Back to Build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2026-02-16 11:58 -0500 (Mon, 16 Feb 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4889
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2033/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.20.1  (landing page)
Joshua David Campbell
Snapshot Date: 2026-02-12 13:45 -0500 (Thu, 12 Feb 2026)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_22
git_last_commit: 3249a1d3
git_last_commit_date: 2026-01-22 12:16:03 -0500 (Thu, 22 Jan 2026)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
See other builds for singleCellTK in R Universe.


CHECK results for singleCellTK on nebbiolo2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.20.1
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.20.1.tar.gz
StartedAt: 2026-02-13 05:38:31 -0500 (Fri, 13 Feb 2026)
EndedAt: 2026-02-13 05:55:33 -0500 (Fri, 13 Feb 2026)
EllapsedTime: 1021.9 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.20.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.2 (2025-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.20.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 44.665  0.699  45.365
plotDoubletFinderResults 41.887  0.294  42.258
runDoubletFinder         36.087  0.711  36.801
runSeuratSCTransform     30.723  1.268  31.996
plotScDblFinderResults   27.230  0.803  25.073
runScDblFinder           17.146  0.699  14.789
plotBatchCorrCompare     13.260  0.087  13.531
importExampleData        10.645  0.337  11.400
plotDecontXResults        9.381  0.066   9.447
plotScdsHybridResults     7.975  1.206   9.260
plotUMAP                  8.088  1.047   9.214
runUMAP                   8.183  0.197   8.465
runDecontX                7.935  0.401   8.337
plotCxdsResults           7.444  0.085   7.605
plotDEGViolin             6.938  0.125   7.057
detectCellOutlier         6.617  0.186   6.805
plotEmptyDropsResults     6.711  0.026   6.738
plotEmptyDropsScatter     6.560  0.043   6.603
runEmptyDrops             6.277  0.021   6.299
plotBcdsResults           5.885  0.075   6.036
plotTSCANClusterDEG       4.993  0.295   5.290
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.20.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.157   0.040   0.182 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[05:53:26] WARNING: src/learner.cc:782: 
Parameters: { "nthreads" } are not used.

[05:53:27] WARNING: src/learner.cc:782: 
Parameters: { "nthreads" } are not used.

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 19 | SKIP 0 | PASS 223 ]

[ FAIL 0 | WARN 19 | SKIP 0 | PASS 223 ]
> 
> proc.time()
   user  system elapsed 
324.754   5.424 330.979 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0020.0010.003
calcEffectSizes0.1940.0030.198
combineSCE0.7140.0000.714
computeZScore0.2320.0060.238
convertSCEToSeurat4.4960.1044.600
convertSeuratToSCE0.3420.0040.346
dedupRowNames0.0560.0000.056
detectCellOutlier6.6170.1866.805
diffAbundanceFET0.0560.0020.058
discreteColorPalette0.0060.0000.006
distinctColors0.0020.0000.002
downSampleCells0.4920.0600.552
