Back to Build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2026-02-09 11:58 -0500 (Mon, 09 Feb 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4888
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2033/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.20.1  (landing page)
Joshua David Campbell
Snapshot Date: 2026-02-05 13:45 -0500 (Thu, 05 Feb 2026)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_22
git_last_commit: 3249a1d3
git_last_commit_date: 2026-01-22 12:16:03 -0500 (Thu, 22 Jan 2026)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
See other builds for singleCellTK in R Universe.


CHECK results for singleCellTK on nebbiolo2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.20.1
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.20.1.tar.gz
StartedAt: 2026-02-06 04:06:59 -0500 (Fri, 06 Feb 2026)
EndedAt: 2026-02-06 04:24:02 -0500 (Fri, 06 Feb 2026)
EllapsedTime: 1022.9 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.20.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.2 (2025-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.20.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 44.797  1.776  46.574
plotDoubletFinderResults 38.885  0.512  39.483
runDoubletFinder         35.665  0.294  35.964
runSeuratSCTransform     30.172  1.139  31.315
plotScDblFinderResults   28.546  0.762  29.350
runScDblFinder           17.851  1.272  19.073
plotBatchCorrCompare     13.400  0.309  13.892
importExampleData        10.739  1.104  12.339
plotDecontXResults        8.980  0.128   9.109
runUMAP                   8.073  0.237   8.390
plotEmptyDropsResults     7.669  0.060   7.729
plotEmptyDropsScatter     7.610  0.031   7.641
plotUMAP                  7.394  0.086   7.557
runDecontX                7.399  0.055   7.455
plotCxdsResults           7.258  0.134   7.471
runEmptyDrops             7.364  0.011   7.376
plotScdsHybridResults     7.232  0.119   7.432
plotDEGViolin             6.513  0.194   6.702
plotBcdsResults           6.098  0.124   6.304
detectCellOutlier         5.799  0.183   5.984
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.20.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.157   0.037   0.183 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[04:21:50] WARNING: src/learner.cc:790: 
Parameters: { "nthreads" } are not used.

[04:21:51] WARNING: src/learner.cc:790: 
Parameters: { "nthreads" } are not used.

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 19 | SKIP 0 | PASS 223 ]

[ FAIL 0 | WARN 19 | SKIP 0 | PASS 223 ]
> 
> proc.time()
   user  system elapsed 
322.260   5.294 328.900 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0000.003
SEG0.0020.0010.002
calcEffectSizes0.1990.0030.204
combineSCE0.7380.0000.739
computeZScore0.2300.0120.243
convertSCEToSeurat4.4940.1034.599
convertSeuratToSCE0.3430.0060.350
dedupRowNames0.0530.0000.054
detectCellOutlier5.7990.1835.984
diffAbundanceFET0.0520.0010.053
discreteColorPalette0.0060.0000.005
distinctColors0.0020.0000.002
downSampleCells0.4750.0530.529
downSampleDepth0.3860.0020.389
