| Back to Build/check report for BioC 3.23 experimental data | 
  | 
This page was generated on 2025-10-30 15:01 -0400 (Thu, 30 Oct 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs | 
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4428 | 
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 378/430 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | ||||||||
| spatialLIBD 1.23.0  (landing page) Leonardo Collado-Torres 
  | nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | ERROR | ||||||||
| 
To the developers/maintainers of the spatialLIBD package: - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.  | 
| Package: spatialLIBD | 
| Version: 1.23.0 | 
| Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:spatialLIBD.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings spatialLIBD_1.23.0.tar.gz | 
| StartedAt: 2025-10-30 12:48:03 -0400 (Thu, 30 Oct 2025) | 
| EndedAt: 2025-10-30 13:03:43 -0400 (Thu, 30 Oct 2025) | 
| EllapsedTime: 940.3 seconds | 
| RetCode: 1 | 
| Status: ERROR | 
| CheckDir: spatialLIBD.Rcheck | 
| Warnings: NA | 
##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:spatialLIBD.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings spatialLIBD_1.23.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.23-data-experiment/meat/spatialLIBD.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘spatialLIBD/DESCRIPTION’ ... OK
* this is package ‘spatialLIBD’ version ‘1.23.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 36 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘spatialLIBD’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  check_sce.Rd: SingleCellExperiment-class
  check_sce_layer.Rd: SingleCellExperiment-class
  fetch_data.Rd: SingleCellExperiment-class
  layer_boxplot.Rd: SingleCellExperiment-class
  run_app.Rd: SingleCellExperiment-class
  sce_to_spe.Rd: SingleCellExperiment-class
  sig_genes_extract.Rd: SingleCellExperiment-class
  sig_genes_extract_all.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking LazyData ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... ERROR
Running examples in ‘spatialLIBD-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: img_update
> ### Title: Update the image for one sample
> ### Aliases: img_update
> 
> ### ** Examples
> 
> if (enough_ram()) {
+     ## Obtain the necessary data
+     if (!exists("spe")) spe <- fetch_data("spe")
+ 
+     ## Reduce brightness to 25% and update the imgData()
+     imgData(img_update(spe, sampleid = "151507", brightness = 25))
+ }
Error in readRDS(.db_index_file(x)) : error reading from connection
Calls: fetch_data ... <Anonymous> -> <Anonymous> -> .local -> .db_index_load -> readRDS
Execution halted
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
add_images               20.419  1.987  27.065
add_qc_metrics           16.758  1.625  18.624
cluster_import           15.873  1.433  17.941
add_key                  15.805  1.487  18.016
cluster_export           15.647  1.559  18.013
geom_spatial             14.612  1.309  17.286
img_edit                 14.403  1.468  16.531
check_spe                14.274  1.305  16.992
frame_limits             14.192  1.336  16.585
gene_set_enrichment_plot  7.846  0.292   8.650
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 1 ERROR, 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-data-experiment/meat/spatialLIBD.Rcheck/00check.log’
for details.
