637.7272  611.2871  667.8552  602.3399
> colVars(tmp5,na.rm=TRUE)
 [1] 17256.19965   129.60749    71.86682   101.42011          NA    72.72533
 [7]    91.72293    45.65749    90.40510    76.80250    36.66506    77.26094
[13]    42.46044   102.15266    37.52295    83.17887    95.72260   136.68709
[19]    18.15785    63.62926
> colSd(tmp5,na.rm=TRUE)
 [1] 131.362855  11.384528   8.477430  10.070755         NA   8.527915
 [7]   9.577209   6.757033   9.508159   8.763703   6.055168   8.789820
[13]   6.516167  10.107060   6.125598   9.120245   9.783793  11.691325
[19]   4.261203   7.976795
> colMax(tmp5,na.rm=TRUE)
 [1] 465.40265  93.34206  86.49979  88.54803      -Inf  79.26058  86.38893
 [8]  74.67464  82.96912  87.48403  76.68147  86.92908  80.24342  86.40000
[15]  79.59010  79.75334  84.61987  91.35591  80.23750  79.70862
> colMin(tmp5,na.rm=TRUE)
 [1] 54.52315 60.53888 60.60601 63.31212      Inf 55.17682 59.21648 54.04644
 [9] 56.02792 60.62312 54.72357 59.11276 57.20782 57.16756 63.29984 55.37783
[17] 58.69361 53.13072 67.32274 55.82041
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 194.7930 132.1596 191.4245 353.5795 227.4632 313.5791 190.4703 186.0983
 [9] 292.9001 233.8421
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 194.7930 132.1596 191.4245 353.5795 227.4632 313.5791 190.4703 186.0983
 [9] 292.9001 233.8421
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -2.842171e-14  0.000000e+00  2.557954e-13  1.278977e-13 -2.842171e-14
 [6] -5.684342e-14  0.000000e+00  1.705303e-13  5.684342e-14 -5.684342e-14
[11]  5.684342e-14 -1.136868e-13  2.842171e-14  1.421085e-14  1.989520e-13
[16]  5.684342e-14  0.000000e+00  1.705303e-13 -1.421085e-14 -8.526513e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   11 
10   8 
4   18 
5   11 
8   2 
5   20 
7   10 
9   8 
1   17 
6   20 
9   16 
3   6 
3   5 
2   15 
7   19 
7   18 
4   9 
8   4 
1   9 
8   6 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.335767
> Min(tmp)
[1] -3.452361
> mean(tmp)
[1] -0.07786935
> Sum(tmp)
[1] -7.786935
> Var(tmp)
[1] 0.9717309
> 
> rowMeans(tmp)
[1] -0.07786935
> rowSums(tmp)
[1] -7.786935
> rowVars(tmp)
[1] 0.9717309
> rowSd(tmp)
[1] 0.9857641
> rowMax(tmp)
[1] 2.335767
> rowMin(tmp)
[1] -3.452361
> 
> colMeans(tmp)
  [1] -1.089732264  1.591964858  0.324047640 -0.920039473  0.194424162
  [6] -0.070224768  0.206599660  0.436689294 -0.269367095  0.997077093
 [11]  0.094205718  0.197585548  1.769275946 -0.224099769 -0.641250268
 [16]  0.243166289  0.794564435  0.574735992  0.087809062 -1.140005591
 [21]  1.148591778  0.380926652 -0.376072704  1.001935661 -1.191058733
 [26] -0.977721182  0.171601208 -0.513432995  0.196108568 -0.181520393
 [31]  0.618320676 -0.744608482 -1.512300615  1.014969771  0.794843238
 [36] -0.394306958  1.431999771 -1.857170025  0.719128190  1.720746508
 [41] -1.554334629 -1.344014652  0.635051565 -1.323591609 -1.755523295
 [46] -0.495591001  0.086648991  0.712958355  0.234621412  0.605515331
 [51] -0.168912712 -0.713023171 -0.572999262  0.638969324 -1.860205693
 [56] -0.125541710 -0.337153549  0.436379728  2.335767299  1.546663147
 [61] -3.452360507 -0.379670823  0.990990928 -0.927640486 -0.391594096
 [66] -1.526365743 -0.756566718  0.852431380 -1.278775980 -0.912087817
 [71] -0.080557817  0.410562780 -0.791825651  0.057242579 -1.212955204
 [76]  0.949023350  0.390906095 -1.091085145  0.487491948 -1.067343773
 [81] -0.093695968 -0.089325029  0.995848639 -0.744901917 -0.136757857
 [86] -0.470100415  0.912910050  0.450924875 -1.811945792  0.006727695
 [91]  0.826735466 -0.327377455 -0.028964496  0.887664438  0.153772730
 [96] -0.382392340 -1.628675289 -0.763150921  2.129494282  0.466365166
> colSums(tmp)
  [1] -1.089732264  1.591964858  0.324047640 -0.920039473  0.194424162
  [6] -0.070224768  0.206599660  0.436689294 -0.269367095  0.997077093
 [11]  0.094205718  0.197585548  1.769275946 -0.224099769 -0.641250268
 [16]  0.243166289  0.794564435  0.574735992  0.087809062 -1.140005591
 [21]  1.148591778  0.380926652 -0.376072704  1.001935661 -1.191058733
 [26] -0.977721182  0.171601208 -0.513432995  0.196108568 -0.181520393
 [31]  0.618320676 -0.744608482 -1.512300615  1.014969771  0.794843238
 [36] -0.394306958  1.431999771 -1.857170025  0.719128190  1.720746508
 [41] -1.554334629 -1.344014652  0.635051565 -1.323591609 -1.755523295
