MicroProfile Telemetry Tracing

MicroProfile Telemetry Spec group (Roberto Cortez, Emily Jiang, Bruno Baptista,
Jan Westerkamp, Felix Wong, Yasmin Aumeeruddy)

1.0-RC1, August 09, 2022: Draft



Table of Contents

Introduction
Architecture
Automatic Instrumentation
Manual Instrumentation
@WithSpan
Obtain a SpanBuilder
Obtain the current Span
Agent Instrumentation
Access to the OpenTelemetry Tracing API
Configuration
Semantic Conventions
MicroProfile Attributes
Tracing Enablement
MicroProfile OpenTracing
MicroProfile Telemetry and MicroProfile OpenTracing

© 00 I O O O U1 U1 b W DN DN DN



Introduction

In cloud-native technology stacks, distributed and polyglot architectures are the norm. Distributed
architectures introduce a variety of operational challenges including how to solve availability and
performance issues quickly. These challenges have led to the rise of observability.

Telemetry data is needed to power observability products. Traditionally, telemetry data has been
provided by either open-source projects or commercial vendors. With a lack of standardization, the
net result is the lack of data portability and the burden on the user to maintain the
instrumentation.

The OpenTelemetry project solves these problems by providing a single, vendor-agnostic solution.


https://opentelemetry.io

Architecture

OpenTelemetry is a set of APIs, SDKs, tooling and integrations that are designed for the creation and
management of telemetry data such as traces, metrics, and logs.

This specification defines the behaviors that allow MicroProfile applications to easily participate in
an environment where distributed tracing is enabled via OpenTelemetry (a merger between
OpenTracing and OpenCensus).

This document and implementations MUST comply with the following OpenTelemetry 1.11.0
specifications:

* OpenTelemetry Overview (except for Metrics)

» Tracing API

* Baggage API

Context API

¢ Resource SDK

The Metrics and Logging integrations of OpenTelemetry are out of scope of
IMPORTANT this specification. Implementations are free to provide support for both
Metrics and Logging if desired.

This specification supports the following three type of instrumentions: Automatic Instrumentation,
Manual Instrumentation and Agent Instrumentation.

Automatic Instrumentation

Jakarta RESTful Web Services (server and client), and MicroProfile REST Clients are automatically
enlisted to participate in distributed tracing without code modification as specified in the Tracing
APIL.

These should follow the rules specified in the Semantic Conventions section.

Manual Instrumentation

Explicit manual instrumentation can be added into a MicroProfile application in the following
ways:

@WithSpan

Annotating a method in any Jakarta CDI aware beans with the
io.opentelemetry.extension.annotations.WithSpan annotation. This will create a new Span and
establish any required relationships with the current Trace context.

Method parameters can be annotated with the
io.opentelemetry.extension.annotations.SpanAttribute annotation to indicate which method


https://opentelemetry.io
https://opentelemetry.io
https://opentracing.io
https://opencensus.io
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.11.0/specification/overview.md
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.11.0/specification/trace/api.md
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.11.0/specification/baggage/api.md
https://github.com/open-telemetry/opentelemetry-specification/tree/v1.11.0/specification/context
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.11.0/specification/resource/sdk.md
https://opentelemetry.io
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.11.0/specification/trace/api.md
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.11.0/specification/trace/api.md

parameters should be part of the Trace.

Example:

@ApplicationScoped
class SpanBean {
@WithSpan
void span() {

}

@WithSpan("name")
void spanName() {

}

@WithSpan(kind = SERVER)
void spanKind() {

}

@WithSpan
void spanArgs(@SpanAttribute(value = "arg") String arg) {

}
}
Obtain a SpanBuilder
By obtaining a SpanBuilder from the current Tracer and calling

io.opentelemetry.api.trace.Tracer.spanBuilder(String). In this case, it is the developer’s
responsibility to ensure that the Span is properly created, closed, and propagated.

Example:



/")

public class SpanResource {

Tracer tracer;

("/span/new")
public Response spanNew() {

Span span = tracer.spanBuilder("span.new")
.setSpanKind(INTERNAL)
.setParent(Context.current().with(this.span))
.setAttribute("my.attribute", "value")
.startSpan();

span.end();

return Response.ok().build();

Start and end a new Span will add a child Span to the current one enlisted by the

NOTE .. . C
automatic instrumentation of Jakarta REST Applications.

Obtain the current Span

By obtaining the current Span to add attributes. The Span lifecycle is managed by the
implementation.

Example:

"/")

public class SpanResource {

("/span/current")
public Response spanCurrent() {
Span span = Span.current();
span.setAttribute("my.attribute", "value");
return Response.ok().build();

Or with CDI:



/")

public class SpanResource {

Span span;

("/span/current")
public Response spanCurrent() {
span.setAttribute("my.attribute", "value");
return Response.ok().build();

Agent Instrumentation

Implementations are free to support the OpenTelemetry Agent Instrumentation. This provides the
ability to gather telemetry data without code modifications by attaching a Java Agent JAR to the
running JVM.