expData-ANY-character-method0.1180.0010.118
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1500.0010.150
expData-set0.1400.0010.140
expData0.1180.0000.118
expDataNames-ANY-method0.1130.0010.114
expDataNames0.1050.0110.115
expDeleteDataTag0.0290.0020.032
expSetDataTag0.0210.0030.024
expTaggedData0.0230.0010.024
exportSCE0.0190.0030.021
exportSCEtoAnnData0.0910.0070.098
exportSCEtoFlatFile0.0890.0170.106
featureIndex0.0330.0050.037
generateSimulatedData0.0730.0130.086
getBiomarker0.0520.0050.057
getDEGTopTable0.6310.0250.656
getDiffAbundanceResults0.0460.0000.046
getEnrichRResult0.5090.0503.184
getFindMarkerTopTable1.5550.0921.646
getMSigDBTable0.0020.0010.004
getPathwayResultNames0.0230.0000.023
getSampleSummaryStatsTable0.2220.0150.237
getSoupX0.0000.0000.001
getTSCANResults1.0650.0841.148
getTopHVG0.8750.0180.893
importAnnData0.0010.0000.002
importBUStools0.1430.0010.145
importCellRanger0.7290.0380.766
importCellRangerV2Sample0.140.000.14
importCellRangerV3Sample0.2630.0130.276
importDropEst1.2620.2201.483
importExampleData10.739 1.10412.339
importGeneSetsFromCollection1.7930.1881.980
importGeneSetsFromGMT0.0580.0030.060
importGeneSetsFromList0.1170.0000.117
importGeneSetsFromMSigDB44.797 1.77646.574
importMitoGeneSet0.0500.0060.056
importOptimus0.0010.0000.001
importSEQC0.1420.0200.163
importSTARsolo0.1390.0280.167
iterateSimulations0.1740.0300.204
listSampleSummaryStatsTables0.2580.0280.286
mergeSCEColData0.3840.0170.402
mouseBrainSubsetSCE0.0360.0000.037
msigdb_table0.0010.0000.002
plotBarcodeRankDropsResults0.8720.0210.893
plotBarcodeRankScatter0.8160.0080.823
plotBatchCorrCompare13.400 0.30913.892
plotBatchVariance0.4740.0080.483
plotBcdsResults6.0980.1246.304
plotBubble0.7580.0050.763
plotClusterAbundance1.2860.0401.326
plotCxdsResults7.2580.1347.471
plotDEGHeatmap1.9670.0592.026
plotDEGRegression4.2250.0294.248
plotDEGViolin6.5130.1946.702
plotDEGVolcano0.9400.0020.943
plotDecontXResults8.9800.1289.109
plotDimRed0.2760.0100.286
plotDoubletFinderResults38.885 0.51239.483
plotEmptyDropsResults7.6690.0607.729
plotEmptyDropsScatter7.6100.0317.641
plotFindMarkerHeatmap3.6670.1203.786
plotMASTThresholdGenes1.2280.0101.238
plotPCA0.3580.0010.358
plotPathway0.6880.0100.699
plotRunPerCellQCResults3.0250.0043.029
plotSCEBarAssayData0.3240.0020.324
plotSCEBarColData0.2170.0010.218
plotSCEBatchFeatureMean0.3670.0000.367
plotSCEDensity0.3020.0000.302
plotSCEDensityAssayData0.3090.0080.316
plotSCEDensityColData0.2960.0020.298
plotSCEDimReduceColData0.7170.0020.719
plotSCEDimReduceFeatures0.4030.0020.405
plotSCEHeatmap0.4120.0010.512
plotSCEScatter0.3580.0010.359
plotSCEViolin0.3960.0010.397
plotSCEViolinAssayData0.3540.0040.357
plotSCEViolinColData0.3490.0010.350
plotScDblFinderResults28.546 0.76229.350
plotScanpyDotPlot0.0230.0000.023
plotScanpyEmbedding0.0210.0010.022
plotScanpyHVG0.0200.0010.021
plotScanpyHeatmap0.0220.0010.022
plotScanpyMarkerGenes0.0220.0000.022
plotScanpyMarkerGenesDotPlot0.0220.0000.022
plotScanpyMarkerGenesHeatmap0.0230.0000.023
plotScanpyMarkerGenesMatrixPlot0.0230.0000.023