 [46] -0.495591001  0.086648991  0.712958355  0.234621412  0.605515331
 [51] -0.168912712 -0.713023171 -0.572999262  0.638969324 -1.860205693
 [56] -0.125541710 -0.337153549  0.436379728  2.335767299  1.546663147
 [61] -3.452360507 -0.379670823  0.990990928 -0.927640486 -0.391594096
 [66] -1.526365743 -0.756566718  0.852431380 -1.278775980 -0.912087817
 [71] -0.080557817  0.410562780 -0.791825651  0.057242579 -1.212955204
 [76]  0.949023350  0.390906095 -1.091085145  0.487491948 -1.067343773
 [81] -0.093695968 -0.089325029  0.995848639 -0.744901917 -0.136757857
 [86] -0.470100415  0.912910050  0.450924875 -1.811945792  0.006727695
 [91]  0.826735466 -0.327377455 -0.028964496  0.887664438  0.153772730
 [96] -0.382392340 -1.628675289 -0.763150921  2.129494282  0.466365166
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -1.089732264  1.591964858  0.324047640 -0.920039473  0.194424162
  [6] -0.070224768  0.206599660  0.436689294 -0.269367095  0.997077093
 [11]  0.094205718  0.197585548  1.769275946 -0.224099769 -0.641250268
 [16]  0.243166289  0.794564435  0.574735992  0.087809062 -1.140005591
 [21]  1.148591778  0.380926652 -0.376072704  1.001935661 -1.191058733
 [26] -0.977721182  0.171601208 -0.513432995  0.196108568 -0.181520393
 [31]  0.618320676 -0.744608482 -1.512300615  1.014969771  0.794843238
 [36] -0.394306958  1.431999771 -1.857170025  0.719128190  1.720746508
 [41] -1.554334629 -1.344014652  0.635051565 -1.323591609 -1.755523295
 [46] -0.495591001  0.086648991  0.712958355  0.234621412  0.605515331
 [51] -0.168912712 -0.713023171 -0.572999262  0.638969324 -1.860205693
 [56] -0.125541710 -0.337153549  0.436379728  2.335767299  1.546663147
 [61] -3.452360507 -0.379670823  0.990990928 -0.927640486 -0.391594096
 [66] -1.526365743 -0.756566718  0.852431380 -1.278775980 -0.912087817
 [71] -0.080557817  0.410562780 -0.791825651  0.057242579 -1.212955204
 [76]  0.949023350  0.390906095 -1.091085145  0.487491948 -1.067343773
 [81] -0.093695968 -0.089325029  0.995848639 -0.744901917 -0.136757857
 [86] -0.470100415  0.912910050  0.450924875 -1.811945792  0.006727695
 [91]  0.826735466 -0.327377455 -0.028964496  0.887664438  0.153772730
 [96] -0.382392340 -1.628675289 -0.763150921  2.129494282  0.466365166
> colMin(tmp)
  [1] -1.089732264  1.591964858  0.324047640 -0.920039473  0.194424162
  [6] -0.070224768  0.206599660  0.436689294 -0.269367095  0.997077093
 [11]  0.094205718  0.197585548  1.769275946 -0.224099769 -0.641250268
 [16]  0.243166289  0.794564435  0.574735992  0.087809062 -1.140005591
 [21]  1.148591778  0.380926652 -0.376072704  1.001935661 -1.191058733
 [26] -0.977721182  0.171601208 -0.513432995  0.196108568 -0.181520393
 [31]  0.618320676 -0.744608482 -1.512300615  1.014969771  0.794843238
 [36] -0.394306958  1.431999771 -1.857170025  0.719128190  1.720746508
 [41] -1.554334629 -1.344014652  0.635051565 -1.323591609 -1.755523295
 [46] -0.495591001  0.086648991  0.712958355  0.234621412  0.605515331
 [51] -0.168912712 -0.713023171 -0.572999262  0.638969324 -1.860205693
 [56] -0.125541710 -0.337153549  0.436379728  2.335767299  1.546663147
 [61] -3.452360507 -0.379670823  0.990990928 -0.927640486 -0.391594096
 [66] -1.526365743 -0.756566718  0.852431380 -1.278775980 -0.912087817
 [71] -0.080557817  0.410562780 -0.791825651  0.057242579 -1.212955204
 [76]  0.949023350  0.390906095 -1.091085145  0.487491948 -1.067343773
 [81] -0.093695968 -0.089325029  0.995848639 -0.744901917 -0.136757857
 [86] -0.470100415  0.912910050  0.450924875 -1.811945792  0.006727695
 [91]  0.826735466 -0.327377455 -0.028964496  0.887664438  0.153772730
 [96] -0.382392340 -1.628675289 -0.763150921  2.129494282  0.466365166
> colMedians(tmp)
  [1] -1.089732264  1.591964858  0.324047640 -0.920039473  0.194424162
  [6] -0.070224768  0.206599660  0.436689294 -0.269367095  0.997077093
 [11]  0.094205718  0.197585548  1.769275946 -0.224099769 -0.641250268
 [16]  0.243166289  0.794564435  0.574735992  0.087809062 -1.140005591
 [21]  1.148591778  0.380926652 -0.376072704  1.001935661 -1.191058733
 [26] -0.977721182  0.171601208 -0.513432995  0.196108568 -0.181520393
 [31]  0.618320676 -0.744608482 -1.512300615  1.014969771  0.794843238
 [36] -0.394306958  1.431999771 -1.857170025  0.719128190  1.720746508
 [41] -1.554334629 -1.344014652  0.635051565 -1.323591609 -1.755523295
