Vegan: an introduction to ordination

Jari Oksanen

processed with vegan 2.7-2 in R version 4.5.1 (2025-06-13) on October 8, 2025

Abstract

The document describes typical, simple work pathways of vegetation
ordination. Unconstrained ordination uses as examples detrended corre-
spondence analysis and non-metric multidimensional scaling, and shows
how to interpret their results by fitting environmental vectors and factors
or smooth environmental surfaces to the graph. The basic plotting com-
mand, and more advanced plotting commands for congested plots are also
discussed, as well as adding items such as ellipses, convex hulls, and other
items for classes. The constrained ordination uses constrained (canonical)
correspondence analysis as an example. It is first shown how a model
is defined, then the document discusses model building and significance
tests of the whole analysis, single constraints and axes.

Contents

I_Ordination 1
[1.1 Detrended correspondence analysis| 2
1.2 Non-metric multidimensional scaling| 2

2 Ordination graphics| 3
2.1 Cluttered plots| oo 4
2.2 Adding items to ordination plots| L. 5

[3 Fitting environmental variables| 5

I C ed mation 7
4.1 Significance tests| Lo 9
4.2 Conditioned or partial ordination| 10

Vegan is a package for community ecologists. This documents explains how the
commonly used ordination methods can be performed in vegan. The document
only is a very basic introduction. The current document only describes a small
part of all vegan functions. For most functions, the canonical references are
the vegan help pages.

1 Ordination

The vegan package contains all common ordination methods: Principal compo-
nent analysis (functions pca and rda, or prcomp in the base R), correspondence

analysis (ca, cca), detrended correspondence analysis (decorana), metric scal-
ing, also known as principal coordinate analysis (pco, wemdscale, or cmdscale
in base R), non-metric multidimensional scaling (monoMDS) with wrapper for
common pipeline of use (metaMDS). Functions rda and cca mainly are designed
for constrained ordination, and will be discussed later. In this chapter I describe
functions decorana and metaMDS.

1.1 Detrended correspondence analysis

Detrended correspondence analysis (DCA) is done like this:

> library(vegan)
> data(dune)
> ord <- decorana(dune)

This saves ordination results in ord:
> ord
Call:

decorana(veg = dune)

Detrended correspondence analysis with 26 segments.
Rescaling of axes with 4 iteratioms.
Total inertia (scaled Chi-square): 2.1153

DCA1 DCA2 DCA3 DCA4

Eigenvalues 0.5117 0.3036 0.12125 0.14267
Additive Eigenvalues 0.5117 0.2985 0.12242 0.12984
Decorana values 0.5360 0.2869 0.08136 0.04814
Axis lengths 3.7004 3.1166 1.30055 1.47888

The display of results is very brief: only eigenvalues and used options are
listed. Actual ordination results are not shown, but you can extract them with
command scores(ord). The plot function also automatically knows how to
access the scores.

1.2 Non-metric multidimensional scaling

Function metaMDS is a bit special case. The actual ordination is performed by
vegan function monoMDS. Function metaMDS is a wrapper to perform non-metric
multidimensional scaling (NMDS) like recommended in community ordination:
it uses adequate dissimilarity measures (function vegdist), then it runs NMDS
several times with random starting configurations, compares results (function
procrustes), and stops after finding twice a similar minimum stress solution.
Finally it scales and rotates the solution, and adds species scores to the config-
uration as weighted averages (function wascores):

> ord <- metaMDS(dune, trace = FALSE)
> ord

Call:
metaMDS (comm = dune, trace = FALSE)

global Multidimensional Scaling using monoMDS

1.0

NMDS2

-0.5
|
o

1.0 ~05 0.0 0.5 1.0 15 Figure 1: Default ordination
NMDST plot.

Data: dune
Distance: bray

Dimensions: 2

Stress: 0.1183186

Stress type 1, weak ties

Best solution was repeated 2 times in 20 tries

The best solution was from try 5 (random start)
Scaling: centring, PC rotation, halfchange scaling
Species: expanded scores based on ‘dune’

2 Ordination graphics

Ordination is nothing but a way of drawing graphs, and it is best to inspect
ordinations only graphically (which also implies that they should not be taken
too seriously).

All ordination results of vegan can be displayed with a plot command (Fig.

