
Package ‘timeDate’
October 17, 2025

Title Rmetrics - Chronological and Calendar Objects

Version 4051.111

Description The 'timeDate' class fulfils the conventions of the ISO 8601
standard as well as of the ANSI C and POSIX standards. Beyond
these standards it provides the ``Financial Center'' concept
which allows to handle data records collected in different time
zones and mix them up to have always the proper time stamps with
respect to your personal financial center, or alternatively to the GMT
reference time. It can thus also handle time stamps from historical
data records from the same time zone, even if the financial
centers changed day light saving times at different calendar
dates.

Depends R (>= 3.6.0), methods

Imports graphics, utils, stats

Suggests RUnit

License GPL (>= 2)

Encoding UTF-8

URL https://geobosh.github.io/timeDateDoc/ (doc),

https://r-forge.r-project.org/scm/viewvc.php/pkg/timeDate/?root=rmetrics
(devel), https://www.rmetrics.org

BugReports https://r-forge.r-project.org/projects/rmetrics

NeedsCompilation no

Author Diethelm Wuertz [aut] (original code),
Tobias Setz [aut],
Yohan Chalabi [aut],
Martin Maechler [ctb] (ORCID: <https://orcid.org/0000-0002-8685-9910>),
Joe W. Byers [ctb],
Georgi N. Boshnakov [cre, aut] (ORCID:

<https://orcid.org/0000-0003-2839-346X>)

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

Repository CRAN

Date/Publication 2025-10-17 11:50:02 UTC

1

https://geobosh.github.io/timeDateDoc/
https://r-forge.r-project.org/scm/viewvc.php/pkg/timeDate/?root=rmetrics
https://www.rmetrics.org
https://r-forge.r-project.org/projects/rmetrics
https://orcid.org/0000-0002-8685-9910
https://orcid.org/0000-0003-2839-346X

2 Contents

Contents
timeDate-package . 3
.endpoints . 13
align . 14
blockStart . 15
c . 16
coerceToOther . 17
currentYear . 18
DaylightSavingTime . 18
dayOfWeek . 19
dayOfYear . 20
diff . 20
difftimeDate . 21
earlyCloseNYSE . 22
Easter . 23
finCenter . 25
firstDay . 26
format-methods . 27
holiday . 28
holidayDate . 30
holidayLONDON . 39
holidayNERC . 40
holidayNYSE . 41
holidayTSX . 43
holidayZURICH . 44
in_int . 45
is.na-methods . 47
isBizday . 47
isRegular . 48
isWeekday . 50
julian . 50
kurtosis . 53
length . 54
listFinCenter . 55
listHolidays . 56
midnightStandard . 57
myFinCenter . 58
myUnits . 58
names-methods . 59
nDay . 59
onOrAfter . 60
pasteMat . 61
periods . 63
plot-methods . 64
rep . 65
rev . 66
RmetricsOptions . 66

timeDate-package 3

round . 67
rulesFinCenter . 68
sample . 69
show-methods . 70
skewness . 70
sort . 71
specialHolidayGB . 72
start . 74
subset . 75
summary-methods . 76
Sys.timeDate . 76
timeCalendar . 77
timeCeiling . 78
timeDate . 80
timeDate-class . 83
timeDateMathOps . 89
timeInterval-class . 90
timeInterval-methods . 91
timeSequence . 93
unique . 95
whichFormat . 96
window . 97

Index 98

timeDate-package Calendar and date utilities and tools

Description

Package of calendar, date, time tools and utilities for Rmetrics.

The documentation of package ‘timeDate’, rendered with ‘pkgdown’, is available at timeDateDoc.

Overview of Topics

This help file describes the concepts and methods behind the S4 "timeDate" class used in Rmetrics
for financial data and time management together with the management of public and ecclesiastical
holidays.

The "timeDate" class fulfils the conventions of the ISO 8601 standard as well as of the ANSI C
and POSIX standards. Beyond these standards it provides the "Financial Center" concept which
allows to handle data records collected in different time zones and mix them up to have always
the proper time stamps with respect to your personal financial center, or alternatively to the GMT
reference time. It can thus also handle time stamps from historical data records from the same time
zone, even if the financial centers changed day light saving times at different calendar dates.

Moreover "timeDate" is almost compatible with the "timeDate" class in Insightful’s SPlus "timeDate"
class. If you move between the two worlds of R and SPlus, you will not have to rewrite your code.
This is important for business applications.

https://geobosh.github.io/timeDateDoc/

4 timeDate-package

The "timeDate" class offers not only date and time functionality but it also offers sophisticated
calendar manipulations for business days, weekends, public and ecclesiastical holidays.

This help page is presented in four sections:

1. S4 "timeDate" Class and Functions
2. Operations on "timeDate" Objects
3. Daylight Saving Time and Financial Centers
4. Holidays and Holiday Calendars

1. S4 "timeDate" Class and Generator Functions

Date and time stamps are represented by an S4 object of class "timeDate".

setClass("timeDate",
representation(
Data = "POSIXct",
format = "character",
FinCenter = "character"
))

They have three slots. The @Data slot holds the time stamps which are POSIXct formatted as
specified in the @format slot. The time stamps are local and belong to the financial center expressed
through the slot @FinCenter.

There are several possibilities to generate a "timeDate" object. The most forward procedure is to
use one of the following functions:

timeDate – Creates a "timeDate" object from scratch,
timeSequence – creates a sequence of "timeDate" objects,
timeCalendar – creates a "timeDate" object from calendar atoms,
Sys.timeDate – returns the current date and time as a "timeDate" object.

With the function timeDate you can create "timeDate" objects from scratch by specifying a char-
acter vector of time stamps and a financial center which the character vector belongs to. "GMT"
is used by default as the reference for all date/time operations. But you can set the variable
myFinCenter to your local financial center reference if you want to reference dates/time to it.

Examples:

Show My local Financial Center - Note, by Default this is "GMT"
getRmetricsOptions("myFinCenter")

Compose Character Vectors of Dates and Times:
Dates <- c("1989-09-28","2001-01-15","2004-08-30","1990-02-09")
Times <- c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
charvec = paste(Dates, Times)

Create a 'timeDate' object

timeDate-package 5

timeDate(charvec)

Create a 'timeDate' object with my financial center set to Zurich
myFinCenter <- "Zurich"
timeDate(charvec)

if the 'timeDate' was recorded in a different financial center, it
will be automatically converted to your financial center,
i.e. "Zurich".
timeDate(charvec, zone = "Tokyo")

You can also convert a recorded 'timeDate' from your financial
center "Zurich" to another one, for example "NewYork".
timeDate(charvec, FinCenter = "NewYork")

NOTE: Rmetrics has implemented an automated date/time format identifier for many common
date/time formats which tries to automatically recognise the format for the character vector of dates
and times. You can have a look at
whichFormat(charvec).

NOTE: Rmetrics always uses the midnight standard on dates and times. You can see it with
.midnightStandard("2008-01-31 24:00:00")

Alternatively we can create a sequence of "timeDate" objects with the help of the function timeSequence.
This can be done in several ways, either by specifying the range of the data through the arguments
from and to, or when from is missing, by setting the argument length.out of the desired series.
Note in the case of a monthly sequence, you have further options. For example you can generate
the series with the first or last day in each month, or use more complex rules like the last or n-th
Friday in every month.

Examples:

Lets work in an international environment:
setRmetricsOptions(myFinCenter = "GMT")

Your 'timeDate' is now in the Financial Center "GMT"
timeDate(charvec)

Daily January 2008 Sequence:
timeSequence(from = "2008-01-01", to = "2008-01-31", by = "day")

Monthly 2008 Sequence:
tS = timeSequence(from = "2008-01-01", to = "2008-12-31", by = "month")
tS

Do you want the last Day or the last Friday in Month Data ?
timeLastDayInMonth(tS)

6 timeDate-package

timeLastNdayInMonth(tS, nday = 5)

A third possibility is to create "timeDate" objects from calendar atoms. You can specify values or
vectors of equal length of integers denoting year, month, day, hour, minute and seconds. If every
day has the same time stamp, you can just add an offset.

Examples:

Monthly calendar for Current Year
getRmetricsOptions("currentYear")
timeCalendar()

Daily 'timeDate' for January data from Tokyo local time 16:00
timeCalendar(2008, m=1, d=1:31, h=16, zone="Tokyo", FinCenter="Zurich")

Or add16 hours in seconds ...
timeCalendar(2008, m=1, d=1:31, zone="Tokyo", FinCenter="Zurich") + 16*3600

2. Operations on "timeDate" Objects

Many operations can be performed on "timeDate" objects. You can add and subtract, round and
truncate, subset, coerce or transform them to other objects. These are only few options among many
others.

Math Operations

Math operations can add and subtract dates and times, and perform logical operations on "timeDate"
objects.

Examples:

Date and Time Now:
now = Sys.timeDate()

One Hour Later:
now + 3600

Which date/time is earlier or later ?
tC = timeCalendar()
tR = tC + round(3600*rnorm(12))
tR > tC

Lagging

You can generate suitable lagged and iterated differences:

timeDate-package 7

diff.timeDate – Returns suitably lagged and iterated differences.

Examples:

Monthly Dates 2008 and January 2009:
tC = c(timeCalendar(2008), timeCalendar(2009)[1])

Number of days in months and total 2008:
diff(tC)
sum(as.integer(diff(tC)))

Rounding and Truncating
Dates and times can be rounded or truncated. This is useful lower frequencies than seconds, for
example hourly.

round – rounds objects of class "timeDate",
trunc – truncates objects of class "timeDate".

Examples:

Round the Random Time Stamps to the Nearest Hour:
tC = timeCalendar()
tR = tC + round(3600*rnorm(12))
tR
round(tR, "h")

Truncate by Hour or to the Next Full Hour::
trunc(tR, "h")
trunc(tR + 3600, "h")

Subsetting
Subsetting a "timeDate" is a very important issue in the management of dates and times. Rmetrics
offers several functions which are useful in this context:

"[" – Extracts or replaces subsets from "timeDate" objects,
window, cut – extract a piece from a "timeDate" object,

In this context it is also important to know the start and the end time stamp together with the total
number of time stamps.

start – extracts the first entry of a "timeDate" object,
end – extracts the last entry of a "timeDate" object,
length – returns the length of a "timeDate" object.

Examples:

8 timeDate-package

Create Monthly Calendar for next year
tC = timeCalendar(getRmetricsOptions("currentYear") + 1)
tC

Start, end and length of 'timeDate' objects
start(tC)
end(tC)
length(tC)

The first Quarter - Several Alternative Solutions:
tC[1:3]
tC[-(4:length(tC))]
window(tC, start = tC[1], end = tC[3])
cut(tC, from = tC[1], to = tC[3])
tC[tC < tC[4]]

The Quarterly Series:
tC[seq(3, 12, by = 3)]

Weekdays, weekends, business days, and holidays can be easily obtained with the following func-
tions:

isWeekday – tests if a date is a weekday or not,
isWeekend – tests if a date is a weekend day or not,
isBizday – tests if a date is a business day or not,
isHoliday – tests if a date is a holiday day or not.

Examples:

A 'timeDate' Sequence around Easter 2008
Easter(2008)
tS <- timeSequence(Easter(2008, -14), Easter(2008, +14))
tS

Subset weekdays and business days:
tW <- tS[isWeekday(tS)]; tW
dayOfWeek(tW)
tB <- tS[isBizday(tS, holidayZURICH())]; tB
dayOfWeek(tB)

timeDate-package 9

The functions blockStart and blockEnd gives time stamps for equally sized blocks.

blockStart – Creates start dates for equally sized blocks,
blockEnd – Creates end dates for equally sized blocks.

Examples:

'timeDate' object for the last 365 days:
tS = timeSequence(length.out = 360)
tS

Subset Pointers for blocks of exactly 30 days:
blockStart(tS, 30)
blockEnd(tS, 30)
Sys.timeDate()

Coercions and Transformations
"timeDate" objects are not living in an isolated world. Coercions and transformations allow
"timeDate" objects to communicate with other formatted time stamps. Be aware that in most
cases information can be lost if the other date.time classes do not support this functionality. There
exist several methods to coerce and transform "timeDate" objects into other objects.

as.timeDate – Implements Use Method,
as.timeDate.default – default Method,
as.timeDate.POSIXt – returns a ’POSIX’ object as "timeDate" object,
as.timeDate.Date – returns a ’POSIX’ object as "timeDate" object.

as.character.timeDate – Returns a "timeDate" object as ’character’ string,
as.double.timeDate – returns a "timeDate" object as ’numeric’ object,
as.data.frame.timeDate – returns a "timeDate" object as ’data.frame’ object,
as.POSIXct.timeDate – returns a "timeDate" object as ’POSIXct’ object,
as.POSIXlt.timeDate – returns a "timeDate" object as ’POSIXlt’ object,
as.Date.timeDate – returns a "timeDate" object as ’Date’ object.

Users or maintainers of other date/time classes can add their own generic functions. For example
as.timeDate.zoo and as.zoo.timeDate.

Concatenations and Reorderings
It might be sometimes useful to concatenate or reorder "timeDate" objects. The generic functions
to concatenate, replicate, sort, re-sample, unify and revert a "timeDate" objects are :

c – Concatenates "timeDate" objects,
rep – replicates a "timeDate" object,
sort – sorts a "timeDate" object,
sample – resamples a "timeDate" object,

10 timeDate-package

unique – makes a "timeDate" object unique,
rev – reverts a "timeDate" object.

NOTE: The function c of a "timeDate" objects takes care of possible different financial centers
specific to each object to be concatenated. In such cases, all time stamps will be transformed to the
financial center of the first time stamp used in the concatenation:

Examples:

Concatenate the local time stamps to Zurich time ...
ZH = timeDate("2008-01-01 16:00:00", zone = "GMT", FinCenter = "Zurich")
NY = timeDate("2008-01-01 18:00:00", zone = "GMT", FinCenter = "NewYork")
c(ZH, NY)
c(NY, ZH)

Rordering:
tC = timeCalendar(); tC
tS = sample(tC); tS
tO = sort(tS); tO
tV = rev(tO); tV
tU = unique(c(tS, tS)); tU

3. Daylight Saving Time and Financial Centers

Each financial center worldwide has a function which returns Daylight Saving Time Rules. Almost
400 prototypes are made available through the Olson time zone data base. The cities and regions
can be listed using the command listFinCenter. The DST rules for specific financial center can
be viewed by their name, e.g. Zurich(). Additional financial centers can be added by the user
taking care of the format specification of the DST functions.

Setting Financial Centers
All time stamps are handled according to the time zone and daylight saving time rules specified by
the center through the variable myFinCenter. This variable is set by default to "GMT" but can be
changed to your local financial center or to any other financial center you want to use.

NOTE: By setting the financial center to a continent/city which lies outside of the time zone used by
your computer does not change any time settings or environment variables used by your computer.

To change the name of a financial center from one setting to another just assign to the variable
myFinCenter the desired name of the city:

Examples:

What is my current Financial Center ?
getRmetricsOptions("myFinCenter")

Change to Zurich:

timeDate-package 11

setRmetricsOptions(myFinCenter = "Zurich")
getRmetricsOptions("myFinCenter")

From now on, all dates and times are handled within the middle European time zone and the DST
rules which are valid for Zurich.

List of Financial Centers
There are many other financial centers supported by Rmetrics. They can be displayed by the func-
tion listFinCenter. You can also display partial lists with wildcards and regular expressions:

Examples:

List all supported Financial Centers Worldwide:
listFinCenter()

List European Financial Centers:
listFinCenter("Europe/*")

DST Rules
For each financial center a function is available. It keeps the information of the time zones and the
DST rules. The functions return a data.frame with 4Columns :

Zurich offSet isdst TimeZone
...
62 2008-03-30 01:00:00 7200 1 CEST
63 2008-10-26 01:00:00 3600 0 CET
...

The first column describes when the time was changed, the second gives the offset to "GMT", the
third returns the daylight savings time flag which is positive if in force, zero if not, and negative if
unknown. The last column gives the name of the time zone. You can have a look at the function
Zurich() :

Examples:

Show the DST Rules for Zurich:
Zurich()

List European Financial Centers:
listFinCenter("Europe/*")

3. Holidays and Holiday Calendars

It is non-trivial to implement function for business days, weekends and holidays. It is not difficult in
an algorithmic sense, but it can become tedious to implement the rules of the calendar themselves,
for example the date of Easter.

12 timeDate-package

In the following section we briefly summarise the functions which can calculate dates of ecclesias-
tical and public holidays. With the help of these functions we can also create business and holiday
calendars.

Special Dates:
The implemented functions can compute the last day in a given month and year, the dates in a month
that is a n-day (e.g. n- = Sun) on or after a given date, the dates in a month that is a n-day on or
before a specified date, the n-th occurrences of a n-day for a specified year/month vectors, or the
last n-day for a specified year/month value or vector.

NOTE: n-days are numbered from 0 to 6 where 0 correspond to the Sunday and 6 to the Saturday.

timeFirstDayInMonth – Computes the first day in a given month and year,
timeLastDayInMonth – Computes the last day in a given month and year,
timeFirstDayInQuarter – Computes the first day in a given quarter and year,
timeLastDayInQuarter – Computes the last day in a given quarter and year,

timeNdayOnOrAfter – Computes date that is a "on-or-after" n-day,
timeNdayOnOrBefore –b Computes date that is a "on-or-before" n-day,

timeNthNdayInMonth – Computes n-th occurrence of a n-day in year/month,
timeLastNdayInMonth – Computes the last n-day in year/month.

Holidays:
Holidays may have two origins: ecclesiastical or public/federal. The ecclesiastical calendars of
Christian churches are based on cycles of movable and immovable feasts. Christmas, December
25, is the principal immovable feast. Easter is the principal movable feast, and dates of most of
the other movable feasts are determined with respect to Easter. However, the movable feasts of the
Advent and Epiphany seasons are Sundays reckoned from Christmas and the Feast of the Epiphany,
respectively.

Examples:

List Holidays available in Rmetrics
listHolidays()

The date of Easter for the next 5 years:
currentYear <- getRmetricsOptions("currentYear")
Easter(currentYear:(currentYear+5))

Holiday Calendars:
holidayZURICH – Zurich Business Calendar,
holidayNYSE – NYSE Stock Exchange Holiday Calendar,
holidayZURICH – TSX Holiday Calendar.

We would like to thank all Rmetrics users who gave us many additional information concerning
local holidays.

.endpoints 13

References

Bateman R., (2000); Time Functionality in the Standard C Library, Novell AppNotes, September
2000 Issue, 73–85.

Becker R.A., Chambers J.M., Wilks A.R. (1988); The New S Language, Wadsworth & Brooks/Cole.

ISO-8601, (1988); Data Elements and Interchange Formats - Information Interchange, Represen-
tation of Dates and Time, International Organization for Standardization, Reference Number ISO
8601, 14 pages.

James D.A., Pregibon D. (1992), Chronological Objects for Data Analysis, Reprint.

Ripley B.D., Hornik K. (2001); Date-Time Classes, R-News, Vol. 1/2 June 2001, 8–12.

Zivot, E., Wang J. (2003); Modeling Financial Time Series with S-Plus, Springer, New-York.

.endpoints Endpoints indexes

Description

Returns endpoint indexes from a "timeDate" object.

Usage

.endpoints(x, on = c("months", "years", "quarters", "weeks", "days",
"hours", "minutes", "seconds"), k=1)

Arguments

x a "timeDate" object.

on the periods endpoints to find as a character string. Select from: "months",
"years", "quarters", "weeks", "days", "hours", "minutes", "seconds".

k along every k-th element.

Details

.endpoints returns an integer vector corresponding to the last observation in each period specified
by on, with a zero added to the beginning of the vector, and the index of the last observation in x at
the end.