 [46] -0.495591001  0.086648991  0.712958355  0.234621412  0.605515331
 [51] -0.168912712 -0.713023171 -0.572999262  0.638969324 -1.860205693
 [56] -0.125541710 -0.337153549  0.436379728  2.335767299  1.546663147
 [61] -3.452360507 -0.379670823  0.990990928 -0.927640486 -0.391594096
 [66] -1.526365743 -0.756566718  0.852431380 -1.278775980 -0.912087817
 [71] -0.080557817  0.410562780 -0.791825651  0.057242579 -1.212955204
 [76]  0.949023350  0.390906095 -1.091085145  0.487491948 -1.067343773
 [81] -0.093695968 -0.089325029  0.995848639 -0.744901917 -0.136757857
 [86] -0.470100415  0.912910050  0.450924875 -1.811945792  0.006727695
 [91]  0.826735466 -0.327377455 -0.028964496  0.887664438  0.153772730
 [96] -0.382392340 -1.628675289 -0.763150921  2.129494282  0.466365166
> colRanges(tmp)
          [,1]     [,2]      [,3]       [,4]      [,5]        [,6]      [,7]
[1,] -1.089732 1.591965 0.3240476 -0.9200395 0.1944242 -0.07022477 0.2065997
[2,] -1.089732 1.591965 0.3240476 -0.9200395 0.1944242 -0.07022477 0.2065997
          [,8]       [,9]     [,10]      [,11]     [,12]    [,13]      [,14]
[1,] 0.4366893 -0.2693671 0.9970771 0.09420572 0.1975855 1.769276 -0.2240998
[2,] 0.4366893 -0.2693671 0.9970771 0.09420572 0.1975855 1.769276 -0.2240998
          [,15]     [,16]     [,17]    [,18]      [,19]     [,20]    [,21]
[1,] -0.6412503 0.2431663 0.7945644 0.574736 0.08780906 -1.140006 1.148592
[2,] -0.6412503 0.2431663 0.7945644 0.574736 0.08780906 -1.140006 1.148592
         [,22]      [,23]    [,24]     [,25]      [,26]     [,27]     [,28]
[1,] 0.3809267 -0.3760727 1.001936 -1.191059 -0.9777212 0.1716012 -0.513433
[2,] 0.3809267 -0.3760727 1.001936 -1.191059 -0.9777212 0.1716012 -0.513433
         [,29]      [,30]     [,31]      [,32]     [,33]   [,34]     [,35]
[1,] 0.1961086 -0.1815204 0.6183207 -0.7446085 -1.512301 1.01497 0.7948432
[2,] 0.1961086 -0.1815204 0.6183207 -0.7446085 -1.512301 1.01497 0.7948432
         [,36] [,37]    [,38]     [,39]    [,40]     [,41]     [,42]     [,43]
[1,] -0.394307 1.432 -1.85717 0.7191282 1.720747 -1.554335 -1.344015 0.6350516
[2,] -0.394307 1.432 -1.85717 0.7191282 1.720747 -1.554335 -1.344015 0.6350516
         [,44]     [,45]     [,46]      [,47]     [,48]     [,49]     [,50]
[1,] -1.323592 -1.755523 -0.495591 0.08664899 0.7129584 0.2346214 0.6055153
[2,] -1.323592 -1.755523 -0.495591 0.08664899 0.7129584 0.2346214 0.6055153
          [,51]      [,52]      [,53]     [,54]     [,55]      [,56]      [,57]
[1,] -0.1689127 -0.7130232 -0.5729993 0.6389693 -1.860206 -0.1255417 -0.3371535
[2,] -0.1689127 -0.7130232 -0.5729993 0.6389693 -1.860206 -0.1255417 -0.3371535
         [,58]    [,59]    [,60]     [,61]      [,62]     [,63]      [,64]
[1,] 0.4363797 2.335767 1.546663 -3.452361 -0.3796708 0.9909909 -0.9276405
[2,] 0.4363797 2.335767 1.546663 -3.452361 -0.3796708 0.9909909 -0.9276405
          [,65]     [,66]      [,67]     [,68]     [,69]      [,70]       [,71]
[1,] -0.3915941 -1.526366 -0.7565667 0.8524314 -1.278776 -0.9120878 -0.08055782
[2,] -0.3915941 -1.526366 -0.7565667 0.8524314 -1.278776 -0.9120878 -0.08055782
         [,72]      [,73]      [,74]     [,75]     [,76]     [,77]     [,78]
[1,] 0.4105628 -0.7918257 0.05724258 -1.212955 0.9490233 0.3909061 -1.091085
[2,] 0.4105628 -0.7918257 0.05724258 -1.212955 0.9490233 0.3909061 -1.091085
         [,79]     [,80]       [,81]       [,82]     [,83]      [,84]
[1,] 0.4874919 -1.067344 -0.09369597 -0.08932503 0.9958486 -0.7449019
[2,] 0.4874919 -1.067344 -0.09369597 -0.08932503 0.9958486 -0.7449019
          [,85]      [,86]   [,87]     [,88]     [,89]       [,90]     [,91]
[1,] -0.1367579 -0.4701004 0.91291 0.4509249 -1.811946 0.006727695 0.8267355
[2,] -0.1367579 -0.4701004 0.91291 0.4509249 -1.811946 0.006727695 0.8267355
          [,92]      [,93]     [,94]     [,95]      [,96]     [,97]      [,98]
[1,] -0.3273775 -0.0289645 0.8876644 0.1537727 -0.3823923 -1.628675 -0.7631509
[2,] -0.3273775 -0.0289645 0.8876644 0.1537727 -0.3823923 -1.628675 -0.7631509
        [,99]    [,100]
[1,] 2.129494 0.4663652
[2,] 2.129494 0.4663652
> 
> 
> Max(tmp2)
[1] 2.084877
> Min(tmp2)
[1] -2.401677
> mean(tmp2)
[1] 0.1097595
> Sum(tmp2)
[1] 10.97595
> Var(tmp2)
[1] 1.073049
> 
> rowMeans(tmp2)
  [1]  0.777988601  0.586519006 -0.181568670 -1.458494339  0.734914530
  [6]  0.620783906 -0.570328047 -1.052192191  0.781180640 -1.382122694