)

> plot(ord)

Default plot command uses either black circles for sites and red pluses for
species, or black and red text for sites and species, resp. The choices depend on
the number of items in the plot and ordination method. You can override the
default choice by setting type = "p" for points, or type = "t" for text. For a
better control of ordination graphics you can first draw an empty plot (type =
"n") and then add species and sites separately using points or text functions.
In this way you can combine points and text, and you can select colours and
character sizes freely (Fig. . The easiest way is to build the plot by layers
using pipe (|>).
> plot(ord, type = "n") |[>

points("sites", cex = 0.8, pch=21, col="red", bg="yellow") [>

text ("species", cex=0.7, col="blue")

Araprae Empenigr

- Hyporadi

1.0

= o

Anthodor

Salirepe

Comapalu

N Viclath o
g ° °
= Planlanc Caleusp
4 Scorautu o
. Bracruta Eleopalu
o | AchiBiEt Trifrepe Ranuflam
° Mumeacet Juncarti
LBpperprat Sagiproc? Agrostol °
Bromhord
g B ° Poatg? °
! Junchifpgent
° Elymrepe
Cirsarve . .
= Orenaiy Figure 2: A more colourful ordi-
] T T T T T T . . .
1.0 05 0.0 05 1.0 15 nation plot Where sites are pOlIltS
NMDST and species are text.

All vegan ordination methods have a specific plot function. In addition,
vegan has an alternative plotting function ordiplot that also knows many
non-vegan ordination methods, such as prcomp and cmdscale. All vegan plot
functions return invisibly an ordiplot object, so that you can use ordiplot
support functions with the results (points, text, identify).

Alternative plotting methods are available in two packages:

e vegan3d in CRAN provides static 3D plots (ordiplot3d), dynamic 3D

plots that can be spinned around or zoomed (ordirgl) and interactive 2D
plots that can be edited moving point labels to better position (orditkplot).

ggvegan in github provides ggplot2 graphics for most vegan objects.
The vegan scores functions for ordination objects (and some others)
recognize argument tidy which can be used to extract scores for ggplot2
graphics. (There are some lattice graphics functions in vegan, but the
plan is to phase out these in favour of ggvegan graphics.)

2.1 Cluttered plots

Ordination plots are often congested: there is a large number of sites and species,
and it may be impossible to display all clearly. In particular, two or more species
may have identical scores and are plotted over each other. Here some methods
you can try:

e Use ounly points if you do not need to identify the item (and function

identify can be used to add labels some of the points).

Most vegan plot and text functions know arguments optimize and bg.
With optimize=TRUE the exact scores are shown with labelled points, and
the labels are positioned to minimize over-plotting. Argument bg gives the
background colour of labels. With background you cannot see the text or
points below the label, but you can read at least the uppermost text.
These arguments can be used together. These two arguments often help
with moderate cluttering.

e Zoom into graph setting axis limits x1im and ylim. You must typically
set both, because vegan will maintain equal aspect ratio of axes.

e Use points and add label only to some points with identify command.

e Use select argument in ordination text and points functions to only
show the specified items, possibly combined with argument labels for
shorter names.

e Use automatic orditorp function that uses text only if this can be done
without overwriting previous labels, but points in other cases.

e Use interactive orditkplot function in vegan3d that draws both points
and labels for ordination scores, and allows you to drag labels to better
positions. You can export the edited graph in several graphical formats,
or return the edited positions to R for further processing.

2.2 Adding items to ordination plots

Vegan has a group of functions for adding information about classification or
grouping of points onto ordination diagrams. Function ordihull adds convex
hulls, ordiellipse adds ellipses enclosing all points in the group (ellipsoid hulls)
or ellipses of standard deviation, standard error or confidence areas, ordibar
draws a cross corresponding to the principal axes of ellipses, and ordispider
combines items to their centroid (Fig. [3):

> data(dune.env)
> attach(dune.env)

plot(ord, disp="sites", type="n")

ordihull (ord, Management, col=1:4, lwd=3)

ordiellipse(ord, Management, col=1:4, kind = "ehull", 1wd=3)
ordiellipse(ord, Management, col=1:4, draw="polygon")

ordispider (ord, Management, col=1:4, label = TRUE)

points(ord, disp="sites", pch=21, col="red", bg="yellow", cex=1.3)

vV V.V Vv Vv Vv

In addition, you can overlay a cluster dendrogram from hclust using ordicluster
or a minimum spanning tree from spantree with its lines function. Segmented
arrows can be added with ordiarrows, lines with ordisegments and regular
grids with ordigrid.

3 Fitting environmental variables

Vegan provides two functions for fitting environmental variables onto ordina-
tion:

e envfit fits vectors of continuous variables and centroids of levels of class
variables (defined as factor in R). The arrow shows the direction of the
(increasing) gradient, and the length of the arrow is proportional to the
correlation between the variable and the ordination.

e ordisurf (which requires package mgcv) fits smooth surfaces for continu-
ous variables onto ordination using thinplate splines with cross-validatory
selection of smoothness.

1.0

0.5

NMDS2

0.0

-0.5
L

Figure 3: Convex hull, ellipsoid

hull, standard error ellipse and a

05 00 05 10 spider web diagram for Manage-
NMDS1 ment levels in ordination.