Value

an integer vector of endpoints beginning with 0 and ending with the value equal to the length of the
x argument

Author(s)

Jeff Ryan, modified by Diethelm Wuertz for "timeDate" objects.

14 align

Examples

endpoints

Weekly Endpoints
.endpoints(timeCalendar(), on="w")

align Align a ’timeDate’ object to regular date/time stamps

Description

Aligns a "timeDate" object to regular date/time stamps.

Usage

S4 method for signature 'timeDate'
align(x, by = "1d", offset = "0s")

alignDaily(x, include.weekends=FALSE)
alignMonthly(x, include.weekends=FALSE)
alignQuarterly(x, include.weekends=FALSE)

Arguments

x an object of class "timeDate".

by a character string formed from an integer length and a period identifier. Valid
values are "w", "d", "h", "m", "s", for weeks, days, hours, minutes and seconds.
For example a bi-weekly period is expressed as "2w".

offset a character string to set an offset formed from an integer length and a period
identifier in the same way as for argument by.

include.weekends

logical value indicating whether weekends should be included.

Details

The functions alignDaily, alignMonthly, alignMonthly are simple to use functions which gen-
erate end-of-day, end-of-month, and end-of quarter "timeDate" objects. Weekends are excluded
by default. Optionally they can be added setting the argument include.weekends = TRUE.

Value

an object of class "timeDate"

blockStart 15

Examples

align

align bi-weekly with a 3 days offset
(tC <- timeCalendar())
align(tC, by = "2w", offset = "3d")

alignDaily

simple to use functions
alignDaily(tC)
alignDaily(tC, include.weekends = TRUE)

align to end-of-month dates
alignMonthly(tC)

blockStart Equally sized ’timeDate’ blocks

Description

Creates start (end) dates for equally sized "timeDate" blocks.

Usage

blockStart(x, block = 20)
blockEnd(x, block = 20)

Arguments

block an integer value specifying the length in number of records for numerically sized
blocks of dates.

x an object of class "timeDate".

Details

The functions blockStart and blockEnd create vectors of start and end values for equally sized
"timeDate" blocks. Note, the functions are event counters and not a time counter between measur-
ing time intervals between start and end dates! For equally sized blocks in time one has before to
align the time stamps in equal time differences.

Value

an object of class "timeDate"

16 c

Examples

timeSequence
360 Days Series:
tS <- timeSequence(to = "2022-09-23 09:39:23", length.out = 360)

blockStart | blockEnd
Start <- blockStart(tS, 30)
End <- blockEnd(tS, 30)
Start
End
End - Start

c Concatenating ’timeDate’ objects

Description

Concatenates "timeDate" objects.

Usage

S3 method for class 'timeDate'
c(..., recursive = FALSE)

Arguments

recursive a logical. If recursive is set to TRUE, the function recursively descends through
lists combining all their elements into a vector.

... arguments passed to other methods.

Value

an object of class "timeDate"

Examples

timeCalendar
Create Character Vectors:
GMT = timeCalendar(zone = "GMT", FinCenter = "GMT") + 16*3600
ZUR = timeCalendar(zone = "GMT", FinCenter = "Zurich") + 16*3600

c
concatenate and replicate timeDate objects
sort(c(GMT, ZUR))
sort(c(ZUR, GMT))

coerceToOther 17

coerceToOther Coercion from ’timeDate’ to other classes

Description

Coerce and transform objects of class "timeDate".

Usage

S3 method for class 'timeDate'
as.character(x, ...)

S3 method for class 'timeDate'
as.double(x,

units = c("auto", "secs", "mins", "hours", "days", "weeks"), ...)

S3 method for class 'timeDate'
as.data.frame(x, ...)

S3 method for class 'timeDate'
as.POSIXct(x, tz = "", ...)

S3 method for class 'timeDate'
as.POSIXlt(x, tz = "", ...)

S3 method for class 'timeDate'
as.Date(x, method = c("trunc", "round", "next"), ...)

Arguments

x an object of class "timeDate".

units a character string denoting the date/time units in which the results are desired.

tz inputs the time zone to POSIX objects, i.e. the time zone, zone, or financial
center string, FinCenter, as used by "timeDate" objects.

method a character string denoting the method how to determine the dates.

... arguments passed to other methods.

Value

an object from the designated target class

See Also

timeDate and as.timeDate for creation of and conversion to "timeDate" objects

18 DaylightSavingTime

Examples

timeDate
tC = timeCalendar()

convert 'timeDate' to a character vector
as.character(tC)

currentYear Current year

Description

A variable containing the current year.

Note

It is not allowed to change this variable.

Examples

currentYear
getRmetricsOptions("currentYear")

DaylightSavingTime Daylight Saving Time Rules

Description

Functions for about 400 cities and regions which return daylight saving time rules and time zone
offsets.

Details

As a selection of these functions:

Adelaide Algiers Amsterdam Anchorage Andorra Athens Auckland Bahrain Bangkok Beirut Belfast
Belgrade Berlin Bogota Bratislava Brisbane Brussels Bucharest Budapest BuenosAires Cairo Cal-
cutta Caracas Casablanca Cayman Chicago Copenhagen Darwin Denver Detroit Dubai Dublin East-
ern Edmonton Frankfurt Helsinki HongKong Honolulu Indianapolis Istanbul Jakarta Jerusalem
Johannesburg Kiev KualaLumpur Kuwait Lagos Lisbon Ljubljana London LosAngeles Luxem-
bourg Madrid Manila Melbourne MexicoCity Monaco Montreal Moscow Nairobi Nassau NewYork
Nicosia Oslo Pacific Paris Perth Prague Riga Riyadh Rome Seoul Shanghai Singapore Sofia Stock-
holm Sydney Taipei Tallinn Tehran Tokyo Tunis Vaduz Vancouver Vienna Vilnius Warsaw Win-
nipeg Zagreb Zurich, ...

dayOfWeek 19

Note

There are currently two synonyms available "Pacific" for Los Angeles and "Eastern" for New York.

Specific time zones (AST, CET, CST, EET, EST, MST and PST) are also available.

Note we leave the space in all double named cities like New York or Hong Kong and use an under-
score for it.

All the entries are retrieved from the tzdata library which is available under GNU GPL licence.

Examples

DST rules for Zurich
head(Zurich())
tail(Zurich())

list all available centers
listFinCenter()

dayOfWeek Day of the week

Description

Returns the days of the week of the data in a "timeDate" object.

Usage

dayOfWeek(x)

Arguments

x an object of class "timeDate".

Value

a character vector giving the days of the week corresponding to the elements of x. The names are
in English, abbreviated to three letters.

See Also

dayOfYear

Examples

timeCalendar
tC <- timeCalendar(2022)

the days of the year
dayOfWeek(tC)

20 diff

dayOfYear Day of the year

Description

Returns the days of the year of the data in a "timeDate" object.

Usage

dayOfYear(x)

Arguments

x an object of class "timeDate".

Value

vector of integers representing the number of days since the beginning of the year. For January, 1st
it is one.

See Also

dayOfWeek

Examples

timeCalendar
tC <- timeCalendar(2022)

the days of the year
dayOfYear(tC)

diff Lagged ’timeDate’ differences

Description

Returns suitably lagged and iterated differences.

Usage

S3 method for class 'timeDate'
diff(x, lag = 1, differences = 1, ...)

difftimeDate 21

Arguments

x an object of class "timeDate".

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

... arguments passed to other methods.

Value

if x is a vector of length n and differences=1, then the computed result is equal to the successive
differences x[(1+lag):n] - x[1:(n-lag)]. If difference is larger than one this algorithm is
applied recursively to x. Note that the returned value is a vector which is shorter than x.

See Also

difftimeDate for the difference of two "timeDate" objects.

Examples

create character vectors
dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
tms <- c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
timeDate
GMT <- timeDate(dts, zone = "GMT", FinCenter = "GMT") + 24*3600
GMT

suitably lagged and iterated differences
diff(GMT)
diff(GMT, lag = 2)
diff(GMT, lag = 1, diff = 2)

difftimeDate Difference of two ’timeDate’ objects

Description

Returns the difference of two ’timeDate’ objects.

Usage

difftimeDate(time1, time2,
units = c("auto", "secs", "mins", "hours", "days", "weeks"))

Arguments

time1, time2 two objects of class "timeDate".

units a character string denoting the date/time units in which the results are desired.

22 earlyCloseNYSE

Details

difftimeDate is analogous to base::difftime for "timeDate" arguments.

difftimeDate takes a difference of two "timeDate" objects and returns an object of class "difftime"
with an attribute indicating the units.

Value

an object of class "difftime" with an attribute indicating the units

See Also

difftime,

diff.timeDate for differencing a "timeDate" object.

Examples

dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
GMT <- timeDate(dts, zone = "GMT", FinCenter = "GMT")
GMT

difftimeDate(GMT[1:2], GMT[-(1:2)])

earlyCloseNYSE Early closings of the New York Stock exchange

Description

Get dates of early closings of the New York Stock exchange (NYSE).

Usage

earlyCloseNYSE(year)

Arguments

year a vector of integers representing years (4 digits).

Details

earlyCloseNYSE gives the dates and times when NYSE was closed early. Some of these closing
are scheduled (e.g. at 1pm on the day before or after a holiday), others are unscheduled.

The information is incomplete, particularly after 2011. For those dates the values are computed
using explicitly declared rules or, if not available, ones derived from recent years.

Value

a "timeDate" object containing the dates (with closing times) of early closings

Easter 23

Note

The function is somewhat experimental but the type of the result will not change.

Author(s)

Georgi N. Boshnakov

References

https://archive.fo/XecDq

See Also

holidayNYSE for a list of NYSE holidays

Examples

earlyCloseNYSE(1990)

earlyCloseNYSE(2022:2024) # early closings
holidayNYSE(2022:2024) # holidays
early closings & holidays combined
c(earlyCloseNYSE(2022:2024), holidayNYSE(2022:2024))

Easter Date of Easter

Description

Returns the date of Easter.

Usage

Easter(year = getRmetricsOptions("currentYear"), shift = 0)

Arguments

year an integer value or integer vector for the year(s).

shift an integer value, the number of days shifted from the Easter date. Negative
integers are allowed.

24 Easter

Details

Holidays may have two origins, ecclesiastical and public/federal. The ecclesiastical calendars of
Christian churches are based on cycles of moveable and immoveable feasts. Christmas, December
25th, is the principal immoveable feast. Easter is the principal moveable feast, and dates of most
other moveable feasts are determined with respect to Easter.

The date of Easter is evaluated by a complex procedure whose detailed explanation goes beyond
this description. The reason that the calculation is so complicate is, because the date of Easter is
linked to (an inaccurate version of) the Hebrew calendar. But nevertheless a short answer to the
question "When is Easter?" is the following: Easter Sunday is the first Sunday after the first full
moon after vernal equinox. For the long answer we refer to Toendering (1998).

The algorithm computes the date of Easter based on the algorithm of Oudin (1940). It is valid for
any Gregorian Calendar year.

Value

the date of Easter as an object of class "timeDate"

Note

Doesn’t have options to compute Eastern Orthodox Easter dates.

See Also

BoxingDay, etc., for descriptions of the individual holiday functions,

listHolidays for a list (character vector) of all holidays,

holiday alternative to calling directly individual holiday functions (takes one or more holiday func-
tions as argument),

holidayLONDON, holidayNERC, holidayNYSE, holidayTSX, holidayZURICH for holidays at major
financial centers.

Examples

Easter
current year
Easter()

From 2001 to 2010:
Easter(2001:2010)

finCenter 25

finCenter Financial Center of a timeDate object

Description

Get or set the financial center of a "timeDate" object.

Usage

S4 method for signature 'timeDate'
finCenter(x)
S4 replacement method for signature 'timeDate'
finCenter(x) <- value

Arguments

x a timeSeries object.

value a character with the location of the financial center named as "continent/city".

Details

"timeDate" objects store the time in the GMT time zone. The financial center specifies a location
whose local time is to be used to format the object, e.g., for printing.

finCenter gives the financial center associated with a ‘timeDate’ object. The assignment form
changes it to the specified value. Both functions are S4 generics. This page describes the methods
defined in package ‘timeDate’.

See Also

listFinCenter

Examples

date <- timeDate("2008-01-01")
finCenter(date) <- "GMT"
date
format(date)

finCenter(date) <- "Zurich"
date
format(date)

26 firstDay

firstDay First and last days

Description

Computes the first/last day in a given month/quarter.

Usage

timeFirstDayInMonth(charvec, format = "%Y-%m-%d", zone = "",
FinCenter = "")

timeLastDayInMonth(charvec, format = "%Y-%m-%d", zone = "",
FinCenter = "")

timeFirstDayInQuarter(charvec, format = "%Y-%m-%d", zone = "",
FinCenter = "")

timeLastDayInQuarter(charvec, format = "%Y-%m-%d", zone = "",
FinCenter = "")

Arguments

charvec a character vector or object from a class representing time, such as "timeDate",
"POSIXlt", etc.

format the format specification of the input character vector.

zone the time zone or financial center where the data were recorded.

FinCenter a character with the location of the financial center named as "continent/city".

Details

The functions timeFirstDayInMonth and timeLastDayInMonth return the first or last day, respec-
tively, in a given month and year.

The same functionality for quarterly time horizons is provided by the functions timeFirstDayInQuarter
and timeLastDayInQuarter.

If argument FinCenter is missing or the empty string and the object is from a time-date class, it is
taken from slot "FinCenter" (if charvec is "timeDate") or from attribute "tzone" (if from another
time-date class and not NULL). If all of this fails, FinCenter is obtained with getRmetricsOptions.

If zone is missing or the empty string, it is set to (the deduced value for) FinCenter.

Value

an object of class "timeDate"

format-methods 27

See Also

trunc.timeDate,

timeFirstDayInMonth, timeLastDayInMonth, timeFirstDayInQuarter, timeLastDayInQuarter,

timeNthNdayInMonth, timeLastNdayInMonth,

timeNdayOnOrAfter, timeNdayOnOrBefore

Examples

date as character string
charvec <- "2006-04-16"
myFinCenter <- getRmetricsOptions("myFinCenter")

What date has the last day in a month for a given date?
timeLastDayInMonth(charvec, format = "%Y-%m-%d",

zone = myFinCenter, FinCenter = myFinCenter)
timeLastDayInMonth(charvec)
timeLastDayInMonth(charvec, FinCenter = "Zurich")

What date has the first day in a month for a given date?
timeFirstDayInMonth(charvec)

What date has the last day in a quarter for a given date?
timeLastDayInQuarter(charvec)

What date has the first day in a quarter for a given date?
timeFirstDayInQuarter(charvec)

format-methods Format methods

Description

Formats "timeDate" objects as ISO conform character strings.

Usage

S3 method for class 'timeDate'
format(x, format = "", tz = "", usetz = FALSE, ...)

Arguments

format a character string describing the format.

tz a timezone specification to be used for the conversion.

usetz a logical.

x an object of class "timeDate".

... arguments passed to other methods.

28 holiday

Value

an ISO conforming formatted character string

See Also

as.character

Examples

timeCalendar
Time Calendar 16:00
tC = timeCalendar() + 16*3600
tC

format as ISO character string
format(tC)

holiday Holiday dates

Description

Returns the date of a holiday.

Usage

holiday(year = getRmetricsOptions("currentYear"), Holiday = "Easter")

Arguments

Holiday the function name (a character string or unquoted) of an ecclesiastical or public
holiday in the G7 countries or Switzerland, see the list below. Can also be a
character vector to specify several holidays.

year an integer value or vector of years, formatted as YYYY.

Details

Easter is the central ecclesiastical holiday. Many other holidays are related to this feast. The func-
tion Easter computes the dates of Easter and related ecclesiastical holidays for the requested year
vector. holiday calculates the dates of ecclesiastical or publich holidays in the G7 countries,
e.g. holiday(2003, "GoodFriday"). Rmetrics contains holiday functions automatically loaded
at startup time. The user can add easily additional holiday functions. The information for the holi-
days is collected from several web pages about holiday calendars. The following ecclesiastical and
public [HOLIDAY] functions in the G7 countries and Switzerland are available:

Holidays Related to Easter:

holiday 29

Septuagesima, Quinquagesima, AshWednesday, PalmSunday, GoodFriday, EasterSunday, Easter,
EasterMonday, RogationSunday, Ascension, Pentecost, PentecostMonday, TrinitySunday CorpusChristi.

Holidays Related to Christmas:

ChristTheKing, Advent1st, Advent1st, Advent3rd, Advent4th, ChristmasEve, ChristmasDay, Box-
ingDay, NewYearsDay.

Other Ecclestical Feasts:

SolemnityOfMary, Epiphany, PresentationOfLord, Annunciation, TransfigurationOfLord, Assump-
tionOfMary, AssumptionOfMary, BirthOfVirginMary, CelebrationOfHolyCross, MassOfArchangels,
AllSaints, AllSouls.

CHZurich - Public Holidays:

CHBerchtoldsDay, CHSechselaeuten, CHAscension, CHConfederationDay, CHKnabenschiessen.

GBLondon - Public Holidays:

GBEarlyMayBankHoliday, GBSpringBankHoliday GBSummerBankHoliday, GBNewYearsEve.

(GBMayDay and GBBankHoliday have been removed. Use GBEarlyMayBankHoliday and GB-
SpringBankHoliday, respectively)

DEFrankfurt - Public Holidays:

DEAscension, DECorpusChristi, DEGermanUnity, DEChristmasEve, DENewYearsEve.

FRParis - Public Holidays:

FRFetDeLaVictoire1945, FRAscension, FRBastilleDay, FRAssumptionVirginMary, FRAllSaints,
FRArmisticeDay.

ITMilano - Public Holidays:

ITEpiphany, ITLiberationDay, ITRepublicAnniversary, ITAssumptionOfVirginMary, ITAllSaints,
ITWWIVictoryAnniversary, ITStAmrose, ITImmaculateConception.

USNewYork/USChicago - Public Holidays:

USNewYearsDay, USInaugurationDay, USMLKingsBirthday, USLincolnsBirthday, USWashing-
tonsBirthday, USMemorialDay, USIndependenceDay, USLaborDay, USColumbusDay, USElec-
tionDay, USVeteransDay, USThanksgivingDay, USChristmasDay, USCPulaskisBirthday, USGood-
Friday, USJuneteenthNationalIndependenceDay.

CAToronto/CAMontreal - Public Holidays:

CAVictoriaDay, CACanadaDay, CACivicProvincialHoliday, CALabourDay, CAThanksgivingDay,
CaRemembranceDay.

JPTokyo/JPOsaka - Public Holidays:

30 holidayDate

JPNewYearsDay, JPGantan, JPBankHolidayJan2, JPBankHolidayJan3, JPComingOfAgeDay, JP-
SeijinNoHi, JPNatFoundationDay, JPKenkokuKinenNoHi, JPGreeneryDay, JPMidoriNoHi, JPCon-
stitutionDay, JPKenpouKinenBi, JPNationHoliday, JPKokuminNoKyujitu, JPChildrensDay, JPKodomoNoHi,
JPMarineDay, JPUmiNoHi, JPRespectForTheAgedDay, JPKeirouNoHi, JPAutumnalEquinox, JPShuubun-
no-hi, JPHealthandSportsDay, JPTaiikuNoHi, JPNationalCultureDay, JPBunkaNoHi, JPThanks-
givingDay, JPKinrouKanshaNohi, JPKinrou-kansha-no-hi, JPEmperorsBirthday, JPTennou-tanjyou-
bi, JPTennou-tanjyou-bi.
JPMountainDay

Value

an object of class "timeDate"

See Also

BoxingDay, etc., for descriptions of the individual holiday functions,

listHolidays for a list (character vector) of all holidays,

Easter,

holidayLONDON, holidayNERC, holidayNYSE, holidayTSX, holidayZURICH for holidays at major
financial centers.