plotScanpyMarkerGenesViolin0.0230.0000.023
plotScanpyMatrixPlot0.0230.0000.023
plotScanpyPCA0.0220.0010.023
plotScanpyPCAGeneRanking0.0230.0000.023
plotScanpyPCAVariance0.0230.0000.022
plotScanpyViolin0.0230.0000.023
plotScdsHybridResults7.2320.1197.432
plotScrubletResults0.0210.0000.021
plotSeuratElbow0.0210.0000.021
plotSeuratHVG0.0210.0000.020
plotSeuratJackStraw0.0210.0000.021
plotSeuratReduction0.0210.0000.021
plotSoupXResults000
plotTSCANClusterDEG4.7830.0064.790
plotTSCANClusterPseudo1.3570.0071.364
plotTSCANDimReduceFeatures1.2860.0011.288
plotTSCANPseudotimeGenes1.5930.0021.596
plotTSCANPseudotimeHeatmap1.3210.0051.326
plotTSCANResults1.1980.0021.202
plotTSNE0.3650.0000.366
plotTopHVG0.6440.0010.646
plotUMAP7.3940.0867.557
readSingleCellMatrix0.0050.0000.005
reportCellQC0.0770.0000.078
reportDropletQC0.0220.0000.022
reportQCTool0.0750.0000.075
retrieveSCEIndex0.0270.0010.027
runBBKNN000
runBarcodeRankDrops0.2150.0010.216
runBcds0.0730.0020.075
runCellQC0.0760.0000.076
runClusterSummaryMetrics0.3530.0000.353
runComBatSeq0.4150.0050.419
runCxds0.3450.0000.345
runCxdsBcdsHybrid0.0790.0000.080
runDEAnalysis0.3700.0010.371
runDecontX7.3990.0557.455
runDimReduce0.2680.0000.268
runDoubletFinder35.665 0.29435.964
runDropletQC0.0230.0000.023
runEmptyDrops7.3640.0117.376
runEnrichR0.5490.0622.843
runFastMNN1.6830.1271.811
runFeatureSelection0.2090.0110.219
runFindMarker1.3830.1491.533
runGSVA0.8700.1311.001
runHarmony0.0410.0020.043
runKMeans0.1700.0090.179
runLimmaBC0.0790.0100.089
runMNNCorrect0.3970.0360.433
runModelGeneVar0.3030.0280.331
runNormalization2.6450.6953.341
runPerCellQC0.3280.0250.353
runSCANORAMA000
runSCMerge0.0040.0000.004
runScDblFinder17.851 1.27219.073
runScanpyFindClusters0.0210.0010.022
runScanpyFindHVG0.0210.0000.021
runScanpyFindMarkers0.0210.0000.021
runScanpyNormalizeData0.0920.0000.092
runScanpyPCA0.0220.0000.021
runScanpyScaleData0.0210.0000.022
runScanpyTSNE0.0210.0000.022
runScanpyUMAP0.0220.0000.022
runScranSNN0.2790.0100.290
runScrublet0.0220.0000.022
runSeuratFindClusters0.0200.0010.021
runSeuratFindHVG0.4330.0030.436
runSeuratHeatmap0.0220.0000.022
runSeuratICA0.0220.0000.021
runSeuratJackStraw0.0210.0000.022
runSeuratNormalizeData0.0200.0020.021
runSeuratPCA0.0210.0010.022
runSeuratSCTransform30.172 1.13931.315
runSeuratScaleData0.0220.0010.023
runSeuratUMAP0.0210.0010.022
runSingleR0.0370.0000.037
runSoupX000
runTSCAN0.6550.0100.664
runTSCANClusterDEAnalysis0.7390.0330.772
runTSCANDEG0.7390.0300.769
runTSNE0.7440.0010.745
runUMAP8.0730.2378.390
runVAM0.2940.0000.294
runZINBWaVE0.0030.0010.005
sampleSummaryStats0.1510.0010.152
scaterCPM0.1310.0170.149
scaterPCA0.4140.0140.429
scaterlogNormCounts0.2310.0060.238
sce0.0210.0010.021
sctkListGeneSetCollections0.0740.0030.077
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0010.0000.000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0800.0030.083
setSCTKDisplayRow0.4170.0120.428
singleCellTK000
subDiffEx0.3110.0050.315
subsetSCECols0.0770.0000.077
subsetSCERows0.2450.0060.251
summarizeSCE0.0640.0010.064
trimCounts0.2000.0150.214