Function envfit can be called with a formula interface, and it optionally
can assess the “significance” of the variables using permutation tests:

> ord.fit <- envfit(ord ~ A1 + Management, data=dune.env, perm=999)
> ord.fit

**x*xVECTORS

NMDS1 NMDS2 r2 Pr(>r)
Al 0.96474 0.26322 0.3649 0.027 *
Signif. codes: 0O ‘**x’> 0.001 ‘x*x’> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1
Permutation: free
Number of permutations: 999

**xxFACTORS :

Centroids:

NMDS1 NMDS2
ManagementBF -0.4534 -0.0102
ManagementHF -0.2636 -0.1282
ManagementNM 0.2958 0.5790
ManagementSF 0.1506 -0.4670

Goodness of fit:
r2 Pr(>r)
Management 0.4134 0.007 *x*
Signif. codes: O ‘**x’> 0.001 ‘x*’> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1
Permutation: free
Number of permutations: 999

The result can be drawn directly or added to an ordination diagram (Fig. |4):

> plot(ord, dis="site")
> plot(ord.fit, bg = "yellow")

1.0

0.5

NMDS2

0.0

-0.5
I

. - Figure 4: Fitted vector and

‘ ‘ ‘ ‘ smooth surface for the thickness

05 0.0 05 10 of Al horizon (A1, in cm), and
NMDS1 centroids of Management levels.

Function ordisurf directly adds a fitted surface onto ordination, and it
returns the result of the fitted gam (Fig. |4):

> ordisurf(ord, A1, add=TRUE)

Family: gaussian
Link function: identity

Formula:
y 7 s(x1l, x2, k = 10, bs = "tp", fx = FALSE)

Estimated degrees of freedom:
1.59 total = 2.59

REML score: 41.58727

4 Constrained ordination

Vegan has three methods of constrained ordination: constrained or “canonical”
correspondence analysis (function cca), redundancy analysis (function rda) and
distance-based redundancy analysis (function dbrda). All these functions can
have a conditioning term that is “partialled out”. I only demonstrate cca, but
all functions accept similar commands and can be used in the same way.

The preferred way is to use formula interface, where the left hand side
gives the community data frame and the right hand side lists the constraining
variables:

> ord <- cca(dune ~ A1 + Management, data=dune.env)
> ord

Call: cca(formula = dune ~ Al + Management, data = dune.env)
Inertia Proportion Rank

Total 2.1153 1.0000
Constrained 0.7798 0.3686 4

o o °

CCA2
0
|

Figure 5: Plot of constrained

‘ ‘ ° ‘ ‘ ‘ correspondence analysis showing
3 2 4 0 1 2 sites as points and with optimized
CCAY location for species labels.
Unconstrained 1.3355 0.6314 15

Inertia is scaled Chi-square

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3 CCa4
0.3187 0.2372 0.1322 0.0917

Eigenvalues for unconstrained axes:
CA1l CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10
0.3620 0.2029 0.1527 0.1345 0.1110 0.0800 0.0767 0.0553 0.0444 0.0415
CA11 CA12 CA13 CA14 CA15
0.0317 0.0178 0.0116 0.0087 0.0047

The results can be plotted with (Fig. [5)):
> plot(ord, spe.par = list(optimize = TRUE), sit.par = list(type="p"))

There are three groups of items: sites, species and centroids (and biplot arrows)
of environmental variables. All these can be added individually to an empty
plot with pipes, and all previously explained tricks of controlling graphics still
apply. If only small changes are wanted to default settings, it is easier to change
those parameters with a list of new argument values like in the example.

It is not recommended to perform constrained ordination with all available
environmental variables: adding the number of constraints means slacker con-
straint, and you finally end up with solution similar to unconstrained ordination.
In that case it is better to use unconstrained ordination with environmental fit-
ting. However, if you really want to do so, it is possible with the following
shortcut in formula:

> cca(dune ~ ., data=dune.env)
Call: cca(formula = dune ~ Al + Moisture + Management + Use +

Manure, data = dune.env)

Inertia Proportion Rank
Total 2.1153 1.0000

Constrained 1.5032 0.7106 12
Unconstrained 0.6121 0.2894 7

Inertia is scaled Chi-square

-- NOTE:

Some constraints or conditions were aliased because they were
redundant. This can happen if terms are constant or linearly
dependent (collinear): ‘Manure~4’

Eigenvalues for constrained axes:

CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 CCA7T CCA8 CCA9 CCA10
0.4671 0.3410 0.1761 0.15632 0.0953 0.0703 0.0589 0.0499 0.0318 0.0260
CCA11 CCA12
0.0228 0.0108

Eigenvalues for unconstrained axes:
CAl CA2 CA3 CA4 CA5 CA6 CA7
0.27237 0.10876 0.08975 0.06305 0.03489 0.02529 0.01798

The model gave a message that some constraints were aliased because they
were redundant. This means that the variable did not have unique explanatory
power, but it can be expressed with the help of other variables. Such redundant
variables are not shown in ordination. In this case fourth degree polynomial
of Manure (an ordered factor) was redundant ana aliased. There is one Manure
level (0) which only occurs in Management level NM (natural management), and
we know that Manure level once we know the Management.