Examples

holiday
Dates for GoodFriday from 2000 until 2005:
holiday(2000:2005, "GoodFriday")
holiday(2000:2005, GoodFriday) # same (GoodFriday is a function)

Good Friday and Easter
holiday(2000:2005, c("GoodFriday", "Easter"))
holiday(2000:2005, c(GoodFriday, Easter))

Easter
Easter(2000:2005)

GoodFriday
GoodFriday(2000:2005)
Easter(2000:2005, -2)

holidayDate Public and ecclesiastical holidays

Description

A collection of functions giving holiday dates in the G7 countries and Switzerland.

holidayDate 31

Usage

Septuagesima(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

Quinquagesima(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

AshWednesday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

PalmSunday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

GoodFriday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

EasterSunday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

EasterMonday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

RogationSunday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

Ascension(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

Pentecost(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

PentecostMonday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

TrinitySunday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CorpusChristi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

ChristTheKing(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

Advent1st(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

Advent2nd(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

32 holidayDate

Advent3rd(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

Advent4th(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

ChristmasEve(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

ChristmasDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

BoxingDay(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

NewYearsDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

SolemnityOfMary(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

Epiphany(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

PresentationOfLord(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

Annunciation(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

TransfigurationOfLord(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

AssumptionOfMary(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

BirthOfVirginMary(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CelebrationOfHolyCross(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

MassOfArchangels(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

AllSaints(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

holidayDate 33

AllSouls(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

LaborDay(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

CHBerchtoldsDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CHSechselaeuten(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CHAscension(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CHConfederationDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CHKnabenschiessen(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

GBEarlyMayBankHoliday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

GBSpringBankHoliday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

GBSummerBankHoliday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

DEAscension(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

DECorpusChristi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

DEGermanUnity(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

DEChristmasEve(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

DENewYearsEve(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

FRFetDeLaVictoire1945(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

34 holidayDate

FRAscension(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

FRBastilleDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

FRAssumptionVirginMary(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

FRAllSaints(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

FRArmisticeDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

ITEpiphany(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

ITLiberationDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

ITAssumptionOfVirginMary(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

ITAllSaints(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

ITStAmrose(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

ITImmaculateConception(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USDecorationMemorialDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USPresidentsDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USNewYearsDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USInaugurationDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USMLKingsBirthday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

holidayDate 35

USLincolnsBirthday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USWashingtonsBirthday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USMemorialDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USIndependenceDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USLaborDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USColumbusDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USElectionDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USVeteransDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USThanksgivingDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USChristmasDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USCPulaskisBirthday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USGoodFriday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

USJuneteenthNationalIndependenceDay(
year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE,
...)

CAVictoriaDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CACanadaDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

36 holidayDate

CACivicProvincialHoliday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CALabourDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CAThanksgivingDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

CaRemembranceDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPVernalEquinox(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPNewYearsDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPGantan(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

JPBankHolidayJan2(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPBankHolidayJan3(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPComingOfAgeDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPSeijinNoHi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPNatFoundationDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPKenkokuKinenNoHi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPGreeneryDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPMidoriNoHi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPConstitutionDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

holidayDate 37

JPKenpouKinenBi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPNationHoliday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPKokuminNoKyujitu(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPChildrensDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPKodomoNoHi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPMarineDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPUmiNoHi(year = getRmetricsOptions("currentYear"), value = "timeDate",
na_drop = TRUE, ...)

JPRespectForTheAgedDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPMountainDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPAutumnalEquinox(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPShuubunNoHi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPHealthandSportsDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPTaiikuNoHi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPNationalCultureDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPBunkaNoHi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPThanksgivingDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

38 holidayDate

JPKinrouKanshaNoHi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPEmperorsBirthday(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPTennouTanjyouBi(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

JPBankHolidayDec31(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

InternationalWomensDay(year = getRmetricsOptions("currentYear"),
value = "timeDate", na_drop = TRUE, ...)

Arguments

year an integer value or vector of year numbers (four digits, e.g., 2024).

value the class of the returned value. If "timeDate", the default, return a "timeDate"
object, otherwise return a character vector.

na_drop how to treat NAs, TRUE, FALSE or a character string, see section ‘Details’.

... further arguments for format.timeDate, most notably "format". Ignored if
value = "timeDate".

Details

This help page discusses the public and ecclesiastical holidays per se. Some holidays fall by defi-
nition on a working day or a particular day of the week. For holidays that fall on weekends, many
countries have rules to declare a close by weekday a holiday. The functions here do not consider
such issues but they are handled by the holidayXXX functions (e.g., holidayLONDON), see their help
pages.

Public holidays change over time as new ones are introduced, dropped or move to different days.
When a holiday date is requested for a year when it did not exist, what should be returned? The
same question arises when the information is not available in this package.

The ecclesiastical holidays are computed by traditional rules and in practice should be correct for
all years.

Traditionally, package timeDate was computing the dates of the holidays according to the current
rules. In versions of package timeDate greater than 4022.108 historical information was added for
England and Japan holidays. The updated functions return the dates according to the rules for the
particular years.

For future years the returned dates are always computed accoding to the current rules.

For years before the first available rules, the default is to use those rules, whether the holiday existed
or not.

Argument na_drop can be used to control this. If na_drop is TRUE, an entry will not be incuded in
the result at all. If na_drop is FALSE the value for years when the holiday didn’t exist will be NA. If
it is a character string, the default, the closest available rules will be used.

holidayLONDON 39

Not all functions respect argument na_drop. In that case they act as if na_drop is a character string.

GBMayDay and GBBankHoliday have been removed. Use GBEarlyMayBankHoliday and GBSpringBankHoliday,
respectively.

Value

the date of the requested holiday as a "timeDate" object

Note

The holiday information for most countries is incomplete. Contributions are welcome. Please
include references for your sources, whenever possible.

See Also

holiday alternative to calling directly individual holiday functions (takes one or more holiday func-
tions as argument),

listHolidays for a list (character vector) of all holidays,

Easter,

holidayLONDON, holidayNERC, holidayNYSE, holidayTSX, holidayZURICH for holidays at major
financial centers.

Examples

Sechselaeuten a half Day Bank Holiday in Switzerland
CHSechselaeuten(2000:2010)
CHSechselaeuten(getRmetricsOptions("currentYear"))

German Unification Day:
DEGermanUnity(getRmetricsOptions("currentYear"))

holidayLONDON London Bank Holidays

Description

Returns bank holidays in London.

Usage

holidayLONDON(year = getRmetricsOptions("currentYear"))

Arguments

year an integer value or vector of years, formatted as YYYY.

40 holidayNERC

Details

There are currently 8 bank holidays in Britain every year: New Year’s Day, Good Friday, Easter
Monday, Early Spring Holiday (first Monday of May), Spring Holiday (Last Monday of May),
Summer Holiday (Last Monday of August), Christmas Day and Boxing Day.

Some of these holidays are referred also by alternative names or may have had other names in the
past. Also the rules according to which the dates for some of them are calculated have changed over
time.

Occasionaly there are one-off special holidays, usually related to significant Royal events. Also as
one-off, the dates of some holidays are sometimes moved. For example, the Early spring holiday
was moved several times to 8th May to coincide with Victory day on big anniversaries.

Value

an object of class "timeDate".

Author(s)

Original function contributed by Menon Murali; amended, corrected and rewritten by Georgi N.
Boshnakov

See Also

holidayNERC, holidayNYSE, holidayTSX, holidayZURICH for holidays at other major financial
centers.

BoxingDay, etc., for descriptions of the individual holiday functions,

listHolidays for a list (character vector) of all holidays,

holiday alternative to calling directly individual holiday functions (takes one or more holiday func-
tions as argument),

Easter

Examples

holidayLONDON()
holidayLONDON(2008:2010)

holidayNERC NERC holiday calendar

Description

Returns a holiday calendar for NERC, the North American Reliability Council.

Usage

holidayNERC(year = getRmetricsOptions("currentYear"), FinCenter = "Eastern")

holidayNYSE 41

Arguments

year an integer value or vector of years, formatted as YYYY.

FinCenter a character value, the name of the financial center to use.

Value

an object of class "timeDate"

Author(s)

Joe W. Byers

References

http://www.nerc.com/~oc/offpeaks.html

See Also

holidayLONDON, holidayNYSE, holidayTSX, holidayZURICH for holidays at other major financial
centers.

BoxingDay, etc., for descriptions of the individual holiday functions,

listHolidays for a list (character vector) of all holidays,

holiday alternative to calling directly individual holiday functions (takes one or more holiday func-
tions as argument),

Easter

Examples

holidayNERC()
holidayNERC(2008:2010)

holidayNYSE NYSE holiday calendar

Description

Returns a holiday (closing days) calendar for the New York Stock Exchange.

Usage

holidayNYSE(year = getRmetricsOptions("currentYear"),
type = c("", "standard", "special"))

42 holidayNYSE

Arguments

year an integer value or vector of years, formatted as YYYY.

type what to include, a character string. The default is to return all closing days
(holidays and specials). "standard" requests only closings associated with the
standard public holidays, "special" gives the special closings only.

Details

holidayNYSE generates a list of the clossing days of the exchange for the requested years.

The default is to return all closing days (holidays and specials). type = "standard" requests only
closings associated with the standard public holidays, type = "special" gives the special closings
only.

Value

an object of class "timeDate"

Note

The list of closing days returned by holidayNYSE was changed in timeDate version 4021.105, in
that previously it did not include special closing days. This was perceived by some users as buggy.
Also, the intent by the authors of the package seems to have been for it to return all closing days.
Indeed, the default for isisBizday() is to drop weekends and days returned by holidayNYSE.

Argument type was also included in version 4021.105. The old behaviour can be obtained by using
type = "standard".

The default for argument type is currently the empty string, since I couldn’t come up with another
string that would be universally easy to remember. Suggestions are welcome but a change will be
only feasible if they come soon.

Author(s)

Diethelm Wuertz (original author); Yohan Chalabi improved speed and handling of time zone;
Georgi N. Boshnakov added the special closings and argument ‘type’.

See Also

earlyCloseNYSE for times of early closings of NYSE,

holidayLONDON, holidayNERC, holidayTSX, holidayZURICH for holidays at other major financial
centers,

BoxingDay, etc., for descriptions of the individual holiday functions,

listHolidays for a list (character vector) of all holidays,

holiday alternative to calling directly individual holiday functions (takes one or more holiday func-
tions as argument),

Easter

holidayTSX 43

Examples

holidayNYSE() # current year
holidayNYSE(2008:2010)

January 2, 2007 was a memorial day for president G.R. Ford,
not a regular public holiday
holidayNYSE(2007)
holidayNYSE(2007, type = "standard")
holidayNYSE(2007, type = "special")

holidayTSX TSX holiday calendar

Description

Returns a holiday calendar for the Toronto Stock Exchange.

Usage

holidayTSX(year = getRmetricsOptions("currentYear"))

Arguments

year an integer value or vector of years, formatted as YYYY.

Value

an object of class "timeDate"

See Also

holidayLONDON, holidayNERC, holidayNYSE, holidayZURICH for holidays at other major finan-
cial centers,

BoxingDay, etc., for descriptions of the individual holiday functions,

listHolidays for a list (character vector) of all holidays,

holiday alternative to calling directly individual holiday functions (takes one or more holiday func-
tions as argument),

Easter

Examples

holidayTSX()
holidayTSX(2008:2010)

44 holidayZURICH

holidayZURICH Zurich holiday calendar

Description

Returns a holiday calendar for Zurich.

Usage

holidayZURICH(year = getRmetricsOptions("currentYear"))

Arguments

year an integer value or vector of years, formatted as YYYY.

Details

The Zurich holiday calendar includes the following holidays: NewYearsDay, GoodFriday, Easter-
Monday, LaborDay, PentecostMonday, ChristmasDay, BoxingDay, CHBerchtoldsDay, CHSechse-
laeuten, CHAscension, CHConfederationDay, CHKnabenschiessen.

Value

an object of class "timeDate"

See Also

holidayLONDON, holidayNERC, holidayNYSE, holidayTSX, for holidays at other major financial
centers,

BoxingDay, etc., for descriptions of the individual holiday functions,

listHolidays for a list (character vector) of all holidays,

holiday alternative to calling directly individual holiday functions (takes one or more holiday func-
tions as argument),

Easter

Examples

holidayZURICH()
holidayZURICH(2008:2010)

in_int 45

in_int Set operations on timeInterval objects

Description

Union, intersection, complement and set difference of "timeInterval" objects. Also testing if an
object is in a "timeInterval" and tiInf representing the infinite time interval.

Usage

S3 method for class 'timeInterval'
!x
S4 method for signature 'timeInterval,timeInterval'
e1 & e2
S4 method for signature 'timeInterval,timeInterval'
e1 | e2
S4 method for signature 'timeInterval,timeInterval'
e1 ^ e2

x %in_int% ti
S4 method for signature 'timeInterval,timeInterval'
x %in_int% ti
S4 method for signature 'timeDate,timeInterval'
x %in_int% ti

tiInf

Arguments

x a "timeInterval" or "timeDate" object

e1, e2, ti "timeInterval" objects

Details

Let ti1 and ti2 be objects from class "timeInterval".

ti1 & ti2 is the intersection of ti1 and ti2, ti1 | ti2 their union, ti1 the complement of ti1
(w.r.t. (-Inf, Inf)).

ti1 ^ ti2 is the complement of ti1 w.r.t. ti2, i.e., the set difference ti2/ti1 (all points in ti2 that
are not in ti1). !ti1 is the same as ti1 ^ timeInterval(left = -Inf, right = Inf).

tiInf represents the time interval from -Inf to Inf.

A motivation for using the logical operators for set operations is that in mathematics the notation
for them is similar and the properties of logical ‘and’, ‘or’ and ‘negation’ are analogous to those
of intersection, union and complement. Also Ac is one of the notations for complement, where ‘c’
stands for the universe (the whole set w.r.t. which the complement is taken). Here, it corresponds to
timeInterval(left = -Inf, right = Inf). We extend this notation to allow taking a complement
w.r.t. any "timeInterval" (i.e., a set difference).

46 in_int

x %in_int% ti checks if x is in the "timeInterval" ti.

If x is a "timeInterval" object, the result of x %in_int% ti is a single TRUE value if x is a sub-
interval of ti; FALSE otherwise.

If x is a "timeDate" object, the result of x %in_int% ti is a logical vector indicating which times
are in ti.

Value

for "&", "|", "!" and "^" methods - a "timeInterval" object,

Author(s)

Georgi N. Boshnakov

See Also

class "timeInterval",

timeInterval for creation of "timeInterval" objects and further examples,

in_int for set operations on "timeInterval" objects

Examples

create a time interval by rounding to the enclosing hour
ti <- timeInterval(timeDate("2024-12-20 10:20:30"), unit = "hours")
ti

a similar interval on the following day
tib <- timeInterval(timeDate("2024-12-21 10:20:30"), unit = "hours")
tib

ti2 <- ti | tib
ti2

ti & ti2
ti | ti2

!ti
!ti2

identical(!ti, ti ^ timeInterval(left = -Inf, right = Inf))
identical(!ti2, ti2 ^ timeInterval(left = -Inf, right = Inf))

tiInf represents the time interval (-Inf, Inf)
identical(tiInf, timeInterval(left = -Inf, right = Inf))

ti ^ ti2 # ti2 \ ti
ti2 ^ ti # ti \ ti2

timeDate("2024-12-20 10:20:30") %in_int% ti2 # TRUE
timeDate("2024-12-20 11:20:30") %in_int% ti2 # FALSE

is.na-methods 47

timeDate(c("2024-12-20 10:20:30", "2024-12-20 11:20:30")) %in_int% ti2

ti's are closed on the left and open on the right, hence:
ti2@left %in_int% ti2 # [1] TRUE TRUE
ti2@right %in_int% ti2 # [1] FALSE FALSE

a timeInterval is a scalar, so the following give a single TRUE/FALSE
indicating whether or not the first interval is contained in the second
ti %in_int% ti2
ti2 %in_int% ti

is.na-methods Methods for ’is.na’

Description

is.na methods for "timeDate" objects.

Examples

create a timeCalendar sequence
(td <- timeCalendar())
is.na(td)

insert NA's
is.na(td) <- 2:3
td

test of NA's
is.na(td)

isBizday Check if dates are business or holidays

Description

Tests if a date is a business day or not.

Usage

isBizday(x, holidays = holidayNYSE(), wday = 1:5)
isHoliday(x, holidays = holidayNYSE(), wday = 1:5)

48 isRegular

Arguments

x an object of class "timeDate".

holidays holiday dates from a holiday calendar. An object of class "timeDate".

wday Specify which days should be considered as weekdays. By default from Mon-
days to Fridays.

Details

Returns a logical vector of the same length as x indicating if a date is a business day, or a holiday,
respectively.

Value

a logical vector of the same length as x

Examples

dates in April, current year
currentYear <- getRmetricsOptions("currentYear")
tS <- timeSequence(from = paste(currentYear, "-03-01", sep = ""),

to = paste(currentYear, "-04-30", sep = ""))
tS

subset business days at NYSE
holidayNYSE()
isBizday(tS, holidayNYSE())
tS[isBizday(tS, holidayNYSE())]

isRegular Checks if a date/time vector is regular

Description

Checks if a date/time vector is regular. i.e. if it is a daily, a monthly, or a quarterly date/time vector.
If the date/time vector is regular the frequency can be determined calling the function frequency.

Usage

S4 method for signature 'timeDate'
isDaily(x)
S4 method for signature 'timeDate'
isMonthly(x)
S4 method for signature 'timeDate'
isQuarterly(x)

S4 method for signature 'timeDate'
isRegular(x)

isRegular 49

S3 method for class 'timeDate'
frequency(x, ...)

Arguments

x an object of class "timeDate".

... arguments to be passed.

Details

A date/time vector is defined as daily if the vector has no more than one date/time stamp per day.

A date/time vector is defined as monthly if the vector has no more than one date/time stamp per
month.

A date/time vector is defined as quarterly if the vector has no more than one date/time stamp per
quarter.

A monthly date/time vector is also a daily vector, a quarterly date/time vector is also a monthly
vector.

A regular date/time vector is either a monthly or a quarterly vector.

NOT yet implemented is the case of weekly vectors.

Value

The is* functions return TRUE or FALSE depending on whether the date/time vector fulfills the
condition or not.

The function frequency returns in general 1, for quarterly date/time vectors 4, and for monthly
vectors 12.

Examples

tC <- timeCalendar(2023)
tC
isRegular(tC)
frequency(tC)

isMonthly(tC)
isQuarterly(tC)
isDaily(tC)

50 julian

isWeekday Weekdays and weekends

Description

Tests if a date is a weekday or not.

Usage

isWeekday(x, wday = 1:5)
isWeekend(x, wday = 1:5)

Arguments

x an object of class "timeDate".

wday Specify which days should be considered as weekdays. By default from Mon-
days to Fridays.

Value

a logical vector indicating if a date is a weekday or a weekend day

Examples

dates in april, current year
currentYear = getRmetricsOptions("currentYear")
tS = timeSequence(

from = paste(currentYear, "-03-01", sep = ""),
to = paste(currentYear, "-04-30", sep = ""))

tS

subset of weekends
isWeekend(tS)
tS[isWeekend(tS)]

julian Julian counts and calendar atoms

Description

Returns Julian day counts, date/time atoms from a "timeDate" object, and extracts month atoms
from a "timeDate" object.

julian 51

Usage

S3 method for class 'timeDate'
julian(x, origin = timeDate("1970-01-01"),

units = c("auto", "secs", "mins", "hours", "days", "weeks"),
zone = NULL, FinCenter = NULL, ...)