downSampleDepth0.4290.0400.469
expData-ANY-character-method0.1250.0030.129
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1610.0010.162
expData-set0.1530.0030.156
expData0.1230.0030.126
expDataNames-ANY-method0.1150.0030.118
expDataNames0.1110.0120.123
expDeleteDataTag0.0300.0020.032
expSetDataTag0.0220.0030.025
expTaggedData0.0250.0010.026
exportSCE0.0210.0010.022
exportSCEtoAnnData0.0920.0060.098
exportSCEtoFlatFile0.0870.0110.098
featureIndex0.0340.0030.038
generateSimulatedData0.0680.0020.071
getBiomarker0.0570.0000.057
getDEGTopTable0.6560.0040.660
getDiffAbundanceResults0.0470.0000.047
getEnrichRResult0.5730.0393.111
getFindMarkerTopTable1.5180.0391.557
getMSigDBTable0.0030.0000.003
getPathwayResultNames0.0230.0000.023
getSampleSummaryStatsTable0.2110.0020.213
getSoupX000
getTSCANResults0.9630.0020.965
getTopHVG0.8690.0100.880
importAnnData0.0010.0000.002
importBUStools0.1600.0020.163
importCellRanger0.7450.0090.754
importCellRangerV2Sample0.1410.0000.140
importCellRangerV3Sample0.2790.0050.284
importDropEst1.3940.0411.436
importExampleData10.645 0.33711.400
importGeneSetsFromCollection1.7750.0211.797
importGeneSetsFromGMT0.0620.0020.065
importGeneSetsFromList0.1130.0020.115
importGeneSetsFromMSigDB44.665 0.69945.365
importMitoGeneSet0.0510.0040.057
importOptimus0.0020.0000.001
importSEQC0.1380.0240.162
importSTARsolo0.1390.0240.165
iterateSimulations0.1730.0280.202
listSampleSummaryStatsTables0.2510.0340.284
mergeSCEColData0.400.010.41
mouseBrainSubsetSCE0.0380.0000.037
msigdb_table0.0020.0000.001
plotBarcodeRankDropsResults0.8400.0130.853
plotBarcodeRankScatter0.8370.0090.847
plotBatchCorrCompare13.260 0.08713.531
plotBatchVariance0.4750.0030.478
plotBcdsResults5.8850.0756.036
plotBubble0.7780.0020.780
plotClusterAbundance1.3240.0031.327
plotCxdsResults7.4440.0857.605
plotDEGHeatmap2.0470.0292.075
plotDEGRegression4.4160.0124.422
plotDEGViolin6.9380.1257.057
plotDEGVolcano0.9840.0181.002
plotDecontXResults9.3810.0669.447
plotDimRed0.2890.0010.290
plotDoubletFinderResults41.887 0.29442.258
plotEmptyDropsResults6.7110.0266.738
plotEmptyDropsScatter6.5600.0436.603
plotFindMarkerHeatmap3.8760.0663.942
plotMASTThresholdGenes1.2310.0111.243
plotPCA0.3660.0010.367
plotPathway0.7260.0040.730
plotRunPerCellQCResults3.1340.0063.139
plotSCEBarAssayData0.3280.0010.328
plotSCEBarColData0.2280.0020.231
plotSCEBatchFeatureMean0.40.00.4
plotSCEDensity0.3170.0010.318
plotSCEDensityAssayData0.3080.0020.311
plotSCEDensityColData0.2920.0030.295
plotSCEDimReduceColData0.7250.0040.729
plotSCEDimReduceFeatures0.4130.0010.414
plotSCEHeatmap0.4260.0010.427
plotSCEScatter0.3480.0010.349
plotSCEViolin0.4130.0000.413
plotSCEViolinAssayData0.3670.0010.368
plotSCEViolinColData0.3480.0040.351
plotScDblFinderResults27.230 0.80325.073
plotScanpyDotPlot0.0230.0000.022
plotScanpyEmbedding0.0220.0000.022
plotScanpyHVG0.0210.0000.022
plotScanpyHeatmap0.0220.0000.022
plotScanpyMarkerGenes0.0230.0000.022
plotScanpyMarkerGenesDotPlot0.0230.0000.023
plotScanpyMarkerGenesHeatmap0.0230.0000.023