spatialLIBD.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL spatialLIBD ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’ * installing *source* package ‘spatialLIBD’ ... ** this is package ‘spatialLIBD’ version ‘1.23.0’ ** using staged installation ** R ** data *** moving datasets to lazyload DB ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices *** copying figures ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (spatialLIBD)
spatialLIBD.Rcheck/tests/testthat.Rout
R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(testthat)
> library(spatialLIBD)
Loading required package: SpatialExperiment
Loading required package: SingleCellExperiment
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats
Attaching package: 'MatrixGenerics'
The following objects are masked from 'package:matrixStats':
    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics
Attaching package: 'generics'
The following objects are masked from 'package:base':
    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following object is masked from 'package:utils':
    findMatches
The following objects are masked from 'package:base':
    I, expand.grid, unname
Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
> 
> test_check("spatialLIBD")
rgstr_> ## Ensure reproducibility of example data
rgstr_> set.seed(20220907)
rgstr_> ## Generate example data
rgstr_> sce <- scuttle::mockSCE()
rgstr_> ## Add some sample IDs
rgstr_> sce$sample_id <- sample(LETTERS[1:5], ncol(sce), replace = TRUE)
rgstr_> ## Add a sample-level covariate: age
rgstr_> ages <- rnorm(5, mean = 20, sd = 4)
rgstr_> names(ages) <- LETTERS[1:5]
rgstr_> sce$age <- ages[sce$sample_id]
rgstr_> ## Add gene-level information
rgstr_> rowData(sce)$gene_id <- paste0("ENSG", seq_len(nrow(sce)))
rgstr_> rowData(sce)$gene_name <- paste0("gene", seq_len(nrow(sce)))
rgstr_> ## Pseudo-bulk by Cell Cycle
rgstr_> sce_pseudo <- registration_pseudobulk(
rgstr_+     sce,
rgstr_+     var_registration = "Cell_Cycle",
rgstr_+     var_sample_id = "sample_id",
rgstr_+     covars = c("age"),
rgstr_+     min_ncells = NULL
rgstr_+ )
rgstr_> colData(sce_pseudo)
DataFrame with 20 rows and 9 columns
     Mutation_Status  Cell_Cycle   Treatment   sample_id       age
         <character> <character> <character> <character> <numeric>
A_G0              NA          G0          NA           A   19.1872
B_G0              NA          G0          NA           B   25.3496
C_G0              NA          G0          NA           C   24.1802
D_G0              NA          G0          NA           D   15.5211
E_G0              NA          G0          NA           E   20.9701
...              ...         ...         ...         ...       ...
A_S               NA           S          NA           A   19.1872
B_S               NA           S          NA           B   25.3496
C_S               NA           S          NA           C   24.1802
D_S               NA           S          NA           D   15.5211
E_S               NA           S          NA           E   20.9701
     registration_variable registration_sample_id    ncells pseudo_sum_umi
               <character>            <character> <integer>      <numeric>
A_G0                    G0                      A         8        2946915
B_G0                    G0                      B        13        4922867
C_G0                    G0                      C         9        3398888
D_G0                    G0                      D         7        2630651
E_G0                    G0                      E        10        3761710
...                    ...                    ...       ...            ...
A_S                      S                      A        12        4516334
B_S                      S                      B         8        2960685
C_S                      S                      C         7        2595774
D_S                      S                      D        14        5233560
E_S                      S                      E        11        4151818
rgstr_> rowData(sce_pseudo)
DataFrame with 2000 rows and 3 columns
              gene_id   gene_name        gene_search
          <character> <character>        <character>
Gene_0001       ENSG1       gene1       gene1; ENSG1
Gene_0002       ENSG2       gene2       gene2; ENSG2
Gene_0003       ENSG3       gene3       gene3; ENSG3
Gene_0004       ENSG4       gene4       gene4; ENSG4
Gene_0005       ENSG5       gene5       gene5; ENSG5
...               ...         ...                ...
Gene_1996    ENSG1996    gene1996 gene1996; ENSG1996
Gene_1997    ENSG1997    gene1997 gene1997; ENSG1997
Gene_1998    ENSG1998    gene1998 gene1998; ENSG1998
Gene_1999    ENSG1999    gene1999 gene1999; ENSG1999
Gene_2000    ENSG2000    gene2000 gene2000; ENSG2000
rgstr_> ## Ensure reproducibility of example data
rgstr_> set.seed(20220907)
rgstr_> ## Generate example data
rgstr_> sce <- scuttle::mockSCE()
rgstr_> ## Add some sample IDs
rgstr_> sce$sample_id <- sample(LETTERS[1:5], ncol(sce), replace = TRUE)
rgstr_> ## Add a sample-level covariate: age
rgstr_> ages <- rnorm(5, mean = 20, sd = 4)
rgstr_> names(ages) <- LETTERS[1:5]
rgstr_> sce$age <- ages[sce$sample_id]
rgstr_> ## Add gene-level information
rgstr_> rowData(sce)$gene_id <- paste0("ENSG", seq_len(nrow(sce)))
rgstr_> rowData(sce)$gene_name <- paste0("gene", seq_len(nrow(sce)))
rgstr_> ## Pseudo-bulk by Cell Cycle
rgstr_> sce_pseudo <- registration_pseudobulk(
rgstr_+     sce,
rgstr_+     var_registration = "Cell_Cycle",
rgstr_+     var_sample_id = "sample_id",
rgstr_+     covars = c("age"),
rgstr_+     min_ncells = NULL
rgstr_+ )
rgstr_> colData(sce_pseudo)
DataFrame with 20 rows and 9 columns
     Mutation_Status  Cell_Cycle   Treatment   sample_id       age
         <character> <character> <character> <character> <numeric>
A_G0              NA          G0          NA           A   19.1872
B_G0              NA          G0          NA           B   25.3496
C_G0              NA          G0          NA           C   24.1802
D_G0              NA          G0          NA           D   15.5211
E_G0              NA          G0          NA           E   20.9701
...              ...         ...         ...         ...       ...