S4 method for signature 'timeDate'
atoms(x, ...)

S3 method for class 'timeDate'
months(x, abbreviate = FALSE)

S3 method for class 'timeDate'
weekdays(x, abbreviate = FALSE)

S3 method for class 'timeDate'
quarters(x, abbreviate)

S4 method for signature 'timeDate'
x$name

Arguments

x an object of class "timeDate".

origin a length-one object inheriting from class "timeDate" setting the origin for the
julian counter.

units a character string denoting the date/time units in which the results are desired.

zone the time zone or financial center where the data were recorded.

FinCenter a character string with the location of the financial center named as "conti-
nent/city".

abbreviate currently not used.

name one of year, month, day, hour, minute, second, wday (or weekday), wday0 (or
weekday0), and quarter. Completion is available in interactive sessions.

... arguments passed to other methods.

Details

Generic functions to extract properties of "timeDate" objects. julian and months are generics
from base R, while atoms is a generic defined in this package.

julian extracts the number of days since origin (can be fractional), see also julian.

atoms extracts the calendar atoms from a "timeDate" object, i.e., the year, month, day, and op-
tionally, hour, minute and second. The result is a data frame with the financial center in atrribute
"control".

months extracts the months, see section ‘Note’.

52 julian

The dollar operator applied to a "timeDate" object, e.g. td$name, extracts a component of the
date/time values as a numeric vector. Currently, name can be one of year, month, day, hour,
minute, second, wday (or weekday), wday0 (or weekday0), and quarter. wday0 (weekday0) starts
with 0 (for Sunday), the meaning of the rest should be clear.

In interactive sessions, completion is available for the dollar operator.

Value

for julian, a difftime object;

for atoms, a data.frame with attribute "control" containing the financial center of the input
vector x. The data frame has the following components:

Y year,

m month,

d day,

H hour,

M minute,

S second;

for months, a numeric vector with attribute "control" containing the financial center. (Note: this
use is deprecated, use $month instead.)

for the dollar method, the corresponding component as numeric vector.

Note

Deprecation Warning: a ‘timeDate‘ method for ‘months‘ has existed for a long time but it was
returning a numeric vector, which is inconsistent with the other methods for months in base R (they
return names of months). Returning a numeric vector when ’abbreviate’ is missing is a temporary
compromise, to avoid breaking old code but this should be considered deprecated. Use td$month
to get the numbers.

See Also

dayOfWeek, dayOfYear;

the base R functions julian, difftime, months;

Examples

julian
tC = timeCalendar(2022)
julian(tC)[1:3]

atoms
atoms(tC)

months
tC$month # recommended 1 to 12
months(tC) # deprecated - will be changed to return month names, as base::months()

kurtosis 53

weekdays(tC)
weekdays(tC, TRUE)

the dollar method
tC$year
tC$month
tC$day
tC$hour
tC$minute
tC$second
tC$weekday
tC$weekday0

tC$quarter

kurtosis Kurtosis

Description

Generic function for computation of kurtosis. The methods defined in package timeDate are de-
scribed here.

Usage

kurtosis(x, ...)

Default S3 method:
kurtosis(x, na.rm = FALSE,

method = c("excess", "moment", "fisher"), ...)

S3 method for class 'data.frame'
kurtosis(x, na.rm = FALSE,

method = c("excess", "moment", "fisher"), ...)

S3 method for class 'POSIXct'
kurtosis(x, ...)

S3 method for class 'POSIXlt'
kurtosis(x, ...)

Arguments

x a numeric vector or object.

na.rm a logical. Should missing values be removed?

method a character string, the method of computation, see section ‘Details’.

... arguments to be passed.

54 length

Details

kurtosis is an S3 generic function. This page describes the methods defined in package dateTime.

Argument "method" can be one of "moment", "fisher", or "excess". If "excess" is selected,
then the value of the kurtosis is computed by the "moment" method and a value of 3 will be sub-
tracted. The "moment" method is based on the definitions of kurtosis for distributions and this
method should be used when resampling (bootstrap or jackknife). The "fisher" method corre-
sponds to the usual “unbiased” definition of sample variance, although in the case of kurtosis exact
unbiasedness is not possible.

If x is numeric the kurtosis is computed according to the description given for argument method. A
logical vector is treated as a vector of 1’s and 0’s.

The data.frame method applies kurtosis recursively to each column. The POSIXlt method com-
putes the kurtosis of the underlying numerical representation of the date/times. The method for
POSIXct does the same after converting the argument to POSIXlt.

The default method returns NA, with a warning, if it can’t handle argument x.

Value

a numeric value or vector with attribute "method" indicating the method. For the data frame method
the values are named using the columns names.

See Also

skewness

Examples

r = rnorm(100)
mean(r)
var(r)

kurtosis
kurtosis(r)

kurtosis(data.frame(r = r, r2 = r^2))

length Length of a ’timeDate’ object

Description

Returns the length of a "timeDate" object.

Usage

S3 method for class 'timeDate'
length(x)

listFinCenter 55

Arguments

x an object of class "timeDate".

Value

an integer of length 1

Examples

timeCalendar
tC = timeCalendar()

length -
length(tC)

listFinCenter List of financial centers

Description

Lists supported financial centers.

Usage

listFinCenter(pattern = ".*")

Arguments

pattern a pattern character string as required by the grep function. The default, ".*",
gives all supported financial centers

Details

The list returned by listFinCenter doesn’t contain all financial centers supported by timeDate.
Rather it contains currently supported ‘standard names’ of time zones defined in the tz (a.k.a. Zone-
info) database. Names supported by previous versions of by timeDate are recognised, even though
they are not in the list.

Value

a character vector listing the financial centers whose names match pattern.

See Also

rulesFinCenter for the daylight saving rules

56 listHolidays

Examples

myFinCenter - the global setting currently used
getRmetricsOptions("myFinCenter")

Other Financial Centers
listFinCenter("Asia/")
listFinCenter("^A") # all beginning with "A"
listFinCenter("^[^A]") # all *not* beginning with "A"
listFinCenter(".*/L") # cities with L*

stopifnot(identical(sort(listFinCenter()), ## 'A' and 'not A' == everything:
sort(union(listFinCenter("^A"),

listFinCenter("^[^A]")))))

listHolidays List of holidays

Description

Returns a list of holidays supported by package "timeDate".

Usage

listHolidays(pattern = ".*")

Arguments

pattern a character string containing a regular expression.

Details

Gives a character vector containing the names of supported holidays matching pattern. The default
is to return all holidays.

The list is sorted alphabetically. It is changed from time to time. So, the use of character indexing
(possibly representing patterns) on the returned list is strongly recommended.

Value

a character vector, sorted in alphabetical order

See Also

BoxingDay, etc., for descriptions of the individual holiday functions,

holiday alternative to calling directly individual holiday functions (takes one or more holiday func-
tions as argument),

Easter,

holidayLONDON, holidayNERC, holidayNYSE, holidayTSX, holidayZURICH for holidays at major
financial centers.

midnightStandard 57

Examples

Local Swiss Holidays:
listHolidays("CH")

listHolidays("Easter")
listHolidays("NewYear")

All Holidays
listHolidays()

midnightStandard Midnight standard

Description

Corrects "timeDate" objects if they do not fulfill the ISO8601 midnight standard.

Usage

midnightStandard (charvec, format)
midnightStandard2(charvec, format)

Arguments

charvec a character string or vector of dates and times.
format a string, the format specification of the input character vector.

Details

midnightStandard2() calls strptime. Since the latter returns NAs for elements that don’t conform
to the midnight standard, the inputs corresponding to NAs are further processed to fix this.

midnightStandard() converts to character vector the result obtained from midnightStandard2().

Value

for midnightStandard, a character vector,

for midnightStandard2, a POSIXct object with time zone "GMT".

See Also

whichFormat

Examples

ch <- "2007-12-31 24:00"
midnightStandard(ch)
(ms2 <- midnightStandard2(ch))
class(ms2)

58 myUnits

myFinCenter myFinCenter variable

Description

A character string with the name of my financial center.

Note

Can be modified by the user to his/her own or any other financial center. The default is "GMT". To
list all supported financial centers use the function listFinCenter.

See Also

listFinCenter

Examples

myFinCenter - the global setting currently used
getRmetricsOptions("myFinCenter")

change to another financial center
setRmetricsOptions(myFinCenter = "Zurich")

Do not care about DST
setRmetricsOptions(myFinCenter = "GMT")

myUnits Frequency of date/time units

Description

A variable with the frequency of date/units.

Value

the date/time units, a character value, yy default "days"

Examples

myUnits
getRmetricsOptions("myUnits")

names-methods 59

names-methods The names of a ’timeDate’ object

Description

Functions to get or set the names of a "timeDate" object.

Usage

S4 method for signature 'timeDate'
names(x)
S4 replacement method for signature 'timeDate'
names(x) <- value

Arguments

x an object of class "timeDate".

value a character vector of up to the same length as x, or NULL.

Examples

td <- timeCalendar()
td
names(td) <- LETTERS[seq_along(td)]
td

nDay n-th n-day dates

Description

Computes the date for the n-th or last occurrence of an n-day in year/month.

Usage

timeNthNdayInMonth(charvec, nday = 1, nth = 1, format = "%Y-%m-%d",
zone = "", FinCenter = "")

timeLastNdayInMonth(charvec, nday = 1, format = "%Y-%m-%d",
zone = "", FinCenter = "")

60 onOrAfter

Arguments

charvec a character vector or object from a class representing time, such as "timeDate",
"POSIXlt", etc.

nday an integer vector with entries ranging from 0 (Sunday) to 6 (Saturday).

nth an integer vector numbering the n-th occurence.

format the format specification of the input character vector.

zone the time zone or financial center where the data were recorded.

FinCenter a character with the location of the financial center named as “continent/city”.

Details

timeNthNdayInMonth returns the nth occurrence of a n-day (nth = 1,...,5) in year, month.

timeLastNdayInMonth returns the last nday in year, month.

Value

an object of class "timeDate"

See Also

trunc.timeDate,

timeFirstDayInMonth, timeLastDayInMonth, timeFirstDayInQuarter, timeLastDayInQuarter,

timeNdayOnOrAfter, timeNdayOnOrBefore

Examples

What date is the second Monday in April 2004?
timeNthNdayInMonth("2004-04-01", 1, 2)

What date has the last Tuesday in May, 1996?
timeLastNdayInMonth("1996-05-01", 2)

onOrAfter On-or-after/before dates

Description

Compute the date that is a "on-or-after" or "on-or-before" n-day.

Usage

timeNdayOnOrAfter(charvec, nday = 1, format = "%Y-%m-%d",
zone = "", FinCenter = "")

timeNdayOnOrBefore(charvec, nday = 1, format = "%Y-%m-%d",
zone = "", FinCenter = "")

pasteMat 61

Arguments

charvec a character vector or object from a class representing time, such as "timeDate",
"POSIXlt", etc.

nday an integer vector with entries ranging from 0 (Sunday) to 6 (Saturday).

format the format specification of the input character vector.

zone the time zone or financial center where the data were recorded.

FinCenter a character with the location of the financial center named as "continent/city".

Details

timeNdayOnOrAfter returns the date in the specified month that is a n-day (e.g. Sunday) on or after
the given date. Month and date are given through argument charvec.

The function timeNdayOnOrBefore returns the date that is a n-day on or before the given date.

Value

an object of class "timeDate"

See Also

trunc.timeDate,

timeFirstDayInMonth, timeLastDayInMonth, timeFirstDayInQuarter, timeLastDayInQuarter,

timeNthNdayInMonth, timeLastNdayInMonth,

Examples

date as character string
charvec = "2006-04-16"

timeNdayOnOrAfter
What date has the first Monday on or after March 15, 1986?
timeNdayOnOrAfter("1986-03-15", 1)

timeNdayOnOrBefore
What date has Friday on or before April 22, 1977?
timeNdayOnOrBefore("1986-03-15", 5)

pasteMat Concatenate matrix columns, keeping NAs

Description

Concatenate the columns of a matrix or df. Like paste, but any row containing one or more NAs
gives in an NA in the corresponding element of the result. Argument sep can be a vector, specifying
different separators between different columns.

62 pasteMat

Usage

pasteMat(x, ..., sep = NULL)

Arguments

x a matrix or data frame. Can also be a vector if one or more ‘...’ arguments are
used.

... additional arguments to be combined, together with x, with cbind.

sep a character vector of separators between the columns, can be of length larger
than 1. The default is sep = " " (as for paste.

Details

If the ... arguments are used, they are combined by the equivalent of x <- cbind(x, ...).

pasteMat gives a result similar to the one that would be obtained from paste if the columns of x
are passed to that individually. The main difference is in the treatment of NAs.

Any row of x containing one or more NAs results in an NA in the corresponding element of the result.

There can be different separators between the columns. This can be obtained by setting sep to be
of length greater than one.

Value

a character vector

Author(s)

Georgi N. Boshnakov

See Also

paste, timeDate

Examples

a <- c("a", NA, "b", NA, "c")
b <- c("x", "y", NA, NA, "z")

turns NAs into the string "NA"
paste(a, b)

keeps NAs in the result
pasteMat(a, b)
pasteMat(cbind(a, b)) # same

dts <- c("1989-09-28", NA, "2004-08-30", "1990-02-09")
tms <- c("23:12:55", "10:34:02", NA, "11:18:23")

paste(dts, tms)
this throws error (since NAs are converted to the string NA):

periods 63

timeDate(paste(dts, tms), FinCenter = "Europe/Zurich")

these work
td1 <- timeDate(pasteMat(cbind(dts, tms)), FinCenter = "Europe/Zurich")
td2 <- timeDate(pasteMat(dts, tms), FinCenter = "Europe/Zurich")
identical(td1, td2)
td1

periods Rolling periods

Description

Returns start and end dates for rolling periods.

Usage

periods(x, period = "12m", by = "1m", offset = "0d")
periodicallyRolling(x, period = "52w", by = "4w", offset = "0d")
monthlyRolling(x, period = "12m", by = "1m")

Arguments

x an object of class timeDate.

period a span string, consisting of a length integer and a unit value, e.g. "52w" for 52
weeks.

by a span string, consisting of a length integer and a unit value, e.g. "4w" for 4
weeks.

offset a span string, consisting of a length integer and a unit value, e.g. "0d" for no
offset.

Details

Periodically Rolling - Allowed unit values are "m" for 4 weeks, "w" for weeks, "d" for days, "H"
for hours, "M" for minutes, and "S" for seconds.

Monthly Calendar Rolling - The only allowed allowed unit value is "m" for monthly periods. Ex-
press a quarterly period by "3m", a semester by "6m", a year by "12m" etc.

Examples

create time sequence
x <- timeSequence(from = "2001-01-01", to = "2009-01-01", by = "day")

generate periods
periods(x, "12m", "1m")
periods(x, "52w", "4w")

64 plot-methods

roll periodically
periodicallyRolling(x)

roll monthly
monthlyRolling(x)

plot-methods Plot methods

Description

Plot methods for "timeDate" objects.

Usage

S4 method for signature 'timeDate'
plot(x, y, ...)
S4 method for signature 'timeDate'
lines(x, y, ...)
S4 method for signature 'timeDate'
points(x, y, ...)

axis.timeDate(side, x, at, format = NULL, labels = TRUE, ...)

S3 method for class 'timeDate'
pretty(x, n=5, min.n=n%/%3, shrink.sml=0.75,

high.u.bias=1.5, u5.bias=0.5+1.5*high.u.bias,
eps.correct=0, ...)

Arguments

x, y, at an object of class timeDate.
side an integer specifying which side of the plot the axis is to be drawn on. The axis

is placed as follows: 1=below, 2=left, 3=above and 4=right.
format a POSIX format string, e.g. "%Y-%m-%d".
labels either a logical value specifying whether annotations are to be made at the tick-

marks, or a vector of character strings to be placed at the tickpoints.
n an integer giving the desired number of intervals.
min.n a nonnegative integer giving the minimal number of intervals.
shrink.sml a positive numeric by a which a default scale is shrunk in the case when range(x)

is very small.
high.u.bias a non-negative numeric, typically > 1. Larger high.u.bias values favor larger

units.
u5.bias a non-negative numeric multiplier favoring factor 5 over 2.
eps.correct an integer code, one of 0, 1, or 2. If non-0, a correction is made at the boundaries.
... arguments passed to other methods.

rep 65

Value

returns a summary report of the details of a "timeDate" object. This includes the starting and end
date, the number of dates the format and the financial center in use.

Examples

timeCalendar
x <- timeCalendar()
y <- rnorm(12)

Plotting
plot(x, y, type = "l")
points(x, y, pch = 19, col = "red")

plot(x, y, type = "l", xaxt = "n")
axis.timeDate(1, at = x[c(1, 3, 5, 7, 9, 11)], format = "%b")
axis.timeDate(1, at = x[12], format = "%Y")

rep Replicating ’timeDate’ objects

Description

Replicates "timeDate" objects.

Usage

S3 method for class 'timeDate'
rep(x, ...)

Arguments

x an object of class "timeDate".

... arguments passed to the method for 'POSIXct', rep.

Value

an object of class "timeDate"

Examples

rep
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")

rep(ZUR[2], times = 3)
rep(ZUR[2:3], times = 2)

66 RmetricsOptions

rev Reverse ’timeDate’ objects

Description

Reverse a "timeDate" object.

Usage

S3 method for class 'timeDate'
rev(x)

Arguments

x an object of class "timeDate".

Value

an object of class "timeDate"

Examples

dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
ZUR <- timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")
ZUR
rev(ZUR)

RmetricsOptions Rmetrics option settings

Description

Allow the user to set and examine a variety of global options which affect the way in which Rmetrics
functions compute and display their results.

Usage

setRmetricsOptions(...)
getRmetricsOptions(x, unset = "")

Arguments

unset a character string holding the return value is x is not set.

x a character string holding an option name.

... any options can be defined, using name = value or by passing a list of such
tagged values.

round 67

round Rounding and truncating ’timeDate’ objects

Description

Rounds and truncates objects of class ’timeDate’.

Usage

S3 method for class 'timeDate'
round(x, digits = c("days", "hours", "mins", "secs", "months", "years"))

S3 method for class 'timeDate'
trunc(x, units = c("days", "hours", "mins", "secs", "months", "years"),

...)

Arguments

digits, units a character string denoting the date/time units in which the results are desired.

x an object of class "timeDate".

... arguments passed to other methods.

Details

The two functions round and trunc allow to round or to truncate "timeDate" objects to the speci-
fied unit and return them as "timeDate" objects.

There is an inconsistency in that round uses digits as argument and not units.

From ‘timeDate’ version > 4041.110, the units of rounding are the same as those for round.POSIXt
and trunc.POSIXt. Note though that the default for the ‘timeDate’ methods is "days", not "secs".

Value

an object of class "timeDate"

See Also

timeFirstDayInMonth, timeLastDayInMonth, timeFirstDayInQuarter, timeLastDayInQuarter,

timeNthNdayInMonth, timeLastNdayInMonth,

timeNdayOnOrAfter, timeNdayOnOrBefore

68 rulesFinCenter

Examples

create a timeDate object
dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
tms <- c("23:12:55.13", "10:34:02.23", "08:30:00.33", "11:18:23.53")
td <- timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",

zone = "GMT", FinCenter = "GMT")

round
round(td) # same as round(td, "days")

round(td, "secs")
round(td, "mins")
round(td, "hours")
round(td, "days")
round(td, "months")
round(td, "years")

truncate
trunc(td) # same as trunc(td, "days")

trunc(td, "secs")
trunc(td, "mins")
trunc(td, "hours")
trunc(td, "days")
trunc(td, "months")
trunc(td, "years")

rulesFinCenter Financial centers DST rules

Description

Returns DST rules for a financial center.