plotScanpyMarkerGenesMatrixPlot0.0210.0010.022
plotScanpyMarkerGenesViolin0.0210.0010.022
plotScanpyMatrixPlot0.0220.0000.022
plotScanpyPCA0.0220.0000.021
plotScanpyPCAGeneRanking0.0220.0010.023
plotScanpyPCAVariance0.0230.0000.023
plotScanpyViolin0.0230.0000.024
plotScdsHybridResults7.9751.2069.260
plotScrubletResults0.0250.0000.026
plotSeuratElbow0.0240.0000.024
plotSeuratHVG0.0240.0000.024
plotSeuratJackStraw0.0240.0000.024
plotSeuratReduction0.0220.0020.024
plotSoupXResults0.0000.0000.001
plotTSCANClusterDEG4.9930.2955.290
plotTSCANClusterPseudo1.5180.1111.630
plotTSCANDimReduceFeatures1.4060.0881.494
plotTSCANPseudotimeGenes1.7390.0971.836
plotTSCANPseudotimeHeatmap1.4850.2821.768
plotTSCANResults1.3160.1341.452
plotTSNE0.4400.0520.493
plotTopHVG0.7710.1600.932
plotUMAP8.0881.0479.214
readSingleCellMatrix0.0060.0010.006
reportCellQC0.0830.0030.086
reportDropletQC0.0230.0000.023
reportQCTool0.0790.0000.079
retrieveSCEIndex0.0270.0010.029
runBBKNN000
runBarcodeRankDrops0.2250.0020.226
runBcds0.0810.0010.082
runCellQC0.0800.0010.081
runClusterSummaryMetrics0.3770.0320.410
runComBatSeq0.4330.0110.444
runCxds0.3940.0170.411
runCxdsBcdsHybrid0.0850.0010.086
runDEAnalysis0.3870.0210.408
runDecontX7.9350.4018.337
runDimReduce0.2830.0010.284
runDoubletFinder36.087 0.71136.801
runDropletQC0.0220.0020.024
runEmptyDrops6.2770.0216.299
runEnrichR0.5780.0672.796
runFastMNN1.7740.0891.864
runFeatureSelection0.2180.0060.225
runFindMarker1.4710.0101.480
runGSVA0.9040.0110.915
runHarmony0.0440.0000.044
runKMeans0.1900.0000.189
runLimmaBC0.0830.0010.083
runMNNCorrect0.4100.0000.409
runModelGeneVar0.3180.0000.318
runNormalization2.5830.1332.715
runPerCellQC0.3410.0000.342
runSCANORAMA0.0000.0000.001
runSCMerge0.0030.0010.004
runScDblFinder17.146 0.69914.789
runScanpyFindClusters0.0230.0010.024
runScanpyFindHVG0.0230.0000.023
runScanpyFindMarkers0.0210.0010.023
runScanpyNormalizeData0.0990.0010.100
runScanpyPCA0.0240.0000.023
runScanpyScaleData0.0220.0000.022
runScanpyTSNE0.0230.0000.022
runScanpyUMAP0.0240.0020.026
runScranSNN0.2990.0020.301
runScrublet0.0240.0000.023
runSeuratFindClusters0.0230.0000.023
runSeuratFindHVG0.5330.0160.548
runSeuratHeatmap0.0230.0010.024
runSeuratICA0.0220.0000.023
runSeuratJackStraw0.0220.0000.022
runSeuratNormalizeData0.0230.0000.022
runSeuratPCA0.0220.0000.023
runSeuratSCTransform30.723 1.26831.996
runSeuratScaleData0.0220.0020.024
runSeuratUMAP0.0210.0010.023
runSingleR0.0350.0020.037
runSoupX000
runTSCAN0.6730.0040.677
runTSCANClusterDEAnalysis0.8150.0190.834
runTSCANDEG0.8090.0160.826
runTSNE0.7420.0000.743
runUMAP8.1830.1978.465
runVAM0.3430.0110.355
runZINBWaVE0.0050.0000.004
sampleSummaryStats0.1720.0080.179
scaterCPM0.1430.0050.149
scaterPCA0.4730.0000.472
scaterlogNormCounts0.2420.0070.249
sce0.0230.0000.023
sctkListGeneSetCollections0.0830.0020.085
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0900.0000.089
setSCTKDisplayRow0.4540.0090.463
singleCellTK000
subDiffEx0.3450.0070.352
subsetSCECols0.0870.0010.089
subsetSCERows0.2680.0060.274
summarizeSCE0.0680.0010.070
trimCounts0.2070.0070.214