If an implementation of MicroProfile Telemetry Tracing provides such support, it must conform to
the instructions detailed in the OpenTelemetry Java Instrumentation project, including:

» Agent Configuration

» Suppressing Instrumentation

Both Agent and MicroProfile Telemetry Tracing Instrumentation (if any), must coexist with each
other.

Access to the OpenTelemetry Tracing API

An implementation of MicroProfile Telemetry Tracing must provide the following CDI beans for
supporting contextual instance injection:

* jo.opentelemetry.api.OpenTelemetry

* jo.opentelemetry.api.trace.Tracer

* jo.opentelemetry.api.trace.Span

* jo.opentelemetry.api.baggage.Baggage
Calling the OpenTelemetry API directly must work in the same way and yield the same results:

* io.opentelemetry.api.GlobalOpenTelemetry.get()
* jo.opentelemetry.api.trace.Span.current()

* jo.opentelemetry.api.baggage.Baggage.current()

To obtain the Tracer with the OpenTelemetry API, the consumer must use the exact same


https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/v1.14.0/docs/agent-config.md
https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/v1.14.0/docs/suppressing-instrumentation.md

instrumentation name and version used by the implementation. Failure to do so, may result in a
different Tracer and incorrect handling of the OpenTelemetry data.

Configuration

OpenTelemetry must be configured by MicroProfile Config following the configuration properties
detailed in:

* OpenTelemetry SDK Autoconfigure (excluding properties related to Metrics).

* Manual Instrumentation

An implementation may opt to not support a subset of configuration properties related to a specific
configuration. For instance, otel.traces.exporter is required but if the implementation does not
support jaeger as a valid exporter, then all configuration properties referring to
otel.tracer.jaeger.* are not required.

Semantic Conventions

The Trace Semantic Conventions for Spans and Attributes must be followed by any compatible
implementation.

All attributes marked as required must be present in the context of the Span where they are
defined. Any other attribute is optional. Implementations can also add their own attributes.

MicroProfile Attributes

Other MicroProfile specifications can add their own attributes under their own attribute name
following the convention mp.[specification short name].[attribute name].

Implementation libraries can set the library name using the following property:

mp.telemetry.tracing.name


https://github.com/open-telemetry/opentelemetry-java/tree/v1.14.0/sdk-extensions/autoconfigure
https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/v1.14.0/docs/manual-instrumentation.md
https://github.com/open-telemetry/opentelemetry-specification/tree/v1.11.0/specification/trace/semantic_conventions

Tracing Enablement

By default, MicroProfile Telemetry tracing is off. In order to enable any of the tracing aspects, the
configuration otel.experimental.sdk.enabled=true must be specified in any of the config sources
available via MicroProfile Config. This property is read once when the application is starting. Any
changes afterwards will not take effect unless the application is restarted.



MicroProfile OpenTracing

MicroProfile Telemetry Tracing supercedes MicroProfile OpenTracing. Even if the end goal is the
same, there are some considerable differences:

* Different API (between OpenTracing and OpenTelemetry)
* No @Traced annotation

* No specific MicroProfile configuration

* No customization of Span name through MicroProfile API

* Differences in attribute names and mandatory ones

For these reasons, the MicroProfile Telemetry Tracing specification does not provide any migration
path between both projects. While it is certainly possible to achieve a migration path at the code
level and at the specification level (at the expense of not following the main OpenTelemetry
specification), it is unlikely to be able to achieve the same compatibility at the data layer.
Regardless, implementations are still free to provide migration paths between MicroProfile
OpenTracing and MicroProfile Telemetry Tracing.

If a migration path is provided, the bridge layer provided by OpenTelemetry should be used. This
bridge layer implements OpenTracing APIs using OpenTelemetry APIs (more details can be found
from OpenTracing Compathility. The bridge layer takes OpenTelemetry Tracer and exposes as
OpenTracing Tracer. See the example below.

//From the global OpenTelemetry configuration

Tracer tracer1 = OpenTracingShim.createTracerShim();
//From a provided OpenTelemetry instance oTel

Tracer tracer2 = OpenTracingShim.createTracerShim(oTel);

Afterwards, you can then register the tracer as the OpenTracing Global Tracer:

GlobalTracer.registerIfAbsent(tracer);


https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/compatibility/opentracing.md

MicroProfile Telemetry and MicroProfile
OpenTracing

If MicroProfile Telemetry and MicroProfile OpenTracing are both present in one application, it is
advised only to enable one of them. Otherwise, no portalbe behaviour will occur.



	MicroProfile Telemetry Tracing
	Table of Contents
	Introduction
	Architecture
	Automatic Instrumentation
	Manual Instrumentation
	@WithSpan
	Obtain a SpanBuilder
	Obtain the current Span

	Agent Instrumentation
	Access to the OpenTelemetry Tracing API
	Configuration
	Semantic Conventions
	MicroProfile Attributes


	Tracing Enablement
	MicroProfile OpenTracing
	MicroProfile Telemetry and MicroProfile OpenTracing