Usage

rulesFinCenter(FinCenter = "")

Arguments

FinCenter a character string with the location of the financial center named as "conti-
nent/city".

Details

The function rulesFinCenter lists the daylight saving rules for a selected financial center.

There is no dependency on the POSIX implementation of your operating system because timeDate
comes with a database containing the necessary time zone and day light saving time information.

sample 69

Value

a list of time zones and DST rules available in the database

See Also

listFinCenter for a list of the available financial centers

Examples

rulesFinCenter
rulesFinCenter("Zurich")

sample Resampling ’timeDate’ objects

Description

Resamples a "timeDate" object.

Value

an object of class "timeDate"

Examples

c
Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

"+/-"
Add One Day to a Given timeDate Object:
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")
GMT
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")
ZUR

c
Concatenate and Replicate timeDate Objects:
c(GMT[1:2], ZUR[1:2])
c(ZUR[1:2], GMT[1:2])

rep
rep(ZUR[2], times = 3)
rep(ZUR[2:3], times = 2)

70 skewness

show-methods Show methods

Description

Show methods for "timeDate" objects.

Methods

signature(object = "timeDate") Print function for objects of class "timeDate".

signature(object = "timeInterval")

Examples

print | show
print(timeCalendar())

skewness Skewness

Description

Functions to compute skewness.

Usage

skewness(x, ...)

Default S3 method:
skewness(x, na.rm = FALSE, method = c("moment", "fisher"), ...)

S3 method for class 'data.frame'
skewness(x, na.rm = FALSE, method = c("moment", "fisher"), ...)

S3 method for class 'POSIXct'
skewness(x, ...)

S3 method for class 'POSIXlt'
skewness(x, ...)

Arguments

x a numeric vector or object.

na.rm a logical. Should missing values be removed?

method a character string, the method of computation, see section ‘Detaials’.

... arguments to be passed.

sort 71

Details

Argument method can be one of "moment" or "fisher". The "moment" method is based on the
definitions of skewness for distributions and this should be used when resampling (bootstrap or
jackknife). The "fisher" method correspond to the usual "unbiased" definition of sample variance,
although in the case of skewness exact unbiasedness is not possible.

The data frame method computes the skewness of each column.

Value

a numeric value or vector with attribute "method" indicating the method. For the data frame method
the values are named using the columns names.

See Also

kurtosis

Examples

r = rnorm(100)
mean(r)
var(r)

skewness(r)

sort Sorting ’timeDate’ objects

Description

Sorts a "timeDate" object.

Usage

S3 method for class 'timeDate'
sort(x, ...)

Arguments

x an object of class "timeDate".

... arguments passed to other methods.

Value

an object of class "timeDate"

72 specialHolidayGB

Examples

c
create character vectors
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

"+/-"
add one day to a given timeDate object:
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")
GMT
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")
ZUR

c
concatenate and replicate timeDate objects
c(GMT[1:2], ZUR[1:2])
c(ZUR[1:2], GMT[1:2])

rep
rep(ZUR[2], times = 3)
rep(ZUR[2:3], times = 2)

specialHolidayGB Dates of special one-off holidays in the UK

Description

Gives dates of special one-off holidays in the UK.

Usage

specialHolidayGB(year = getRmetricsOptions("currentYear"),
value = "timeDate", named = FALSE, ...)

Arguments

year the year(s) for which special holidays are required, a vector containing four-digit
integer number(s) of the form CCYY, e.g. 2023.

value the class of the returned value. If "timeDate", the default, return a "timeDate"
object, if "" return a character vector.

named if TRUE, the dates are named, otherwise unnamed.

... further arguments for as.character when value = "".

specialHolidayGB 73

Details

specialHolidayGB gives the special Bank holidays in England for the years specified by argument
year, such as the Millenium day at the end of 1999 and significant Royal events. Don’t assume that
there is at most one special holiday in a given year, 2022 had two.

Years that do not contain special Bank holidays are omitted. If there are no special holidays in the
specified year(s) the results is a "timeDate" or "character" object of length zero.

The holidays are sorted in increasing time order.

Argument value controls the class of the result. The default is "timeDate". The result is a character
vector if value = "" (the empty string). In the latter case, further arguments for the transformation
to character can be passed in argument "..." (e.g., format).

If argument named is TRUE, the dates get names asssociated with them, so one can see which date
represents which holiday.

Value

a "timeDate" or a character vector, as requested by argument value

Note

While most of the holidays given by the functions with prefix GBxxx are valid for the UK as a whole
and they are (or should be) fully correct for England, there are variations in Scotland, Wales and
Northern Ireland.

Functions containing ’London’ in their name refer to the London Stock Exchange. Currently, the
Bank holidays given by those functions are the same as for England. Actually, the ’official’ holidays
between 1834 and 1870 were set by the Bank of England. The first Act of Parlament on the issue is
from 1871.

Author(s)

Georgi N. Boshnakov

See Also

GBSummerBankHoliday for functions giving specific regular Bank holidays,

holidayLONDON for all London Stock Exchange holidays (actually, England holidays) in requested
years.

Examples

UK Millenium day
specialHolidayGB(1999) # as a dateTime object
specialHolidayGB(1999, "") # as a character string

2 special holidays in UK in 2022
specialHolidayGB(2022) # [2022-06-03] [2022-09-19]
what are their names?
specialHolidayGB(2022, named = TRUE)

74 start

the Spring BH is usually on last Monday of May, but not in 2022
dayOfWeek(GBSpringBankHoliday(2020:2024))

the above formed a nice 4-day weekend in early June 2022
(look at the Thu-Fri sequence on 2-3 June)
dayOfWeek(holidayLONDON(2022))

start Terminal times and range

Description

Extracts the time when the first or last observation was taken, or computes the range of the dates in
a "timeDate" object.

Usage

S3 method for class 'timeDate'
start(x, ...)

S3 method for class 'timeDate'
end(x, ...)

S3 method for class 'timeDate'
min(..., na.rm = FALSE)

S3 method for class 'timeDate'
max(..., na.rm = FALSE)

S3 method for class 'timeDate'
range(..., na.rm = FALSE)

Arguments

x an object of class "timeDate".

... ignored by start and end; a ’timeDate’ object for min, max, and range.

na.rm not used.

Details

Conceptually, the "timeDate" object is sorted before the computations. In particular, start is not
necessarilly the first element of the object and similarly for the other functions.

min and max are equivalent to start end end, respectively.

range returns the earlies and the latest times in a "timeDate" object. The remaining functions
return only one of them, as suggested by their names.

subset 75

Value

an object of class "timeDate"

Examples

timeCalendar
Random Calendar Dates:

tR = sample(timeCalendar())
sort(tR)
tR

start | end
start(tR)
end(tR)

the first and last time stamp
tR[1]
tR[length(tR)]
rev(tR)[1]

the range
c(start(tR), end(tR))
range(tR)

subset Subsetting a ’timeDate’ object

Description

Extracts or replaces subsets from "timeDate" objects.

Value

an object of class "timeDate"

Examples

timeCalendar
tS = timeCalendar()

[
Subsetting Second Quarter:
tS[4:6]

[<-
Replacing:

76 Sys.timeDate

summary-methods Summary method

Description

Summarizes details of a "timeDate" object.

Usage

S3 method for class 'timeDate'
summary(object, ...)

Arguments

object an object of class "timeDate".

... arguments passed to other methods.

Details

Creates a summary report of the details of a "timeDate" object. This includes the starting and end
date, the number of dates the format and the financial center in use.

Value

an object from S3 class "timeDate_summary", which has a print method

Examples

tC <- timeCalendar()
summary(tC)

Sys.timeDate System time as ’timeDate’ object

Description

Returns the system time as an object of class "timeDate".

Usage

Sys.timeDate(FinCenter = "")

Arguments

FinCenter a character string with the location of the financial center named as "conti-
nent/city".

timeCalendar 77

Value

a "timeDate" object

Examples

Not run:
direct
Sys.timeDate()

Local Time in Zurich
Sys.timeDate(FinCenter = "Zurich")

transformed from "POSIX(c)t" with timeDate()
timeDate(Sys.time())

Local Time in Zurich
timeDate(Sys.time(), FinCenter = "Zurich")

End(Not run)

timeCalendar ’timeDate’ from calendar atoms

Description

Create a "timeDate" object from calendar atoms.

Usage

timeCalendar(y = getRmetricsOptions("currentYear"), m = 1:12, d = 1,
h = 0, min = 0, s = 0,
zone = "", FinCenter = "")

Arguments

y, m, d calendar years (e.g. 1997), defaults are 1960, calendar months (1-12), defaults
are 1, and calendar days (1-31), defaults are 1,

h, min, s hours of the days (0-23), defaults are 0, minutes of the days (0-59), defaults are
0, and seconds of the days (0-59), defaults are 0.

zone a character string, denoting the time zone or financial center where the data were
recorded.

FinCenter a character with the location of the financial center named as "continent/city".

Value

an object of class "timeDate"

78 timeCeiling

Examples

timeCalendar

Current Year:
getRmetricsOptions("currentYear")

12 months of current year
timeCalendar()

timeCalendar(m = c(9, 1, 8, 2), d = c(28, 15, 30, 9),
y = c(1989, 2001, 2004, 1990), FinCenter = "GMT")

timeCalendar(m = c(9, 1, 8, 2), d = c(28, 15, 30, 9),
y = c(1989, 2001, 2004, 1990), FinCenter = "Europe/Zurich")

timeCalendar(h = c(9, 14), min = c(15, 23))

timeCeiling Ceiling (round up) for data-time objects

Description

Round up a data-time object to the next time unit (day, mhour, month, etc.).

Usage

timeCeiling(x, ...)

S3 method for class 'POSIXt'
timeCeiling(x,

units = c("days", "hours", "mins", "secs", "months", "years"),
...)

S3 method for class 'timeDate'
timeCeiling(x,

units = c("days", "hours", "mins", "secs", "months", "years"),
...)

Arguments

x an object representing date-time.

units a character string, one of the supported units of time.

... further arguments for methods.

Details

timeCeiling rounds up to the start of the next time unit, as specified by argument units.

timeCeiling 79

Value

for the "timeDate" method, a "timeDate" object,

for the "POSIXt" method, a "POSIXlt" object

Note

base::ceiling is generic but time methods cannot be defined for it since it has only one argument.
The same holds for its relative base::floor.

On the other hand, base::trunc and base::round accept further arguments and therefore "timeDate"
methods are defined for them. In fact the method for trunc plays the role of floor.

Author(s)

Georgi N. Boshnakov

See Also

trunc.timeDate, trunc.POSIXt,

round.timeDate, round.POSIXt,

Examples

create a timeDate object
dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
tms <- c("23:12:55.13", "10:34:02.23", "08:30:00.33", "11:18:23.53")
td <- timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",

zone = "GMT", FinCenter = "GMT")

timeCeiling
timeCeiling(td) # same as timeCeiling(td, "days")

timeCeiling(td, "secs")
timeCeiling(td, "mins")
timeCeiling(td, "hours")
timeCeiling(td, "days")
timeCeiling(td, "months")
timeCeiling(td, "years")

rounding with "days" usually sets the time to midnight (the start of a day),
but it may not exist
Sofia_to_DST_char <- c("1983-03-26 23:00:00",

"1983-03-27 00:00:00", # change to DST; 0am doesn't exist in Sofia on this date
"1983-03-27 01:00:00",
"1983-03-27 02:00:00",
"1983-03-27 03:00:00")

Sofia_to_DST <- timeDate(Sofia_to_DST_char, zone = "Sofia", FinCenter = "Sofia")
cbind(Sofia_to_DST_char, format(Sofia_to_DST@Data))

on 27/03/1983 in Sofia the clock jumped at midnight to 1am, so the

80 timeDate

day started at 1am - hence the first time below. the rest are on the
next day, which starts at midnight.
timeCeiling(Sofia_to_DST) # same as timeCeiling(Sofia_to_DST, "days")

trunc(Sofia_to_DST)

to avoid confusion, set non-existent times to NA
Sofia_to_DSTa <- timeDate(Sofia_to_DST_char, zone = "Sofia", FinCenter = "Sofia",

dst_gap = "NA")
Sofia_to_DSTa
timeCeiling(Sofia_to_DSTa)

timeDate Create ’timeDate’ objects

Description

Create a "timeDate" object from scratch from a character vector or other suitable objects.

Usage

timeDate(charvec, format = NULL, zone = "", FinCenter = "", ...)

S4 method for signature 'character'
timeDate(charvec, format = NULL, zone = "", FinCenter = "",

dst_gap = "+")

methods for as.timeDate
Default S3 method:
as.timeDate(x, zone = "", FinCenter = "")

S3 method for class 'POSIXt'
as.timeDate(x, zone = "", FinCenter = "")

S3 method for class 'Date'
as.timeDate(x, zone = "", FinCenter = "")

S3 method for class 'timeDate'
as.timeDate(x, zone = x@FinCenter, FinCenter = "")

strptimeDate(x, format = whichFormat(x), tz = "")

Arguments

charvec a character vector or vector of dates and times.

format the format specification of the input character vector.

zone the time zone or financial center where the data were recorded.

timeDate 81

FinCenter a character with the location of the financial center named as "continent/city".

dst_gap a character string specifying what to do with non-existent times falling in a DST
gap: add an hour ("+"), subtract an hour ("-"), set to NA ("NA"), or ignore ("").
When the ‘ignore’ option is used the code to check for this kind of faulty times
is skipped and the result will be equivalent to "+" or "-" but which one is not
defined. This could be useful when you are certain that there are no times in
DST gaps or don’t care how they are dealt with.

x for strptimeDate, a character string or vector of dates and times. For the
as.timeDate methods, an object from a class that can be converted to "timeDate".
The default method converts x to character.

tz a character with the location of the financial center named as "continent/city",
or short "city".

... further arguments for methods.

Details

timeDate creates objects from class "timeDate" from character vectors, objects from several
date/time classes, and other suitable objects.. It is an S4 generic function and this page describes
the methods defined in package timeDate, see section ‘Methods’.

Note that zone is the time zone of the input, while FinCenter is the ‘current’ time zone, typically
but not necessarilly where the code is run. To change one or both of these time zones of an existing
"timeDate" object, call timeDate() on it, see the method for charvec = "timeDate" in section
‘Methods’.

The methods for as.timeDate call timeDate, maybe after some minor preparation. The default
method for as.timeDate converts x to character before calling timeDate.

strptimeDate is a wrapper of timeDate, suitable when zone and FinCenter are the same, It has
the same arguments as strptime. If format is missing it tries to deduce it. If tz is missing it sets
it to the value of the Rmetrics option "myFinCenter".

Value

an object of class "timeDate"

Methods

The following methods for timeDate are defined in package timeDate.

signature(charvec = "ANY") Converts charvec to character and calls timeDate on the result.

signature(charvec = "character") ...

signature(charvec = "Date") ...

signature(charvec = "missing") Returns the current time as "timeDate" object.

signature(charvec = "numeric") ...

signature(charvec = "POSIXt") ...

signature(charvec = "timeDate") Changes the time zone and/or financial center of charvec to
the requested ones. If zone is missing or equal to the empty string, just changes the financial
center.

82 timeDate

See Also

as.character, as.POSIXct, etc., for conversion from "timeDate" to other classes

Examples

character vector strings:
dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
tms <- c("23:12:55", "10:34:02", "08:30:00", "11:18:23")

dts; tms

t1 <- timeDate(dts, format = "%Y-%m-%d", FinCenter = "GMT")
t1

stopifnot(identical(t1, timeDate(dts, FinC = "GMT"))) # auto-format

timeDate(dts, format = "%Y-%m-%d", FinCenter = "Europe/Zurich")

timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",
zone = "GMT", FinCenter = "GMT")

timeDate(paste(dts, tms),
zone = "Europe/Zurich", FinCenter = "Europe/Zurich")

timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",
zone = "GMT", FinCenter = "Europe/Zurich")

non standard format:
timeDate(paste(20:31, "03.2005", sep="."), format = "%d.%m.%Y")

ISO and American formats are auto-detected:
timeDate("2004-12-31", FinCenter = "GMT")
timeDate("12/11/2004", FinCenter = "GMT")
timeDate("1/31/2004") # auto-detect American format

... from POSIX?t, and containing NAs:
lsec <- as.POSIXlt(.leap.seconds)
lsec
lsec[c(2,4:6)] <- NA
timeDate(lsec)

dtms <- paste(dts,tms)
dtms[2:3] <- NA
timeDate(dtms, FinCenter = "Europe/Zurich")

NAs in dates and/or times
dts2 <- c("1989-09-28", NA, "2004-08-30", "1990-02-09")
tms2 <- c("23:12:55", "10:34:02", NA, "11:18:23")
this throws error (since NAs are converted to the string "NA"):
timeDate(paste(dts,tms), FinCenter = "Europe/Zurich")
Error in midnightStandard2(charvec, format) :
'charvec' has non-NA entries of different number of characters

timeDate-class 83

##
these work:
td1 <- timeDate(pasteMat(cbind(dts, tms)), FinCenter = "Europe/Zurich")
td2 <- timeDate(pasteMat(dts, tms), FinCenter = "Europe/Zurich")
identical(td1, td2) ## TRUE

NA's that appear due to non-existent times;
on 27/03/1983 in Sofia the clock jumped at midnight to 1am
Sofia_to_DST_char <- c("1983-03-26 23:00:00",

"1983-03-27 00:00:00", # change to DST; 0am doesn't exist in Sofia on this date
"1983-03-27 01:00:00",
"1983-03-27 02:00:00",
"1983-03-27 03:00:00")

by default, the non-existent time is moved to the next valid time,
this is equivalent to dst_gap = "+"
Sofia_to_DST <- timeDate(Sofia_to_DST_char, zone = "Sofia", FinCenter = "Sofia")

use dst_gap = "NA" to turn invalid times into NA's
Sofia_to_DSTa <- timeDate(Sofia_to_DST_char, zone = "Sofia", FinCenter = "Sofia",

dst_gap = "NA")
Sofia_to_DSTa

cbind(Sofia_to_DST_char,
Sofia_to_DST = format(Sofia_to_DST),
Sofia_to_DSTa = format(Sofia_to_DSTa)
)

dst_gap = "-" rolls the invalid time back
Sofia_to_DSTb <- timeDate(Sofia_to_DST_char, zone = "Sofia", FinCenter = "Sofia",

dst_gap = "-")
Sofia_to_DSTb

Coerce a 'Date' object into a 'timeDate' object:
as.timeDate(Sys.Date())

timeDate-class Class "timeDate"

Description

Class "timeDate" represents date and time objects.

Details

For the management of chronological objects under R three concepts are available: The first is the
implementation of date and time in R’s chron package neglecting locals, time zones and day light
saving times. This approach is in most cases appropriate for economic time series. The second
approach, available in R’s base package implements the POSIX standard to date and time objects,
named "POSIXt".

84 timeDate-class

Unfortunately, the representation of these objects is in some cases operating system dependent and
especially under MS Windows several problems appeared over the time in the management of time
zones and day light saving times. Rmetrics overcomes these difficulties with POSIX objects and
introduce a new S4 class of "timeDate" objects which allow for powerful methods to represent
dates and times in different financial centers around the world.

Many of the basic functionalities of these objects are in common with S-Plus’ "timeDate" objects
and thus many of your privately written functions for SPlus/FinMetrics may also be used within the
R/Rmetrics environment.

