Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Non-Programmer's Tutorial for Python 3/Print

version

Contents

= 1 1. Front matter
m 1.1 Other resources
m 2 2. Intro
m 2.1 First things first
m 2.2 Installing Python
m 2.2.1 Linux, BSD, and Unix users
m 2.2.2 Mac users
m 2.2.3 Windows users

m 2.2.3.1 Configuring your PATH environment variable

2.3 Interactive Mode
2.4 Creating and Running Programs
= 2.4.1 Program file names
2.5 Using Python from the command line
= 2.5.1 Running Python Programs in *nix
2.6 Where to get help
= 2.6.1 Python documentation
= 2.6.2 Python user community
= 3 3. Hello, World
= 3.1 What you should know
= 3.2 Printing
= 3.2.1 Terminology
3.3 Expressions
m 3.3.1 Arithmetic expressions

3.5 Examples
3.6 Exercises
m 3.6.1 Footnotes

= 4 4. Who Goes There?

= 4.1 Input and Variables

= 4.2 Assignment

m 4.3 Examples

m 4.4 Exercises
= 5 5 Countto 10

= 5.1 While loops

m 5.1.1 Infinite loops or Never Ending Loop

= 5.2 Examples
» 5.2.1 Fibonacci sequence
m 5.2.2 Enter password

1sur74

3.4 Talking to humans (and other intelligent beings)

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

2 sur 74

m 5.3 Exercises

6 6. Decisions

m 6.1 If statement
= 6.2 Examples
m 6.3 Exercises

7 7. Debugging

= 7.1 What is debugging?

m 7.2 What should the program do?

= 7.3 What does the program do?
= 7.4 How do | fix my program?

8 8. Defining Functions

= 8.1 Creating Functions
m 8.2 Variables in functions
= 8.3 Examples

m 8.4 Exercises

9 9. Advanced Functions Example

10

11
12

13
14

15
16

17

18

19
20

m 9.1 Recursion
= 9.2 Examples
10. Lists

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

m 10.1 Variables with more than one value

= 10.2 More features of lists
= 10.3 Examples

= 10.4 Exercises

11. For Loops

12. Boolean Expressions

= 12.1 A note on Boolean Operators

= 12.2 Examples

= 12.3 Exercises

13. Dictionaries

14. Using Modules

= 14.1 Exercises

15. More on Lists

16. Revenge of the Strings

m 16.1 Slicing strings (and lists)
= 16.2 Examples

17. File 10

= 17.1 File I/O

m 17.2 Advanced use of .txt files
m 17.3 Exercises

18. Dealing with the imperfect

= 18.1 ...or how to handle errors
m 18.2 closing files with with

m 18.3 catching errors with try

= 18.4 Exercises

19. The End

20. FAQ

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

1. Front matter

All example Python source code in this tutorial is granted to the public domain. Thereforeyymodiiy it
and relicense it under any license you please. Since you are expected to learn prograsm@negtive
Commons Attribution-ShareAlike license would require you to keep all programs thagrased from the
source code in this tutorial under that license. Since the Python source code is grantpdhfictdemain,
that requirement is waived.

This tutorial is more or less a conversion of Non-Programmer's Tutorial for Pythonde6veisions and
some versions in Korean, Spanish, Italian and Greek are available from http#4odH.org/easytut/

The Non-Programmers' Tutorial For Pythoni8a tutorial designed to be an introduction to the Python
programming language. This guide is for someone with no programming experience.

If you have programmed in other languages | recommend using Python Tutorial for Programmer
(https://docs.python.org/3/tutorial/index.html) written by Guido van Rossum.

If you have any questions or comments please use the discussion pages or see Authors page for aut
contact information. | welcome questions and comments about this tutorial. | will tngpu@aany
guestions you have as best | can.

Thanks go to James A. Brown for writing most of the Windows install info. Thanks alsoabethzCogliati
for complaining enough :) about the original tutorial (that is almost unusable for a noarpmagr), for
proofreading, and for many ideas and comments on it. Thanks to Joe Oppegaard for writindldahmost a
exercises. Thanks to everyone | have missed.

Other resources

Python Home Page (http://www.python.org)

Python 3 Documentation (https://docs.python.org/3/)

A Byte of Python by Swaroop C H (http://www.swaroopch.com/notes/python)
Porting to Python 3: An in-depth guide (http://python3porting.com/)

2. Intro

First things first

So, you've never programmed before. As we go through this tutorial, | will attempt to teach yimu how
program. There really is only one way to learn to proghou.must reacdcodeand writecode(as computer
programs are often called). I'm going to show you lots of code. You should type in code that | show you to
see what happens. Play around with it and make changes. The worst that can happen is thabitkwon't
When | type in code it will be formatted like this:

###Python is easy to learn :
print ("Hello, World!”) .
1

That's so it is easy to distinguish from the other text. If you're reading this on the Wemoyime'lthe code
is in color -- that's just to make it stand out, and to make the different parts of theacwtewugtfrom each
other. The code you enter will probably not be colored, or the colors may be different, but it wontheaffe
code as long as you enter it the same way as it's printed here.

3sur74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

If the computer prints something out it will be formatted like this:

|
1 1
:Hello, World! '

1
L o o e m e e m e m e e e m e e e e e e e e mm e e mmmmmmmmmmmmmmm—————— a

(Note that printed text goes to your screen, and does not involve paper. Before computers imsdiseree
output of computer programs would be printed on paper.)

Note that this is a Python 3 tutorial, which means that most of the examples will not wgtkon R.7 an
before. As well, some of the extra libraries (third-party libraries) have not gatdmverted. You may want
to consider learning from the Non-Programmer's Tutorial for Python 2.6. However, therdiéfe between
versions are not particularly large, so if you learn one, you should be able to read progriams$omtihe
other without much difficulty.

There will often be a mixture of the text you type (which is shovbold) and the text the program prints to
the screen, which would look like this:

T TS E ST T TS T T e ST T e T E s T E s EEEEE T A

Halt! !
'Who Goes there? Josh .
:You may pass, Josh '
L e e e e e e e e e e m e e e e e e e e e e e e m = e e e = e = = = e = ————————— d

(Some of the tutorial has not been converted to this format. Since this is a wiki, you can ic@rhetyou
find it.)

| will also introduce you to the terminology of programming - for example, that progransafign
referred to asodingor hacking This will not only help you understand what programmers are talking
about, but also help the learning process.

Now, on to more important things. In order to program in Python you need the Python 3 softwai
don't already have the Python software go to www.python.org/download (http://www.python.org/download:
and get the proper version for your platform. Download it, read the instructions and gelletinsta

Installing Python

For Python programming you need a working Python installation and a text editor. Python comes with its
own editor,IDLE, which is quite nice and totally sufficient for the beginning. As you get more into
programming, you will probably switch to some other editordikecs, vi or another.

The Python download page is http://www.python.org/download. The most recent version is Python 3.4.3 (
of February 2015)Python 2.7 and older versions will not work with this tutorial. There are various

different installation files for different computer platforms available ordthenload site. Here are some
specific instructions for the most common operating systems:

Linux, BSD, and Unix users

You are probably lucky and Python is already installed on your machine. To testpythgpe on a
command line. If you see something like what is shown in the following section, you are set.

IDLE may need to be installed separately, from its own package siutdBasor as part opython-tools

If you have to install Python, first try to use the operating system's package managty thregrepository
where your packages are available and get Python 3. Python 3.0 was released in December 2008; all
distributions should have Python 3 available, so you may not need to compile it from scratch. Ubuntu and
Fedora do have Python 3 binary packages available, but they are not yet the default, so they need to be

4 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

installed specially.

Roughly, here are the steps to compile Python from source code in Unix (If these totallyattensemse,
you may want to read another introduction to *nix, such as Introduction to Linux (http://tldp.org/LtBP/int
linux/html/index.html)):

= Download the .tgz file (use your Web browser to get the gzipped tar file from htyps:fivthon.org
/downloads/release/python-343)
= Uncompress the tar file (put in the correct path to where you downloaded it):

'$ tar -xvzf ~/Download/Python-3.4.3.tgz
... list of files as they are uncompressed

$ cd Python-3.4/ :
1$./configure --prefix=$HOME/python3_installl .
e lots of output. Watch for error messages here ,
$ make 1
| --- even more output. Hopefully no error messages .
:$ make install !

1

m Add Python 3 to your path. You can test it first by specifying the full path. You should add
$HOME/python3_install/bin to your PATH bash variable.

g g g S g g g Sy e

1
1$ ~/python3_install/bin/python3 "
:Python 3.4.3 (... size and date information ...) .
[GCC 4.5.2] on linux2 '
\Type "help”, "copyright", "credits" or "license" fo r more information. 1
>>> .
1

1

Lmcccmcmcmcmcmccccccccccmc-me-m--meemmcmcmememmemmemmememmemmemmem e e e mmmm e e e e e e e e e e mm e m e m e ————————— -

The above commands will install Python 3 to your home directory, which is probably what you want, but if
you skip the-prefix=$HOME/python3_install , it will install it to /usr/local . If you want to use the

IDLE graphical code editor, you need to make sure thaktlandtcl libraries, together with their
development files, are installed on the system. You will get a warning duringitb@hase if these are not
available.

Mac users

Starting from Mac OS X Tiger, Python ships by default with the operating system, but ioeedito
update to Python 3 until OS X starts including Python 3 (check the version by gtatiing in a
command line terminal). Also IDLE (the Python editor) might be missing in the sthimdgatllation. If you
want to (re-)install Python, get the MacOS installer from the Python download it&/(hwww.python.org
/downloads/release/python-343/).

Windows users

Download the appropriate Windows installer (the x86 MSI installer (https://www.pytigditpdpython
/3.4.3/python-3.4.3.msi), if you do not have a 64-bit AMD or Intel chip). Start the installer by double-
clicking it and follow the prompts.

See https://docs.python.org/3/using/windows.html#installing-python for more information.

Configuring your PATH environment variable

5sur74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

The PATH environment variable is a list of folders, separated by semicolons, in windbwsiwill look for
a program whenever you try to execute one by typing its name at a Command Prompt. You can see the
current value of your PATH by typing this command at a Command Prompt:

e A

1

iecho %PATH% :
1

b e e e e e e e e e e e e e e e e e e o o e = = e e e e e e e e e e o e e e e e = e e = = e = = e = = = = = = = e = o e e = .

The easiest way to permanently change environment variables is to bring up the builteinneei
variable editor in Windows. How you get to this editor is slightly different on differestore of Windows.

On Windows 8 Press the Windows key and typentrol Panelto locate the Windows Control Panel. Once
you've opened the Control Panel, select View by: Large Icons, then cligkstemin the window that pops
up, click theAdvanced System Settirigk, then click theEnvironment Variables.button.

On Windows 7 or Vista: Click the Start button in the lower-left corner of the screen, move your mouse over
Computer right-click, and seled®ropertiesfrom the pop-up menu. Click thfdvanced System Settings
link, then click theEnvironment Variables.button.

On Windows XP: Right-click theMy Computeticon on your desktop and seléabperties Select the
Advanceitab, then click th&nvironment Variables.button.

Once you've brought up the environment variable editor, you'll do the same thing regardlesh gérgion
of Windows you're running. Und&ystem Variableis the bottom half of the editor, find a variable called
PATH If there is is one, select it and cliEklit... Assuming your Python root @\Python34 , add these two
folders to your path (and make sure you get the semicolons right; there should be a semicekam dativ
folder in the list):

e e e e e e e e m e m e m e m e m e e e m e e e m e m e m e e e m e e e m e e e e e e e e m e e === == == 1

1

\C:\Python34 :

:C:\Pyth0n34\Scripts :
1

Note: If you want to double-click and start your Python programs from a Windows folder and not |
console window disappear, you can add the following code to the bottom of each script:

T TS EE S S S S EEEE A
1
:#stops console from exiting :
iend_prog = .
while end_prog != "q" _ '
! end_prog = input ("type g to quit") i
1
L e o o e mmm e ——— 4

Interactive Mode

Go into IDLE (also called the Python GUI). You should see a window that has some text like this

1
iPython 3.0 (r30:67503, Dec 29 2008, 21:31:07)
[GCC 4.3.2 20081105 (Red Hat 4.3.2-7)] on linux2

1

1

1

1
iType "copyright", "credits" or "license()" for more information. ,
! 1
: *kkkkkkkkkkkkkhkhkk :
i Personal firewall software may warn about the ¢ onnection IDLE '
' makes to its subprocess using this computer's i nternal loopback 1
1 interface. This connection is not visible on a ny external .
1 interface and no data is sent to or received fr om the Internet. !
1 *kkkkkkkkkkkkkhkkk '
! :
JIDLE 3.0 !
>>> 1
! 1
U -

The>>> is Python's way of telling you that you are in interactive mode. In interactive mode what yai type i

6 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

immediately run. Try typing+1 in. Python will respond with. Interactive mode allows you to test out and
see what Python will do. If you ever feel you need to play with new Python statements, go inttviaterac
mode and try them out.

Creating and Running Programs

Go into IDLE if you are not already. In the menu at the top, seiexthenNew File In the new window
that appears, type the following:

A
1 1
:print ("Hello, World!") 1

1
L e mmm e e e = e e e e e e e e === m = e e e e e e e e e e e - 4

Now save the program: sel File from the menu, theBave Save it ashello.py " (you can save it in any
folder you want). Now that it is saved it can be run.

Next run the program by going RunthenRun Modulgor if you have an older version of IDLE uSdit
thenRun scrip}. This will outputHello, World! on the*Python Shell*window.

For a more in-depth introduction to IDLE, a longer tutorial with screenshots can be found at
http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html.

Program file names

It is very useful to stick to some rules regarding the file names of Python progréesyiSe some things
mightgo wrong unexpectedly. These don't matter as much for programs, but you can have weird problems
you don't follow them for module names (modules will be discussed later).

1. Always save the program with the extensign. Do not put another dot anywhere else in the file
name.

2.0Only use standard characters for file names: letters, numbers; Jlastd Underscore).

3. White space (" ") should not be used at all (use underscores instead).

4. Do not use anything other than a letter (particularly no numbers!) at the beginning ofearide

5. Do not use "non-English" characters (such,as ¢, 9, ¢, 8, t) in your file names—or, even better, do
not use them at all when programming.

Using Python from the command line
If you don't want to use Python from the command line, you don't have to, just use IDLE. To get into

interactive mode just typgthon3 without any arguments. To run a program, create it with a text editor
(Emacs has a good Python mode) and then run itpwitbn3 program_name .

Additionally, to use Python within Vim, you may want to visit the Python wiki page about VIM
(http://wiki.python.org/moin/Vim).

Running Python Programs in *nix

If you are using Unix (such as Linux, Mac OS X, or BSD), if you make the program executald@miiti,
and have as the first line:

you can run the python program witkello.py like any other command.

7sur74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

8 sur 74

Where to get help

At some point in your Python career you will probably get stuck and have no clue about how to solve the
problem you are supposed to work on. This tutorial only covers the basics of Python programming, but the
is a lot of further information available.

Python documentation

First of all, Python is very well documented. There might even be copies of these documents on your
computer that came with your Python installation:

m The official Python 3 Tutorial (http://docs.python.org/3/tutorial/) by Guido van Rossum is ajterda
starting point for general questions.

m For questions about standard modules (you will learn what these are later), the Pythory3 Libra
Reference (http://docs.python.org/3/library/) is the place to look.

= If you really want to get to know something about the details of the language, the Python Bdeefere
Manual (http://docs.python.org/3/reference/) is comprehensive but quite complex for keginne

Python user community

There are a lot of other Python users out there, and usually they are nice and willing to help wauy This
active user community is organised mostly through mailing lists and a newsgroup:

m The tutor mailing list (http://mail.python.org/mailman/listinfo/tutor) is folks who want to ask
guestions regarding how to learn computer programming with the Python language.

m The python-help mailing list (http://www.python.org/community/lists/#python-help) is pythé.org
help desk. You can ask a group of knowledgeable volunteers questions about all your Python
problems.

= The Python newsgroup comp.lang.python (news:comp.lang.python) (Google groups archive
(http://groups.google.com/group/comp.lang.python/)) is the place for general Pythonials;uss
guestions and the central meeting point of the community.

m Python wiki has a list of local user groups (http://wiki.python.org/moin/LocalUserGroupstan
join the group mailing list and ask questions. You can also participate in the user grangsneet

m LearnPython (https://www.reddit.com/r/learnpython) subreddit is another location bdgnmer
level questions can be asked.

In order not to reinvent the wheel and discuss the same questions again and again, peppfeciatea
very much if youdo a web search for a solution to your problem before contacting these lists!

3. Hello, World

What you should know

Once you've read and mastered this chapter, you should know how to edit programs in a text editr or IDL
save them to the hard disk, and run them once they have been saved.

Printing

Programming tutorials since the beginning of time have started with a litieapn called "Hello, World!!

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

O sur 74

So here it is:

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

If you are using the command line to run programs then type it in with a text editor, sawelit@gs and

run it with python3 hello.py

Otherwise go into IDLE, create a new window, and create the program as in seettingzand Running

Programs.

When this program is run here's what it prints:

Now I'm not going to tell you this every time, but when | show you a program | recommend that yo

in and run it. | learn better when | type it in and you probably do too.

Now here is a more complicated progr

print ("Jack and Jill went up a hill")

print ("to fetch a pail of water;"

jprint - ("Jack fell down, and broke his crown,”)
iprint ("and Jill came tumbling after.")

Jack and Jill went up a hil

ito fetch a pail of water;

Jack fell down, and broke his crown,
:and Jill came tumbling after.

The computer keeps looking at each line, follows the command and then goes on to the next line. The

computer keeps running commands until it reaches the end of the program.

Terminology

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial
Now is probably a good time to give you a bit of an explanation of what is happening - and a lit
programming terminology.