A_S               NA           S          NA           A   19.1872
B_S               NA           S          NA           B   25.3496
C_S               NA           S          NA           C   24.1802
D_S               NA           S          NA           D   15.5211
E_S               NA           S          NA           E   20.9701
     registration_variable registration_sample_id    ncells pseudo_sum_umi
               <character>            <character> <integer>      <numeric>
A_G0                    G0                      A         8        2946915
B_G0                    G0                      B        13        4922867
C_G0                    G0                      C         9        3398888
D_G0                    G0                      D         7        2630651
E_G0                    G0                      E        10        3761710
...                    ...                    ...       ...            ...
A_S                      S                      A        12        4516334
B_S                      S                      B         8        2960685
C_S                      S                      C         7        2595774
D_S                      S                      D        14        5233560
E_S                      S                      E        11        4151818
rgstr_> rowData(sce_pseudo)
DataFrame with 2000 rows and 3 columns
              gene_id   gene_name        gene_search
          <character> <character>        <character>
Gene_0001       ENSG1       gene1       gene1; ENSG1
Gene_0002       ENSG2       gene2       gene2; ENSG2
Gene_0003       ENSG3       gene3       gene3; ENSG3
Gene_0004       ENSG4       gene4       gene4; ENSG4
Gene_0005       ENSG5       gene5       gene5; ENSG5
...               ...         ...                ...
Gene_1996    ENSG1996    gene1996 gene1996; ENSG1996
Gene_1997    ENSG1997    gene1997 gene1997; ENSG1997
Gene_1998    ENSG1998    gene1998 gene1998; ENSG1998
Gene_1999    ENSG1999    gene1999 gene1999; ENSG1999
Gene_2000    ENSG2000    gene2000 gene2000; ENSG2000
rgst__> example("registration_model", package = "spatialLIBD")
rgstr_> example("registration_pseudobulk", package = "spatialLIBD")
rgstr_> ## Ensure reproducibility of example data
rgstr_> set.seed(20220907)
rgstr_> ## Generate example data
rgstr_> sce <- scuttle::mockSCE()
rgstr_> ## Add some sample IDs
rgstr_> sce$sample_id <- sample(LETTERS[1:5], ncol(sce), replace = TRUE)
rgstr_> ## Add a sample-level covariate: age
rgstr_> ages <- rnorm(5, mean = 20, sd = 4)
rgstr_> names(ages) <- LETTERS[1:5]
rgstr_> sce$age <- ages[sce$sample_id]
rgstr_> ## Add gene-level information
rgstr_> rowData(sce)$gene_id <- paste0("ENSG", seq_len(nrow(sce)))
rgstr_> rowData(sce)$gene_name <- paste0("gene", seq_len(nrow(sce)))
rgstr_> ## Pseudo-bulk by Cell Cycle
rgstr_> sce_pseudo <- registration_pseudobulk(
rgstr_+     sce,
rgstr_+     var_registration = "Cell_Cycle",
rgstr_+     var_sample_id = "sample_id",
rgstr_+     covars = c("age"),
rgstr_+     min_ncells = NULL
rgstr_+ )
rgstr_> colData(sce_pseudo)
DataFrame with 20 rows and 9 columns
     Mutation_Status  Cell_Cycle   Treatment   sample_id       age
         <character> <character> <character> <character> <numeric>
A_G0              NA          G0          NA           A   19.1872
B_G0              NA          G0          NA           B   25.3496
C_G0              NA          G0          NA           C   24.1802
D_G0              NA          G0          NA           D   15.5211
E_G0              NA          G0          NA           E   20.9701
...              ...         ...         ...         ...       ...