A major difference is the time zone concept which is replaced by the "Financial Center" concept.
The FinCenter character variable specifies where you are living and at which financial center
you are working. With the variable myFinCenter you can overwrite the default setting with your
personal settings. With the specification of the FinCenter your system knows what rules rules for
day light saving times should be applied, what is your holiday calendar, what is your currency, what
are your interest rate conventions. (Not all specifications are already implemented.) Many other
aspects can be easily accessed when a financial center is named. So we can distinguish between
Frankfurt and Zurich, which both belong to the same time zone, but differed in DST changes in
the eighties and have different holiday calendars. Futhermore, since the underlying time refers to
"GMT" and DST rules and all other information is available in local (ASCII) databases, we are
sure, that R/Rmetrics delivers with such a date/time concept on every computer independent of the
operating systemin use, identical results.

Another important feature of the "timeDate" concept used here is the fact that we don’t rely on
American or European ways to write dates. We use consequently the ISO-8601 standard for date
and time notations.

Generation of "timeDate" Objects

We have defined a "timeDate" class which is in many aspects similar to the S-Plus class with the
same name, but has also some important advantageous differeneces. The S4 class has four Slots,
the Data slot which holds date and time as ’POSIXct’ objects in the standard ISO-8601 format, the
Dim slot which gives the dimension of the data object (i.e. its length), the format specification slot
and the FinCenter slot which holds the name of the financial center. By default this is the value

Three functions allow to cgenerate date/time objects: "timeDate" from character vectors, timeCalendar
from date and time atoms, and timeSequence from a "from/to" or from a "from/length" sequence
specification. Note, time zone transformations are easily handled by by the "timeDate" functions
which can also take "timeDate" and POSIXt objects as inputs, while transforming them between
financial centers and/or time zones specified by the arguments zone and FinCenter. Finally the
function Sys.timeDate returns current system time in form of a "timeDate" object.

Tests and Representation of timeDate Objects:

Rmetrics has implemented several methods to represent "timeDate" objects. For example, the
print method returns the date/time in square "[]" brackets to distinguish the output from other date
and time objects. On top of the date and time output the name of the FinCenter is printed. The
summary method returns a printed report with information about the "timeDate" object. Finally,
the format methods allows to transform objects into a ISO conform formatted character strings.

Mathematical Operations:

timeDate-class 85

Rmetrics supports methods to perform many mathematical operations. Included are methods to ex-
tract or to replace subsets from "timeDate" objects, to perform arithmetic "+" and "-" operations,
to group Ops generic functions, to return suitably lagged and iterated differences diff, to return
differences difftimeDate of two "timeDate" objects, to concatenate objects, to replicate objects,
to round objects, to truncate objects using trunc, to extract the first or last entry of a vector, to sort
the objects of the elements of a date/time vector, and to revert "timeDate" vector objects, among
other functions.

Transformation of Objects:
Rmetrics has also functions to transform dat/time objects between different representations. In-
cluded are methods to transform "timeDate" objects to character strings, to data frames, to POSIXct
or POSIXlt objects, to julian counts. One can extract date/time atoms from calendar dates, and
the months atoms from a "timeDate" object.

Objects from the Class

Objects can be created by calls of the functions timeDate, timeSequence, timeCalendar and
as.timeDate, among others. There is also a "timeDate" method for seq.

Slots

Data: Object of class "POSIXct": a vector of POSIXct dates and times always related to "GMT".

format: Object of class "character": a character string denoting the format specification of the
input data character vector.

FinCenter: Object of class "character": a character string with the location of the financial
center named as "continent/city", or just "city".

Methods

timeDate signature(charvec = "timeDate"): create objects from class "timeDate", see timeDate;

show signature(object = "timeDate"): prints an object of class "timeDate";

plot signature(x = "timeDate"):

points signature(x = "timeDate"):

lines signature(x = "timeDate"):

abline signature(a = "ANY", b = "ANY", h = "ANY", v = "timeDate"): see plot-methods.

$ signature(x = "timeDate"): ...

[signature(x = "timeDate", i = "ANY", j = "missing"):

[signature(x = "timeDate", i = "character", j = "missing"):

[signature(x = "timeDate", i = "logical", j = "missing"):

[signature(x = "timeDate", i = "missing", j = "missing"):

[signature(x = "timeDate", i = "numeric", j = "missing"): take parts of a "timeDate" ob-
ject, see subset.

finCenter signature(x = "timeDate"):

finCenter<- signature(x = "timeDate"): see finCenter.

86 timeDate-class

atoms signature(x = "timeDate"):

align signature(x = "timeDate"): see align.

isDaily signature(x = "timeDate"):

isMonthly signature(x = "timeDate"):

isQuarterly signature(x = "timeDate"):

isRegular signature(x = "timeDate"): see see isRegular.

frequency signature(x = "timeDate"): see frequency.

is.na signature(x = "timeDate"): see is.na-methods.

sample signature(x = "timeDate"): see sample.

Ops signature(e1 = "timeDate", e2 = "timeDate"):

+ signature(e1 = "numeric", e2 = "timeDate"):

+ signature(e1 = "timeDate", e2 = "numeric"):

+ signature(e1 = "timeDate", e2 = "timeDate"):

- signature(e1 = "numeric", e2 = "timeDate"):

- signature(e1 = "timeDate", e2 = "numeric"):

- signature(e1 = "timeDate", e2 = "timeDate"): see timeDateMathOps.

coerce signature(from = "ANY", to = "timeDate"):

coerce signature(from = "Date", to = "timeDate"):

coerce signature(from = "POSIXt", to = "timeDate"):

coerce signature(from = "timeDate", to = "character"):

coerce signature(from = "timeDate", to = "data.frame"):

coerce signature(from = "timeDate", to = "Date"):

coerce signature(from = "timeDate", to = "list"):

coerce signature(from = "timeDate", to = "numeric"):

coerce signature(from = "timeDate", to = "POSIXct"):

coerce signature(from = "timeDate", to = "POSIXlt"): convert from/to "timeDate" objects.
These are methods for as, to be used with the syntax as(from, to), where from is the object
to be converted and to is the desired target class. Most conversions can also be done with
specialised functions such as as.character and as.timeDate, see as.timeDate.

names signature(x = "timeDate"):

names<- signature(x = "timeDate"): see names-methods.

getDataPart signature(object = "timeDate"): ...

initialize signature(.Object = "timeDate"): ...

timeDate-class 87

Note

Originally, these functions were written for Rmetrics users using R and Rmetrics under Microsoft’s
Windows XP operating system where time zones, daylight saving times and holiday calendars are
not or insufficiently supported.

The usage of the Ical Library and the introduction of the FinCenter concept was originally devel-
loped for R Version 1.5. The "timeDate" and timeSeries objects were added for R Version 1.8.1.
Minor changes were made to adapt the functions for R Version 1.9.1. As a consequence, newer con-
cepts like the Date objects were not yet considered and included in this collection of date and time
concepts. With R Version 2.3.0 a major update has been made adding many new generic functions
and renaming a few already existing functions, please be aware of this.

Note, the date/time conversion from an arbitrary time zone to GMT cannot be unique, since date/time
objects appear twice during the hour when DST changes and the isdt flag was not recorded. A
bookkeeping which takes care if DST is effective or not is not yet included. However, in most ap-
plications this is not necessary since the markets are closed on weekends, especially at times when
DST usually changes. It is planned for the future to implement the DST supporting this facility.

The ISO-8601 midnight standard has been implemented. Note, that for example "2005-01-01
24:00:00" is accepted as a valid date/time string.

Also available is an automated format recognition, so the user does not have to specify the format
string for the most common date/time formats.

Examples

Examples for Objects of class 'timeDate'

Sys.timeDate() # direct
timeDate(Sys.time()) # transformed from "POSIX(c)t"

local time in Zurich
timeDate(Sys.time(), FinCenter = "Zurich")

character vector strings for the examples below
dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
tms <- c("23:12:55", "10:34:02", "08:30:00", "11:18:23")

t1 <- timeDate(dts, format = "%Y-%m-%d", FinCenter = "GMT")
t1a <- timeDate(dts, FinCenter = "GMT") # auto-format
identical(t1, t1a)

t1

timeDate(dts, format = "%Y-%m-%d", FinCenter = "Europe/Zurich")

timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",
zone = "GMT", FinCenter = "GMT")

timeDate(paste(dts, tms),
zone = "Europe/Zurich", FinCenter = "Europe/Zurich")

timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",

88 timeDate-class

zone = "GMT", FinCenter = "Europe/Zurich")

non standard format
timeDate(paste(20:31, "03.2005", sep="."), format = "%d.%m.%Y")

Note, ISO and American formats are auto-detected
timeDate("2004-12-31", FinCenter = "GMT")
timeDate("12/11/2004", FinCenter = "GMT")
timeDate("1/31/2004") # auto-detect American format

... from POSIX?t, and Using NAs:
lsec <- as.POSIXlt(.leap.seconds)
lsec
lsec[c(2,4:6)] <- NA
timeDate(lsec)

dtms <- paste(dts,tms)
dtms[2:3] <- NA
timeDate(dtms, FinCenter = "Europe/Zurich")

NAs in dates and/or times
dts2 <- c("1989-09-28", NA, "2004-08-30", "1990-02-09")
tms2 <- c("23:12:55", "10:34:02", NA, "11:18:23")
this throws error (since NAs are converted to the string NA):
timeDate(paste(dts,tms), FinCenter = "Europe/Zurich")
Error in midnightStandard2(charvec, format) :
'charvec' has non-NA entries of different number of characters

these work:
td1 <- timeDate(pasteMat(cbind(dts, tms)), FinCenter = "Europe/Zurich")
td2 <- timeDate(pasteMat(dts, tms), FinCenter = "Europe/Zurich")
identical(td1, td2) ## TRUE

timeCalendar
getRmetricsOptions("currentYear")
timeCalendar() # 12 months of current year
timeCalendar(2022) # 12 months of 2022
timeCalendar(y = c(1989, 2001, 2004, 1990),

m = c(9, 1, 8, 2), d = c(28, 15, 30, 9), FinCenter = "GMT")
timeCalendar(y = c(1989, 2001, 2004, 1990),

m = c(9, 1, 8, 2), d = c(28, 15, 30, 9), FinCenter = "Europe/Zurich")

timeCalendar(h = c(9, 14), min = c(15, 23))
timeCalendar(2022, h = c(9, 14), min = c(15, 23))

timeSequence
timeSequence(from = "2004-03-12", to = "2004-04-11",

format = "%Y-%m-%d", FinCenter = "GMT")
timeSequence(from = "2004-03-12", to = "2004-04-11",

format = "%Y-%m-%d", FinCenter = "Europe/Zurich")

print, summary, format
tC = timeCalendar(2022)

timeDateMathOps 89

tC
print(tC)
summary(tC)
format(tC)

timeDateMathOps Mathematical operations with ’timeDate’ objects

Description

Functions for mathematical and logical operations on "timeDate" objects.

Usage

S4 method for signature 'timeDate,timeDate'
Ops(e1, e2)

Arguments

e1, e2 objects of class "timeDate". In the case of addition and subtraction one of them
may be of class numeric, specifying the number of seconds to add or subtract.

Details

Group "Ops" represents the binary mathematical operators. Methods are defined for such operations
when one or both arguments are from class "timeDate".

Operations that don’t make sense, such as addition of two "timeDate" objects, throw error.

The plus operator "+" performs arithmetic "+" operation on "timeDate" objects,

and the minus operator "-" returns a difftime object if both arguments e1 and e2 are "timeDate"
objects, or returns a "timeDate" object e2 seconds earlier than e1.

Value

addition of numeric to "timeDate" returns "timeDate",

subtraction of numeric from "timeDate" returns "timeDate",

subtraction of two "timeDate" objects returns "difftime",

other operations between two "timeDate" objects are applied to the underlying times (slot "Date").
The result of that operation is converted to "timeDate" if it represents a time and returned as is
otherwise.

90 timeInterval-class

Examples

create some data
dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
tms <- c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
GMT <- timeDate(dts, zone = "GMT", FinCenter = "GMT")
ZUR <- timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")

add one day
GMT + 24*3600

subtract
ZUR[2] - ZUR[1]

timeInterval-class Class ’timeInterval’

Description

An object from class "timeInterval" represents a time interval or an union of time intervals.
Methods are defined for union, intersection, complement and other suitable operations.

Objects from the Class

Objects can be created by calls of the form new("timeInterval", ...) or, preferably, timeInterval.

A "timeInterval" object represents the union of zero or more intervals of the form [left,
right), i.e., closed on the left and open on the right (but see below the note about left = -Inf).
The internal representation is always in a canonical disjoint form, such that the intervals do not
overlap and do not touch at their end points.

The start of an interval can be -Inf and the end can be Inf. When the left side of an interval is
-Inf, it is currently unspecified if -Inf belongs to it. In other words, it is not defined whether
timeInterval[-Inf, b] represents (−∞, b) or [−∞, b). Feedback on this will be appreciated.
The current code treats it as [−∞, b).

Slots

left: Object of class "timeDate" ~~

right: Object of class "timeDate" ~~

Methods

initialize signature(.Object = "timeInterval"): ...

timeInterval signature(left = "timeInterval", right = "missing"): ...

show signature(object = "timeInterval"): ...

%in_int% signature(x = "timeDate", ti = "timeInterval"): ...

%in_int% signature(x = "timeInterval", ti = "timeInterval"): ...

timeInterval-methods 91

& signature(e1 = "timeInterval", e2 = "timeInterval"): ...

^ signature(e1 = "timeInterval", e2 = "timeInterval"): ...

| signature(e1 = "timeInterval", e2 = "timeInterval"): ...

Author(s)

Georgi N. Boshnakov

See Also

timeInterval for creation of "timeInterval" objects and further examples,

in_int for set operations on "timeInterval" objects

timeInterval-methods Create ’timeInterval’ objects

Description

Create objects from class "timeInterval".

Usage

timeInterval(left, right, ...)

S4 method for signature 'timeDate,timeDate'
timeInterval(left, right,...)
S4 method for signature 'ANY,ANY'
timeInterval(left, right, ...)
S4 method for signature 'timeInterval,missing'
timeInterval(left,right,...)

S4 method for signature 'timeDate,missing'
timeInterval(left, right, units = "days", ...)
S4 method for signature 'Date,missing'
timeInterval(left,right, units = "days", ...)
S4 method for signature 'POSIXt,missing'
timeInterval(left,right, units = "days", ...)
S4 method for signature 'missing,Date'
timeInterval(left,right, units = "days", ...)
S4 method for signature 'missing,POSIXt'
timeInterval(left,right, units = "days", ...)
S4 method for signature 'missing,timeDate'
timeInterval(left,right, units = "days", ...)

92 timeInterval-methods

Arguments

left, right left and right sides of the intervals, typically "timeDate" objects of equal length.
See individual methods for other possibilities.

units a character string specifying unit of time. Used only when left or right is
missing, see section ‘Details’.

... further arguments for methods.

Details

If both, left and right, are supplied they represent the edges of the intervals.

If only left is specified, each value represents the rounded time interval corresponding to ar-
gument units. For example, 2025-10-15 15:25:31 represents the interval [2025-10-15 15:00,
2025-10-15 16:00) when units = "mins" and [2025-10-15 00:00, 2025-10-16 00:00) when
units = "days".

See trunc for admissible values of units and other details of the truncation.

Analogously, if only right is specified, its truncated value is used for the right edges of the in-
tervals, while the left edges are obtained by subtracting one time unit from the right edges. In
other word, each value in right represents the rounded time interval corresponding to the pre-
vious time unit. For example, 2025-10-15 15:25:31 represents the interval [2025-10-15 14:00,
2025-10-15 15:00) when units = "mins" and [2025-10-14 00:00, 2025-10-15 00:00) when
units = "days", see also trunc.

Value

a "timeInterval" object

Methods

signature(left = "timeDate", right = "timeDate") creates a "timeInterval" object as the
union of intervals represented by [left[i],right[i]). The union is transformed to a canoni-
cal form with no overlaps between the intervals and no touching edges, see class "timeInterval".
So the order and the number of intervals in the returned object may not be as in the input ar-
guments.

signature(left = "ANY", right = "ANY") the default method; the time interval is created from
"timeDate" objects created from left and right using calls to timeDate. All "..." argu-
ments are passed in both calls to timeDate.

signature(left = "timeDate", right = "missing")

signature(left = "Date", right = "missing")

signature(left = "POSIXt", right = "missing") convert each element of left into an interval
containing it and form the union. The left edge of each interval is trunc(left, units) and
with corresponding right end timeCeiling(left, units). If a date-time is already rounded
to units, then it is taken as the left end of the interval and its right end is the next rounded
value.

signature(left = "missing", right = "timeDate")

signature(left = "missing", right = "Date")

timeSequence 93

signature(left = "missing", right = "POSIXt") a time interval, aligned at unit, just to the
left of the given date-times. For example, for unit = "days", the result is the day before.

signature(left = "timeInterval", right = "missing")

Author(s)

Georgi N. Boshnakov

See Also

class "timeInterval",

in_int for set operations on "timeInterval" objects

Examples

timeInterval(left = "2024-12-20", right = "2024-12-21")
timeInterval(left = "2024-12-20 10:00", right = "2024-12-21 11:00")

timeInterval(left = c("2024-12-20 10:00", "2024-12-22 10:00"),
right = c("2024-12-21 11:00", "2024-12-23 11:00"))

overlapping or touching intervals are combined
timeInterval(left = c("2024-12-20 10:00", "2024-12-21 10:00"),

right = c("2024-12-21 11:00", "2024-12-23 11:00"))
timeInterval(left = c("2024-12-20 10:00", "2024-12-21 08:00"),

right = c("2024-12-21 11:00", "2024-12-23 11:00"))

create timeInterval by rounding down and up times inside the desired unit
timeInterval(as.Date("2024-12-20"))
timeInterval(timeDate("2024-12-20 10:20:30"), unit = "days")
timeInterval(right = timeDate("2024-12-20 10:20:30"), unit = "days")

timeInterval(timeDate("2024-12-20 10:20:30"), unit = "hours")
timeInterval(right = timeDate("2024-12-20 10:20:30"), unit = "hours")

timeInterval(timeDate("2024-12-20 10:20:30"), unit = "mins")
timeInterval(right = timeDate("2024-12-20 10:20:30"), unit = "mins")

timeSequence Regularly spaced ’timeDate’ objects

Description

Create a regularly spaced object of class "timeDate".

94 timeSequence

Usage

timeSequence(from, to = Sys.timeDate(), by, length.out = NULL,
format = NULL, zone = "", FinCenter = "")

S3 method for class 'timeDate'
seq(from, to, by, length.out = NULL, along.with = NULL, ...)

Arguments

from, to starting date, required, and end date, optional. If supplied, to must be after (later
than) from.

by • a character string, containing one of "sec", "min", "hour", "day", "week",
"month" or "year". This can optionally be preceded by an integer and a
space, or followed by "s".

• character string "quarter" that is equivalent to "3 months".
• a number, taken to be in seconds.
• an object of class ’difftime’.
• character string "DSTday" gives a sequence taken at the same clock time

every day. Note that on the days when the DST changes, the requested time
may not exist or be ambiguous, see the examples.

length.out integer, optional. Desired length of the sequence, if specified "to" will be ig-
nored.

along.with Take the length from the length of this argument.

format the format specification of the input character vector.

zone the time zone or financial center where the data were recorded.

FinCenter a character with the location of the financial center named as "continent/city".

... arguments passed to other methods.

Value

an object of class "timeDate"

Note

timeSequence() is a wrapper for the "timeDate" method of seq(), and that has been closely
modeled after base R’s POSIXt method, seq.POSIXt.