What we were doing above was usinfgiactioncalledprint . The function's nameprint - is followed by
parentheses containing zero or margumentsSo in this example

A

Eprint ("Hello, World!") '

L o o o e e e e e a
there is ona@rgument which is"Hello, world!" . Note that this argument is a group of characters enclosed
in double quotes (™). This is commonly referred to atrimg of charactersor string, for short. Another
example of a string i9ack and Jill went up a hill" . The combination of a function and parentheses

with the arguments isfainction call

A function and its arguments are one typstatementhat python has, so

A
1 1
:print ("Hello, World!") 1

1
L e mmm e e e = e e e e e e e e === m = e e e e e e e e e e e - 4

is an example of a statement. Basically, you can think of a statement as argngle Iprogram.

That's probably more than enough terminology for now.

Expressions

Here is another program:

T TS EE S S S EEE A
1
print ("2 + 2 is" , 2 + 2) :
print ("3 * 4 is" , 3% 4) .
jprint ("100 - 1 is" , 100 - 1) .
print ("33 +2) /5 +11.5is" , (33 +2) /5 + 11.5) '
1
L o o o o e o e m e m e m i m e m e = a

?+zs4

3% 4is 12

100 - 1 is 99
(33+2)/5+115is 18.5

As you can see, Python can turn your thousand-dollar computer into a five-dollar calculator.
Arithmetic expressions

In this example, the print function is followed by two arguments, with each of the argueeerated by a
comma. So with the first line of the program

A

1

:print ("2+2is" 2 + 2) |
1

L e o o e mmm e ——— 4

The first argument is the string+ 2 is" and the second argument is #r@éhmetic expression+2 ,
which is one kind oéxpression

What is important to note is that a string is printed as is (without the enclosing doulels) goiot an
expressions evaluated or converted to its actual value.

10 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Python has seven basic operations for numbers:

Operation Symbol Example
Power (exponentiatiomny 5** 2 ==25
Multiplication * 2*3==6
Division / 14/ 3 == 4.666666666666667
Integer Division Il 14 /1 3 ==
Remainder (modulo) % 14 % 3 ==
Addition + 1+2==
Subtraction - 4-3==

Notice that there are two ways to do division, one that returns the repeating decintad, atiebt that c¢
get the remainder and the whole number. The order of operations is the same as in math:

parentheseg

exponents*

multiplication*, division/ , integer division/ , and remainde%
addition+ and subtraction

So use parentheses to structure your formulas when needed.

Talking to humans (and other intelligent beings)

Often in programming you are doing something complicated and may not in the future rembaatbgyuv
did. When this happens the program should probably be commentedimenis a note to you and other
programmers explaining what is happening. For example:

Not quite PI, but a credible simulation
:print 221 7)

|

1

13.14285714286 :
1

L e e m o e m e = e e e e e e e e = e e e e e e e e e e e e = e |

Notice that the comment starts with a h #. Comments are used to communicate with others who read the
program and your future self to make clear what is complicated.

Note that any text can follow a comment, and that when the program is run, the text # through to
the end of that line is ignored. Thaloes not have to be at the beginning of a new line:

Output Pl on the screen
:print (22 1 7) # Well, just a good approximation

Examples
Each chapter (eventually) will contain examples of the programming featuiuicéd in the chapter. You

should at least look over them and see if you understand them. If you don't, you may want to type them in
and see what happens. Mess around with them, change them and see what happens.

11 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Denmark.py

jprint ("Something's rotten in the state of Denmark.")
:print (" -- Shakespeare")

;Something's rotten in the state of Denmark.
1 -- Shakespeare

:# This is not quite true outside of USA

and is based on my dim memories of my younger yea rs
jprint - ("Firstish Grade”)

print ("L+1=" , 1 + 1)

print ("2+4=" | 2 + 4)

print ("5-2=", 5 - 2)

print ()
print
:print
print
iprint
:print
print ()
print - ("Junior High")

print ("123.56 - 62.12 =" , 123.56 - 62.12)
print ("(4 +3)*2 =" , (4 + 3)*2)

print ("4+3*2=" , 4 +3*2)

print ("3 2=" 3 ™ 2)

"Thirdish Grade")

"243 - 23 =" , 243 - 23)

"12*4 =" , 12 * 4)

"12/3=" , 12 1 3)

"13/3=" , 13 113, "R", 13 % 3)

SN~~~

1

[Firstish Grade
1+1=2
2+4=6

:5 -2=3

1

\Thirdish Grade
:243 -23=220
112 *4 =48
12/3=4

:13 /3=4R1

1

Junior High

:123.56 -62.12 = 61.44
(4+3)*2=14

4 +3%2=10
3**2=9

1

Exercises

1. Write a program that prints your full name and your birthday as separate strings.
2. Write a program that shows the use of all 7 math functions.

Solution

1. Write a program that prints your full name and your birthday as separate strings.

A

1

:print ("Ada Lovelace" "born on" "November 27, 1852") :
1

L e m e e e e e e e e e e e e e = e = = e e e e e e e e e e e m 4

12 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

e |

Eprint ("Albert Einstein" "born on" "14 March 1879") E

L e = e mm e e e e e e e e e e - o

A

Eprint (("John Smith"), ("bornon"), ("14 March 1879")) E

b e mm m e e e e e e e e e - 4
Solution

2. Write a program that shows the use of all 7 arithmetic operations.

[TS EEEEEEE S |
1
print ("5*5=", 5**5) :
print ("6*7 =", 6*7) .
lprint ("56/8 =", 56/8) '
:print ("14/l6 =" , 14/16) i
print ("14%6 =", 14%6) .
print ("5+6 =", 5+6) !
1
print ("9-0=", 9-0) '
L e e e e e e e e e e e e e e e e e e a
Footnotes

1. Here is a great list of the famous "Hello, world!" program in many programnmiggdaes. Just so you
know how simple Python can be...

4. Who Goes There?

Input and Variables

Now | feel it is time for a really complicated program. Here

ittt ittt b
:print ("Halt!") :
juser_input = input ("Who goes there? ") .
:print ("You may pass,” , user_input) ,
L e e e e e e e e e e e e e e e e e = e = e e = e = o —————————— 2

Halt! :
'Who goes there? Josh .
:You may pass, Josh '

1

Note: After running the code by pressing F5, the python shell will only give «

R .
! 1
:Halt! 1
\Who goes there? .

1
L o e o e e e e e e e e e e e m e e e e e e e e e m e e e e e m e e e e e m m o m e e mm e e m e m e e e e e m - 2

You need to enter your name in the python shell, and then press enter for the rest of the output.

Of course when you run the program your screen will look different becauseigfitie statement.
When you ran the program you probably noticed (you did run the program, right?) how you had to type in

13 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

your name and then press Enter. Then the program printed out some more text and also your name. This
an example oinput The program reaches a certain point and then waits for the user to input some data th:
the program can use later.

Of course, getting information from the user would be useless if we didn't have anyovpete¢hat
information and this is where variables come in. In the previous prageannput is avariable.
Variables are like a box that can store some piece of data. Here is a program teashplesof variables:

a = 123.4

:b23 = 'Spam’

first_name = "Bill"

b = 432

c =a+b

:print ("a+bis" ,C)

jprint - ("first_name is" first_name)

:print ("Sorted Parts, After Midnight or" ,b23)

L e e e e e e e e e e e e e e e m e mmmmmm e mm e m e ;e e e e e e e e e e e e e e e e mmmmmmmmmmmmmmmmmmmmmmmmmmmmm—————————— = = -

And here is the output:

T TS E TS T T TS TR ST T e T e s T E s EEEEE T A

la + b is 555.4 |
first_name is Bill .
:Sorted Parts, After Midnight or Spam '

1

Lmcccmcmcmcmcmccccccccccmc-me-m--meemmcmcmememmemmemmememmemmemmem e e e mmmm e e e e e e e e e e mm e m e m e —————————

Variables store data. The variables in the above prograa) sa®, first_name , b, andc. The two basic

types arestringsandnumbers Strings are a sequence of letters, numbers and other characters. In this
examplen23 andfirst_ name are variables that are storing stringsam Bill ,a+bis |, first_ nameis
andsSorted Parts, After Midnight or are the strings in this program. The characters are surrounded by
" or' . The other type of variables are numbers. Remember that variables are used to &ierdteeyalo

not use quotation marks (" and). If you want to use an acaliad youmustuse quotation marks.

valuel == Pim
:valuez = "Pim"

Both look the same, but in the first one Python checks if the value stored in the warighleis the same
as the value stored in thariableprPim. In the second one, Python checks if the string (the actual Iefters
andm) are the same as\tlue2 (continue this tutorial for more explanation about strings and about}he

Assignment

Okay, so we have these boxes called variables and also data that can go into the variethepdies will
see a line likairst_name = "Bill" and it reads it as "Put the strieig into the box (or variable)
first_name ". Later on it sees the statementa+b and it reads it as "put the sumaofb o0r123.4 +
432 which equalsss.4 intoc". The right hand side of the statement ¢) is evaluatedand the result is
stored in the variable on the left hand side This is callecassignmentand you should not confuse the
assignment equal sigr)(with "equality” in a mathematical sense here (that's whatill be used for later).

Here is another example of variable usage:

a =1

1
1
print (a) .
la = a + 1 .
print (@) 1
la = a*2 .
:print (a) '

1

14 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

And of course here is the output:

2 A
1 '
2 '
14 1
1 1
L e e e e e e e e e e e e e e e e e = e = e e = e = o —————————— 2
Even if the same variable appears on both sides of the equals sign (e.g., spam = spanputke stdim
reads it as, "First find out the data to store and then find out where the data goes."

One more program before | end this chapter:

l
inumber = float (input ("Type in a number: ") :
integer = int (input ("Type in an integer: ") .
ttext = input ("Type in a string: ") '
print - ("number =", number) 1
print ("numberisa" , type (number)) .
:print ("number * 2 =" , number * 2) .
print - ("integer =" , integer) 1
lprint (“integer is a" , type (integer)) .
print ("integer * 2 =" , integer * 2) !
print ("text=" , text) '
print ("textis a" , type (text)) .
print (“"text* 2 =" , text * 2) !
L e e e e e e 4
The output | got was:

l
:Type in a number: 12.34

\Type in an integer: -3

Type in a string: Hello

1
1
1
1
1
inumber = 12.34 :
inumber is a <class 'float™> '
number * 2 = 24.68 .
integer = -3 !
linteger is a <class 'int"> ,
:integer *2=-6 !
itext = Hello 1
text is a <class 'str'> .
:text * 2 = HelloHello '

2

L m e m e e e e e e e e e e e e e e e e e mmm——m ==
Notice tha number was created withoat(input()) whiletext was created withhput() . input()
returns a string while the functidoat returns a number from a string. returns an integer, that is a
number with no decimal point. When you want the user to type in a deciniabuBeut()) , if you
want the user to type in an integer usgnput()) , but if you want the user to type in a string use
input()

The second half of the program usestihe() function which tells what kind a variable is. Numbers are of
typeint orfloat , which are short fointegerandfloating point(mostly used for decimal numbers),
respectively. Text strings are of tyge , short forstring. Integers and floats can be worked on by
mathematical functions, strings cannot. Notice how when python multiplies a number by antimteg
expected thing happens. However when a string is multiplied by an integer the restlnisltipke copies

of the string are produced (i.ext * 2 = HelloHello).

Operations with strings do different things than operations with numbers. As wellppenagions only
work with numbers (both integers and floating point numbers) and will give an erroriffgaistised. Here
are some interactive mode examples to show that some more.

B I L T kT T -
1

'>>> print("This" + " + "is" + " joined.")
1This is joined.

>>> print("Ha, " * 5)

1

15 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

:Ha, Ha, Ha, Ha, Ha,

>>> print("Ha, " * 5 + "hal!")

Ha, Ha, Ha, Ha, Ha, ha!

>>> print(3 - 1)

!

>>> print("3" - "1")

:Traceback (most recent call last):

1 File "<stdin>", line 1, in <module>
\TypeError: unsupported operand type(s) for -: 'str'
>>>

1

Here is the list of some string operations:

Operation | Symbol

Repetition *

Concatenationr "Hello, " + "World!" ==

Examples

Rate_times.py

This program calculates rate and distance problem
:print ("Input a rate and a distance")
rate = float (input ("Rate:"))

distance = float (input ("Distance:")
:print ("Time:" , (distance / rate))

Elnput a rate and a distance
[Rate: 5
\Distance:
:Time: 2.0

10

1

:Input a rate and a distance
[Rate: 3.52

Distance: 45.6

:Time: 12.9545454545

This program calculates the perimeter and area of

jprint ("Calculate information about a rectangle”)
:Iength = float (input ("Length:"))

width = float (input ("Width:"))

print - ("Area:" , length * width)

:print ("Perimeter:" , 2 * length + 2 * width)

\Calculate information about a rectangle
iLength: 4

Width: 3

‘Area: 12.0

:Perimeter: 14.0

\Calculate information about a rectangle
Length: 2.53

16 sur 74

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

and 'str'

Example

"Hello, World!"

a rectangle

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Width: 5.2
Area: 13.156
:Perimeter: 15.46

L e e e e e e e e e m e e e e e mmmmmmm e e m e c e ;e ;e ;e ;e e ;e e ;e e e e e e e e e e e mmm e mmmmmmmmmmmmmmmmmm—————————— = = -

Temperature.py

2 A

This program converts Fahrenheit to Celsius
fahr_temp = float (input ("Fahrenheit temperature: "

:print ("Celsius temperature:" , (fahr_temp - 32.0) * 5.0 / 9.0)

g g g g gy g g g g g g g A g
Sample runs:

P T 1
\Fahrenheit temperature: 32 1
:Celsius temperature: 0.0 E
gy g g g g g Gy g g g g g g A g -
C T T 1
[Fahrenheit temperature: -40 1
iCelsius temperature: -40.0 E
gy g g g g Gy g g g Mg g g g g A g g -
P T 1
\Fahrenheit temperature: 212 1
:Celsius temperature: 100.0 E
gy g g g g g Gy g g g g g g A g -
C T T 1
[Fahrenheit temperature: 98.6 1
iCelsius temperature: 37.0 E
gy g g g g Gy g g g Mg g g g g A g g -
Exercises

Write a program that gets 2 string variables and 2 number variables from the usse mates (joins them
together with no spaces) and displays the strings, then multiplies the two numbers oma.new |

Solution

Write a program that gets 2 string variables and 2 number variables from the usserates (joins them
together with no spaces) and displays the strings, then multiplies the two numbers oma.new |

jprint (stringl + string2)
:print (floatl * float2)

T TS E S E S E |
! 1
! 1
stringl = input ('String 1: ") .
istring2 = input _(‘Strlng 2:") ,
Irfloatl = float (input ('Number 1:') i
float2 = float (input ('Number2:') .

|

1

1

5. Countto 10

While loops
Presenting our firstontrol structure Ordinarily the computer starts with the first line and then goes down

from there. Control structures change the order that statements are executédeadf deertain statement
will be run. Here's the source for a program that uses the while control structure:

17 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

5 il
a=0 # FIRST, set the initial value of the variable a to 0(zero). :
while a < 10: # While the value of the variable a is less than 10 do the following: .
1 a=-a+1 # Increase the value of the variable a by 1, as in: a=a+1! ,
' print (a) # Print to screen what the present value of the var iable a is. 1
' # REPEAT! until the value of the variable a is equa | to 91? See note. .
1 1
! # NOTE: :
! # The value of the variable a will increase by 1 .
1 # with each repeat, or loop of the 'while statement BLOCK'". !
' #e.g.a=1lthena=2thena=3etc.untla=9 then... 1
' # the code will finish adding 1 to a (now a = 10), printing the .
1 # result, and then exiting the 'while statement BLO CK". !
1

- 1
1
! # While a < 10: | .
| # a=a+ 1]|<--[The while statement BLOCK] '
' # print (a) | '
1 # - 1
1 1
L o o o o e o e m e e e m e e e m e mmm e m—m 2
And here is the extremely exciting output:
[N N S S eSS S eSS smm==-- b |
1 1
i |
2 '
3 |
A |
5 .
I6 1
! 1
:7 1
8 |
I9 1
! 1
110 1
1 1
U -

(And you thought it couldn't get any worse after turning your computer into a five-dollar tai@ula

So what does the program do? First it sees the ke and seta to zero. Then it seegile a < 10:

and so the computer checks to see<ifio . The first time the computer sees this statemeistzero, so it
is less than 10. In other words, as long &sless than ten, the computer will run the tabbed in statements.

This eventually makes equal to ten (by adding oned@gain and again) and tivaile a < 10
any longer. Reaching that point, the program will stop running the indented lines.

Always remember to put a colod'"at the end of thenile statement line!

Here is another example of the usevnife :

1
s =0

Is =
:print ('Enter Numbers to add to the sum.'

print ('Enter 0 to quit.')

while a I= 0:

! print ('Current Sum:' , ' S)

| a = float (input ('Number?"'))
' s=s+a

:print ('Total Sum =' , S)

1

1

:Enter Numbers to add to the sum.
Enter 0 to quit.
\Current Sum: 0
:Number? 200
iCurrent Sum: 200.0
Number? -15.25
:Current Sum: 184.75
Number? -151.85
\Current Sum: 32.9
:Number? 10.00
\Current Sum: 42.9
Number? 0

:Total Sum =42.9

18 sur 74

is not true

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

Notice hov print(‘'Total Sum =', s)

that are indented with whitespace. Themeans does not equalgaile a != 0:

zero run the tabbed statements that follow.

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

is only run at the end. Thenile statement only affects the lines

means as long asis not

Note tha a is a floating point number, and not all floating point numbers can be accurately represented, s
using!= on them can sometimes not work. Try typing in 1.1 in interactive mode.

Infinite loops or Never Ending Loop

Now that we have while loops, it is possible to have programs that run forever. An easy waydasdc

write a program like this:

1 == 1:

The "==" operator is used to test equality of the expressions on the two sides of the operatdlsjusaas
used for "less than" before (you will get a complete list of all comparison opearatbesnext chapter).

This program will outpuHelp, I'm stuck in a loop.

until the heat death of the universe or you stop it,

because 1 will forever be equal to 1. The way to stop it is to hit the Contfir(bbutton andC (the
letter) at the same time. This will kill the program. (Note: sometimes yibbawve to hit enter after the
Control-C.) On some systems, nothing will stop it, short of killing the process--so avoid!

