Back to Multiple platform build/check report for BioC 3.23:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-11-28 11:38 -0500 (Fri, 28 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4866
lconwaymacOS 12.7.6 Montereyx86_64R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences" 4614
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4571
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2004/2328HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.21.0  (landing page)
Joshua David Campbell
Snapshot Date: 2025-11-27 13:40 -0500 (Thu, 27 Nov 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 4895b66
git_last_commit_date: 2025-10-29 11:29:49 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.6 Monterey / x86_64  OK    OK    OK    OK  NO, package depends on 'batchelor' which is only available as a source package that needs compilation
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'batchelor' which is only available as a source package that needs compilation


CHECK results for singleCellTK on nebbiolo1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.21.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.0.tar.gz
StartedAt: 2025-11-28 04:07:20 -0500 (Fri, 28 Nov 2025)
EndedAt: 2025-11-28 04:24:48 -0500 (Fri, 28 Nov 2025)
EllapsedTime: 1048.2 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.21.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  5.6Mb
  sub-directories of 1Mb or more:
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 46.774  1.726  48.503
plotDoubletFinderResults 40.939  0.435  41.443
runDoubletFinder         37.627  0.153  37.782
plotScDblFinderResults   31.100  0.941  31.715
runSeuratSCTransform     29.998  0.276  30.277
runScDblFinder           21.243  0.557  21.482
plotBatchCorrCompare     14.195  0.271  14.466
importExampleData        11.539  2.561  14.451
plotScdsHybridResults    10.779  0.145  10.149
plotBcdsResults           9.679  0.290   9.197
plotDecontXResults        8.914  0.257   9.171
runUMAP                   8.798  0.327   9.126
plotCxdsResults           8.236  0.137   8.374
runDecontX                7.966  0.164   8.130
plotUMAP                  7.905  0.075   7.979
plotEmptyDropsResults     6.656  0.063   6.719
plotEmptyDropsScatter     6.606  0.042   6.648
runEmptyDrops             6.328  0.012   6.341
detectCellOutlier         5.077  0.188   5.267
plotDEGViolin             5.161  0.092   5.247
plotTSCANClusterDEG       5.101  0.013   5.114
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.21.0’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.157   0.034   0.178 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
321.115  10.745 336.250 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0010.0000.002
SEG0.0020.0000.003
calcEffectSizes0.1540.0110.166
combineSCE0.7180.0310.750
computeZScore0.2290.0130.243
convertSCEToSeurat4.0960.1344.230
convertSeuratToSCE0.3070.0030.310
dedupRowNames0.0540.0000.055
detectCellOutlier5.0770.1885.267
diffAbundanceFET0.0530.0000.054
discreteColorPalette0.0050.0000.005
distinctColors0.0020.0000.002
downSampleCells0.4740.0710.546
downSampleDepth0.3810.0060.388
expData-ANY-character-method0.1150.0010.116
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1510.0000.151
expData-set0.140.000.14
expData0.1160.0000.116
expDataNames-ANY-method0.1410.0000.140
expDataNames0.1410.0000.143
expDeleteDataTag0.0360.0100.046
expSetDataTag0.0240.0010.026
expTaggedData0.0260.0010.027
exportSCE0.0210.0010.023
exportSCEtoAnnData0.0940.0080.102
exportSCEtoFlatFile0.0940.0060.101
featureIndex0.0340.0040.038
generateSimulatedData0.0500.0080.058
getBiomarker0.0620.0030.065
getDEGTopTable0.6890.1030.792
getDiffAbundanceResults0.0470.0000.047
getEnrichRResult0.5620.0283.360
getFindMarkerTopTable1.4490.0561.505
getMSigDBTable0.0020.0030.004
getPathwayResultNames0.0210.0010.023
getSampleSummaryStatsTable0.1700.0080.179
getSoupX0.0000.0000.001
getTSCANResults1.0080.0931.100
getTopHVG0.7510.0670.817
importAnnData0.0020.0000.002
importBUStools0.2650.0270.294
importCellRanger0.7030.0610.765
importCellRangerV2Sample0.1420.0010.142
importCellRangerV3Sample0.2930.0370.329
importDropEst0.1930.0010.194
importExampleData11.539 2.56114.451
importGeneSetsFromCollection0.7290.0580.787
importGeneSetsFromGMT0.0600.0050.065
importGeneSetsFromList0.1240.0030.127
importGeneSetsFromMSigDB46.774 1.72648.503
importMitoGeneSet0.0530.0030.056
importOptimus0.0010.0010.001
importSEQC0.1400.0180.158
importSTARsolo0.1430.0250.168
iterateSimulations0.1730.0280.200
listSampleSummaryStatsTables0.2440.0470.290
mergeSCEColData0.3900.0240.414
mouseBrainSubsetSCE0.0370.0000.037