A_S               NA           S          NA           A   19.1872
B_S               NA           S          NA           B   25.3496
C_S               NA           S          NA           C   24.1802
D_S               NA           S          NA           D   15.5211
E_S               NA           S          NA           E   20.9701
     registration_variable registration_sample_id    ncells pseudo_sum_umi
               <character>            <character> <integer>      <numeric>
A_G0                    G0                      A         8        2946915
B_G0                    G0                      B        13        4922867
C_G0                    G0                      C         9        3398888
D_G0                    G0                      D         7        2630651
E_G0                    G0                      E        10        3761710
...                    ...                    ...       ...            ...
A_S                      S                      A        12        4516334
B_S                      S                      B         8        2960685
C_S                      S                      C         7        2595774
D_S                      S                      D        14        5233560
E_S                      S                      E        11        4151818
rgstr_> rowData(sce_pseudo)
DataFrame with 2000 rows and 3 columns
              gene_id   gene_name        gene_search
          <character> <character>        <character>
Gene_0001       ENSG1       gene1       gene1; ENSG1
Gene_0002       ENSG2       gene2       gene2; ENSG2
Gene_0003       ENSG3       gene3       gene3; ENSG3
Gene_0004       ENSG4       gene4       gene4; ENSG4
Gene_0005       ENSG5       gene5       gene5; ENSG5
...               ...         ...                ...
Gene_1996    ENSG1996    gene1996 gene1996; ENSG1996
Gene_1997    ENSG1997    gene1997 gene1997; ENSG1997
Gene_1998    ENSG1998    gene1998 gene1998; ENSG1998
Gene_1999    ENSG1999    gene1999 gene1999; ENSG1999
Gene_2000    ENSG2000    gene2000 gene2000; ENSG2000
rgstr_> registration_mod <- registration_model(sce_pseudo, "age")
rgstr_> head(registration_mod)
     registration_variableG0 registration_variableG1 registration_variableG2M
A_G0                       1                       0                        0
B_G0                       1                       0                        0
C_G0                       1                       0                        0
D_G0                       1                       0                        0
E_G0                       1                       0                        0
A_G1                       0                       1                        0
     registration_variableS      age
A_G0                      0 19.18719
B_G0                      0 25.34965
C_G0                      0 24.18019
D_G0                      0 15.52107
E_G0                      0 20.97006
A_G1                      0 19.18719
rgst__> block_cor <- registration_block_cor(sce_pseudo, registration_mod)
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 47 ]
> 
> proc.time()
   user  system elapsed 
113.472   8.049 132.633 
spatialLIBD.Rcheck/spatialLIBD-Ex.timings
| name | user | system | elapsed | |
| add10xVisiumAnalysis | 0.000 | 0.000 | 0.001 | |
| add_images | 20.419 | 1.987 | 27.065 | |
| add_key | 15.805 | 1.487 | 18.016 | |
| add_qc_metrics | 16.758 | 1.625 | 18.624 | |
| annotate_registered_clusters | 1.149 | 0.096 | 4.637 | |
| check_modeling_results | 1.086 | 0.079 | 1.388 | |
| check_sce | 3.245 | 0.142 | 4.841 | |
| check_sce_layer | 1.305 | 0.102 | 1.881 | |
| check_spe | 14.274 | 1.305 | 16.992 | |
| cluster_export | 15.647 | 1.559 | 18.013 | |
| cluster_import | 15.873 | 1.433 | 17.941 | |
| enough_ram | 0.001 | 0.009 | 0.009 | |
| fetch_data | 1.226 | 0.055 | 1.520 | |
| frame_limits | 14.192 | 1.336 | 16.585 | |
| gene_set_enrichment | 1.219 | 0.062 | 1.475 | |
| gene_set_enrichment_plot | 7.846 | 0.292 | 8.650 | |
| geom_spatial | 14.612 | 1.309 | 17.286 | |
| get_colors | 1.205 | 0.097 | 1.542 | |
| img_edit | 14.403 | 1.468 | 16.531 | |