Examples
Fibonacci sequence
Fibonacci-method1.py

i# This program calculates the Fibonacci sequence
a = 0

b =1

count = 0

:max_count = 20

1

Wwhile count < max_count:
count = count + 1
print (a, end= "")

old_a = a
a b
b o]

ld_a + b
gets a new (empty) line.

print ()

Note that the output is on a single line because of the extra ar¢end=""

Fibonacci-method2.py

i Simplified and faster method to calculate the Fib
0
1

o

b

19 sur 74

Notice the magic end=""in the print function ar
that keeps it from creating a new line.
we need to keep track of a since we change it.

onacci sequence

guments

in theprint arguments.

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

icount = 0 '
'max_count = 10 X
1 1
1

while count < max_count: 1
count = count + 1 .
print (a, b, end= "") # Notice the magic end="" ,
|

1

1

1

d

1

|

: a=a+h

' b=a+b

:print 0 # gets a new (empty) line.

L e e e e e ff e EEE e EEf e ffEEEEEE e e e e e e ;e ;e ;m ;e E;E ;e e e e e e e e m e e e e e - mm e e e mmmmmmmmmm——mmm e ———— =

Output

A

1

:0 1123581321 345589 144 233 377 610 987 15 97 2584 4181 :
1

L e = e m m e e e e e e e e e - 4

a = 0

b =1

count = 0

imaxcount = 20

1

{#once loop is started we stay in it
while count < maxcount:

: count += 1

' olda = a

1 a=-a+b

: b = olda

' print (olda,end= "")

:print 0

L m e m e e e e e e e e e e e e e e e e e mmm——m == -

Output

|

1

:0 1123581321 345589 144 233 377 610 987 15 97 2584 4181 :
1

U -

Enter password
Password.py

1
Waits until a password has been entered. Use Con trol-C to break out without 1
:# the password ,
' 1
#Note that this must not be the password so that th e "
:# while loop runs at least once. :
password = str () '
1
:
1
1
1
1
1
1
1

1
:# note that != means not equal
while password != "unicorn"

' password = input ("Password:")

:print ("Welcome in")

L e = e m m e e e e e e e e e - 2
Sample run:

ittt ittt b

iPassword: auo :
lPassword: y22 .
:Password: password '
[Password: open sesame 1
IPassword: unicorn .
:Welcome in '

1

Exercises

20 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Write a program that asks the user for a Login Name and password. Then when they typené&gaieetd
to type in their name and password to unlock the program.

Solution

Write a program that asks the user for a Login Name and password. Then when they typén&gai€et
to type in their name and password to unlock the program.

iname = input ("What is your UserName: ")
password = input ("What is your Password: ")
print ("To lock your computer type lock.")
:command = None

inputl = None

input2 = None

:while command != "lock"

1 command = input ("What is your command: ")
Wwhile inputl != name:

! inputl = input ("Whatis your username: ")
while input2 != password:

' input2 = input ("Whatis your password: ")
:print ("Welcome back to your system!")

If you would like the program to run continuously, just addhige 1 == 1:

loop around the whole thing.

You will have to indent the rest of the program when you add this at the top of the code, but don't worry, y

don't have to do it manually for each line! Just highlight everything you want to indent and click ar

Inde

under "Format" in the top bar of the python window.

Another way of doing this could be:

iname = input ('Set name: ')

password = input ('Set password: ")

I'vvhile 1 =1

1 nameguess=""

' passwordguess= "

' key=""

1 while (nameguess != name)

' nameguess = input ('Name?')

! passwordguess = input ('Password?')
| print ("Welcome," , name, ". Type lock to lock.")
' while key != "lock"

1

1

key = input (™)

Notice theor in while (nameguess != name) or (passwordguess != password)

1
1
1
1
1
1
1
1
1
1
1
or (passwordguess != password): 1
1
1
1
1
1
1
1
1
1
a

, Which we haven't yet

introduced. You can probably figure out how it works.

6. Decisions

If statement

As always | believe | should start each chapter with a warm-up typing exerciseg $® dashort program to

compute the absolute value of an integer:

n = int (input ("Number?"))

:if n < 0:

v print ("The absolute value of" , n, tis" o, o-n)
else :

21 sur 74

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial
1 print ("The absolute value of" ,n, tis" ,on) .

Here is the output from the two times that | ran this program:

e m e e e e e m e e m e e e mm e m m e e e e m e e m e — - -
Number? -34 |
The absolute value of -34 is 34 E
e e e m e e m e o e e e e e e e e e e e e e o e e e e e e e e e e = e e e e e e e e e e = e e = e e = e e e e e e e e e e e e = -
r --- A
Number? 1

:The absolute value of 1is 1

So what does the computer do when it sees this piece of code? First it prompts the usembmravith
the statementn'= int(input("Number? ")) ". Next it reads the lineif'n < 0: ". If nis less than zero
Python runs the linepfint("The absolute value of", n, "is", -n) ". Otherwise it runs the line

"print("The absolute value of", n, "is", n)

More formally Python looks at whether thgpressiom <0 is true or false. Aif statement is followed by
an indentedlock of statements that are run when the expression is true. Optionally afterdtadement is
anelse statement and another indent#dck of statements. This second block of statements is run if the
expression is false.

There are a number of different tests that an expression can have. Here is a tabidhea:

operator function

< less than

<= less than or equal to

> greater than

>= greater than or equal to
== equal

I= not equal

Another feature of the command is thelif statement. It stands for else if and means if the original
statement is false but tlkeéf part is true, then do thetif part. And if neither the orelif expressions
are true, then do what's in thiee block. Here's an example:

[t il ittt b
1 1
a =0 1
while a < 10 "
' a=a+1 .
1 if a>b5: 1
' print (a, ">", 5) .
! elif a <= 3: ,
1 print (a, "<=", 3) 1
' else : .
1 print ("Neither test was true") !
L e e e e e e 4
and the output

e ittt ittt b
11<=3

2<=3

3<=3

:Neither test was true
Neither test was true
6>5

7>5

1

22 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

Notice how thielifa <=3

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

is only tested when the statement fails to be true. There can be more than

oneelif expression, allowing multiple tests to be done in a sihgktatement.
Examples
I o N N S E S eSS SSs s === |
1
:# This Program Demonstrates the use of the == opera tor :
using numbers .
print (5 == 6) :
:# Using variables 1
X =5 :
Y =8 :
:prlnt x ==y) '
L o o o e e e e e H
And the output
S5ttt ettt ettt ettt it ittt T
[False]
IFalse .
:_ 1
high_low.py
Co T T T 1
Plays the guessing game higher or lower i
1
! 1
i# This should actually be something that is semi ra ndom like the ,
i# last digits of the time or something else, but th at will have to 1
wait till a later chapter. (Extra Credit, modify it to be random .
after the Modules chapter) '
inumber = 7 1
guess = -1 .
1
1
:print ("Guess the number!") :
while guess != number: .
' guess = int (input ("Isit...") !
! 1
: if guess == number: .
' _ print ("Hooray! You guessed it right!") '
1 elif guess < number: '
. print ("It's bigger...") .
' elif guess > number:]
' print ("It's not so big.") ,
:_ 1
Sample run:
it ettt b
1
\Guess the number! 1
lIs it... 2 .
:It's bigger... '
s it... 5 1
It's bigger... .
:Is it... 10 '
iIt's not so big. 1
s it... 7 .
Hooray! You guessed it right! !
L e e e e e e e e 4
even.py
B e -

Asks for a number.

:# Prints if it is even or odd

1

inumber float (input ("Tell me a number: "
:if number % 2 == O:

)

23 sur 74

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

' _ print (int (number), "is even.") :
:ehf number % 2 == 1: '
| print (int (number), “isodd.") '
else : i
! print (number, “is very strange.") .
L e o e m e e e e e e e m mm e e e e m mm e m e e e e m e e e mmmm——— - 2
Sample runs:
T T T T T T T S mmmSmmmmmmsssmmom-e- hi
1
iTell me a number: 3 1
'3 is odd. .
L o e e e e e e e e e e e e e e m e e m o mm e m m e e m e m o mm m o m e m o mm o mm o m e m e mmmm e mmm e mmmmmmmmm——————— 2
e b
1
iTell me a number: 2]
12 is even. .
L e e e e e e e 2
T T T T T T T S mmmSmmmmmmsssmmom-e- hi
1
iTell me a number: 3.4895 1
13.4895 is very strange. .
1
Tt -

1

i# keeps asking for numbers until 0 is entered.
Prints the average value.

1

1

icount = 0

isum = 0.0

number = 1 # set to something that will not exit the while loo p immediately.
1

:print ("Enter 0 to exit the loop")

1

1
while number != 0:
number = float (input ("Enter a number: ")
if number != 0O:
count = count + 1
sum = sum + number

1
1
1
1
|
1
' if number ==
1

1

print ("The average was:" , sum / count)
L e mmm e e e = e e e e e e e e === m = e e e e e e e e e e e - -
Sample runs

Sample runs:

T TS m s mmmmmmmmmmmm---e- b
1

{Enter O to exit the loop]

iEnter a number: 3 .

[Enter a number: 5 !

\Enter a number: 0 1

The average was: 4.0 .

L o o e m e e e m e e e m e e e e e e e e e e e e e e e e e e mmm e e mmmmmm——————- 2

it ettt b
1

EEnter 0 to exit the loop '

IEnter a number: 1 .

:Enter a number: 4 ,

Enter a number: 3 1

IEnter a number: 0 .

The average was: 2.66666666667 '

L e e o e e e e e 4

average2.py

T T T T TS mmmmmmsmmmmmmee- b

I# keeps asking for numbers until count numbers have been entered.

Prints the average value.

1

1

:#Notice that we use an integer to keep track of how many numbers,

but floating point numbers for the input of each number

isum = 0.0
1

24 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

print ("This program will take several numbers then averag e them")
lcount = int (input ("How many numbers would you like to average: ")
current_count = 0

1

1

while current_count < count:

current_count = current_count + 1

print ("Number" , current_count)

number = float (input ("Enter a number: ")

sum = sum + number

print ("The average was:" , sum / count)

1

:This program will take several numbers then average them '
iHow many numbers would you like to average: 2 .
Number 1 !
:Enter a number: 3 1
Number 2 .
\Enter a number: 5 !
:The average was: 4.0 !

This program will take several numbers then average them :
How many numbers would you like to average: 3 .
:Number 1 '
Enter a number: 1 1
INumber 2 ,
:Enter a number: 4 '
Number 3 1
IEnter a number: 3 .
:The average was: 2.66666666667 !

1

Exercises

Write a program that asks the user their name, if they enter your name say "Thaeiaanm", if they
enter "John Cleese" or "Michael Palin", tell them how you feel about them ;), othe¢elikhem "You have
a nice name."

Solution

iname = input ("Your name: "') '
if name == 'Bryn' .
' print ('Thatis a nice name.’) ,
elif ~ name == 'John Cleese' 1
' print (... some funny text.') :
:elif name == 'Michael Palin’ : '
1 print (... some funny text.') 1
lelse : .
1 print ('You have a nice name.’) !

1

Modify the higher or lower program from this section to keep track of how many times theaasartered
the wrong number. If it is more than 3 times, print "That must have been complicated.&d tlgherwise
print "Good job!"

Solution
et T
number = 7 .
guess = -1 ,
:count =0 :
1 1
print ("Guess the number!") .
while guess != number: '
: guess = int (input ("Isit..") :

1
1
1

25 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

1 count = count + 1

' if guess == number:

' print ("Hooray! You guessed it right!")
1 elif guess < number:

' print ("It's bigger...")

' elif guess > number:

1 print ("It's not so big.")

1

1

:if count > 3:

| print ("That must have been complicated."”)
1
1

else :
print ("Good job!")

Write a program that asks for two numbers. If the sum of the numbers is greater thami0Ohatiis a big

number."
Solution

9

1

numberl = float (input ('lst number:"’) :

number2 = float (input ('2nd number:') '

Jf numberl + number2 > 100: '

! print ('Thatis a big number.’) 1
1

L e mmm e e e = e e e e e e e e === m = e e e e e e e e e e e - a

7. Debugging

What is debugging?

"As soon as we started programming, we found to our surprise that it wasn't as eagydgrgens

right as we had thought. Debugging had to be discovered. | can remember the exact instant when |
realized that a large part of my life from then on was going to be spent in findingesigtany own
programs.” —Maurice Wilkes discovers debuggjrig49

By now if you have been messing around with the programs you have probably found that sometimes the
program does something you didn't want it to do. This is fairly common. Debugging is the prdogssgf

out what the computer is doing and then getting it to do what you want it to do. This can be tricky. | once
spent nearly a week tracking down and fixing a bug that was caused by someone puttitgsnay

should have been.

This chapter will be more abstract than previous chapters.
What should the program do?
The first thing to do (this sounds obvious) is to figure out what the program should be doingiining) r

correctly. Come up with some test cases and see what happens. For example, led'gesayprogram to
compute the perimeter of a rectangle (the sum of the length of all the edges).Hehtoliewing test cases:

26 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

height| width perimeter

3 4 14
2 3 10
4 4 16
2 2 8

5 1 12

| now run my program on all of the test cases and see if the program does what | expectfittdaksn't
then | need to find out what the computer is doing.

More commonly some of the test cases will work and some will not. If that is the casgeoy@itsy and
figure out what the working ones have in common. For example here is the output for a perogesen pr
(you get to see the code in a minute):

:Height: 3 !
'Width: 4 .
:perimeter =15 '

1

1
1
'Width: 3 .
:
1
1
1
\width: 4 |
:
1
1
1
'Width: 2 ,
:
1

1
1
Wwidth: 1 :
|
1

Notice that it didn't work for the first two inputs, it worked for the next two and it didn't workeolas

one. Try and figure out what is in common with the working ones. Once you have some idea what the
problem is finding the cause is easier. With your own programs you should try more testyzasased
them.

What does the program do?

The next thing to do is to look at the source code. One of the most important things to do while pragramm
is reading source code. The primary way to do this is code walkthroughs.

A code walkthrough starts at the first line, and works its way down until the program isvdizneloops
andif statements mean that some lines may never be run and some lines are run many taonbdingt e
you figure out what Python has done.

Lets start with the simple perimeter program. Don't type it in, you are going td,reatrun it. The source
code is:

5 A
1

theight = int (input ("Height:") '

27 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

width = int (input ("Width:")) i
:print ("perimeter =" , width + height + width + width) .
1

Question: What is the first line Python runs?
Answer:The first line is always run first. In this case ithisight = int(input("Height: "))

What does that line do?
PrintsHeight: , waits for the user to type a string in, and then converts the string to an integer
variable height.

What is the next line that runs?
In general, it is the next line down whichwsdth = int(input("Width: "))

What does that line do?
Printswidth: , waits for the user to type a number in, and puts what the user types in the variable
width.

What is the next line that runs?
When the next line is not indented more or less than the current line, it is the lineteghaeds, so it
iS: print("perimeter = ", width + height + width + widt h) (It may also run a function in the
current line, but that's a future chapter.)

What does that line do?
First it printsperimeter =, then it prints the sum of the values contained within the variabdgs,
andheight , fromwidth + height + width + width

Doeswidth + height + width + width calculate the perimeter properly?
Let's see, perimeter of a rectangle is the bottom (width) plus the left siglet)pdus the top (width)
plus the right side (huh?). The last item should be the right side's length, or the height.

Do you understand why some of the times the perimeter was calculated "cewctly"?
It was calculated correctly when the width and the height were equal.

The next program we will do a code walkthrough for is a program that is supposed to print out 5 dots on th
screen. However, this is what the program is outputting:

inumber = 5 |
while number > 1: |
! print (" ,end= "") :
|
1
1

' number = number - 1
:print 0

This program will be more complex to walkthrough since it now has indented portions (or donttakss).
Let us begin.

What is the first line to be run?
The first line of the filehumber =5
What does it do?
Puts the number 5 in the variable number.
What is the next line?
The next line iswhile number > 1:
What does it do?
Well, while statements in general look at their expression, and if it is true they do the next indented
block of code, otherwise they skip the next indented block of code.
So what does it do right now?

28 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

If number >1 is true then the next two lines will be run.
So isnumber>1 ?
The last value put inteumber wass ands >1 SO yes.
So what is the next line?
Since thewhile was true the next line igtint(".",end="")
What does that line do?
Prints one dot and since the extra argumetit" " exists the next printed text will not be on a
different screen line.
What is the next line?
number = number - 1 since that is following line and there are no indent changes.
What does it do?
It calculateswumber -1, which is the current value efimber (or 5) subtracts 1 from it, and makes
that the new value of number. So basically it changeser's value from 5 to 4.
What is the next line?
Well, the indent level decreases so we have to look at what type of control structutesitaighile
loop, so we have to go back to thigle clause which ighile number > 1:
What does it do?
It looks at the value of number, which is 4, and compares it to 1 andssinicethe while loop
continues.
What is the next line?
Since the while loop was true, the next lingist(".",end="")
What does it do?
It prints a second dot on the line, ending by a space.
What is the next line?
No indent change so it isumber = number - 1
And what does it do?
It takes the current value of number (4), subtracts 1 from it, which gives it 3 and thgmfiakdis 3
the new value of number.
What is the next line?
Since there is an indent change caused by the end of the while loop, the nexttiinenisnber >
1
What does it do?
It compares the current value of number (3) t8l1 so the while loop continues.
What is the next line?
Since the while loop condition was true the next linerist(".",end="")
And it does what?
A third dot is printed on the line.
What is the next line?
It iS: number = number - 1
What does it do?
It takes the current value of number (3) subtracts from it 1 and makes the 2 the new value nf numbe
What is the next line?
Back up to the start of the while loagile number > 1:
What does it do?
It compares the current value of number (2) to 1. Since the while loop continues.
What is the next line?
Since the while loop is continuingyint(".",end="")
What does it do?
It discovers the meaning of life, the universe and everything. I'm joking. (I had to make surergou w
awake.) The line prints a fourth dot on the screen.
What is the next line?