 [11]  0.683095556 -1.530666769  0.080353242 -0.163231165 -0.336838722
 [16]  0.054859341 -0.260281773  0.688305004  0.152263783  1.636937458
 [21]  1.074609123  1.588741774 -0.327719785  1.567260068  1.335218494
 [26] -0.701085021  1.011896351  1.033591687  0.606038746 -1.185643218
 [31]  1.180627414 -0.871844337  0.234562383 -1.156415252  0.783672712
 [36] -0.481003262  0.446539463 -2.349767346 -0.203517185 -1.462611785
 [41] -0.064633723  0.861375890  1.068129672  1.801465078 -0.315587420
 [46] -0.062728749  0.945733538  0.620622427 -0.140439040 -1.222752834
 [51] -0.184807176  1.085840047  1.098114979  1.396535128  1.664646843
 [56]  0.845877291  0.219052836 -0.734747583  0.778909962  1.350396207
 [61]  1.821886748  0.311851973  0.431340957  1.136694285 -1.562734646
 [66]  0.982815664 -1.575394130 -1.163840092 -2.401676886 -0.225191106
 [71] -1.662972367 -0.057827381 -1.341684267 -0.114111312 -0.312296351
 [76]  1.312654897  1.610090774 -0.489681425  1.721052049 -0.787599390
 [81]  1.733269822 -1.262973531  0.412214130  0.293250447 -0.461802931
 [86] -1.225257355  0.154451674  1.159217260  0.512180345 -0.628408332
 [91] -0.272446581  0.518389725 -0.148026823 -0.012000446  2.084876773
 [96] -1.379145532  1.036249730 -0.007994447 -1.452065427 -0.707038996
> rowSums(tmp2)
  [1]  0.777988601  0.586519006 -0.181568670 -1.458494339  0.734914530
  [6]  0.620783906 -0.570328047 -1.052192191  0.781180640 -1.382122694
 [11]  0.683095556 -1.530666769  0.080353242 -0.163231165 -0.336838722
 [16]  0.054859341 -0.260281773  0.688305004  0.152263783  1.636937458
 [21]  1.074609123  1.588741774 -0.327719785  1.567260068  1.335218494
 [26] -0.701085021  1.011896351  1.033591687  0.606038746 -1.185643218
 [31]  1.180627414 -0.871844337  0.234562383 -1.156415252  0.783672712
 [36] -0.481003262  0.446539463 -2.349767346 -0.203517185 -1.462611785
 [41] -0.064633723  0.861375890  1.068129672  1.801465078 -0.315587420
 [46] -0.062728749  0.945733538  0.620622427 -0.140439040 -1.222752834
 [51] -0.184807176  1.085840047  1.098114979  1.396535128  1.664646843
 [56]  0.845877291  0.219052836 -0.734747583  0.778909962  1.350396207
 [61]  1.821886748  0.311851973  0.431340957  1.136694285 -1.562734646
 [66]  0.982815664 -1.575394130 -1.163840092 -2.401676886 -0.225191106
 [71] -1.662972367 -0.057827381 -1.341684267 -0.114111312 -0.312296351
 [76]  1.312654897  1.610090774 -0.489681425  1.721052049 -0.787599390
 [81]  1.733269822 -1.262973531  0.412214130  0.293250447 -0.461802931
 [86] -1.225257355  0.154451674  1.159217260  0.512180345 -0.628408332
 [91] -0.272446581  0.518389725 -0.148026823 -0.012000446  2.084876773
 [96] -1.379145532  1.036249730 -0.007994447 -1.452065427 -0.707038996
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.777988601  0.586519006 -0.181568670 -1.458494339  0.734914530
  [6]  0.620783906 -0.570328047 -1.052192191  0.781180640 -1.382122694
 [11]  0.683095556 -1.530666769  0.080353242 -0.163231165 -0.336838722
 [16]  0.054859341 -0.260281773  0.688305004  0.152263783  1.636937458
 [21]  1.074609123  1.588741774 -0.327719785  1.567260068  1.335218494
 [26] -0.701085021  1.011896351  1.033591687  0.606038746 -1.185643218
 [31]  1.180627414 -0.871844337  0.234562383 -1.156415252  0.783672712
 [36] -0.481003262  0.446539463 -2.349767346 -0.203517185 -1.462611785
 [41] -0.064633723  0.861375890  1.068129672  1.801465078 -0.315587420
 [46] -0.062728749  0.945733538  0.620622427 -0.140439040 -1.222752834
 [51] -0.184807176  1.085840047  1.098114979  1.396535128  1.664646843
 [56]  0.845877291  0.219052836 -0.734747583  0.778909962  1.350396207
 [61]  1.821886748  0.311851973  0.431340957  1.136694285 -1.562734646
 [66]  0.982815664 -1.575394130 -1.163840092 -2.401676886 -0.225191106
 [71] -1.662972367 -0.057827381 -1.341684267 -0.114111312 -0.312296351
 [76]  1.312654897  1.610090774 -0.489681425  1.721052049 -0.787599390
 [81]  1.733269822 -1.262973531  0.412214130  0.293250447 -0.461802931
 [86] -1.225257355  0.154451674  1.159217260  0.512180345 -0.628408332
 [91] -0.272446581  0.518389725 -0.148026823 -0.012000446  2.084876773
 [96] -1.379145532  1.036249730 -0.007994447 -1.452065427 -0.707038996
> rowMin(tmp2)
  [1]  0.777988601  0.586519006 -0.181568670 -1.458494339  0.734914530
  [6]  0.620783906 -0.570328047 -1.052192191  0.781180640 -1.382122694