msigdb_table0.0010.0010.002
plotBarcodeRankDropsResults0.8690.0190.888
plotBarcodeRankScatter0.8760.0110.888
plotBatchCorrCompare14.195 0.27114.466
plotBatchVariance0.4810.0200.501
plotBcdsResults9.6790.2909.197
plotBubble0.7760.0170.792
plotClusterAbundance1.3730.0021.376
plotCxdsResults8.2360.1378.374
plotDEGHeatmap2.0600.0112.072
plotDEGRegression4.3670.0374.399
plotDEGViolin5.1610.0925.247
plotDEGVolcano0.9730.0291.002
plotDecontXResults8.9140.2579.171
plotDimRed0.2800.0030.282
plotDoubletFinderResults40.939 0.43541.443
plotEmptyDropsResults6.6560.0636.719
plotEmptyDropsScatter6.6060.0426.648
plotFindMarkerHeatmap3.9770.0724.050
plotMASTThresholdGenes1.3280.0111.339
plotPCA0.3900.0030.393
plotPathway0.7340.0050.740
plotRunPerCellQCResults3.2320.0113.244
plotSCEBarAssayData0.3030.0020.304
plotSCEBarColData0.3200.0010.321
plotSCEBatchFeatureMean0.4340.0000.435
plotSCEDensity0.3300.0020.332
plotSCEDensityAssayData0.3010.0040.321
plotSCEDensityColData0.3780.0030.382
plotSCEDimReduceColData0.7770.0080.785
plotSCEDimReduceFeatures0.4370.0020.439
plotSCEHeatmap0.4340.0000.434
plotSCEScatter0.3660.0000.367
plotSCEViolin0.3840.0020.386
plotSCEViolinAssayData0.4280.0020.430
plotSCEViolinColData0.3540.0020.356
plotScDblFinderResults31.100 0.94131.715
plotScanpyDotPlot0.0220.0000.022
plotScanpyEmbedding0.0210.0010.022
plotScanpyHVG0.0210.0010.021
plotScanpyHeatmap0.0200.0010.022
plotScanpyMarkerGenes0.0210.0010.021
plotScanpyMarkerGenesDotPlot0.0210.0000.022
plotScanpyMarkerGenesHeatmap0.0220.0000.022
plotScanpyMarkerGenesMatrixPlot0.0200.0010.022
plotScanpyMarkerGenesViolin0.0210.0010.021
plotScanpyMatrixPlot0.0200.0010.022
plotScanpyPCA0.0210.0010.021
plotScanpyPCAGeneRanking0.0210.0010.022
plotScanpyPCAVariance0.0210.0010.021
plotScanpyViolin0.0190.0020.022
plotScdsHybridResults10.779 0.14510.149
plotScrubletResults0.0200.0020.022
plotSeuratElbow0.0220.0000.022
plotSeuratHVG0.0220.0000.022
plotSeuratJackStraw0.0210.0020.022
plotSeuratReduction0.0230.0000.022
plotSoupXResults000
plotTSCANClusterDEG5.1010.0135.114
plotTSCANClusterPseudo1.3830.0041.386
plotTSCANDimReduceFeatures1.3890.0051.395
plotTSCANPseudotimeGenes1.6470.0061.653
plotTSCANPseudotimeHeatmap1.3710.0051.375
plotTSCANResults1.3240.0121.337
plotTSNE0.3740.0090.383
plotTopHVG0.6340.0030.637
plotUMAP7.9050.0757.979
readSingleCellMatrix0.0060.0000.006
reportCellQC0.0850.0020.086
reportDropletQC0.0240.0000.024
reportQCTool0.0860.0000.085
retrieveSCEIndex0.0280.0010.029
runBBKNN000
runBarcodeRankDrops0.2280.0030.231
runBcds2.0270.0131.222
runCellQC0.0800.0010.081
runClusterSummaryMetrics0.3780.0010.380
runComBatSeq0.4250.0030.428
runCxds0.3280.0010.328
runCxdsBcdsHybrid2.0170.0741.266
runDEAnalysis0.4380.0150.453
runDecontX7.9660.1648.130
runDimReduce0.2860.0040.290
runDoubletFinder37.627 0.15337.782
runDropletQC0.0210.0000.021
runEmptyDrops6.3280.0126.341
runEnrichR0.5450.0182.804
runFastMNN1.7030.0121.715
runFeatureSelection0.2120.0010.213
runFindMarker1.4520.0061.458
runGSVA0.8700.0380.908
runHarmony0.0410.0000.041
runKMeans0.1830.0020.185
runLimmaBC0.0840.0000.084
runMNNCorrect0.4190.0020.421
runModelGeneVar0.3160.0020.319
runNormalization2.9800.0913.071
runPerCellQC0.3490.0000.349
runSCANORAMA000
runSCMerge0.0040.0010.004
runScDblFinder21.243 0.55721.482
runScanpyFindClusters0.0220.0000.022
runScanpyFindHVG0.0220.0010.023
runScanpyFindMarkers0.0190.0030.022
runScanpyNormalizeData0.0930.0020.095
runScanpyPCA0.0220.0010.023
runScanpyScaleData0.0210.0010.022
runScanpyTSNE0.0210.0020.022
runScanpyUMAP0.0230.0000.023
runScranSNN0.3010.0010.302
runScrublet0.0210.0010.022
runSeuratFindClusters0.0220.0010.022
runSeuratFindHVG0.4520.0020.454
runSeuratHeatmap0.0220.0000.022
runSeuratICA0.0210.0010.022
runSeuratJackStraw0.0200.0020.021
runSeuratNormalizeData0.0200.0010.022
runSeuratPCA0.0210.0010.021
runSeuratSCTransform29.998 0.27630.277
runSeuratScaleData0.0240.0010.024
runSeuratUMAP0.0230.0010.023
runSingleR0.0390.0010.040
runSoupX000
runTSCAN0.7100.0070.716
runTSCANClusterDEAnalysis0.8390.0030.841
runTSCANDEG0.8150.0030.818
runTSNE0.7390.0030.743
runUMAP8.7980.3279.126
runVAM0.3070.0100.317
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.1650.0010.167
scaterCPM0.1410.0150.156
scaterPCA0.4720.0280.501
scaterlogNormCounts0.2420.0160.257
sce0.0210.0020.024
sctkListGeneSetCollections0.0890.0090.098
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment0.0000.0000.001
setRowNames0.0860.0090.096
setSCTKDisplayRow0.4710.0460.518
singleCellTK000
subDiffEx0.3520.0260.378
subsetSCECols0.0860.0170.103
subsetSCERows0.3000.0430.344
summarizeSCE0.0710.0110.083
trimCounts0.2130.0100.222