29 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

It's: number = number - 1
What does it do?
Takes the current value of number (2) subtracts 1 and makes 1 the new value of number.
What is the next line?
Back up to the while loopvhile number > 1:
What does the line do?
It compares the current value of number (1) to 1. Since s false (one is not greater than one), the
while loop exits.
What is the next line?
Since the while loop condition was false the next line is the line after the while ldspoexirint()
What does that line do?
Makes the screen go to the next line.
Why doesn't the program print 5 dots?
The loop exits 1 dot too soon.
How can we fix that?
Make the loop exit 1 dot later.
And how do we do that?
There are several ways. One way would be to change the while legfid@umber > 0: Another
way would be to change the conditionalitanber >=1 There are a couple others.

How do | fix my program?

You need to figure out what the program is doing. You need to figure out what the program should &o. Figu
out what the difference between the two is. Debugging is a skill that has to beepréatie learned. If you
can't figure it out after an hour, take a break, talk to someone about the problem or contempieti

your navel. Come back in a while and you will probably have new ideas about the problem. Good luck.

8. Defining Functions

Creating Functions

To start off this chapter | am going to give you an example of what you could do but shouldn't (so don't typ
it in):

| print ("The absolute values of" , a, "and" , b, "areequal.")

1 print ("The absolute values of" , a, "and" , b, “are different.")

The program seems a little repetitive. Programmers hate to repeat thhegs-what computers are for,
after all' (Note also that finding the absolute value changed the value of the vaviaibleis why it is

30 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

printing out 23, and not -23 in the output.) Fortunately Python allows you to create functions to remove
duplication. Here is the rewritten example:

it ettt b
1 1
a = 23 f
1
b = -23 .
1 1
def absolute_value (n): :
' if n<o: ,
1 n = -n 1
: return n :
1 1
1 1
:if absolute_value(a) == absolute_value(b): '
| print ("The absolute values of" , a "and" , b, "areequal.") 1
ielse :
1 print ("The absolute values of" , a, "and" , b, “are different.") !
L e e o e e e e e 4
with the output being:
A
1
:The absolute values of 23 and -23 are equal. '
1
L e = e mm e e e e e e e e e e - o

The key feature of this program is tig statementdef (short for define) starts a function definitieief

is followed by the name of the functiabsolute_value . Next comes a ‘(' followed by the parameié is
passed from the program into the function when the function is called). The stateteritedf are
executed when the function is used. The statements continue until either the indenteshttagad or a
return IS encountered. Theturn statement returns a value back to the place where the function was
called. We already have encountered a function in our very first prograpanthefunction. Now we can
make new functions.

Notice how the values a andb are not changed. Functions can be used to repeat tasks that don't return
values. Here are some examples:

'def hello ():
1 print ("Hello")

‘def area (width, height):
1 return width * height

1
:def print_welcome (name):
1 print ("Welcome" , name)

ihello()
ihello()

1

:print_welcome("Fred")

w = 4

h =25

:print ("width =", w, " height =" , h, "area=" , area(w, h))

EHeIIo

Hello

\Welcome Fred

:width =4 height=5 area =20

That example shows some more stuff that you can do with functions. Notice that you can use nasargume
or two or more. Notice also when a function doesn't need to send back a value, a return is optional.

Variables in functions

31 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

When eliminating repeated code, you often have variables in the repeated code. In Pythorg tlesde ar
with in a special way. So far all variables we have seen are global variablesofaihave a special type of
variable called local variables. These variables only exist while the functiamigig. When a local
variable has the same name as another variable (such as a global variable)), vaedbda hides the other.
Sound confusing? Well, these next examples (which are a bit contrived) should help clsarghing

a = 17

1

1

:

def print_func ():

1

E print ("in print_func a =" , a)

jprint_func()
:print ("a=" , a)

in print_func a = 17
a=4

Variable assignments inside a function do not override global variables, they exist iolelyhesfunction.

Even thougha was assigned a new value inside the function, this newly assigned value was only relevant t
print_func , when the function finishes running, and #'gevalues is printed again, we see the originally
assigned values.

Here is another more complex example.

ettt e b
a_var = 10
b_var = 15
e_var = 25

:def a_func (a_var):

' print ("in a_func a_var =" , a_var)
b _var = 100 + a_var

d_var = 2 * a_var

print ("in a_func b_var =" , b_var)
print ("in a_func e_var =" , e_var)

return b_var + 10

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
. . 1
print ("in a_func d_var =" , d_var) 1
1
1
1
1
1
ic_var = a_func(b_var) .
! 1

1

1

1

1

1

1

1

1

Eprint ("a_var =", a_var)

print ("b_var =", b_var)

print ("c_var=" , c_var)

:print ("d_var =", d_var)
U -
output

o e s e s e - b

1
:in a_func a_var= 15 :
ina_func b_var = 115 .
iina_func d_var = 30 '
:in a_funce_var= 25 1
a_var = 10 .
b_var = 15 '
Ic_var = 125 f
d_var = .
! 1
ETraceback (most recent call last): :
, File "C:\def2.py", line 19, in <module> .
i print("d_var =", d_var) '
:NameError: name 'd_var' is not defined |
1

32 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

In this example the variablesvar , b_var , andd_var are all local variables when they are inside the
functiona_func . After the statemenéturn b_var + 10
is automatically a local variable since it is a parameter name. The vabakle andd_var are local

variables since they appear on the left of an equals sign in the function in the stabevaeatsoo +

a_var andd var=2*a_var

Inside of the functioa_var has no value assigned to it. When the function is calledcwwith =
, 15 is assigned @ var since at that point in time var is 15, making the call to the
. This ends up settirggvar to 15 when it is inside &f func .

a_func(b_var)
functiona_func(15)

is run, they all cease to exist. The variabhear

As you can see, once the function finishes running, the local variabtes andb_var that had hidden the

global variables of the same name are gone. Then the stagement var =", a_var)
value1o rather than the valuss since the local variable that hid the global variable is gone.

prints the

Another thing to notice is theameError that happens at the end. This appears since the variahble no
longer exists since _func finished. All the local variables are deleted when the function exits. If you want

to get something from a function, then you will have torasen something

One last thing to notice is that the value:ofar remains unchanged insidefunc since it is not a

parameter and it never appears on the left of an equals sign inside of the fairigtion When a global

variable is accessed inside a function it is the global variable from the outside.

Functions allow local variables that exist only inside the function and can hide otheregittblare
outside the function.

Examples

temperature2.py

W#! Jusr/bin/python
:#—*—coding: utf-8 -*-
converts temperature to Fahrenheit or Celsius

1
def print_options 0:

print
print
print
print
print

("Options:")

("'p' print options")

("'c' convert from Celsius")

(" 'f' convert from Fahrenheit")
("'q" quit the program")

def celsius_to_fahrenheit (c_temp):
1

return 9.0 / 5.0 * c_temp + 32

def fahrenheit_to_celsius (f_temp):
1

return (f_temp - 32.0) * 5.0 / 9.0

ichoice = "p"

:vvhile choice = "qg":

1 if choice == "c¢" :

' c_temp = float (input ("Celsius temperature:")
' print ("Fahrenheit:" , celsius_to_fahrenheit(c_temp))

1 choice = input ("option:")

' elif choice == "f' :

' f temp = float (input ("Fahrenheittemperature: ")
1 print ("Celsius:" , fahrenheit_to_celsius(f_temp))

' choice = input ("option:")

! elif choice == "p" : #Alternatively choice !="qg": so that print
. #when anything unexpected inputed

' print_options()

! choice = input ("option:")

Sample Run:

33 sur 74

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

2 il

1
:Options: 1
I'p' print options .
:'c‘ convert from celsius ,
1 ' convert from fahrenheit 1
I'g" quit the program .
:option: c '
i(Celsius temperature: 30 1
IFahrenheit: 86.0 ,
:option: f !
[Fahrenheit temperature: 60 1
\Celsius: 15.5555555556 .
:option: q !

d

"1 Jusr/bin/python '

4-*-coding: utf-8 -*- ,

calculates a given rectangle area ,

1

1 1

idef hello (): :

1 print ('Hello!) '

1

1 1

def area (width, height): .

] return width * height !

1

1

idef print_welcome (name): ,
1 .

| print ('Welcome," , name) !

1

1

def positive_input (prompt): .

number = float (input (prompt)) '

while number <= O: :

|

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
I
1
:
: print ('Must be a positive number’)
' number = float (input (prompt))

' return number

1

name = input ('Your Name:')

:hello()
print_welcome(name)

lprint ()

:print ('To find the area of a rectangle,’')
print ('enter the width and height below."')
print ()

w = positive_input('Width: *)

h = positive_input('Height:)

Eprint ('width =", w, 'Height=" , h, 'soArea-= , area(w, h))
L e m e e e e e e e e e e e e e = e = = e e e e e e e e e e e m -

Sample Run:

Your Name: Josh

Hello!

:Welcome, Josh

1

\To find the area of a rectangle,
:enter the width and height below.

1

Width: -4

Must be a positive number

Width: 4

Height: 3

:Width =4 Height =3 so Area =12
U
Exercises

Rewrite the area2.py program from the Examples above to have a separate functiorréar the aquare,
the area of a rectangle, and the area of a csdle (radius**2). This program should include a menu
interface.

34 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

:print

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Solution

square (L):
return L*L

rectangle (width , height):
return width * height

circle (radius):
return 3.14159 * radius ** 2

options ():

print ()

print ("Options:")

print ("s = calculate the area of a square.")
print ("c = calculate the area of a circle.")
print ("r = calculate the area of a rectangle.”)
print ("g = quit")

print ()

("This program will calculate the area of a square,

ichoice = "X
options()

while
1

choice '= "g":

choice = input ("Please enter your choice: ")

if choice == "s" :
L = float (input ("Length of square side: ")
print ("The area of this square is" , square(L))
options()

elif ~ choice == "c¢" :
radius = float (input ("Radius of the circle: "
print ("The area of the circle is" , circle(radius))
options()

elif choice == " :
width = float (input ("Width of the rectangle: "
height = float (input ("Height of the rectangle: "
print ("The area of the rectangle is"
options()

elif choice == "g" :
print ("" ,end="")

else :
print ("Unrecognized option.")
options()

circle or rectangle.”

)
)

, rectangle(width, height))

9. Advanced Functions Example

Some people find this section useful, and some find it confusing. If you find it confusing you can skip it.
Now we will do a walk through for the following progr

mult (a, b):
if b == 0:

return 0
rest = mult(a, b - 1)
value = a + rest
return value

result = mult(3, 2)

:print

("3*2=" , result)

L e e e e e e e e e m e e e e e mmmmmmm e e m e c e ;e ;e ;e ;e e ;e e ;e e e e e e e e e e e mmm e mmmmmmmmmmmmmmmmmm—————————— = = -

Basically this program creates a positive integer multiplication functiat & far slower than the built in
multiplication function) and then demonstrates this function with a use of the function. ddrisrpr
demonstrates the use of recursion, that is a form of iteration (repetition) in \warehs a function that
repeatedly calls itself until an exit condition is satisfied. It uses repedd#eas to give the same result as

mutiplication: e.g. 3 + 3 (addition) gives the same result as 3 * 2 (multiplication).

35 sur 74

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Question: What is the first thing the program does?
Answer:The first thing done is the function mult is defined with the lines:

def mult (a, b): "
if b == 0: .
return 0 :

rest = mult(a, b - 1) i
value = a + rest .
return value '

1

This creates a function that takes two parameters and returns a value when it itirnéid.
function can be run.
What happens next?
The next line after the functiorgsult = mult(3, 2) IS run.
What does this line do?
This line will assign the return value afilt(3, 2) to the variableesult
And what doesmult(3, 2) return?
We need to do a walkthrough of thelt function to find out.
What happens next?
The variablea gets the value 3 assigned to it and the varialjets the value 2 assigned to it.

And then?
The lineif b == 0: is run. Since» has the value 2 this is false so the tsern 0 is skipped.
And what then?
The linerest = mult(a, b - 1) is run. This line sets the local variabdet to the value of
mult(a, b - 1) . The value ok is 3 and the value afis 2 so the function call igult(3,1)

So what is the value ofult(3, 1) ?
We will need to run the functionult with the parameters 3 and 1.
So what happens next?
The local variables in theewrun of the function are set so thalas the value 3 andhas the value
1. Since these are local values these do not affect the previous valusasdot
And then?
Sinceb has the value 1 the if statement is false, so the next line beeamesult(a, b - 1)
What does this line do?
This line will assign the value afult(3, 0) to rest.
So what is that value?
We will have to run the function one more time to find that out. Thisd4ilmas the value 3 andhas
the value 0.
So what happens next?
The first line in the function to run b == 0: . b has the value 0 so the next line to ruretsn
0
And what does the linereturno do?
This line returns the value 0 out of the function.
So?
So now we know thatult(3, 0) has the value 0. Now we know what the lie = mult(a, b
-1) did since we have run the functienit with the parameters 3 and 0. We have finished running
mult(3, 0) and are now back to runnin@it(3, 1) . The variableest gets assigned the value 0.
What line is run next?
The linevalue = a + rest is run next. In this run of the functioz3 andrest=0 SO0 now
value = 3
What happens next?
The linereturn value is run. This returns 3 from the function. This also exits from the run of the
functionmult(3, 1) . Afterreturn is called, we go back to runningit(3, 2)

36 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Where were we inmult(3,2) ?
We had the variables=3 andb=2 and were examining the limest = mult(a, b - 1)

So what happens now?
The variableest get 3 assigned to it. The next lviue = a + rest setsvalue t03+3 or6.

So now what happens?
The next line runs, this returns 6 from the function. We are now back to running tieadine
mult(3,2) which can now assign the value 6 to the variadlat

What happens next?
The next line after the functiopsint("3 * 2 = ", result) IS run.

And what does this do?
It prints3*2 = and the value aksult which is 6. The complete line printeBis2 =6

What is happening overall?
Basically we used two facts to calculate the multiple of the two numbers. The tivat any number
times 0is0X*0=0). The second is that a number times another number is equal to the first
number plus the first number times one less than the second numberx(+ x * (y - 1)).
So what happens &+ 2 s first converted inta +3*1 . Then3*1 is converted int@ + 3 *
0. Then we know that any number times O is @ so is 0. Then we can calculate tBat 3*0 s
3+0 which is3. Now we know whag *1 is so we can calculate thet 3*1 is3+3 whichis
6.

This is how the whole thing works:

mult(3, 2) :
'3 + mult(3, 1) .
:3 + 3 + mult(3, 0) '
3+3+0 :
1
:
4

Recursion

Programming constructs solving a problem by solving a smaller version of the samen@abtealled
recursive In the examples in this chapter, recursion is realized by defining a function caéifgTlihis
facilitates implementing solutions to programming tasks as it may be snfftol consider the next step of a
problem instead of the whole problem at once. It is also useful as it allows to expresaatematical
concepts with straightforward, easy to read code.

Any problem that can be solved with recursion could be re-implemented with loops. Usintethesladlly
results in better performance. However equivalent implementations using loopaakeherder to get
done correctly.

Probably the most intuitive definition oécursionis:

Recursion
If you still don't get it, seeecursion

Try walking through the factorial example if the multiplication example did not mailse se
Examples

factorial.py

m e mmmmmmmmmm 1
!
#defines a function that calculates the factorial

37 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

1
def factorial (n):
! if n <=1
return 1
return n * factorial(n - 1)

print ("2!'=" , factorial(2))
print ("3!=" | factorial(3))
print ("4t=", factorial(4))
print ("5!'=" , factorial(5))

def count_down (n): :
print (n) .

if n>o0 '
return count_down(n-1) 1
|

1

1

J

10. Lists

Variables with more than one value

You have already seen ordinary variables that store a single value. However othez tygredtan hold
more than one value. These are called containers because they can contain more than.ofteeobject
simplest type is called a list. Here is an example of a list being used:

it ettt b
which_one = int (input ("What month (1-12)? ")

imonths = [‘January’ , 'February’ , 'March’ , ‘April , 'May' , 'June' , ‘'July’

! '‘August’ , 'September’ , 'October’ , 'November' , 'December']

if 1 <= which_one <= 12:

! print ("The month is" , months[which_one - 1])
U
and an output example:
P 1
\What month (1-12)? 3 1
‘The month is March .
1
e -

38 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

In this example theionths is a list.months is defined with the linesonths = ['January', 'February’,

‘March', ‘April', ‘May', 'June’, 'July’, and'August’, 'September', 'October’,

'November', 'December’] (note that a could also be used to split a long line, but that is not necessary in
this case because Python is intelligent enough to recognize that everything witkétbedongs together).
The[and] start and end the list with commag$ ¢eparating the list items. The list is used in
months[which_one - 1] . A list consists of items that are numbered starting at 0. In other words if you
wanted January you would usenths[0] . Give a list a number and it will return the value that is stored at
that location.

The statement 1 <= which_one <= 12: will only be true ifwhich_one is between one and twelve
inclusive (in other words it is what you would expect if you have seen that in algebra).

Lists can be thought of as a series of boxes. Each box has a different value. For example, trediexes

by demolist = ['life', 42, 'the universe’, 6, 'and’, 9] would look like this:

box number, 0 | 1 2 3 45

demolist "life" 42 "the universe" 6 "and" 9

Each box is referenced by its number so the statedaeitistjo] would getlife’ , demolist{1] would

get42 and so on up teemolist[5] gettingo.

More features of lists

The next example is just to show a lot of other stuff lists can do (for once | don't expect you tatypd i
you should probably play around with lists in interactive mode until you are comfortable with thera.). H

goes:
I N N N S E S eSS SSSms s |
1

:demolist = ["life" , 42, "the universe" , 6, "and" , 9]

print ("demolist =" ,demolist)

\demolist.append("everything")

:print ("after 'everything' was appended demolist is now:")

print (demolist)

print - ("len(demolist) =" , len (demolist))

:print ("demolist.index(42) =" , demolist.index(42))

print ("demolist[1] =" , demolist[1])

1

:# Next we will loop through the list
for ¢ in range (len (demolist)):
' print ("demolist[" , ¢, "1=" , demolist[c])
1

idel demolist[2]

jprint ("After 'the universe' was removed demolist is now:")
print (demolist)

i tlife” in demolist:

' print ("life' was found in demolist")

else :

' print ("life' was not found in demolist")

if "amoeba” in demolist:

' print ("amoeba' was found in demolist”)

1
:if "amoeba" not in demolist:

' print ("amoeba' was not found in demolist")

1

another_list = [42,7,0,123]

,another_list.sort()

:print ("The sorted another_list is" , another_list)

1
:demolist = ['life', 42, 'the universe', 6, ‘and', 9] '
1

39 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

\after 'everything' was appended demolist is now:
[life’, 42, 'the universe’, 6, 'and’, 9, 'everythi ng']
ilen(demolist) = 7

demolist.index(42) = 1

idemolist[1] = 42

demolist[0] = life

demolist[1] = 42

:demolist[2] = the universe

demolist{ 3] =6

idemolist[4] = and

:demolist[5]=9

demolist[6] = everything

\After 'the universe’ was removed demolist is now:
:['Iife', 42, 6, 'and', 9, 'everything']

ilife' was found in demolist

ramoeba’ was not found in demolist

:The sorted another_list is [0, 7, 42, 123]

This example uses a whole bunch of new functions. Notice that you cannjusta whole list. Next the

append function is used to add a new item to the end of theelistreturns how many items are in a list.