 [11]  0.683095556 -1.530666769  0.080353242 -0.163231165 -0.336838722
 [16]  0.054859341 -0.260281773  0.688305004  0.152263783  1.636937458
 [21]  1.074609123  1.588741774 -0.327719785  1.567260068  1.335218494
 [26] -0.701085021  1.011896351  1.033591687  0.606038746 -1.185643218
 [31]  1.180627414 -0.871844337  0.234562383 -1.156415252  0.783672712
 [36] -0.481003262  0.446539463 -2.349767346 -0.203517185 -1.462611785
 [41] -0.064633723  0.861375890  1.068129672  1.801465078 -0.315587420
 [46] -0.062728749  0.945733538  0.620622427 -0.140439040 -1.222752834
 [51] -0.184807176  1.085840047  1.098114979  1.396535128  1.664646843
 [56]  0.845877291  0.219052836 -0.734747583  0.778909962  1.350396207
 [61]  1.821886748  0.311851973  0.431340957  1.136694285 -1.562734646
 [66]  0.982815664 -1.575394130 -1.163840092 -2.401676886 -0.225191106
 [71] -1.662972367 -0.057827381 -1.341684267 -0.114111312 -0.312296351
 [76]  1.312654897  1.610090774 -0.489681425  1.721052049 -0.787599390
 [81]  1.733269822 -1.262973531  0.412214130  0.293250447 -0.461802931
 [86] -1.225257355  0.154451674  1.159217260  0.512180345 -0.628408332
 [91] -0.272446581  0.518389725 -0.148026823 -0.012000446  2.084876773
 [96] -1.379145532  1.036249730 -0.007994447 -1.452065427 -0.707038996
> 
> colMeans(tmp2)
[1] 0.1097595
> colSums(tmp2)
[1] 10.97595
> colVars(tmp2)
[1] 1.073049
> colSd(tmp2)
[1] 1.035881
> colMax(tmp2)
[1] 2.084877
> colMin(tmp2)
[1] -2.401677
> colMedians(tmp2)
[1] 0.1163085
> colRanges(tmp2)
          [,1]
[1,] -2.401677
[2,]  2.084877
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  7.9660152  0.3268163 -5.5945022 -4.4210523 -1.6651385 -2.7862143
 [7]  3.9837384  1.8583020  1.7340935  3.6222918
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.1147130
[2,]  0.1732568
[3,]  0.7598699
[4,]  1.4780703
[5,]  2.7583485
> 
> rowApply(tmp,sum)
 [1]  2.95273646 -3.13840399  2.03435474 -0.04316453  1.69733103 -3.79363391
 [7]  1.28299409 -0.34493250 -0.16129191  4.53836047
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]   10   10   10    1    8    9    6   10    8     2
 [2,]    8    3    3    7    4    4    7    7    1     9
 [3,]    1    5    1    3    1    3    5    6    2     5
 [4,]    3    1    6    2   10    5    2    1    7     1
 [5,]    5    2    5    5    3    1    9    2   10     6
 [6,]    2    4    4    6    5    7    1    3    6     8
 [7,]    6    7    9   10    2    6    8    8    4     3
 [8,]    7    8    8    4    9    2    4    4    3    10
 [9,]    4    9    7    9    6    8    3    5    9     7
[10,]    9    6    2    8    7   10   10    9    5     4
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.4214045 -1.3811363 -4.6124253 -2.4248087 -1.4915636  0.5037661
 [7]  1.9902660 -2.6578069 -2.1555515 -0.1443163 -1.0772420  3.8985028
[13]  2.0689177 -2.8059475  1.7998241  2.7389146 -0.9788018  0.5329747
[19] -4.0410239  2.4300794
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.4012162
[2,] -1.2039211
[3,] -1.1978167
[4,]  0.4472601
[5,]  0.9342894
> 
> rowApply(tmp,sum)
[1]  2.1001910 -7.2929974 -0.1672464 -5.4165898  0.5478597
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    1   19   15    4    4
[2,]    2   12    6   19    6
[3,]    3    1    3    8   16
[4,]    5    4   12    5   14
[5,]    9    5   17   12    8
> 
> 
> as.matrix(tmp)
           [,1]        [,2]       [,3]        [,4]       [,5]       [,6]
[1,] -1.4012162 -1.36725349 -1.2829847 -0.90074656 -0.2933641 -0.7057258
[2,]  0.9342894 -0.04046765 -2.6142583 -1.53225004 -1.3412777 -0.3512371
[3,]  0.4472601 -0.65162114 -1.1816474  0.03028743  0.8488035  0.9071447
[4,] -1.2039211  1.48170370 -0.5783248 -0.81805593 -0.2076436  1.9368488
[5,] -1.1978167 -0.80349771  1.0447898  0.79595640 -0.4980818 -1.2832645
            [,7]       [,8]       [,9]      [,10]      [,11]       [,12]
[1,]  1.47124115  0.8958371 -0.5084313  0.4440986 -1.0741367  1.40596572
[2,]  0.05678782 -0.2416794  0.6518646 -0.9617209 -0.1650839  1.63627771
[3,]  0.31512453 -1.0873684 -1.2584760 -1.1821663 -0.5010545  0.02249918
[4,]  0.40577247 -0.3530215 -0.2669966  0.1800005 -0.7416876 -0.29015506
[5,] -0.25865997 -1.8715747 -0.7735121  1.3754719  1.4047207  1.12391523
            [,13]      [,14]      [,15]       [,16]       [,17]       [,18]