Examples

timeSequence

autodetection of format
(t1 <- timeSequence(from = "2004-03-12", to = "2004-04-11"))

stopifnot(## different formats even:
identical(t1, timeSequence(from = "2004-03-12", to = "11-Apr-2004")),
identical(t1, ## explicit format and FinCenter :

unique 95

timeSequence(from = "2004-03-12", to = "2004-04-11",
format = "%Y-%m-%d", FinCenter = "GMT")))

observe "switch to summer time":
timeSequence(from = "2004-03-26 05:00:00", to = "2004-04-02 05:00:00",

zone = "Europe/Zurich", FinCenter = "Europe/Zurich")

ensure fixed clock time:
timeSequence(from = "2004-03-26 05:00:00", to = "2004-04-01 05:00:00",

by = "DSTday", zone = "Europe/Zurich", FinCenter = "Europe/Zurich")

on the day of DST change the time may not exist (notice 2004-03-28 00:00:00):
timeSequence(from = "2004-03-26 01:00:00", to = "2004-04-01 01:00:00",

by = "DSTday", zone = "Europe/Zurich", FinCenter = "Europe/Zurich")

unique Remove duplicated dates from ’timeDate’ objects

Description

Remove duplicated dates from "timeDate" objects.

Usage

S3 method for class 'timeDate'
unique(x, ...)

Arguments

x an object of class "timeDate".

... arguments passed to other methods.

Value

an object of class "timeDate"

Examples

c
Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

"+/-"
add one day to a given timeDate object
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")
GMT

96 whichFormat

ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")
ZUR

c
Concatenate and Replicate timeDate Objects:
c(GMT[1:2], ZUR[1:2])
c(ZUR[1:2], GMT[1:2])

rep
rep(ZUR[2], times = 3)
rep(ZUR[2:3], times = 2)

whichFormat Format recognition

Description

Tries to recognize the date/time format.

Usage

whichFormat(charvec, silent = FALSE)

Arguments

charvec a character string or vector of dates and times.

silent a logical flag. Should a warning be printed if the format cannot be recognized?

Value

a format string

See Also

midnightStandard

Examples

whichFormat("2007-12-31 00:00:00")
whichFormat("2007-12-31 24:00")

window 97

window Time windows

Description

Extract the subset of a "timeDate" object observed between two time stamps.

Usage

S3 method for class 'timeDate'
window(x, start , end, ...)

S3 method for class 'timeDate'
cut(x, from , to, ...)

Arguments

x an object of class "timeDate".

start, end starting date, required, and end date, optional. If supplied to must be after from.

from, to starting date, required, and end date, optional. If supplied to must be after from.

... arguments passed to other methods.

Value

an object of class "timeDate"

Note

The method for cut has been discouraged in the sources for a long time (with a recommendation
to use window). It was officially deprecated in v4032.109 and will be removed or replaced by a
method that is consistent with the methods for cut in base R,

Examples

timeCalendar
monthly dates in current year
tS = timeCalendar()
tS

window
2nd quarter window:
tS[4:6]
window(tS, tS[4], tS[6])

Index

! (in_int), 45
∗ Julian date

julian, 50
∗ Julian day

julian, 50
∗ character

pasteMat, 61
∗ chron

align, 14
blockStart, 15
c, 16
coerceToOther, 17
currentYear, 18
dayOfWeek, 19
dayOfYear, 20
diff, 20
difftimeDate, 21
earlyCloseNYSE, 22
Easter, 23
firstDay, 26
format-methods, 27
holiday, 28
holidayDate, 30
holidayLONDON, 39
holidayNERC, 40
holidayNYSE, 41
holidayTSX, 43
holidayZURICH, 44
in_int, 45
is.na-methods, 47
isBizday, 47
isRegular, 48
isWeekday, 50
julian, 50
length, 54
listFinCenter, 55
listHolidays, 56
midnightStandard, 57
myFinCenter, 58

myUnits, 58
nDay, 59
onOrAfter, 60
periods, 63
plot-methods, 64
rep, 65
rev, 66
round, 67
rulesFinCenter, 68
sample, 69
show-methods, 70
sort, 71
start, 74
subset, 75
summary-methods, 76
Sys.timeDate, 76
timeCalendar, 77
timeCeiling, 78
timeDate, 80
timeDate-class, 83
timeDate-package, 3
timeDateMathOps, 89
timeInterval-class, 90
timeInterval-methods, 91
timeSequence, 93
unique, 95
whichFormat, 96
window, 97

∗ classes
timeInterval-class, 90

∗ complement
in_int, 45

∗ concatenate
pasteMat, 61

∗ data
DaylightSavingTime, 18

∗ element
in_int, 45

∗ hplot

98

INDEX 99

plot-methods, 64
∗ intersection

in_int, 45
∗ methods

timeInterval-methods, 91
∗ package

timeDate-package, 3
∗ programming

.endpoints, 13
∗ set difference

in_int, 45
∗ time interval

timeInterval-methods, 91
∗ union of time intervals

timeInterval-methods, 91
∗ union

in_int, 45
∗ univar

kurtosis, 53
skewness, 70

+,numeric,timeDate-method
(timeDateMathOps), 89

+,timeDate,numeric-method
(timeDateMathOps), 89

+,timeDate,timeDate-method
(timeDateMathOps), 89

-,numeric,timeDate-method
(timeDateMathOps), 89

-,timeDate,numeric-method
(timeDateMathOps), 89

-,timeDate,timeDate-method
(timeDateMathOps), 89

.endpoints, 13
[,timeDate,ANY,missing-method (subset),

75
[,timeDate,character,missing-method

(subset), 75
[,timeDate,logical,missing-method

(subset), 75
[,timeDate,missing,missing-method

(subset), 75
[,timeDate,numeric,missing-method

(subset), 75
[<-.timeDate (subset), 75
$,timeDate-method (julian), 50
%in_int% (in_int), 45
%in_int%,ANY,ANY-method (in_int), 45
%in_int%,timeDate,timeInterval-method

(in_int), 45
%in_int%,timeInterval,timeInterval-method

(in_int), 45
%in_int%-methods (in_int), 45
&,timeInterval,timeInterval-method

(in_int), 45
&-methods (in_int), 45
^,timeInterval,timeInterval-method

(in_int), 45
^-methods (in_int), 45

Abidjan (DaylightSavingTime), 18
abline,ANY,ANY,ANY,timeDate-method

(plot-methods), 64
Accra (DaylightSavingTime), 18
Adak (DaylightSavingTime), 18
Addis_Ababa (DaylightSavingTime), 18
Adelaide (DaylightSavingTime), 18
Aden (DaylightSavingTime), 18
Advent1st (holidayDate), 30
Advent2nd (holidayDate), 30
Advent3rd (holidayDate), 30
Advent4th (holidayDate), 30
Algiers (DaylightSavingTime), 18
align, 14, 86
align,ANY-method (align), 14
align,timeDate-method (align), 14
alignDaily (align), 14
alignMonthly (align), 14
alignQuarterly (align), 14
AllSaints (holidayDate), 30
AllSouls (holidayDate), 30
Almaty (DaylightSavingTime), 18
Amman (DaylightSavingTime), 18
Amsterdam (DaylightSavingTime), 18
Anadyr (DaylightSavingTime), 18
Anchorage (DaylightSavingTime), 18
Andorra (DaylightSavingTime), 18
Anguilla (DaylightSavingTime), 18
Annunciation (holidayDate), 30
Antananarivo (DaylightSavingTime), 18
Antigua (DaylightSavingTime), 18
Apia (DaylightSavingTime), 18
Aqtau (DaylightSavingTime), 18
Aqtobe (DaylightSavingTime), 18
Araguaina (DaylightSavingTime), 18
Aruba (DaylightSavingTime), 18
as.character, 82

100 INDEX

as.character.timeDate (coerceToOther),
17

as.data.frame.timeDate (coerceToOther),
17

as.Date.timeDate (coerceToOther), 17
as.double.timeDate (coerceToOther), 17
as.list.timeDate (coerceToOther), 17
as.POSIXct, 82
as.POSIXct.timeDate (coerceToOther), 17
as.POSIXlt.timeDate (coerceToOther), 17
as.timeDate, 17, 85, 86
as.timeDate (timeDate), 80
Ascension (holidayDate), 30
Ashgabat (DaylightSavingTime), 18
AshWednesday (holidayDate), 30
Asmara (DaylightSavingTime), 18
AssumptionOfMary (holidayDate), 30
AST (DaylightSavingTime), 18
Asuncion (DaylightSavingTime), 18
Athens (DaylightSavingTime), 18
Atikokan (DaylightSavingTime), 18
atoms (julian), 50
atoms,ANY-method (julian), 50
atoms,timeDate-method (julian), 50
Auckland (DaylightSavingTime), 18
axis.timeDate (plot-methods), 64
Azores (DaylightSavingTime), 18

Baghdad (DaylightSavingTime), 18
Bahia (DaylightSavingTime), 18
Bahrain (DaylightSavingTime), 18
Baku (DaylightSavingTime), 18
Bamako (DaylightSavingTime), 18
Bangkok (DaylightSavingTime), 18
Bangui (DaylightSavingTime), 18
Banjul (DaylightSavingTime), 18
Barbados (DaylightSavingTime), 18
Beirut (DaylightSavingTime), 18
Belem (DaylightSavingTime), 18
Belgrade (DaylightSavingTime), 18
Belize (DaylightSavingTime), 18
Berlin (DaylightSavingTime), 18
Bermuda (DaylightSavingTime), 18
BirthOfVirginMary (holidayDate), 30
Bishkek (DaylightSavingTime), 18
Bissau (DaylightSavingTime), 18
Blanc-Sablon (DaylightSavingTime), 18
Blantyre (DaylightSavingTime), 18
blockEnd (blockStart), 15

blockStart, 15
Boa_Vista (DaylightSavingTime), 18
Bogota (DaylightSavingTime), 18
Boise (DaylightSavingTime), 18
BoxingDay, 24, 30, 40–44, 56
BoxingDay (holidayDate), 30
Bratislava (DaylightSavingTime), 18
Brazzaville (DaylightSavingTime), 18
Brisbane (DaylightSavingTime), 18
Broken_Hill (DaylightSavingTime), 18
Brunei (DaylightSavingTime), 18
Brussels (DaylightSavingTime), 18
Bucharest (DaylightSavingTime), 18
Budapest (DaylightSavingTime), 18
Buenos_Aires (DaylightSavingTime), 18
BuenosAires (DaylightSavingTime), 18
Bujumbura (DaylightSavingTime), 18

c, 16
CACanadaDay (holidayDate), 30
CACivicProvincialHoliday (holidayDate),

30
CAFamilyDay (holidayDate), 30
Cairo (DaylightSavingTime), 18
CALabourDay (holidayDate), 30
Calcutta (DaylightSavingTime), 18
Cambridge_Bay (DaylightSavingTime), 18
Campo_Grande (DaylightSavingTime), 18
Canary (DaylightSavingTime), 18
Cancun (DaylightSavingTime), 18
Cape_Verde (DaylightSavingTime), 18
Caracas (DaylightSavingTime), 18
CaRemembranceDay (holidayDate), 30
Casablanca (DaylightSavingTime), 18
Casey (DaylightSavingTime), 18
Catamarca (DaylightSavingTime), 18
CAThanksgivingDay (holidayDate), 30
CAVictoriaDay (holidayDate), 30
Cayenne (DaylightSavingTime), 18
Cayman (DaylightSavingTime), 18
CelebrationOfHolyCross (holidayDate), 30
Center (DaylightSavingTime), 18
CET (DaylightSavingTime), 18
Ceuta (DaylightSavingTime), 18
Chagos (DaylightSavingTime), 18
CHAscension (holidayDate), 30
Chatham (DaylightSavingTime), 18
CHBerchtoldsDay (holidayDate), 30
CHConfederationDay (holidayDate), 30

INDEX 101

Chicago (DaylightSavingTime), 18
Chihuahua (DaylightSavingTime), 18
Chisinau (DaylightSavingTime), 18
CHKnabenschiessen (holidayDate), 30
Choibalsan (DaylightSavingTime), 18
Chongqing (DaylightSavingTime), 18
Christmas (DaylightSavingTime), 18
ChristmasDay (holidayDate), 30
ChristmasEve (holidayDate), 30
ChristTheKing (holidayDate), 30
CHSechselaeuten (holidayDate), 30
Cocos (DaylightSavingTime), 18
coerce,ANY,timeDate-method (timeDate),

80
coerce,Date,timeDate-method (timeDate),

80
coerce,POSIXt,timeDate-method

(timeDate), 80
coerce,timeDate,character-method

(coerceToOther), 17
coerce,timeDate,data.frame-method

(coerceToOther), 17
coerce,timeDate,Date-method

(coerceToOther), 17
coerce,timeDate,list-method

(coerceToOther), 17
coerce,timeDate,numeric-method

(coerceToOther), 17
coerce,timeDate,POSIXct-method

(coerceToOther), 17
coerce,timeDate,POSIXlt-method

(coerceToOther), 17
coerceToOther, 17
Colombo (DaylightSavingTime), 18
Comoro (DaylightSavingTime), 18
Conakry (DaylightSavingTime), 18
Copenhagen (DaylightSavingTime), 18
Cordoba (DaylightSavingTime), 18
CorpusChristi (holidayDate), 30
Costa_Rica (DaylightSavingTime), 18
CST (DaylightSavingTime), 18
Cuiaba (DaylightSavingTime), 18
Curacao (DaylightSavingTime), 18
currentYear, 18
Currie (DaylightSavingTime), 18
cut.timeDate (window), 97

Dakar (DaylightSavingTime), 18
Damascus (DaylightSavingTime), 18

Danmarkshavn (DaylightSavingTime), 18
Dar_es_Salaam (DaylightSavingTime), 18
Darwin (DaylightSavingTime), 18
Davis (DaylightSavingTime), 18
Dawson (DaylightSavingTime), 18
Dawson_Creek (DaylightSavingTime), 18
DaylightSavingTime, 18
dayOfWeek, 19, 20, 52
dayOfYear, 19, 20, 52
DEAscension (holidayDate), 30
DEChristmasEve (holidayDate), 30
DECorpusChristi (holidayDate), 30
DEGermanUnity (holidayDate), 30
DENewYearsEve (holidayDate), 30
Denver (DaylightSavingTime), 18
Detroit (DaylightSavingTime), 18
Dhaka (DaylightSavingTime), 18
diff, 20, 85
diff.timeDate, 22
difftime, 22, 52
difftimeDate, 21, 21, 85
Dili (DaylightSavingTime), 18
Djibouti (DaylightSavingTime), 18
Dominica (DaylightSavingTime), 18
Douala (DaylightSavingTime), 18
Dubai (DaylightSavingTime), 18
Dublin (DaylightSavingTime), 18
DumontDUrville (DaylightSavingTime), 18
Dushanbe (DaylightSavingTime), 18

earlyCloseNYSE, 22, 42
Easter, 23, 30, 39–44, 56
EasterMonday (holidayDate), 30
Eastern (DaylightSavingTime), 18
EasterSunday (holidayDate), 30
Edmonton (DaylightSavingTime), 18
EET (DaylightSavingTime), 18
Efate (DaylightSavingTime), 18
Eirunepe (DaylightSavingTime), 18
El_Aaiun (DaylightSavingTime), 18
El_Salvador (DaylightSavingTime), 18
end (start), 74
Enderbury (DaylightSavingTime), 18
Epiphany (holidayDate), 30
EST (DaylightSavingTime), 18
Eucla (DaylightSavingTime), 18

Fakaofo (DaylightSavingTime), 18
Faroe (DaylightSavingTime), 18

102 INDEX

Fiji (DaylightSavingTime), 18
finCenter, 25, 85
finCenter,timeDate-method (finCenter),

25
finCenter<- (finCenter), 25
finCenter<-,timeDate-method

(finCenter), 25
firstDay, 26
format (format-methods), 27
format-methods, 27
Fortaleza (DaylightSavingTime), 18
FRAllSaints (holidayDate), 30
Frankfurt (DaylightSavingTime), 18
FRArmisticeDay (holidayDate), 30
FRAscension (holidayDate), 30
FRAssumptionVirginMary (holidayDate), 30
FRBastilleDay (holidayDate), 30
Freetown (DaylightSavingTime), 18
frequency, 86
frequency (isRegular), 48
frequency,timeDate-method (isRegular),

48
frequency.timeDate (isRegular), 48
FRFetDeLaVictoire1945 (holidayDate), 30
Funafuti (DaylightSavingTime), 18

Gaborone (DaylightSavingTime), 18
Galapagos (DaylightSavingTime), 18
Gambier (DaylightSavingTime), 18
Gaza (DaylightSavingTime), 18
GBEarlyMayBankHoliday (holidayDate), 30
GBSpringBankHoliday (holidayDate), 30
GBSummerBankHoliday, 73
GBSummerBankHoliday (holidayDate), 30
getDataPart,timeDate-method (timeDate),

80
getRmetricsOption (RmetricsOptions), 66
getRmetricsOptions, 26
getRmetricsOptions (RmetricsOptions), 66
Gibraltar (DaylightSavingTime), 18
Glace_Bay (DaylightSavingTime), 18
Godthab (DaylightSavingTime), 18
GoodFriday (holidayDate), 30
Goose_Bay (DaylightSavingTime), 18
Grand_Turk (DaylightSavingTime), 18
Grenada (DaylightSavingTime), 18
grep, 55
Guadalcanal (DaylightSavingTime), 18
Guadeloupe (DaylightSavingTime), 18

Guam (DaylightSavingTime), 18
Guatemala (DaylightSavingTime), 18
Guayaquil (DaylightSavingTime), 18
Guernsey (DaylightSavingTime), 18
Guyana (DaylightSavingTime), 18

Halifax (DaylightSavingTime), 18
Harare (DaylightSavingTime), 18
Harbin (DaylightSavingTime), 18
Havana (DaylightSavingTime), 18
Helsinki (DaylightSavingTime), 18
Hermosillo (DaylightSavingTime), 18
Hobart (DaylightSavingTime), 18
holiday, 24, 28, 39–44, 56
holidayDate, 30
holidayLONDON, 24, 30, 39, 39, 41–44, 56, 73
holidayNERC, 24, 30, 39, 40, 40, 42–44, 56
holidayNYSE, 23, 24, 30, 39–41, 41, 43, 44, 56
holidayTSX, 24, 30, 39–42, 43, 44, 56
holidayZURICH, 24, 30, 39–43, 44, 56
Hong_Kong (DaylightSavingTime), 18
HongKong (DaylightSavingTime), 18
Honolulu (DaylightSavingTime), 18
Hovd (DaylightSavingTime), 18

in_int, 45, 46, 91, 93
Indianapolis (DaylightSavingTime), 18
initialize,timeDate-method (timeDate),

80
initialize,timeInterval-method

(timeInterval-class), 90
InternationalWomensDay (holidayDate), 30
Inuvik (DaylightSavingTime), 18
Iqaluit (DaylightSavingTime), 18
Irkutsk (DaylightSavingTime), 18
is.na,timeDate-method (is.na-methods),

47
is.na-methods, 47
isBizday, 47
isDaily (isRegular), 48
isDaily,timeDate-method (isRegular), 48
isHoliday (isBizday), 47
Isle_of_Man (DaylightSavingTime), 18
isMonthly (isRegular), 48
isMonthly,timeDate-method (isRegular),

48
isQuarterly (isRegular), 48
isQuarterly,timeDate-method

(isRegular), 48

INDEX 103

isRegular, 48, 86
isRegular,timeDate-method (isRegular),

48
Istanbul (DaylightSavingTime), 18
isWeekday, 50
isWeekend (isWeekday), 50
ITAllSaints (holidayDate), 30
ITAssumptionOfVirginMary (holidayDate),

30
ITEpiphany (holidayDate), 30
ITImmaculateConception (holidayDate), 30
ITLiberationDay (holidayDate), 30
ITStAmrose (holidayDate), 30