The valid indexes (as in numbers that can be used inside pf)tbéa list range fromOten-1 . The

index function tells where the first location of an item is located in a list. NoticedBmwlist.index(42)

returns 1, and whedemolist[1] IS run it returns 42. To get help on all the functions a list provides for you,
typehelp(list) in the interactive Python interpreter.

The line# Next we will loop through the list is a just a reminder to the programmer (also called a
comment Python ignores everything that is written after@n the current line. Next the lines:

for ¢ in range (len (demolist)):
! print ('demolist[' , ¢, '1=" , demolist[c])

create a variable, which starts at 0 and is incremented until it reaches the last index of the listvhlea
theprint statement prints out each element of the list.

A much better way to do the above is:

for ¢, x in enumerate (demolist):
1 print ("demolist[" , ¢ "1=" . x)

Thedel command can be used to remove a given element in a list. The next few linesinsepteator to
test if an elementis in oris not in a list. Tde& function sorts the list. This is useful if you need a list in
order from smallest number to largest or alphabetical. Note that this resgthedist. In summary, for a
list, the following operations occur:

40 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

example explanation
demolist[2] accesses the element at index 2
demolist[2] = 3 sets the element at index 2 to be 3
del demolist[2] removes the element at index 2
len(demolist) returns the length afemolist
"value" in demolist is Trueif "value" is an element idemolist
"value" not in demolist is Trueif "value" is not an element itemolist

sortsanother_list . Note that the list must be all numbers or all strings

another_list.sort() to be sorted

demolist.index("value") returns the index of the first place thatlue"

demolist.append("value") adds an elementalue" at the end of the list

removes the first occurrence of value fraeémolist

demolist.remove("value"
() demolist[demolist.index("value")])

This next example uses these features in a more useful way:

1

imenu_item = 0

1 .

inamelist =]

Wwhile menu_item != 9:

print ("-----mmemmeeeeeee- ")
print ("1. Print the list")
print ("2. Add a name to the list")
print ("3. Remove a name from the list")
print ("4. Change an item in the list")
print ("9. Quit")
menu_item = int (input ("Pick an item from the menu: ")
if menu_item ==
current = 0

if len (namelist) > 0:
while current < len (namelist):
print (current, """, namelist[current])
current = current + 1

else :
print ("List is empty")
elif menu_item == 2:
name = input ("Type in a name to add: ")
namelist.append(name)
elif menu_item == 3:
del_name = input ("What name would you like to remove: ")

if del_name in namelist:
namelist.remove(del_name) would work just as fine
item_number = namelist.index(del_name)
del namelist[litem_number]
The code above only removes the first occurrence of
the name. The code below from Gerald removes all
while del_name in namelist:
item_number = namelist.index(del_name)
del namelist[item_number]
else :
print (del_name, "was not found")
elif menu_item ==
old_name = input ("What name would you like to change: ")
if old_name in namelist:
item_number = namelist.index(old_name)

new_name = input ("What is the new name: ")
namelist[item_number] = new_name

else :
print (old_name, "was not found")

print ("Goodbye")

And here is part of the output:

41 sur 74

(same asel

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

:2. Add a name to the list

3. Remove a name from the list

/4. Change an item in the list

:9. Quit

1

\Pick an item from the menu: 2
:Type in a name to add: Jack

1

\Pick an item from the menu: 2
iType in a name to add: Jill

1

1

iPick an item from the menu: 1

10 . Jack

. Jdill

1

PPick an item from the menu: 3

\What name would you like to remove: Jack
1

iPick an item from the menu: 4

\What name would you like to change: Jill
:What is the new name: Jill Peters

1

\Pick an item from the menu: 1

:0 . Jill Peters

1

\Pick an item from the menu: 9

:Goodbye

That was a long program. Let's take a look at the source code. Thanligt = [] makes the variable
namelist ~ a list with no items (or elements). The next important linéiie menu_item !=9: . This line
starts a loop that allows the menu system for this program. The next few lines disigay and decide
which part of the program to run.

The section

1

:current =0

if len (namelist) > 0:

. while current < len (namelist):

! print (current, """, namelist[current])
1 current = current + 1
1
)
1

print ("List is empty")

goes through the list and prints each naamgnamelist) tells how many items are in the listidi
returnso, then the list is empty.

Then, a few lines later, the statemeahelist.append(name) appears. It uses thepend function to add
an item to the end of the list. Jump down another two lines, and notice this section of code:

item_number = namelist.index(del_name)
:del namelist[item_number]

Here thandex function is used to find the index value that will be used later to remove thelstem.
namelist[item_number] is used to remove a element of the list.

The next section

:old_name = input ("What name would you like to change: ")
if old_name in namelist:

' item_number = namelist.index(old_name)

new_name = input ("What is the new name: ")

42 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

' namelist[item_number] = new_name
else :
1 print

(old_name, “"was not found")

usesndex to find theitem_number

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

and then putsew_name where theold_name was.

Congratulations, with lists under your belt, you now know enough of the language that you could do any
computations that a computer can do (this is technically known as Turing-Completehess)ys@, there
are still many features that are used to make your life easier.

Examples

W This program runs a test of knowledge
1

1

% First get the test questions

Later this will be modified to use file io.

def get_questions ()

! # notice how the data is stored as a list of lists

return [["What color is the daytime sky on a clear day? "
["What is the answer to life, the universe and every
["What is a three letter word for mouse trap? "

This will test a single question
it takes a single question in
it returns True if the user typed the correct ans
1
def check_question
extract the question and the answer from the list
This function takes a list with two elements, a q
question = question_and_answer[0]
answer = question_and_answer[1]
give the question to the user
given_answer = input (question)

1

! (question_and_answer):
1
1
1
1
1
1
1
1
1
1
' # compare the user's answer to the tester's answer
1
1
1
1
1
1
1
1
1
1
1
1

if answer == given_answer:
print ("Correct")
return True
else :
print ("Incorrect, correct was:" , answer)
return False
This will run through all the questions
def run_test (questions):
if len (questions) == 0:
print ("No questions were given.")
the return exits the function
return
index = 0
right = 0
while index < len (questions):

Check the question
#Note that this is extracting a question and answer
if check_question(questions[index]):
right = right + 1
go to the next question
index = index + 1
notice the order of the computation, first multip
print ("You got" , right * 100 / len (questions),\
"% r ight out of" len (questions))

¥ now let's get the questions from the get_question

send the returned list of lists as an argument to
1

Erun_test(get_questions())

wer, otherwise False

s function, and
the run_test function.

"blue"]’
thlng’) [, "4om]'
"cat"]]

uestion and an answer.

list from the list of lists.

ly, then divide

The valueSrue andFalse point to 1 and 0, respectively. They are often used in sanity checks, loop
conditions etc. You will learn more about this a little bit later (chapter Booleare&sipns). Please note
that get_questions() is essentially a list because even though it's techniioadyi@n, returning a list of lists

43 sur 74

14/01/2016 19:7

Non-Programmer's

Tutorial for Python 3/Print vensid\Vikibooks, ope.

is the only thing it does.

Sample Output:

1
:What color is the daytime sky on a clear day? green
iIncorrect, correct was: blue

\What is the answer to life, the universe and everyt

ICorrect

What is a three letter word for mouse trap? cat

\Correct

:You got 66 % right out of 3

Exercises

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

hing? 42

Expand the test.py program so it has a menu giving the option of taking the test, viewingflogéstions
and answers, and an option to quit. Also, add a new question to ask, "What noise does a truly advanced

machine

make?" with the answer of "ping".

Solution

Expand the test.py program so it has menu giving the option of taking the test, viewing thgulesttmins
and answers, and an option to quit. Also, add a new question to ask, "What noise does a truly advanced

machine

make?" with the answer of "ping".

#H# This program runs a test of knowledge
1

! .
iquestions =
1

[["What color is the daytime sky on a clear day? "
["What is the answer to life, the universe and every
["What is a three letter word for mouse trap? "
["What noise does a truly advanced machine make?"

1
I# This will test a single question
it takes a single question in

W it returns True if the user typed the correct ans

1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
' else :
1

1

1

1

1

def check_question (question_and_answer):
extract the question and the answer from the list
question = question_and_answer[0]
answer = question_and_answer[1]
give the question to the user
given_answer = input (question)
compare the user's answer to the testers answer
if answer == given_answer:
print ("Correct")
return True

print ("Incorrect, correct was:" , answer)
return False

This will run through all the questions

def run_test (questions):

if len (questions) == 0:
print ("No questions were given.")
the return exits the function
return

index = 0

right = 0

while index < len (questions):

if

#

Check the question
check_question(questions[index]):
right = right + 1
go to the next question

index = index + 1

notice the order of the computation, first multip

print

1
1
!
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! #
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

("You got" , right * 100 / len (questions),
"% r ight out of" , len (questions))

"blue”

1,

thing? "

"cat" 1,
“ping"

wer, otherwise False

ly, then divide

1l

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

:#showing a list of questions and answers
def showquestions ():

1
1
1
, q=0 |
' while g < len (questions): .
1 a=20 :
' print ("Q:" , questions[qg][a]) '
: a=1 :
| print ("A:" , questions[qg][a]) 1
1
: qg=9q+1 '
1 1
1
now let's define the menu function 1
'def menu(): .
1 print ("-------mm-moeeee- ") '
' print ("Menu:") 1
' print ("1 - Take the test") :
1 print ("2 - View a list of questions and answers") '
' print ("3 - View the menu") '
! print ("5 - Quit") .
I .
1 print ("------mmmmmeeeee ") !
1 1
1 1
ichoice = "3" .
while choice != "5" : !
' if choice == "1": '
! run_test(questions) .
1 elif choice == "2": 1
! showgquestions() ,
! elif choice == "3": .
| menu() 1
' print () .
! choice = input ("Choose your option from the menu above: ") ,
L e e e e e e e e e e e e e e e e e e e = e = = e = e = ——————— 2

11. For Loops

And here is the new typing exercise for this chapter:

ittt b
onetoten = range (1, 11)
for count in onetoten:

1 print (count)

The output looks awfully familiar but the program code looks different. The first lindhsesge

function. Therange function uses two arguments like thisge(start, finish) .start is the first

number that is producethish is one larger than the last number. Note that this program could have been
done in a shorter way:

for count in range (1, 11):
1 print (count)

The range function returns an iterable. This can be converted into a list with thinction. which will

45 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

then be the dominant number. Here are some examples to show what happensauijh themmand:

2 A
>>> range(1, 10) :
irange(1, 10) .
>>> list(range(1, 10)) ,
[1,2,3,4,5,6,7,8,9] '
1>>> list(range(-32, -20)) .
[-32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21] :
>>> list(range(5,21)) :
:[5, 6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] :
>>> |ist(range(5)) !
[0, 1,2, 3, 4] :
>>> list(range(21, 5)) .
L :
D e e e e e e e e e e e e m e e m e e e e m e e e e e e e = e e e e e = = e e e = e e = = = = = = = = = = = = = = = = = = e = = e = = = e = = = = = = = A
The next lin€or count in onetoten: uses theor control structure. Aor control structure looks like
for variable in list: .list is gone through starting with the first element of the list and going to the

last. Asfor goes through each element in a list it puts eachvimtamle . That allowsvariable to be used
in each successive time tle loop is run through. Here is another example (you don't have to type this) to
demonstrate:

ittt ittt b
demolist = [Clife’ , 42, 'the universe' , 6, 'and' , 7, ‘everything'] :
for item in demolist: :
! print ("The current item is:" ,item) ,
L e e e e e e e e e e e e e e e e e = e = e e = e = o —————————— 2

The output is:

1

:The current item is: life

iThe current item is: 42

\The current item is: the universe
:The current itemis: 6

\The current item is: and

\The current item is: 7

:The current item is: everything

Notice how thifor loop goes through and sets item to each element in the list. So, whagod for?
The first use is to go through all the elements of a list and do something with each.dfi¢hema quick
way to add up all the elements:

1
list = [2, 4, 6, 8] '
'sum = 0 .
for num in list :
' sum = sum + num "

1
' 1
1
1
_I

1
:print ("The sum is:" , sum)

with the output simply being:
The sumis: 20

Or you could write a program to find out if there are any duplicates in a list like thiaproges:

list = [4,5 7,89 1,0 7, 10]
list .sort()
prev = None
for item in list
| if prev == item:
print ("Duplicate of" , prev, "found")
prev = item

46 sur 74 14/01/2016 19:7

and for good measure:

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

A

1

:Duplicate of 7 found '
1

L e o o e mmmmmmm———— = 4

Okay, so how does it work? Here is a special debugging version to help you understand (you don't need tc

type this in):

T ST e e e E e E T E T e l
' =[4, 5 7, 8 9, 1, 0, 7, 10] :
print. ("1=1[4,5,7,8,9,1,0,7, 10]" "\t\t |) ,
il.sort() ,
print ("l.sort()" N A E) 1
prev = 1[0] .
print - ("prev = [[0]" , "\t\t prev:" |, prev) '
el 1[0] 1
iprint ("del I[0]" ANV R)| ,
for item in I !
' if prev == item: '
1 print ("Duplicate of" , prev, "found") .
. print ("if prev == item:" , "\t prev:" , prev, "\t item:" , item) '
' prev = item |
! print ("prev = item" , "M\t prev:" | prev, "\t item:" item) .
L o o o o o o o e mmmmmmmmmmmmm e = 2
with the output being:

A
:I =[4,5,7,8,9,1,0,7, 10] I:[4,5,7 ,8,9,1,0,7,10] :
lLsort() I'[0,1,4,5,7,7,8,09, 10] :
iprev = 1[0] prev: 0 '
del 1[0] I:[1,4,5,7,7,8,9 10] '
if prev == item: prev: 0 item: 1 '
iprev = item prev: 1 item: 1 '
if prev == item: prev: 1 item: 4 1
iprev = item prev: 4 item: 4 '
:if prev == item: prev: 4 item: 5 !
prev = item prev: 5 item: 5 i
if prev == item: prev: 5 item: 7 .
lprev = item prev: 7 item: 7 !
Duplicate of 7 found i
if prev == item: prev: 7 item: 7 .
Iprev = item prev: 7 item: 7 '
if prev == item: prev: 7 item: 8 '
prev = item prev: 8 item: 8 '
if prev == item: prev: 8 item: 9 1
1 . . 1
prev = item prev: 9 item: 9 '
if prev == item: prev: 9 item: 10 '
lprev = item prev: 10 item: 10 '
U -

The reason | put so mapyint

statements in the code was so that you can see what is happening in each

line. (By the way, if you can't figure out why a program is not working, try putting in lots of fatehsents
in places where you want to know what is happening.) First the program starts with a loolistghoéxt

the program sorts the list. This is so that any duplicates get put next to each other. iéme freqg

initializes aprev (ious) variable. Next the first element of the list is deleted so that thédirsts not

incorrectly thought to be a duplicate. Nexba loop is gone into. Each item of the list is checked to see if it
is the same as the previous. If it is a duplicate was found. The value of then changed so that the next
time thefor loop is run througlrev is the previous item to the current. Sure enough, the 7 is found to be a
duplicate. (Notice how is used to print a tab.)

The other way to user loops is to do something a certain number of times. Here is some code to print out
the first 9 numbers of the Fibonacci series:

;' "" l
a=1
b =1

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

print (a, end= "")
+b

oo >
I
ST

e A

1

112358132134 :
1

e e e m e e m e o e e e e e e e e e e e e e o e e e e e e e e e e = e e e e e e e e e e = e e = e e = e e e e e e e e e e e e =]

Everything that can be done with loops can also be done withile loops butior loops give an easy
way to go through all the elements in a list or to do something a certain number of times.

12. Boolean Expressions

Here is a little example of boolean expressions (you don't have to type it in):

-
1
1
1
1
1
print (1, a == 6) :
print (2, a == 7) .
:print 3, a==6 and b ==17) '
print (4, a =7 and b ==17) i
'orint (5, not a == 7 and b == 7) .
print (6, a == 7 or b ==7) !
print (7, a == 7 or b == 6) i
‘orint (8, not (a == 7 and b == 6)) .
print (9, not a == 7 and b == 6) '

d

1
1
1
1
:3 True ,
4 False f
5 True .
:6 True :
\7 False i
18 True .
:9 False :

J

What is going on? The program consists of a bunch of funny lopking statements. Eaghint
statement prints a number and an expression. The number is to help keep track of whichtdtateme
dealing with. Notice how each expression ends up being &iilser or True . In Python false can also be
written as 0 and true as 1.