[1,]  1.806913618 -0.4341486  1.6769135  0.49661504 -0.07934687  0.21042693
[2,]  0.006360591 -0.3120201 -1.9876272  0.36584732  0.34795187  0.18088573
[3,] -0.070144394 -0.5321139  0.3663653  0.51577040  1.99037052 -0.06321911
[4,] -0.151391092 -0.6517228  0.8689764 -0.06258024 -1.37737862 -0.11812619
[5,]  0.477179006 -0.8759421  0.8751960  1.42326209 -1.86039871  0.32300738
           [,19]      [,20]
[1,]  0.01741013  1.7221235
[2,] -1.75754506 -0.1680950
[3,] -0.77025139  1.6871905
[4,] -2.14475242 -1.3241341
[5,]  0.61411484  0.5129946
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1       col2     col3       col4      col5     col6      col7
row1 -0.3649939 -0.6113105 1.563583 -0.6830154 0.7952134 1.375183 0.7797511
            col8      col9      col10     col11      col12    col13      col14
row1 -0.05558249 0.6663145 -0.2585957 0.1753164 -0.3486422 0.293529 -0.8445537
         col15     col16    col17      col18     col19      col20
row1 -0.413292 0.7532955 -0.85057 -0.5406287 0.3008499 0.04835024
> tmp[,"col10"]
          col10
row1 -0.2585957
row2 -1.0495055
row3 -0.2502088
row4 -0.7018498
row5  0.1493145
> tmp[c("row1","row5"),]
           col1       col2      col3       col4       col5     col6       col7
row1 -0.3649939 -0.6113105 1.5635832 -0.6830154  0.7952134 1.375183  0.7797511
row5 -1.6474181 -0.6733178 0.9398311 -1.5301315 -0.1880395 0.557130 -0.6133844
            col8      col9      col10      col11      col12    col13      col14
row1 -0.05558249 0.6663145 -0.2585957  0.1753164 -0.3486422 0.293529 -0.8445537
row5 -0.14191869 1.3278165  0.1493145 -0.3237180  1.2444278 1.027816  0.5670085
         col15     col16     col17      col18     col19       col20
row1 -0.413292 0.7532955 -0.850570 -0.5406287 0.3008499  0.04835024
row5  1.853218 0.5159055 -1.405814  0.9027639 0.3774627 -0.56498219
> tmp[,c("col6","col20")]
           col6       col20
row1  1.3751826  0.04835024
row2  0.1614102 -0.75864875
row3  1.0524178  0.79888904
row4 -0.3335765 -0.36155517
row5  0.5571300 -0.56498219
> tmp[c("row1","row5"),c("col6","col20")]
         col6       col20
row1 1.375183  0.04835024
row5 0.557130 -0.56498219
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.30007 50.50101 50.44932 49.79255 49.74739 104.6752 49.33162 51.23745
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.80474 51.16285 50.64657 49.04633 50.15541 49.05375 49.66791 49.08103
        col17    col18    col19    col20
row1 49.24656 49.00605 48.51218 106.0033
> tmp[,"col10"]
        col10
row1 51.16285
row2 29.01280
row3 29.84773
row4 29.85495
row5 51.07229
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.30007 50.50101 50.44932 49.79255 49.74739 104.6752 49.33162 51.23745
row5 49.48245 50.21518 50.07804 49.97480 51.86500 103.9732 50.34351 49.83730
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.80474 51.16285 50.64657 49.04633 50.15541 49.05375 49.66791 49.08103
row5 48.96401 51.07229 48.99556 51.64459 50.67598 50.94113 51.12591 49.67724
        col17    col18    col19    col20
row1 49.24656 49.00605 48.51218 106.0033
row5 50.22438 49.12205 47.22128 104.9459
> tmp[,c("col6","col20")]
          col6     col20
row1 104.67515 106.00328
row2  73.12576  74.99293
row3  74.61347  74.77749
row4  76.52814  74.03199
row5 103.97315 104.94587
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.6752 106.0033
row5 103.9732 104.9459
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.6752 106.0033
row5 103.9732 104.9459
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,]  1.04377254
[2,] -1.38058145
[3,]  0.04330894
[4,]  0.16110964
[5,] -0.16067473
> tmp[,c("col17","col7")]
          col17       col7
[1,] -0.3473713  0.8491934
[2,]  0.5314346 -0.3945443
[3,]  0.7290428 -1.0536658
[4,] -1.2509554  0.3463301
[5,]  1.2795246  0.9082619
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,] -0.8854651 -0.48284063
[2,] -0.2806396  0.91428168
[3,]  0.2938257 -0.91599666
[4,]  0.8115817  0.04767322
[5,]  0.8901668  1.75544675
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.8854651
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.8854651
[2,] -0.2806396
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]       [,4]     [,5]      [,6]       [,7]
row3  0.4190291 -0.6301577  0.8944664  0.9066462 1.079206 0.6436994 -0.7785247
row1 -0.3735331 -0.3605699 -0.2439263 -1.1358013 2.168436 0.0947319 -0.8949494