Jakarta (DaylightSavingTime), 18
Jamaica (DaylightSavingTime), 18
Jayapura (DaylightSavingTime), 18
Jersey (DaylightSavingTime), 18
Jerusalem (DaylightSavingTime), 18
Johannesburg (DaylightSavingTime), 18
Johnston (DaylightSavingTime), 18
JPAutumnalEquinox (holidayDate), 30
JPBankHolidayDec31 (holidayDate), 30
JPBankHolidayJan2 (holidayDate), 30
JPBankHolidayJan3 (holidayDate), 30
JPBunkaNoHi (holidayDate), 30
JPChildrensDay (holidayDate), 30
JPComingOfAgeDay (holidayDate), 30
JPConstitutionDay (holidayDate), 30
JPEmperorsBirthday (holidayDate), 30
JPGantan (holidayDate), 30
JPGreeneryDay (holidayDate), 30
JPHealthandSportsDay (holidayDate), 30
JPKeirouNoHi (holidayDate), 30
JPKenkokuKinenNoHi (holidayDate), 30
JPKenpouKinenBi (holidayDate), 30
JPKinrouKanshaNoHi (holidayDate), 30
JPKodomoNoHi (holidayDate), 30
JPKokuminNoKyujitu (holidayDate), 30
JPMarineDay (holidayDate), 30
JPMidoriNoHi (holidayDate), 30
JPMountainDay (holidayDate), 30
JPNatFoundationDay (holidayDate), 30
JPNationalCultureDay (holidayDate), 30
JPNationHoliday (holidayDate), 30
JPNewYearsDay (holidayDate), 30
JPRespectForTheAgedDay (holidayDate), 30
JPSeijinNoHi (holidayDate), 30
JPShuubunNoHi (holidayDate), 30

JPTaiikuNoHi (holidayDate), 30
JPTennouTanjyouBi (holidayDate), 30
JPThanksgivingDay (holidayDate), 30
JPUmiNoHi (holidayDate), 30
JPVernalEquinox (holidayDate), 30
Jujuy (DaylightSavingTime), 18
julian, 50, 51, 52, 85
Juneau (DaylightSavingTime), 18

Kabul (DaylightSavingTime), 18
Kaliningrad (DaylightSavingTime), 18
Kamchatka (DaylightSavingTime), 18
Kampala (DaylightSavingTime), 18
Karachi (DaylightSavingTime), 18
Kashgar (DaylightSavingTime), 18
Katmandu (DaylightSavingTime), 18
Kerguelen (DaylightSavingTime), 18
Khartoum (DaylightSavingTime), 18
Kiev (DaylightSavingTime), 18
Kigali (DaylightSavingTime), 18
Kinshasa (DaylightSavingTime), 18
Kiritimati (DaylightSavingTime), 18
Knox (DaylightSavingTime), 18
Kosrae (DaylightSavingTime), 18
Krasnoyarsk (DaylightSavingTime), 18
Kuala_Lumpur (DaylightSavingTime), 18
KualaLumpur (DaylightSavingTime), 18
Kuching (DaylightSavingTime), 18
kurtosis, 53, 71
Kuwait (DaylightSavingTime), 18
Kwajalein (DaylightSavingTime), 18

La_Paz (DaylightSavingTime), 18
La_Rioja (DaylightSavingTime), 18
LaborDay (holidayDate), 30
Lagos (DaylightSavingTime), 18
lastDay (firstDay), 26
length, 54
Libreville (DaylightSavingTime), 18
Lima (DaylightSavingTime), 18
Lindeman (DaylightSavingTime), 18
lines,timeDate-method (plot-methods), 64
Lisbon (DaylightSavingTime), 18
listFinCenter, 25, 55, 58, 69
listHolidays, 24, 30, 39–44, 56
Ljubljana (DaylightSavingTime), 18
Lome (DaylightSavingTime), 18
London (DaylightSavingTime), 18
Longyearbyen (DaylightSavingTime), 18

104 INDEX

Lord_Howe (DaylightSavingTime), 18
Los_Angeles (DaylightSavingTime), 18
LosAngeles (DaylightSavingTime), 18
Louisville (DaylightSavingTime), 18
Luanda (DaylightSavingTime), 18
Lubumbashi (DaylightSavingTime), 18
Lusaka (DaylightSavingTime), 18
Luxembourg (DaylightSavingTime), 18

Macau (DaylightSavingTime), 18
Maceio (DaylightSavingTime), 18
Madeira (DaylightSavingTime), 18
Madrid (DaylightSavingTime), 18
Magadan (DaylightSavingTime), 18
Mahe (DaylightSavingTime), 18
Majuro (DaylightSavingTime), 18
Makassar (DaylightSavingTime), 18
Malabo (DaylightSavingTime), 18
Maldives (DaylightSavingTime), 18
Malta (DaylightSavingTime), 18
Managua (DaylightSavingTime), 18
Manaus (DaylightSavingTime), 18
Manila (DaylightSavingTime), 18
Maputo (DaylightSavingTime), 18
Marengo (DaylightSavingTime), 18
Mariehamn (DaylightSavingTime), 18
Marigot (DaylightSavingTime), 18
Marquesas (DaylightSavingTime), 18
Martinique (DaylightSavingTime), 18
Maseru (DaylightSavingTime), 18
MassOfArchangels (holidayDate), 30
Mauritius (DaylightSavingTime), 18
Mawson (DaylightSavingTime), 18
max.timeDate (start), 74
Mayotte (DaylightSavingTime), 18
Mazatlan (DaylightSavingTime), 18
Mbabane (DaylightSavingTime), 18
McMurdo (DaylightSavingTime), 18
Melbourne (DaylightSavingTime), 18
Mendoza (DaylightSavingTime), 18
Menominee (DaylightSavingTime), 18
Merida (DaylightSavingTime), 18
Mexico_City (DaylightSavingTime), 18
MexicoCity (DaylightSavingTime), 18
midnightStandard, 57, 96
midnightStandard2 (midnightStandard), 57
Midway (DaylightSavingTime), 18
min.timeDate (start), 74
Minsk (DaylightSavingTime), 18

Miquelon (DaylightSavingTime), 18
Mogadishu (DaylightSavingTime), 18
Monaco (DaylightSavingTime), 18
Moncton (DaylightSavingTime), 18
Monrovia (DaylightSavingTime), 18
Monterrey (DaylightSavingTime), 18
Montevideo (DaylightSavingTime), 18
monthlyRolling (periods), 63
months, 52, 85
months (julian), 50
Monticello (DaylightSavingTime), 18
Montreal (DaylightSavingTime), 18
Montserrat (DaylightSavingTime), 18
Moscow (DaylightSavingTime), 18
MST (DaylightSavingTime), 18
Muscat (DaylightSavingTime), 18
myFinCenter, 58
myUnits, 58

Nairobi (DaylightSavingTime), 18
names,timeDate-method (names-methods),

59
names-methods, 59
names<-,timeDate-method

(names-methods), 59
Nassau (DaylightSavingTime), 18
Nauru (DaylightSavingTime), 18
nDay, 59
Ndjamena (DaylightSavingTime), 18
New_Salem (DaylightSavingTime), 18
New_York (DaylightSavingTime), 18
NewYearsDay (holidayDate), 30
NewYork (DaylightSavingTime), 18
Niamey (DaylightSavingTime), 18
Nicosia (DaylightSavingTime), 18
Nipigon (DaylightSavingTime), 18
Niue (DaylightSavingTime), 18
Nome (DaylightSavingTime), 18
Norfolk (DaylightSavingTime), 18
Noronha (DaylightSavingTime), 18
Nouakchott (DaylightSavingTime), 18
Noumea (DaylightSavingTime), 18
Novosibirsk (DaylightSavingTime), 18

Omsk (DaylightSavingTime), 18
onOrAfter, 60
onOrBefore (onOrAfter), 60
Ops, 85

INDEX 105

Ops,timeDate,timeDate-method
(timeDateMathOps), 89

Oral (DaylightSavingTime), 18
Oslo (DaylightSavingTime), 18
Ouagadougou (DaylightSavingTime), 18

Pacific (DaylightSavingTime), 18
Pago_Pago (DaylightSavingTime), 18
Palau (DaylightSavingTime), 18
Palmer (DaylightSavingTime), 18
PalmSunday (holidayDate), 30
Panama (DaylightSavingTime), 18
Pangnirtung (DaylightSavingTime), 18
Paramaribo (DaylightSavingTime), 18
Paris (DaylightSavingTime), 18
pasteMat, 61
Pentecost (holidayDate), 30
PentecostMonday (holidayDate), 30
periodicallyRolling (periods), 63
periods, 63
Perth (DaylightSavingTime), 18
Petersburg (DaylightSavingTime), 18
Phnom_Penh (DaylightSavingTime), 18
Phoenix (DaylightSavingTime), 18
Pitcairn (DaylightSavingTime), 18
plot,timeDate-method (plot-methods), 64
plot-methods, 64
Podgorica (DaylightSavingTime), 18
points,timeDate-method (plot-methods),

64
Ponape (DaylightSavingTime), 18
Pontianak (DaylightSavingTime), 18
Port-au-Prince (DaylightSavingTime), 18
Port_Moresby (DaylightSavingTime), 18
Port_of_Spain (DaylightSavingTime), 18
Porto-Novo (DaylightSavingTime), 18
Porto_Velho (DaylightSavingTime), 18
POSIXct, 57
Prague (DaylightSavingTime), 18
PresentationOfLord (holidayDate), 30
pretty.timeDate (plot-methods), 64
print.timeDate_summary

(summary-methods), 76
PST (DaylightSavingTime), 18
Puerto_Rico (DaylightSavingTime), 18
Pyongyang (DaylightSavingTime), 18

Qatar (DaylightSavingTime), 18
quarters (julian), 50

Quinquagesima (holidayDate), 30
Qyzylorda (DaylightSavingTime), 18

Rainy_River (DaylightSavingTime), 18
range.timeDate (start), 74
Rangoon (DaylightSavingTime), 18
Rankin_Inlet (DaylightSavingTime), 18
Rarotonga (DaylightSavingTime), 18
Recife (DaylightSavingTime), 18
Regina (DaylightSavingTime), 18
rep, 65, 65
Resolute (DaylightSavingTime), 18
Reunion (DaylightSavingTime), 18
rev, 66
Reykjavik (DaylightSavingTime), 18
Riga (DaylightSavingTime), 18
Rio_Branco (DaylightSavingTime), 18
Rio_Gallegos (DaylightSavingTime), 18
Riyadh (DaylightSavingTime), 18
RmetricsOptions, 66
RogationSunday (holidayDate), 30
Rome (DaylightSavingTime), 18
Rothera (DaylightSavingTime), 18
round, 67, 85
round.POSIXt, 79
round.timeDate, 79
rulesFinCenter, 55, 68

Saigon (DaylightSavingTime), 18
Saipan (DaylightSavingTime), 18
Sakhalin (DaylightSavingTime), 18
Samara (DaylightSavingTime), 18
Samarkand (DaylightSavingTime), 18
sample, 69, 86
sample,timeDate-method (sample), 69
San_Juan (DaylightSavingTime), 18
San_Marino (DaylightSavingTime), 18
Santiago (DaylightSavingTime), 18
Santo_Domingo (DaylightSavingTime), 18
Sao_Paulo (DaylightSavingTime), 18
Sao_Tome (DaylightSavingTime), 18
Sarajevo (DaylightSavingTime), 18
Scoresbysund (DaylightSavingTime), 18
Seoul (DaylightSavingTime), 18
Septuagesima (holidayDate), 30
seq, 85, 94
seq (timeSequence), 93
seq.POSIXt, 94
setRmetricsOptions (RmetricsOptions), 66

106 INDEX

Shanghai (DaylightSavingTime), 18
Shiprock (DaylightSavingTime), 18
show,timeDate-method (show-methods), 70
show,timeInterval-method

(show-methods), 70
show-methods, 70
Simferopol (DaylightSavingTime), 18
Singapore (DaylightSavingTime), 18
skewness, 54, 70
Skopje (DaylightSavingTime), 18
Sofia (DaylightSavingTime), 18
SolemnityOfMary (holidayDate), 30
sort, 71, 85
South_Georgia (DaylightSavingTime), 18
South_Pole (DaylightSavingTime), 18
specialHolidayGB, 72
St_Barthelemy (DaylightSavingTime), 18
St_Helena (DaylightSavingTime), 18
St_Johns (DaylightSavingTime), 18
St_Kitts (DaylightSavingTime), 18
St_Lucia (DaylightSavingTime), 18
St_Thomas (DaylightSavingTime), 18
St_Vincent (DaylightSavingTime), 18
Stanley (DaylightSavingTime), 18
start, 74
Stockholm (DaylightSavingTime), 18
strptime, 57, 81
strptimeDate (timeDate), 80
subset, 75, 85
summary-methods, 76
summary.timeDate (summary-methods), 76
Swift_Current (DaylightSavingTime), 18
Sydney (DaylightSavingTime), 18
Syowa (DaylightSavingTime), 18
Sys.timeDate, 76

Tahiti (DaylightSavingTime), 18
Taipei (DaylightSavingTime), 18
Tallinn (DaylightSavingTime), 18
Tarawa (DaylightSavingTime), 18
Tashkent (DaylightSavingTime), 18
Tbilisi (DaylightSavingTime), 18
Tegucigalpa (DaylightSavingTime), 18
Tehran (DaylightSavingTime), 18
Tell_City (DaylightSavingTime), 18
Thimphu (DaylightSavingTime), 18
Thule (DaylightSavingTime), 18
Thunder_Bay (DaylightSavingTime), 18
tiInf (in_int), 45

Tijuana (DaylightSavingTime), 18
timeCalendar, 77, 85
timeCeiling, 78
timeDate, 17, 80, 85, 94
timeDate,ANY-method (timeDate), 80
timeDate,character-method (timeDate), 80
timeDate,Date-method (timeDate), 80
timeDate,missing-method (timeDate), 80
timeDate,numeric-method (timeDate), 80
timeDate,POSIXt-method (timeDate), 80
timeDate,timeDate,ANY-method

(timeDate), 80
timeDate,timeDate-method (timeDate), 80
timeDate-class, 83
timeDate-package, 3
timeDate_summary (summary-methods), 76
timeDateMathOps, 86, 89
timeFirstDayInMonth, 27, 60, 61, 67
timeFirstDayInMonth (firstDay), 26
timeFirstDayInQuarter, 27, 60, 61, 67
timeFirstDayInQuarter (firstDay), 26
timeInterval, 46, 90–93
timeInterval (timeInterval-methods), 91
timeInterval,ANY,ANY-method

(timeInterval-methods), 91
timeInterval,Date,missing-method

(timeInterval-methods), 91
timeInterval,missing,Date-method

(timeInterval-methods), 91
timeInterval,missing,POSIXt-method

(timeInterval-methods), 91
timeInterval,missing,timeDate-method

(timeInterval-methods), 91
timeInterval,POSIXt,missing-method

(timeInterval-methods), 91
timeInterval,timeDate,missing-method

(timeInterval-methods), 91
timeInterval,timeDate,timeDate-method

(timeInterval-methods), 91
timeInterval,timeInterval,missing-method

(timeInterval-methods), 91
timeInterval-class, 90
timeInterval-methods, 91
timeLastDayInMonth, 27, 60, 61, 67
timeLastDayInMonth (firstDay), 26
timeLastDayInQuarter, 27, 60, 61, 67
timeLastDayInQuarter (firstDay), 26
timeLastNdayInMonth, 27, 61, 67

INDEX 107

timeLastNdayInMonth (nDay), 59
timeNdayOnOrAfter, 27, 60, 67
timeNdayOnOrAfter (onOrAfter), 60
timeNdayOnOrBefore, 27, 60, 67
timeNdayOnOrBefore (onOrAfter), 60
timeNthNdayInMonth, 27, 61, 67
timeNthNdayInMonth (nDay), 59
timeSequence, 85, 93
Tirane (DaylightSavingTime), 18
Tokyo (DaylightSavingTime), 18
Tongatapu (DaylightSavingTime), 18
Toronto (DaylightSavingTime), 18
Tortola (DaylightSavingTime), 18
TransfigurationOfLord (holidayDate), 30
TrinitySunday (holidayDate), 30
Tripoli (DaylightSavingTime), 18
Truk (DaylightSavingTime), 18
trunc, 85, 92
trunc (round), 67
trunc.POSIXt, 79
trunc.timeDate, 27, 60, 61, 79
Tucuman (DaylightSavingTime), 18
Tunis (DaylightSavingTime), 18

Ulaanbaatar (DaylightSavingTime), 18
unique, 95
Urumqi (DaylightSavingTime), 18
USChristmasDay (holidayDate), 30
USColumbusDay (holidayDate), 30
USCPulaskisBirthday (holidayDate), 30
USDecorationMemorialDay (holidayDate),

30
USElectionDay (holidayDate), 30
USGoodFriday (holidayDate), 30
Ushuaia (DaylightSavingTime), 18
USInaugurationDay (holidayDate), 30
USIndependenceDay (holidayDate), 30
USJuneteenthNationalIndependenceDay

(holidayDate), 30
USLaborDay (holidayDate), 30
USLincolnsBirthday (holidayDate), 30
USMemorialDay (holidayDate), 30
USMLKingsBirthday (holidayDate), 30
USNewYearsDay (holidayDate), 30
USPresidentsDay (holidayDate), 30
USThanksgivingDay (holidayDate), 30
USVeteransDay (holidayDate), 30
USWashingtonsBirthday (holidayDate), 30
Uzhgorod (DaylightSavingTime), 18

Vaduz (DaylightSavingTime), 18
Vancouver (DaylightSavingTime), 18
Vatican (DaylightSavingTime), 18
Vevay (DaylightSavingTime), 18
Vienna (DaylightSavingTime), 18
Vientiane (DaylightSavingTime), 18
Vilnius (DaylightSavingTime), 18
Vincennes (DaylightSavingTime), 18
Vladivostok (DaylightSavingTime), 18
Volgograd (DaylightSavingTime), 18
Vostok (DaylightSavingTime), 18

Wake (DaylightSavingTime), 18
Wallis (DaylightSavingTime), 18
Warsaw (DaylightSavingTime), 18
weekdays (julian), 50
whichFormat, 57, 96
Whitehorse (DaylightSavingTime), 18
Winamac (DaylightSavingTime), 18
Windhoek (DaylightSavingTime), 18
window, 97
Winnipeg (DaylightSavingTime), 18

Yakutat (DaylightSavingTime), 18
Yakutsk (DaylightSavingTime), 18
Yekaterinburg (DaylightSavingTime), 18
Yellowknife (DaylightSavingTime), 18
Yerevan (DaylightSavingTime), 18

Zagreb (DaylightSavingTime), 18
Zaporozhye (DaylightSavingTime), 18
Zurich (DaylightSavingTime), 18

	timeDate-package
	.endpoints
	align
	blockStart
	c
	coerceToOther
	currentYear
	DaylightSavingTime
	dayOfWeek
	dayOfYear
	diff
	difftimeDate
	earlyCloseNYSE
	Easter
	finCenter
	firstDay
	format-methods
	holiday
	holidayDate
	holidayLONDON
	holidayNERC
	holidayNYSE
	holidayTSX
	holidayZURICH
	in_int
	is.na-methods
	isBizday
	isRegular
	isWeekday
	julian
	kurtosis
	length
	listFinCenter
	listHolidays
	midnightStandard
	myFinCenter
	myUnits
	names-methods
	nDay
	onOrAfter
	pasteMat
	periods
	plot-methods
	rep
	rev
	RmetricsOptions
	round
	rulesFinCenter
	sample
	show-methods
	skewness
	sort
	specialHolidayGB
	start
	subset
	summary-methods
	Sys.timeDate
	timeCalendar
	timeCeiling
	timeDate
	timeDate-class
	timeDateMathOps
	timeInterval-class
	timeInterval-methods
	timeSequence
	unique
	whichFormat
	window
	Index