The lines:

print (1, a == 6)
:print 2, a=17

print out aTrue and arFalse respectively just as expected since the first is true and the second is false. The

third print, print(3, a==6 and b == 7) , Is a little different. The operatand means if both the
statement before and the statement after are true then the whole expressiootigenwise the whole
expression is false. The next lip@nt(4, a==7 and b == 7) , sShows how if part of aand expression

is false, the whole thing is false. The behaviograf can be summarized as follows:

48 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

expression | result
trueand true | true
trueand false ' false
falseand true false

falseand false false

Notice that if the first expression is false Python does not check the second expressidgrkabpws th
whole expression is false. Try runnipgse and print("Hi") and compare this to runnimgue and
print("Hi") The technical term for this is short-circuit evaluation

The next lineprint(5, nota ==7 and b == 7) , uses theot operatornot just gives the opposite of
the expression. (The expression could be rewritt@nras, a != 7 and b == 7)). Here is the table:

expression result
not true | false

not false | true

The two following linesprint(6, a==7 or b == 7) andprint(7, a == 7 or b == 6) , use theor
operator. Ther operator returns true if the first expression is true, or if the second expressiends loth
are true. If neither are true it returns false. Here's the table:

expression | result
trueor true | true
trueor false| true
falseor true | true

falseor false false

Notice that if the first expression is true Python doesn't check the second expressidrksiows th
whole expression is true. This works sineeds true if at least one half of the expression is true. The first
part is true so the second part could be either false or true, but the whole expresHitrneas sti

The next two linegrint(8, not (a == 7 and b == 6)) andprint(9, not a == 7 and b == 6) ,
show that parentheses can be used to group expressions and force one part to be evaluatiécefitsat N
the parentheses changed the expression from false to true. This occurred sincenthesegaréorced the
not to apply to the whole expression instead of justtie7 portion.

Here is an example of using a boolean expression:

list = ["Life* , "The Universe" , "Everything" , "Jack" , "Jill" , Life" -, "Jill"]

make a copy of the list. See the More on Lists ch apter to explain what [:] means.
lcopy = list [1]

sort the copy

icopy.sort()

lprev. = copy[0]

del copy[0]

1

1

:count =0

1

go through the list searching for a match

while count < len (copy) and copy[count] != prev:
1

49 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

) prev = copy[count]

' count = count + 1

1

If a match was not found then count can't be < le n
since the while loop continues while count is < | en
Il# and no match is found

1
Jf count < len (copy):

] print ("First Match:" , prev)

| A

1

iFirst Match: Jil "
1

e e e m e e m e o e e e e e e e e e e e e e o e e e e e e e e e e = e e e e e e e e e e = e e = e e = e e e e e e e e e e e e =]

This program works by continuing to check for matehe count < len(copy) and copy[count] is

not equal to prev . When eithetount is greater than the last indexasopy or a match has been found
theand is no longer true so the loop exits. Thesimply checks to make sure that thiéle exited because
a match was found.

The other "trick" ofand is used in this example. If you look at the tableafar notice that the third entry is
"false and false". I€ount >= len(copy) (in other wordsount < len(copy) is false) theropy[count]

is never looked at. This is because Python knows that if the first is false then they bduet tvae. This is
known as a short circuit and is useful if the second half adritnevill cause an error if something is wrong. |
used the first expressioto(int < len(copy)) to check and seedbunt was a valid index focopy . (If

you don't believe me remove the matches "Jill* and "Life", check that it still watkthen reverse the
order ofcount < len(copy) and copy|[count] != prev t0 copy[count] != prev and count <

len(copy))

Boolean expressions can be used when you need to check two or more different things at once.

A note on Boolean Operators

A common mistake for people new to programming is a misunderstanding of the way that boaietmmsope
works, which stems from the way the python interpreter reads these expressions. Far,eafsanptitially
learning about "and " and "or" statements, one might assume that the expressiaror 'b") would
check to see if the variabtlewas equivalent to one of the strirgs or'b' . This is not so. To see what I'm
talking about, start an interactive session with the interpreter and enter dkenigpkexpressions:

>>> 'a' == ('a' or 'b")
>>>'b' == (‘a’' or 'b)
>>>'a' == (‘a' and 'b")
1>>>'p' == (‘a' and 'b')

>>>'a' == ('a' or 'b’)
:True

>>>'b' == ('a' or 'b")
\False

>>> g’ == (‘a'and 'b")
False
>>>'b'==(a'and 'b')
:True

gy g g g g G gy g g g g g A g -

At this point, theand andor operators seem to be broken. It doesn't make sense that, for the first two
expressionsa' is equivalent taa' or'b' while'o' is not. Furthermore, it doesn't make any sense that 'b’

50 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

is equivalent toa' and'b' . After examining what

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

the interpreter does with boolean operators, these results

do in fact exactly what you are asking of them, it's just not the same as what you think youngre aski

When the Python interpreter looks ateanexpression, it takes the first statement and checks to see if it is
true. If the first statement is true, then Python returns that object's value wilkecktng the second
statement. This is because foraanexpression, the whole thing is true if one of the values is true; the
program does not need to bother with the second statement. On the other hand, if the first valuet e

as false Python checks the second half and returns that value. That second half debermmintés/alue of
the whole expression since the first half was false. This "laziness" on the treetiterpreter is called

"short circuiting” and is a common way of evaluating boolean expressions in many progrdamignrages.

Similarly, for anand expression, Python uses a short circuit technique to speed truth value evaluation. If the

first statement is false then the whole thing must

be false, so it returnsltmat®therwise if the first value

is true it checks the second and returns that value.

One thing to note at this point is that the boolean expression returns a value indioatiogralse , but
that Python considers a number of different things to have a truth value assigned to thenk ffrectneth

value of any given objegt, you can use the fuctiamol(x)

examples of the truth values of various objects:

True False
True False
1 0
Numbers other than zero The string 'None'
Nonempty strings Empty strings
Nonempty lists Empty lists

Nonempty dictionaries| Empty dictionaries

to see its truth value. Below is a table with

Now it is possible to understand the perplexing results we were getting whenegethese boole:
expressions before. Let's take a look at what the interpreter "sees" aslirgaghk that code:

First case:

>>>'a' == ('a' or 'b")
! #'a' is a nonempty stri
1 # Return that first valu

>>>'a'=="a' # the string 'a’ is equivalent to the str

iTrue
1

:>>> ‘b' == (|a| or Ibl)
! #'a' is a nonempty stri
1 # Return that first valu

>>>'b'=="a' # the string 'b' is not equivalent to the
:False

L e e e e e ceemmmmmmmmmmmmmmmmmmmmmmm e ——————
Third case:

>>>'a' == (‘a' and 'b’)
#'a' is a nonempty stri
#'b" is a nonempty stri

51 sur 74

Look at parentheses first, so evaluate expressi

Look at parentheses first, so evaluate expressi

Look at parentheses first, so evaluate expressio

on "(‘a' or 'b")"

ng, so the first value is True

e:'a'

ing 'a', so expression is True

on "(‘a' or 'b")" |

ng, so the first value is True .
e:'a' ,
string 'a’, so expression is False 1

|

1

n"(a’ and 'bY)"
ng, so the first value is True, examine second valu
ng, so second value is True

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

52 sur 74

' # Return that second val ue as result of whole expression: 'b' .
P>>'al=="b' # the string 'a' is not equivalent to the string 'b’, so expression is False !
:False 1
U A

pitiilililililiddl ettt ittt b

1
>>> ' == (‘a' and 'b") # Look at parentheses first, so evaluate expressio n"(‘a'and 'b")" 1
' #'a' is a nonempty stri ng, so the first value is True, examine second valu e,
! # 'b' is a nonempty stri ng, so second value is True ,
| # Return that second val ue as result of whole expression: 'b' 1
>>>'b'=="b' # the string 'b' is equivalent to the str ing 'b', so expression is True .
True 1
1 1
L m e e e e e e e e e e e e e e e e e m e e e e e e = e e e = e = e = e = ————————— d

So Python was really doing its job when it gave those apparently bogus results. As mentionediyrehe
important thing is to recognize what value your boolean expression will return when lustegabecause
it isn't always obvious.

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Going back to those initial expressions, this is how you would write them out so they behaved in @ way tha

you want:

l- ''' l
f e o e . 1
S>>'a'=='a'or'a'=="b 1
True .
>>> b’ == "a’ or 'b' == 'b’ !
iTrue !
>>>'g' =='a’ and 'a’ == 'b’ .
False '
>>> 'b' == 'a’ and 'b' == b’ '
False .
L o o o o o o o o o e e e e e o e mmmmmeem o 2

When these comparisons are evaluated they return truth values in terms of True, oioFatsags, so we
get the proper results.

Examples

passwordl.py

M e mmmmmmmmmmmmmmmmmmm e e e e e e e mmmemmmmmmmmmmmmmmmmmmmmm—————————— -
1
W## This program asks a user for a name and a passwo rd. '
:# It then checks them to make sure that the user is allowed in. .
' 1
iname = input ("What is your name? ") :
:password = input ("What is the password? ") .
if name == "Josh" and password == "Friday" : '
' print ("Welcome Josh") 1
elif name == "Fred" and password == "Rock" : .
. print ("Welcome Fred") .
else : 1
! print ("l don't know you.") .
L o e o e o e m o m e — e m o m m o m e — e m o m m o m mmm e e e e e e m e e e mmmm——m— - 2
Sample runs
il ettt ittt b
1
What is your name? Josh 1
What is the password? Friday .
Welcome Josh '
L e e e e e e e e 4
il ettt ittt b
1
What is your name? Bill 1
What is the password? Money .
1l don't know you. '
D i
Exercises

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Write a program that has a user guess your name, but they only get 3 chances to do so untilithhe progra

C]UItS.
Solution
Pttt ittt R
print ("Try to guess my name!") :
‘count = 1 .
iname = "guilherme” ,
guess = input ("What is my name? ") 1
I'vvhile count < 3 and guess.lower() != name: # .lower allows things like Guilherme to still matc h .
1 print ("You are wrong!") '
' guess = input ("Whatis my name? ") 1
! count = count + 1 .
| 1
if guess.lower() != name: :
! print ("You are wrong!") # this message isn't printed in the third chance, s 0 we print it now .
| print ("You ran out of chances." !
else : :
! print ("Yes! My name is" , hame + "I") .
L o o o o o o o e mmmmmmmmmmmmm e = Az
This chapter is about dictionaries. Dictionaries have keys and values. The keys areinddti¢o/alues.
Here is an example of a dictionary in use:
S5ttt ettt ettt ettt ettt ittt ittt T
def print_menu (): '
1 print ('1l. Print Phone Numbers') .
. print ('2. Add a Phone Number') '
' print ('3. Remove a Phone Number') 1
1 print ('4. Lookup a Phone Number') .
' print ('5. Quit') '
' print () !
! 1
inumbers = {} '
'menu_choice = 0 1
iprint_menu() .
Wwhile menu_choice != 5: '
' menu_choice = int (input ("Type in a number (1-5): ") i
1 if menu_choice == 1: .
' print ("Telephone Numbers:") 1
! for x in numbers.keys(): .
1 print ("Name:" , x, "\t Number:" , numbers[x]) .
' print () '
1 elif menu_choice == 2: '
. print ("Add Name and Number") ,
' name = input ("Name:") i
' phone = input ("Number:") .
. numbers[name] = phone '
' elif ~ menu_choice == 3: 1
1 print ("Remove Name and Number") .
' name = input ("Name:") '
' if name in numbers: 1
) del numbers[name] .
' else : '
' print (name, "was not found") i
' elif ~ menu_choice == 4: .
' print ("Lookup Number") '
' name = input ("Name:") |
1 if name in numbers: .
' print ("The number is" , numbers[name]) '
! else : '
' print (name, "was not found") .
' elif menu_choice != 5: 1
! print_menu() .
1
L e o o e mmmmmmm———— = -

53 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

And here is my output:

i1. Print Phone Numbers |
'2. Add a Phone Number .
13. Remove a Phone Number ,
14. Lookup a Phone Number '
5. Quit .
' 1
1
iType in a number (1-5): 2 .
'Add Name and Number .
Name: Joe '
Number: 545-4464 h
"Type in a number (1-5): 2 .
/Add Name and Number !
Name: Jill 1
:Number: 979-4654 '
iType in a number (1-5): 2 '
'Add Name and Number :
Name: Fred .
Number: 132-9874 '
"Type in a number (1-5): 1 ,
iTelephone Numbers: ,
Name: Jill Number: 979-4654 '
'Name: Joe Number: 545-4464 .
Name: Fred Number: 132-9874 '
1
1
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

Type in a number (1-5): 4
iLookup Number

Name: Joe

'The number is 545-4464

iType in a number (1-5): 3

\Remove Name and Number
:Name: Fred

iType in a number (1-5): 1
\Telephone Numbers:

:Name: Jill Number: 979-4654
Name: Joe Number: 545-4464

1
EType in a number (1-5): 5
L |

This program is similar to the name list earlier in the chapter on listssHiere the program works. First the
functionprint_menu is definedprint_menu just prints a menu that is later used twice in the program. Next
comes the funny looking lineumbers = {} . All that this line does is to tell Python thaimbers is a

dictionary. The next few lines just make the menu work. The lines

g 1

1

for x in numbers.keys(): '

! print ("Name:" , x, "\t Number:" , numbers[x]) .
1

L e = e m m e e e e e e e e e - -

go through the dictionary and print all the information. The functieibers.keys() returns a list that is
then used by thier loop. The list returned byeys() is not in any particular order so if you want it in
alphabetic order it must be sorted. Similar to lists the statemenérs[x] is used to access a specific
member of the dictionary. Of course in this casga string. Next the lineumbers[name] = phone adds a
name and phone number to the dictionaryalie had already been in the dictionanone would replace
whatever was there before. Next the lines

if name in numbers:
1 del numbers[name]

see if a name is in the dictionary and remove it if it is. The operat@rin numbers returns true ihame is
in numbers but otherwise returns false. The li numbersiname] ~ removes the keyame and the value
associated with that key. The lines

if name in numbers:

54 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

i print ("The number is"

, numbers[name])

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

e m e e e e e e e e e e e e e e e e mmmmmmmmm e e m e e e e e e ;e e e e e e e e e e e mmmmmmmmm e mmmmmmmmmmmmmmmmmmm—————————— = = -

check to see if the dictionary has a certain key and if it does prints out the numberessathiat. Lastly

if the menu choice is invalid it reprints the menu for your viewing pleasure.

A recap: Dictionaries have keys and values. Keys can be strings or numbers. Keys poinstd/afales
can be any type of variable (including lists or even dictionaries (those dictionaigts of tourse can
contain dictionaries or lists themselves (scary right? :-)))). Here isaanpde of using a list in a dictionary:

imax_points = [25, 25, 50, 25, 100]

\assignments = [‘hwch1' , ‘hwch2 , 'quiz ' , 'hwch 3

:students = { '#Max' : max_points}

1

def print_menu ():

! print ("1. Add student")
print . Remove student"”
print . Print grades”)
print . Record grade")
print . Print Menu")
print . Exit")

~e~ o~~~ —~
OURNWNE

def print_all_grades 0:
print ("\t ', end="")

print (assignments[i],
print ()
keys = list (students.keys())
keys.sort()

for i in range (len (assignments)):

"\t ', end="")

for

X

in keys:
print (X,
grades =
print_grades(grades)

print_grades
in range (len (grades)):

for

print

print

0

"\t ', end="")
students[x]

(grades):

(grades]i], "\t ', end="")

:print_menu()
imenu_choice = 0

while menu_choice != 6:
print ()

if menu_choice == 1:

students[name] = [0] *
elif ~ menu_choice ==

if name in students:
del students[name]
else :
print ("Student:"
elif ~ menu_choice == 3:
print_all_grades()
elif ~ menu_choice == 4:
print ("Record Grade")
name = input ("Student:"

menu_choice = int (input ("Menu Choice (1-6):")

name = input ("Studentto add: ")

len (max_points)

name = input ("Studentto remove:")

, name, "not found")

)

55 sur 74

if

name

in students:

grades = students[name]

print
print
for

print

("Type in the number of the grade to record"
("Type a 0 (zero) to exit")
i in range (len (assignments)):

print (i + 1, assignments[i], "\t ', end=""'

0

print_grades(grades)
which = 1234

while

which = -1:
which = int (input ("Change which Grade: "
which -= 1 #same as which = which - 1
if 0 <= which < len (grades):
grade = int (input ("Grade:"))
grades[which] = grade
elif which = -1:
print ("Invalid Grade Number")

)

)

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

else :

elif ~ menu_choice != 6:
print_menu()

1

i Add student

2. Remove student
13. Print grades

4. Record grade

5. Print Menu

6. Exit

1

Menu Choice (1-6): 3

' hw ch 1 hw ch 2 quiz
:#Max 25 25 50

1

Menu Choice (1-6): 5

11. Add student

2. Remove student
'3. Print grades

4. Record grade
5. Print Menu

16. Exit

1
Menu Choice (1-6): 1
:Student to add: Bill

1

Menu Choice (1-6): 4
:Record Grade

Student: Bill

\Type in the number of the grade to record

Type a 0 (zero) to exit

1 hwchl 2 hwch2 3 quiz
0 0 0 0
IChange which Grade: 1
\Grade: 25

iIChange which Grade: 2
Grade: 24

\Change which Grade: 3
iGrade: 45

iChange which Grade: 4
\Grade: 23

:Change which Grade: 5
Grade: 95

iIChange which Grade: 0

Menu Choice (1-6): 3

i hwch1 hw ch 2 quiz
:#Max 25 25 50
Bill 25 24 45

1

EMenu Choice (1-6): 6

Heres how the program works. Basically the variatgents

print ("Student not found"

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

is a dictionary with the keys being the name

of the students and the values being their grades. The first two lines just cebdestwhe next line

students = {'#Max"': max_points}

be[2s, 25, 50, 25, 100]

def print_all_grades 0:
print ('\t ',end="")

for i in range (len (assignments)):

1

1

1

:

1

' print (assignments[i],
1 print ()
:

1

1

1

1

1

1

keys = list (students.keys())

keys.sort()
for x in keys:

56 sur 74

(since thats whatax_points
key#Max since# is sorted ahead of any alphabetic characters). pMiextmenu
print_all_grades function is defined in the lines:

creates a new dictionary with the kesvbx} and the value is set to
was when the assignment is made) (I use the
is defined. Next the

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

print (x, "\t ',end="'"')
grades = students[x]
print_grades(grades)

L e e e e e e e e e m e e e e e mmmmmmm e e m e c e ;e ;e ;e ;e e ;e e ;e e e e e e e e e e e mmm e mmmmmmmmmmmmmmmmmm—————————— = = -

Notice how first the keys are gotten out of students dictionary with thekeys function in the linexeys

= list(students.keys()) . keys is a iterable, and it is converted to list so all the functions for lists can be
used on it. Next the keys are sorted in thed#ys.sort() . for is used to go through all the keys. The
grades are stored as a list inside the dictionary so the assignatest students|x] givesgrades the

list that is stored at the key The functiorprint_grades just prints a list and is defined a few lines later.