           [,8]       [,9]       [,10]       [,11]       [,12]      [,13]
row3 2.09664709 -0.9292926  0.06547189 -0.06339564 -0.07539431 -0.7636229
row1 0.08626485 -0.1259727 -0.02830020 -2.33880211 -0.12816180 -0.1922766
          [,14]     [,15]     [,16]      [,17]        [,18]     [,19]
row3 -0.3929171 2.2277955  1.128066 -0.4732698 -0.001271453 0.9636688
row1 -1.4442373 0.9943547 -1.103443 -1.1056206 -0.714515619 2.1603400
           [,20]
row3 -0.91542011
row1  0.01419508
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]      [,2]       [,3]        [,4]      [,5]      [,6]       [,7]
row2 -0.4224281 0.9927113 -0.6505263 -0.08323616 -0.452631 0.2699425 -0.7447723
          [,8]      [,9]     [,10]
row2 0.4715143 0.1991198 -1.845888
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]       [,2]      [,3]       [,4]     [,5]      [,6]       [,7]
row5 -0.1346352 -0.1316904 -1.862528 -0.4370906 0.458796 0.2078168 -0.3245738
          [,8]      [,9]      [,10]      [,11]    [,12]     [,13]     [,14]
row5 -2.356151 -1.083476 -0.8161208 -0.3689175 2.033488 -2.123046 0.4540281
        [,15]     [,16]    [,17]      [,18]     [,19]     [,20]
row5 2.216139 -1.029866 0.897108 -0.8451748 -1.012217 0.3348757
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x6385505e2810>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a22f22b8a4"
 [2] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a25d9a2880"
 [3] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a211ef1678"
 [4] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a22e3d59b" 
 [5] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a226fa01f4"
 [6] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a25489e44a"
 [7] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a214c86862"
 [8] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a26ea557fd"
 [9] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a21a43a65c"
[10] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a22966fdd2"
[11] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a23348c0ff"
[12] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a26f3934a3"
[13] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a23e93fdb6"
[14] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a22d68312b"
[15] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1814a261791288"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x638551b05440>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x638551b05440>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x638551b05440>
> rowMedians(tmp)
  [1] -0.0306515516  0.1873814868 -0.3234978473  0.0174988043  0.2722673954
  [6]  0.0374177299  0.2522445203 -0.2714047443  0.3060403578  0.0329775523
 [11]  0.0004009996  0.0112782699  0.3470202933 -0.2086471868  0.0251691412
 [16] -0.2762074379 -0.1730752301 -0.1635934306  0.0951242806 -0.3246469311
 [21] -0.0958226778 -0.1769402503  0.1004048438  0.0205821019 -0.1520977892
 [26] -0.1343016780 -0.0453172763 -0.3873939561 -0.3714129139 -0.3702908708
 [31] -0.2939121671 -0.4556274113  0.0338246555  0.1634265310 -0.0413634549
 [36] -0.0937838103 -0.1312745549  0.0086477595  0.1951792686 -0.4284132393
 [41]  0.0950362031 -0.2256600622 -0.1655530793 -0.4556540726 -0.4757428638
 [46]  0.0379620681  0.5479141178  0.1157306234  0.1641510570 -0.3497604983
 [51]  0.0380123600 -0.5264045997 -0.9680853692  0.2463920865 -0.1169649303
 [56]  0.0062920494  0.1421062298 -0.1803066486 -0.0984899637 -0.7859259265
 [61]  0.1831658467  0.4080518967 -0.2333096809  0.0852767154 -0.3459300796
 [66] -0.0988544134  0.1962803242  0.0263716742  0.4268098404 -0.1586569130
 [71]  0.2556382520 -0.0261754594 -0.2815427278 -0.5070562602 -0.0042451280
 [76]  0.0791507391 -0.0540576896 -0.0780628747  0.4070711878  0.3457476784
 [81] -0.2558417138 -0.6141646122 -0.2233869965 -0.0340516227  0.1926669217
 [86] -0.0844376932 -0.3525582323  0.1378017618  0.3636868546 -0.1252722658
 [91]  0.1949901426  0.3166999608 -0.4356524281  0.2460515697  0.3112448682
 [96]  0.1934373274  0.1628022805  0.3065750826 -0.0109397636  0.0785497163
[101] -0.1905103605 -0.1781698568  0.0108667216 -0.0127223097 -0.2771559734
[106] -0.1810260825  0.0042376581 -0.3148406582 -0.2357354027 -0.4344522118
[111]  0.1571493797 -0.1343083640 -0.4081984808 -0.1427098316  0.0483118486
[116] -0.5058089840 -0.3973900568  0.2892316410 -0.4129478064 -0.1819980505