4.1 Significance tests

vegan provides permutation tests for the significance of constraints. The test
mimics standard analysis of variance function (anova), and the default test
analyses all constraints simultaneously:

> anova(ord)

Permutation test for cca under reduced model
Permutation: free
Number of permutations: 999

Model: cca(formula = dune ~ Al + Management, data = dune.env)
Df ChiSquare F Pr(>F)

Model 4 0.77978 2.1896 0.001 *x*x

Residual 15 1.33549

Signif. codes: 0O ‘*x*x’> 0.001 ‘x*x’> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1

The function actually used was anova. cca, but you do not need to give its name
in full, because R automatically chooses the correct anova variant for the result
of constrained ordination.

It is also possible to analyse terms separately:

> anova(ord, by="term")

Permutation test for cca under reduced model
Terms added sequentially (first to last)

Permutation: free
Number of permutations: 999

Model: cca(formula = dune ~ Al + Management, data = dune.env)
Df ChiSquare F Pr(>F)

Al 1 0.22476 2.5245 0.009 *x*

Management 3 0.55502 2.0780 0.001 **x*

Residual 15 1.33549

Signif. codes: O ‘**x’> 0.001 ‘x*’> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1

This test is sequential: the terms are analysed in the order they happen to be
in the model. You can also analyse significances of marginal effects (“Type III
effects”):

> anova(ord, by="margin")

Permutation test for cca under reduced model
Marginal effects of terms

Permutation: free

Number of permutations: 999

Model: cca(formula = dune ~ Al + Management, data = dune.env)
Df ChiSquare F Pr(>F)

Al 1 0.17594 1.9761 0.035 *

Management 3 0.55502 2.0780 0.003 *x*

Residual 15 1.33549

Signif. codes: 0O ‘*x*x’> 0.001 ‘x*x’> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1

4.2 Conditioned or partial ordination

All constrained ordination methods can have terms that are partialled out from
the analysis before constraints:

> ord <- cca(dune ~ Al + Management + Condition(Moisture), data=dune.env)
> ord

Call: cca(formula = dune ~ Al + Management + Condition(Moisture),
data = dune.env)

Inertia Proportion Rank

Total 2.1153 1.0000

Conditional 0.6283 0.2970 3
Constrained 0.5109 0.2415 4
Unconstrained 0.9761 0.4615 12

Inertia is scaled Chi-square

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3 CCA4
0.24932 0.12090 0.08160 0.05904

Eigenvalues for unconstrained axes:

CAl CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9
0.30637 0.13191 0.11516 0.10947 0.07724 0.07575 0.04871 0.03758 0.03106

10

CA10 CA11 CA12
0.02102 0.01254 0.00928

This partials out the effect of Moisture before analysing the effects of A1 and
Management. This also influences the significances of the terms:

> anova(ord, by="term")

Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free

Number of permutations: 999

Model: cca(formula = dune ~ Al + Management + Condition(Moisture), data = dune.env)
Df ChiSquare F Pr(>F)

Al 1 0.11543 1.4190 0.106

Management 3 0.39543 1.6205 0.007 *x*

Residual 12 0.97610

Signif. codes: 0O ‘*x*x’> 0.001 ‘x*x’> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1

If we had a designed experiment, we may wish to restrict the permutations so
that the observations only are permuted within levels of Moisture. Restricted
permutation is based on the powerful permute package. Function how() can
be used to define permutation schemes. In the following, we set the levels with
plots argument:

> how <- how(nperm=999, plots = Plots(strata=dune.env$Moisture))
> anova(ord, by="term", permutations = how)

Permutation test for cca under reduced model
Terms added sequentially (first to last)

Plots: dune.env$Moisture, plot permutation: none
Permutation: free

Number of permutations: 999

Model: cca(formula = dune ~ Al + Management + Condition(Moisture), data = dune.env)
Df ChiSquare F Pr(>F)

Al 1 0.11543 1.4190 0.258

Management 3 0.39543 1.6205 0.002 *x*

Residual 12 0.97610

Signif. codes: O ‘**x’> 0.001 ‘x*x’> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1

11

	Ordination
	Detrended correspondence analysis
	Non-metric multidimensional scaling

	Ordination graphics
	Cluttered plots
	Adding items to ordination plots

	Fitting environmental variables
	Constrained ordination
	Significance tests
	Conditioned or partial ordination