The later lines of the program implement the various options of the menu. Thed#nes[name] = [0]
* len(max_points) adds a student to the key of their name. The not@iiofen(max_points) just
creates a list of O's that is the same length asdkepoints list.

The remove student entry just deletes a student similar to the telephone book exampterdrgrades
choice is a little more complex. The grades are retrieved in thgrdithes = students[name] gets a
reference to the grades of the studante. A grade is then recorded in the ligrades[which] = grade

You may notice thajgrades is never put back into the students dictionary (as istugients[name] =
grades). The reason for the missing statement is ghales is actually another name fewdents[name]
and so changingrades changestudent[name]

Dictionaries provide a easy way to link keys to values. This can be used to easily keep tréekhaitds
attached to various keys.

14. Using Modules

Here's this chapter's typing exercise (name it caibmoit actually looks for a file named calendar.py and
reads it in. If the file is named calendar.py and it sees a "import calendags tiotriead in itself which
works poorly at best.)):

2 A

:import calendar :
year = int (input ("Type in the year number: ") ,
:calendar.prcal(year) '
L e e e e e e e e e e e e e e e e e = e = e e = e = o —————————— 2

And here is part of the output | got:

B e e o o e -
Type in the year number: 2001

1
1
:
1
! 2001
1
1
1
1

1

1

1

1

1

1

1

January February March .

1

Mo TuWe ThFrSaSu Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su :
1234567 1234 1234 '
8 91011121314 56 7 8 91011 567891011 :
1151617 18192021 1213141516 17 18 121314 15 16 17 18 '
1222324 25262728 19 20 21 22 23 24 25 19 20 21 22 23 24 25 '
:

A

:29 3031 26 27 28 26 27 28293031

(I skipped some of the output, but I think you get the idea.) So what does the program do? The first line
import calendar uses a new commaindport . The commandnport loads a module (in this case the
calendar module). To see the commands available in the standard modules either look in the library

reference for python (if you downloaded it) or go to http://docs.python.org/3/library/. If you look at the
documentation for the calendar module, it lists a function calted that prints a calendar for a year. The

57 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

line calendar.prcal(year) uses this function. In summary to use a modwgert it and then use
module_name.function for functions in the module. Another way to write the program is:

1
from calendar import prcal
1

year = int (input ("Type in the year number: ")
:prcal(year)
L e mmm e e e = e e e e e e e e === m = e e e e e e e e e e e - a

This version imports a specific function from a module. Here is another program th#teisython
Library (name it something like clock.py) (press Ctrl and the 'c' key at the saen®tierminate the
program):

from time import time, ctime

1

:prev_time =

Wwhile True :

! the_time = ctime(time())

1 if prev_time != the_time:

' print _("The time |_s:" , ctime(time()))
! prev_time = the_time
U -

With some output being:

1

:The time is: Sun Aug 20 13:40:04 2000
iThe time is: Sun Aug 20 13:40:05 2000
\The time is: Sun Aug 20 13:40:06 2000
:The time is: Sun Aug 20 13:40:07 2000
1

\Traceback (innermost last):

1 File "clock.py", line 5, in ?

the_time = ctime(time())

KeyboardInterrupt

The output is infinite of course so | canceled it (or the output at least continues U@l Efpressed). The
program just does a infinite loopr¢e is always true, sehile True: goes forever) and each time checks
to see if the time has changed and prints it if it has. Notice how multiple namebeaftaport statement
are used in the linlom time import time, ctime

The Python Library contains many useful functions. These functions give your programs miige abdi
many of them can simplify programming in Python.

Exercises

Rewrite thenigh_low.py program from section Decisions to use an random integer between 0 and 99

instead of the hard-coded 78. Use the Python documentation to find an appropriate module and function t
do this.

Solution

Rewritethe high_low.py program from section Decisions to use an random integer between 0 and 99
instead of the hard-coded 78. Use the Python documentation to find an appropriate module and function t
do this.

:from random import randint
inumber = randint(0, 99)
guess = -1

:while guess != number:

58 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

guess = int (input ("Guess a number:"
if guess > number:
print ("Too high")
elif guess < number:
print ("Too low")
print ("Just right")

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

15. More on Lists

We have already seen lists and how they can be used. Now that you have some more background I will gt
into more detail about lists. First we will look at more ways to get at the elememtist and then we will

talk about copying them.

Here are some examples of using indexing to access a single element of a list:

1

1>>> some_numbers = ['zero', ‘one’, 'two’, 'three’, 'fou
>>> some_numbers[0]

1zero'

>>> some_numbers[4]

four'

>>> some_numbers[5]

:'five'

All those examples should look familiar to you. If you want the first item in the lisiojoktdt index 0. The
second item is index 1 and so on through the list. However what if you want the last item i@ thedis

way could be to use then() function likesome_numbers[len(some_numbers) - 1]

. This way works

since theen() function always returns the last index plus one. The second from the last would then be

some_numbers[len(some_numbers) - 2]

. There is an easier way to do this. In Python the last item is

always index -1. The second to the last is index -2 and so on. Here are some more examples:

>>> some_numbers[len(some_numbers) - 1]
i'five'

>>> some_numbers[len(some_numbers) - 2]
:'four'

»>>> some_numbers[-1]

Hfive'

1>>5 some_numbers[-2]

four'

>>> some_numbers[-6]

:'zero'

Thus any item in the list can be indexed in two ways: from the front and from the back.

Another useful way to get into parts of lists is using slicing. Here is another exangie you an idea what

they can be used for:

E>>> things = [0, 'Fred’, 2, 'S.P.A.M.", 'Stocking’', 42,
»>>> things[0]

0
>33 things[7]

Wil

>>> things[0:8]

[0, 'Fred', 2, 'S.P.A.M.", 'Stocking', 42, 'Jack’,
>>> things[2:4]

[2,'S.P.AM.]

1>>> things[4:7]

['Stocking’, 42, 'Jack']

:

1

59 sur 74

"Jack", "Jill"]

"Jill]

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

>>> things[1:5] :
:['Fred', 2,'S.P.A.M.", 'Stocking'] i
1

Slicing is used to return part of a list. The slicing operator is in the form
things[first_index:last_index] . Slicing cuts the list before thiest_index and before the
last_index and returns the parts in between. You can use both types of indexing:

>>> things[-4:-2] :
'Stocking’, 42] ,
>>> things(-4] ,
i'Stocking' i
I>>> things[-4:6] .
:['Stocking‘, 42] '

1

Another trick with slicing is the unspecified index. If the first index is not spddifie beginning of the list is
assumed. If the last index is not specified the whole rest of the list is assumedréisome examples:

T T T T T T T T T T T T T T T T T TS mmm oS mSmmmmm-m---- b
>>> things[:2] :
[0, 'Fred'] .
»>>> things[-2:] '
['Jack’, 'Jill'] 1
>>> things]:3] .
[0, 'Fred', 2] '
>>> things[:-5] 1
[0, 'Fred', 2] .
L o e o o o e m e m e — e m m o m m — e m m o m m o m m m e m e e e m e e m e e e mmmm——m— - 2
Here is a (HTML inspired) program example (copy and paste in the poem definition if ygu want
Pttt il ittt b
poem = ["", "Jack" , "and" , "Jil' , "" , "went" , "up" , "the" |
' “hil" , "to" , "", "“fetch" , "a", "pail' , "of" , "" , ,
1 "water." , "Jack" , “fell" , "", "down", "and" , "broke" .
: "" , "his" , "crown" , "and" , "", "Jil" , '"came" , '
' "" , "tumbling" , "after"] .
| 1
'def get_bolds (text): :
! true = 1 .
1 false = 0 !
' ## is_bold tells whether or not we are currently lo oking at 1
! ## a bold section of text. .
1 is_bold = false !
' ## start_block is the index of the start of either an unbolded :
1 ## segment of text or a bolded segment. .
. start_block = 0 '
' for index in range (len (text)): :
] ## Handle a starting of bold text .
' if textlindex] == "" '
! if is_bold: .
1 print ("Error: Extra Bold" .
' ## print "Not Bold:", text[start_block:index] h
! is_bold = true .
1 start_block = index + 1 .
' ## Handle end of bold text 1
' ## Remember that the last number in a slice is the index .
1 ## after the last index used. !
' if text[index] == "" 1
! if not is_bold: .
1 print ("Error: Extra Close Bold") !
' print ("Bold [* , start_block, ", index, "", text[start_block:index]) :
! is_bold = false .
| start_block = index + 1 !
1

1
Eget_bolds(poem) .
L o o o o o o o e mmmmmmmmmmmmm e = Az
with the output being:
5 il

Bold [1: 4] [Jack’, ‘and', 'Jill]
1

60 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Bold [11 : 15] ['fetch', 'a’, 'pail’, 'of'] '
'Bold [20 : 23] [down’, 'and", 'broke’] .
:Bold [28:30][Jill', 'came’] .
L o o o o e m e e e e m e e e mm e mm e m—— = A

Theget_bold() function takes in a list that is broken into words and tokens. The tokens that it looks for are
 which starts the bold text areB> which ends bold text. The functiget_bold() goes through and
searches for the start and end tokens.

The next feature of lists is copying them. If you try something simple like:

>>> a=[L,2, 3] '
>>> b=a :
1>>> print(b) '
1, 2, 3] f
1>>> p[1] = 10 .
>>> print(b) '
[1, 10, 3] :
>>> print(a) .
i1, 10, 3] !

1

This probably looks surprising since a modificatiom t@sulted ira being changed as well. What happened

is that the statement=a makes areferenceto a. This means that can be thought of as another name

for a. Hence any modification to changes as well. However some assignments don't create two names for
one list:

>>> a=[1,2,3] |
?>> b=a*2 :
>>> print(a) '
:[1, 2,3] 1
>>> print(b) .
1,2,3,1,2,3] :
>>> a[l] =10 1
>>> print(a) .
1, 10, 3] :
>>> print(b) |
(1,2,3,1,2,3] !
L e mmm e m e m e e e e e e e e e e e e e e m e m e e e e e e mmmmmmmmmmm—————— A

In this case is not a reference tosince the expressiern 2 creates a new list. Then the statenment

*2 givesb a reference ta*2 rather than a referencedoAll assignment operations create a reference.
When you pass a list as an argument to a function you create a reference as well. Magtnefyou don't
have to worry about creating references rather than copies. However when you need to madetiomsdif
to one list without changing another name of the list you have to make sure that you have aeatatyacr

copy.

There are several ways to make a copy of a list. The simplest that works mostroétisetitie slice
operator since it always makes a new list even if it is a slice of a whole list:

:>>> a=1[1,2,3]
>>> b =al]
>>> b[1] =10
1>>> print(a)
1,2, 3]

>>> print(b)

(1, 10, 3]

Taking the slicg:] creates a new copy of the list. However it only copies the outer list. Any sublist inside is
still a references to the sublist in the original list. Therefore, when tlwhisains lists, the inner lists have to

be copied as well. You could do that manually but Python already contains a module to do it. You use the
deepcopy function of thecopy module:

61 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

>>> import copy :
>>> a=[[1, 2, 3], [4, 5, 6]] "
>>> b =a[] "
>>> c = copy.deepcopy(a) i
>>> b[0][1] = 10 "
>>> c[1][1] = 12 !
>>> print(a) 1
([1, 10, 3], [4, 5, 6]] :
1>>> print(b) !
[[1, 10, 3], [4, 5, 6]] "
1>>> print(c) .
:[[1, 2, 3], [4, 12, 6]] :

First of all notice tha4 is a list of lists. Then notice that whejo][1] = 10 is run botha andb are
changed, but is not. This happens because the inner arrays are still references when therslioe ispe
used. However witkheepcopy ¢ was fully copied.

So, should I worry about references every time | use a functie Dne good news is that you only have to
worry about references when using dictionaries and lists. Numbers and stringgeieances when

assigned but every operation on numbers and strings that modifies them creates a new comnso you ¢
never modify them unexpectedly. You do have to think about references when you are modifying a list or ¢
dictionary.

By now you are probably wondering why are references used at all? The basic reason isispeech It
faster to make a reference to a thousand element list than to copy all the eleheeatbef reason is that it
allows you to have a function to modify the inputed list or dictionary. Just remember abarcesef you
ever have some weird problem with data being changed when it shouldn't be.

16. Revenge of the Strings

And now presenting a cool trick that can be done with strings:

1

:def shout (string):

1 for character in string:

' print ("Gimmea" + character)

' print (™" + character + ™")

1

ishout("Lose")

1

def middle (string):

! print ("The middle character is:" , string[len (string) /I 2])

middle("abcdefg")
:m?ddle("The Python Programming Language")
:mlddle("Atlanta")

1

:Gimme alL

‘L

Gimme a o

'o'

Gimme a s

IGimme a e

e’

iThe middle character is: d
:The middle character is: r

62 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

iThe middle character is: a i

What these programs demonstrate is that strings are similar to listeralsgays. Thehout() function
shows thator loops can be used with strings just as they can be used with lisisidfitkee procedure

shows that that strings can also usel¢h@ function and array indexes and slices. Most list features work
on strings as well.

The next feature demonstrates some string specific features:

[l ettt b
def to_upper (string): :
' ## Converts a string to upper case .
' upper_case = '
1 for character in string: 1
' if 'a’ <= character <= 'z’ : .
! location = ord (character) - ord ('a') '
1 new_ascii = location + ord ('A") 1
' character = chr (new_ascii) .
1 upper_case = upper_case + character !
. return upper_case '
1 1
1
:print (to_upper("This is Text") !
L e e e e e e e a
with the output being:
A
1 1
:THIS IS TEXT '
L e = e m m e e e e e e e e e - 4

This works because the computer represents the characters of a string as mombtete f1,114,111. For
example 'A' is 65, 'B' is 66 amds 1488. The values are the unicode value. Python has a function called
ord() (short for ordinal) that returns a character as a number. There is also a corredspmatiog called

chr() that converts a number into a character. With this in mind the program should start tr.bEhele

first detail is the lineif 'a’ <= character <= 'z": which checks to see if a letter is lower case. If it is
then the next lines are used. First it is converted into a location so that a =0, b = 1, ¢ = 2 andrsthen wit
line: location = ord(character) - ord(‘a’) . Next the new value is found witlew_ascii =

location + ord('A") . This value is converted back to a character that is now upper case. Note that if yot
really need the upper case of a letter, you should+vaeupper() which will work with other languages

as well.

Now for some interactive typing exerc

>>> # Integer to String
>>> 2

2

>>> repr(2)

3

>>> -123

1123

>>> repr(-123)
/-123'

:>>> # String to Integer
>>> "23"

123"

>>>int("23")

123

>>> "23"* 2

:'2323'

>>> int("23") * 2

146

>>> # Float to String
>>> 1.23

'1.23

>>> repr(1.23)
'1.23'

1

63 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

>>> # Float to Integer
>>> 1.23

11.23

>>> int(1.23)

1

>>> int(-1.23)

-1

1

>>> # String to Float
»>>> float("1.23")
.23

>>> "1.23"

'1.23

>>> float("123")
:123.0

L e e e e e e f e ff e Cf e mccf e mce e e c e e ccr e m e e e e e e e e e m e e e m e mmmmm e mm e mmmmm e mmm—— e —m e ————————— -

If you haven't guessed already the functigm() can convert an integer to a string and the funaitign
can convert a string to an integer. The functien() can convert a string to a float. Tleer() function
returns a printable representation of something. Here are some examples of this:

>>> repr(1) |
hq 1
Il 1
1>>> repr(234.14) :
1234.14' '
I>>> repr([4, 42, 10]) .
(4, 42, 10] :

1

Theint() function tries to convert a string (or a float) into an integer. There is alsolar $unction called
float() that will convert a integer or a string into a float. Another function that Python has:isihe
function. Theeval() function takes a string and returns data of the type that python thinks it found. For
example:

>>> v = eval('123") '
>>> print(v, type(v)) :
:123 <type 'int'> ,
»>>> v = eval('645.123") 1
>>> print(v, type(v)) :
:645.123 <type ‘float’> '
>>> v =eval([1, 2, 3]) i
>>> print(v, type(v)) :
:[1, 2, 3] <type 'list'> !

a

If you use theeval() function you should check that it returns the type that you expect.

One useful string function is thelit() method. Here's an example:

>>> "This is a bunch of words".split() :
['This', "is', 'a’, 'bunch’, 'of', 'words'] .
>>> text = "First batch, second batch, third, fourth” '
>>> text.split(",") |
:['First batch', ' second batch’, ' third', ' fourth 1 .

1

Notice hovsplit) ~ converts a string into a list of strings. The string is split by whitespace by daféylt
the optional argument (in this case a comma). You can also add another argumens shiat)tell how
many times the separator will be used to split the text. For example:

1>>> list = text.split(",")
:>>> len(list)

[}

>>> list[-1]

/' fourth'

>>> list = text.split(",", 2)
1>>> len(list)

64 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

i3
>>> list[-1]
:' third, fourth'

1
1
1
1
1
1
i -

Slicing strings (and lists)

Strings can be cut into pieces — in the same way as it was shown for lists in the preajias € by using
theslicing "operator'[] . The slicing operator works in the same way as before: text[first_index:last_index]
(in very rare cases there can be another colon and a third argument, as in the example @wpwn bel

In order not to get confused by the index numbers, it is easiest to see ttlgpiag placespossibilities to
cut a string into parts. Here is an example, which shows the clipping places (in yeltbtheir index
numbers (red and blue) for a simple text string:

o 1 2 .. -2 1
N 2 T T
text=" S T R | N G
1 1

Note that the red indexes are counted from the beginning of the string and the blue ones finonot tie
string backwards. (Note that there is no blue -0, which could seem to be logical at thehenstraig.
Becauseo ==0 , -0 means "beginning of the string" as well.) Now we are ready to use the indexes for
slicing operations:

text[1:4] — "TRI"
text[5] — "STRIN"
text[x1] — "STRIN"
text[-4] — "RING"
text2] — 'R

text] — "STRING"
text[-1] — "GNIRTS"

text[1:4] gives us all of theext string between clipping places 1 and#RiI™. If you omit one of the
[first_index:last_index] arguments, you get the beginning or end of the string as defaqalt: gives

"STRIN". For bothfirst_index andiast_index ~ we can use both the red and the blue numbering schema:
text[:-1] gives the same ast[:5] , because the index -1 is at the same place as 5 in this case. If we do
not use an argument containing a colon, the number is treated in a differerixy@y: gives us one

character following the second clipping poiret;."The special slicing operatiaext:] means "from the
beginning to the end" and produces a copy of the entire string (or list, as shown in the previous chapte

Last but not least, the slicing operation can have a second colon and a third argument, mikighased as
the "step size'text[::-1] istext from beginning to the end, with a step size of -1. -1 means "every
character, but in the other direction$TRING" backwards iSGNIRTS' (test a step length of 2, if you have
not got the point here).