[121]  0.1005145483  0.2198010770 -0.2593739004 -0.0009159969  0.5527697953
[126] -0.2655913368 -0.1152661044 -0.0848525866 -0.0181046501  0.1667999324
[131] -0.2003351123  0.0301536777 -0.4940103998 -0.0387453603  0.1015265336
[136] -0.7471928046 -0.3315055812 -0.1543781436 -0.0236767320  0.0071325604
[141]  0.0692089905  0.0407528365  0.3654050544 -0.1405073987  0.4261885015
[146]  0.1416656155 -0.0874963735  0.0971444827 -0.2355524241  0.1056260934
[151] -0.1331102385 -0.0450242312  0.1456301288  0.3881593285  0.1908901750
[156]  0.0713121042 -0.0552728514  0.0026561355 -0.1734153127 -0.2853696007
[161]  0.1342808837  0.0255147155 -0.3689829478 -0.3334155341  0.4834882923
[166] -0.0480724131 -0.0626373300  0.6258858148 -0.1491727543  0.0759536653
[171] -0.1741458651 -0.6186799527 -0.3380957216 -0.4129645608  0.0080162207
[176] -0.6105286635 -0.0580779442  0.2480124847  0.0122259405  0.3226176046
[181] -0.1307363663 -0.1437801118  0.3950986288 -0.2115179054  0.5380661091
[186] -0.0334033359 -0.2681041438 -0.5120396294 -0.1344157428  0.0909634218
[191]  0.4248308855 -0.1527528049 -0.4696320402  0.3461096997 -0.2226525390
[196] -0.0092751692  0.4463003378  0.0082043081 -0.1080057473  0.0202308152
[201]  0.2395293081 -0.3326252450 -0.3789726836  0.0261789811  0.4375370141
[206]  0.1199617047 -0.3184702986 -0.4347126812  0.2105021275 -0.3804072425
[211] -0.1403115216  0.2475710546 -0.1464001443  0.0927975645 -0.8248090996
[216]  0.1016271987 -0.0534188323  0.1153527354  0.4701232967 -0.2043276050
[221]  0.2816277701 -0.0775935487 -0.2675391377  0.2309386965 -0.3982411341
[226] -0.1485446613 -0.3670143392  0.0349587576 -0.0629222630  0.8433596947
> 
> proc.time()
   user  system elapsed 
  1.316   1.465   2.770 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x61679dc95c10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x61679dc95c10>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x61679dc95c10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x61679dc95c10>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x61679e9582d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679e9582d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x61679e9582d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679e9582d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61679e9582d0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679f02dd70>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679f02dd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61679f02dd70>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x61679f02dd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61679f02dd70>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x61679f02dd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61679f02dd70>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x61679f02dd70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x61679f02dd70>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679eba1370>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x61679eba1370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679eba1370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679eba1370>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1816331ef8938b" "BufferedMatrixFile1816336b2df113"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1816331ef8938b" "BufferedMatrixFile1816336b2df113"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679eaecff0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679eaecff0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x61679eaecff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x61679eaecff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x61679eaecff0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x61679eaecff0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679eccf3d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x61679eccf3d0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x61679eccf3d0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x61679eccf3d0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6167a0480fb0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6167a0480fb0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.237   0.061   0.287 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.248   0.036   0.272 

Example timings