All these slicing operations work with lists as well. In that sense striegssira special case of lists, where

the list elements are single characters. Just remember the conclampiofy placesand the indexes for
slicing things will get a lot less confusing.

Examples

65 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

This program requires an excellent understanding of decimal numbers.
def to_string (in_int):
L Converts an integer to a string

out_str =
prefix =
if in_int < O:
prefix =
in_int = -in_int
while in_int // 10 != 0:
out_str = str (in_int % 10) + out_str
in_int = in_int // 10
out_str = str (in_int % 10) + out_str

return prefix + out_str

to_int (in_str):
""" Converts a string to an integer
out_num = 0
if in_str[0] ==
multiplier = -1
in_str = in_str[1:]
else :
multiplier = 1
for ¢ in in_str:
out_num = out_num * 10 + int (c)
return out_num * multiplier

e L T
0]
=

:print (to_string(2))

jprint (to_string(23445))

print (to_string(-23445))

print - (to_int("14234"))
jprint - (to_int("12345"))
:print (to_int("-3512")

1
1
123445 .
-23445 '
114234 '
112345 '
-3512]
1 1

1

17. File 1O

File /1O

Here is a simple example of file I/O (input/output):

Write a file
Wwith open ("test.txt" , "wt") as out_file:
! out_file.write("This Text is going to out file \n Look at it and see!")

1
1
1
1
1
1
1 1
1# Read a file .
:vvith open ("test.txt" , 't) as in_file: '
1 text = in_file.read() 1
. '
1
1
A

Eprint (text)

\This Text is going to out file
:Look at it and see!

66 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

Notice that it wrote a file calletest.txt in the directory that you ran the program from. Then the
string tells Python to put@ewline where it is.

A overview of file /O is:

= Get a file object with thepen function
= Read or write to the file object (depending on how it was opened)
= |f you did not usevith to open the file, you'd have to close it manually

The first step is to get a file object. The way to do this is to usepthefunction. The format is
file_object = open(filename, mode) wherefile_object is the variable to put the file object,
filename IS a string with the filename, andde is'rt" toread a file agext or'wt* towrite a file agext
(and a few others we will skip here). Next the file objects functions can be calledvd@ h@st common
functions areead andwrite . Thewrite function adds a string to the end of the file. Tdw@ function
reads the next thing in the file and returns it as a string. If no argument is givitneitusn the whole file
(as done in the example).

Now here is a new version of the phone numbers program that we made

def print_numbers (numbers):
print ("Telephone Numbers:")
for k, v in numbers.items():
print ("Name:" , k, "\t Number:" , v)
print ()

def add_number (numbers, name, number):
numbers[name] = number

def lookup_number (numbers, name):
if name in numbers:
return "The numberis " + numbers[name]
else :
return name + " was not found"

def remove_number (humbers, name):
if name in numbers:
del numbers[hame]
else :
print (name, " was not found")

1

|

1

1

1

1

1

1

1

1

1

!

1

1

1

1

I

1

1

1

1

1

1

1

1

1

)

1

1

1

1

1

:

1

def load_numbers (numbers, filename):
' in_file = open (filename, rtt)
1 while True :

' in_line = in_file.readline()

' if not in_line:

1
1
1
1
1
1
1
1
1
1
)
1
1
1
1
1
1
1
1
1
)
1
1
1
1
1
1
1
1
1
1
1
1
1
1

break
in_line = in_line[:-1]
name, number = in_line.split(")
numbers[name] = number
in_file.close()

def save_numbers (numbers, filename):

out_file = open (filename, "wt")
for k, v in numbers.items():
out_file.write(k + "o+ v+ "\nt)

out_file.close()

def print_menu ():

print (1. Print Phone Numbers')
print ('2. Add a Phone Number')
print ('3. Remove a Phone Number)
print ('4. Lookup a Phone Number')
print ('5. Load numbers')

print ('6. Save numbers')

print ('7. Quit')

print ()

phone_list = {}
:menu_choice =0
1

67 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

:print_menu()

while T
if

elif

elif
elif

elif
elif

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
: elif
1

1

1

1

1

1

1

1

]

1. Print P

rue :

menu_choice = int (input ("Type in anumber (1-7): "

menu_choice ==
print_numbers(phone_list)
menu_choice == 2:

print ("Add Name and Number")
name = input ("Name:")

phone = input ("Number:")
add_number(phone_list, name, phone)
menu_choice ==

print ("Remove Name and Number")
name = input ("Name:")
remove_number(phone_list, name)
menu_choice ==

print ("Lookup Number")

name = input ("Name:")

print (lookup_number(phone_list, name))
menu_choice ==

filename = input ("Filename to load: ")
load_numbers(phone_list, filename)
menu_choice == 6:

filename = input ("Filename to save: ")
save_numbers(phone_list, filename)
menu_choice ==

break

else :

print_menu()

print ("Goodbye")

hone Numbers

12. Add a Phone Number
3. Remove a Phone Number

5. Load n
6. Save n
7. Quit

Type in a

'4. Lookup a Phone Number

umbers
umbers

number (1-7): 2

:Add Name and Number
Name: Jill

Number:
Type in a

1234
number (1-7): 2

1Add Name and Number

Name: F
'Number:
iType in a
\Telephon
:Name: Jil
Name: Fr
1

EType ina
Filename
Type in a
:Goodbye

!
1. Print P

red
4321
number (1-7): 1
e Numbers:
I Number: 1234
ed Number: 4321

number (1-7): 6

to save: numbers.txt
number (1-7): 7

hone Numbers

12. Add a Phone Number
13. Remove a Phone Number
14. Lookup a Phone Number

5. Load n
6. Save n
17. Quit

1

Type in a
:Filename
iType in a
iTelephon
:Name: Jil
Name: Fr
1

1

Type in a
1

1

68 sur 74

umbers
umbers

number (1-7): 5
to load: numbers.txt
number (1-7): 1

e Numbers:

I Number: 1234

ed Number: 4321

number (1-7): 7

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

)

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

iGoodbye
L o o e — e e — e m e m e m o m e m e mmmmmmm——— -

The new portions of this program are:

def

First we will look at the save portion of the program. First it creates a filetokigh the command
. Next it goes through and creates a line for each of the phone numbers with the
. This writes out a line that contains the name, a

open(filename, "wt")

load_numbers (numbers, filename):
in_file = open (filename, rtt)
while True :
in_line = in_file.readline()
if not in_line:
break
in_line = in_line[:-1]
name, number = in_line.split(")
numbers[name] = number
in_file.close()

save_numbers (numbers, filename):

out_file = open (filename, "wt")
for k, v in numbers.items():
out_file.write(k + "o+ v+ "\n")

out_file.close()

commancbut_file.write(k + "," + v + "\n")
comma, the number and follows it by a newline.

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

The loading portion is a little more complicated. It starts by getting a filetobjeen it uses ahile True:

loop to keep looping until Break statement is encountered. Next it gets a line with thenlinee =

in_file.readline() . Thereadline function will return a empty string when the end of the file is reached.

Theif statement checks for this am@dak s out of thewhile
function did not return the newline at the end of the line there would be no way to tell if an empty
string was an empty line or the end of the file so the newline is left inredaitibe
have to get rid of the newline. The limeline = in_line[:-1]
character. Next the lineame, number = in_line.split(",")

and a number. This is then added tortlvebers dictionary.

readline

Advanced use of .txt files

loop when that happens. Of course if the

returns. Hence we
does this for us by dropping the last
splits the line at the comma into a name

You might be saying to yourself, "Well | know how to read and write to a textfile, but whaaiitl tev print
the file without opening out another program?"

There are a few different ways to accomplish this. The easiest way does open angther, grut

everything is taken care of in the Python code, and doesn't require the user to specify a fitentede
This method involves invoking the subprocess of another program.

Remember the file we wrote output to in the above program? Let's use that filenkeied,iin order to
prevent some errors, this program uses concepts from the Next chapter. Pldese feeévisit this
example after the next chapter.

1
'import subprocess

def

69 sur 74

main ():

try
print ("This small program invokes the print function in t
#Lets print the file we created in the program abov
subprocess.call(['notepad’ ,'/p' , 'numbers.txt'

except WindowsError :

print ("The called subprocess does not exist, or cannot be

)

he Notepad application”

called.”

)

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

The subprocess.call takes three arguments. The first argument in the context of this example, should be
the name of the program which you would like to invoke the printing subprocess from. The second argume
should be the specific subprocess within that program. For simplicity, just understaindhisaprogram,

'/p' IS the subprocess used to access your printer through the specified application. Thentestta

should be the name of the file you want to send to the printing subprocess. In this case, itrie file sa

used earlier in this chapter.

Exercises

Now modify the grades program from sec Dictionaries so that is uses file 1/0O to keep a record of the

students.

Solution

Now modify the grades program from sec Dictionaries so that is uses file 1/0O to keep a record of the

students.
ettt e b
jassignments = [‘hwch 1’ 'hwch?2' , 'quiz ' , 'hwch3 'test
istudents = { }
1
1
‘def load_grades (gradesfile):
inputfile = open (gradesfile, "r)

grades = []

while True :
student_and_grade =
student_and_grade =

break
else :

def print_all_grades 0:
if students:

print ('\t ', end="

print (x, '\t
print ()
for x in keys:
print (x, '\t

else :

def print_grades (grades):

70 sur 74

if not student_and_

inputfile.readline()
student_and_grade[:-1]
grade:

studentname, studentgrades = student_and_grade.split(

studentgrades = studentgrades.split()
students[studentname] = studentgrades
inputfile.close()
print ("Grades loaded.")
def save_grades (gradesfile):
outputfile = open (gradesfile, W)
for k, v in students.items():
outputfile.write(k + ")
for x in v
outputfile.write(str (x) + """)

outputfile.write("\n")
outputfile.close()
print ("Grades saved.")

def print_menu ():

print ("1. Add student")
print ("2. Remove student")
print ("3. Load grades")
print ("4. Record grade")
print ("5. Print grades")
print ("6. Save grades")
print ("7. Print Menu")
print ("9. Quit")

keys = sorted (students.keys())

for x in assignments:

)
",end="")
",end="")

grades = students[x]
print_grades(grades)

print ("There are no grades to print.")

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print vensidMikibooks, ope.

' for x in grades:
1 print (x, "\t ', end="'"")
' print ()
1
:print_menu()
imenu_choice = 0
while menu_choice = 9:
print ()
menu_choice = int (input ("Menu Choice:")

if menu_choice ==
name = input ("Studentto add: ")
students[name] = [0] len (assignments)

https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

i
1
1
1
1
1
1
1
1
1
' |
! 1
! 1
! 1
! 1
! 1
! 1
! 1
: elif menu_choice == 2: .
' name = input ("Studentto remove:") ,
' if name in students: !
' del students[name] ,
' else : '
' print ("Student:" , name, "notfound") 1
' elif menu_choice == .
' gradesfile = input ("Load grades from which file? ") '
' load_grades(gradesfile) 1
' elif menu_choice == .
' print ("Record Grade") '
' name = input ("Student:") '
' if name in students: .
' grades = students[name] '
! print ("Type in the number of the grade to record") i
| print ("Type a O (zero) to exit") .
' for i,x in enumerate (assignments): !
1 print (i + 1, X, "\t ', end="") .
1 . 1
1 pf!nt 0 1
' prlnt_grades(grades) '
' which = 1234 '
: while which I= -1: '
' which = int (input ("Change which Grade: ") 1
1 which -= 1 ,
' if 0 <= which < len (grades): '
' grade = input ("Grade:") # Change from float(input()) to input() to avoid an error when
' grades[which] = grade .
' elif which 1= -1: '
' print ("Invalid Grade Number") 1
' else : .
' print ("Student not found") '
! elif ~ menu_choice == 5: 1
' print_all_grades() .
' elif menu_choice == '
1 gradesfile = input ("Save grades to which file? ") |
: save_grades(gradesfile) !
' elif menu_choice = 9: 1
! print_menu() ,
L o o o o o e 2
...or how to handle errors
closing files with with
We use the "with" statement to open and close flé3.
T TS E S E S E |
1
with open ("in_test.txt" , 't) as in_file: |
1 with open ("out_test.txt" , "wt") as out_file: .
' text = in_file.read() !
! data = parse(text) i
' results = encode(data) .
' out_file.write(results) !
! print ("All done.") 1
L o o e e e e e e A

71 sur 74

14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

If some sort of error happens anywhere in this code (one of the files is inaccessiteséfefunction
chokes on corrupt data, etc.) the "with" statements guarantee that all thellféesmiually be properly
closed. Closing a file just means that the file is "cleaned up" and "released” bpgranpso that it can be
used in another program.

catching errors with try

So you now have the perfect program, it runs flawlessly, except for one detalil, ibglilan invalid user
input. Have no fear, for Python has a special control structure for you. It'stealladd it tries to do
something. Here is an example of a program with a problem:

jprint ("Type Control C or -1 to exit") '
mumber = 1 .
while number != -1: ,
! number = int (input ("Enter a number: ") |
1 print ("You entered:" , number) .

1

1
:Traceback (most recent call last):
1 File "try_less.py", line 4, in <module>

i number = int(input("Enter a number: "))

:ValueError: invalid literal for int() with base 10: @#&'

As you can see thet() function is unhappy with the numbews&(as well it should be). The last line
shows what the problem is; Python foundaueError . How can our program deal with this? What we do
is first: put the place where errors may occur iy ablock, and second: tell Python how we want
ValueError S handled. The following program does this:

jprint ("Type Control C or -1 to exit") :
number = 1 .
while number != -1: '
' try :]
! number = int (input ("Enter a number: ")) .
| print ("You entered:" , number) '
' except ValueError |
! print ("That was not a number.") .

1

Now when we run the new program and gir @#&it tells us "That was not a number." and continues with
what it was doing before.

When your program keeps having some error that you know how to handle, put cagle biaxk, and put
the way to handle the error in teeept block.

Exercises

Update at least the phone numbers program (in section Dictionaries) so it doshriftatser doesn't enter
any data at the menu.

19. The End

So here we are at the end, or maybe the beginning. This tutorial is on Wikibooks, so feel &ike to m
improvements to it. If you want to learn more about Python, The Python Tutorial (http://docs.python.org

72 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

/3/tutorial/index.html) by Guido van Rossum (http://www.python.org/~guido/) has more togig®thean
learn about. If you have been following this tutorial, you should be able to understand a fair amount of it.
The Python Programming wikibook can be worth looking at, too. Here are few other books which cover
Python 3:

= A Byte of Python by Swaroop C H (http://www.swaroopch.com/notes/Python)

» Hands-on Python Tutorial by Dr. Andrew N. Harrington (http://anh.cs.luc.edu/python/hands-on/3.1
/handsonHtml/index.html)

m Subject:Python programming language lists other Wikibooks related to Python.

Hopefully this book covers everything you have needed to get started programming. Thanks to everyone
who has sent me emails about it. | enjoyed reading them, even when | have not always beeretiiebest r

Happy programming, may it change your life and the world.

20. FAQ

How do | make a GUI in Python?
You can use one of these library: TKinter (https://docs.python.org/3.5/library/tkintgr.RiyrQit
(https:/Iriverbankcomputing.com/software/pyqt/intro), PyGobject (https://wuikarge.org/Projects
/PyGObiject). For really simple graphics, you can use the turtle graphicsmpodeurtie

How do | make a game in Python?
The best method is probably to use PyGame at http://pygame.org/

How do | make an executable from a Python program?
Short answer: Python is an interepreted language so that is impossible. Long atigtesoisething
similar to an executable can be created by taking the Python interpreter and the @leiagdhem
together and distributing that. For more on that problem see http://www.python.org/doc/faq
/programming/#how-can-i-create-a-stand-alone-binary-from-a-python-script

(IFAQ) Why do you use first person in this tutorial?
Once upon a time in a different millenia, (1999 to be exact), an earlier version was emitirely by
Josh Cogliati, and it was up on his webpage http://www.honors.montana.edu/~jjc/easytwiaand it
good. Then the server rupert, like all good things than have a beginning came to an end, and Josh
moved it to Wikibooks, but the first person writing stuck. If someone really wants to changd it
not revert it, but | don't see much point.

My question is not answered.
Ask on the discussion page or add it to this FAQ, or email one of the Authors.

For other FAQs, you may want to see the Python 2.6 version of this page Non-Programmerdofutoria
Python 2.6/FAQ, or the Python FAQ (https://docs.python.org/3.5/faq/).

1."The 'with' statement” (http://docs.python.org/3.4/reference/compound_stmts.htmk#the
with-statement)

2.'The Python "with" Statement by Example' (http://preshing.com/20110920/the-pythonatémsnt-
by-example/)

Retrieved from "https://en.wikibooks.org/w/index.php?title=Non-Programmer%?2 tgidlufor Python_3
/Print_version&oldid=2694445"

73 sur 74 14/01/2016 19:7

Non-Programmer's Tutorial for Python 3/Print versidMikibooks, ope. https://en.wikibooks.org/w/index.php?titte=Non-Praxgpmer's_Tutorial

m This page was last modified on 25 August 2014, at 01:26.
m Text is available under the Creative Commons Attribution-ShareAlike Licemightipaal terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy.

74 sur 74 14/01/2016 19:7

