
Package ‘scam’
October 14, 2025

Version 1.2-20

Maintainer Natalya Pya <nat.pya@gmail.com>

Title Shape Constrained Additive Models

Date 2025-10-14

Description Generalized additive models under shape
constraints on the component functions of the linear predictor.
Models can include multiple shape-constrained (univariate
and bivariate) and unconstrained terms. Routines of the
package 'mgcv' are used to set up the model matrix, print,
and plot the results. Multiple smoothing parameter
estimation by the Generalized Cross Validation or similar.
See Pya and Wood (2015) <doi:10.1007/s11222-013-9448-7>
for an overview. A broad selection of shape-constrained
smoothers, linear functionals of smooths with shape constraints,
and Gaussian models with AR1 residuals.

Depends R (>= 3.6.0)

Imports mgcv (>= 1.8-2), methods, stats, graphics, Matrix, splines

Suggests nlme

License GPL (>= 2)

LazyLoad yes

NeedsCompilation yes

Author Natalya Pya [aut, cre]

Repository CRAN

Date/Publication 2025-10-14 08:00:02 UTC

Contents
scam-package . 3
anova.scam . 4
derivative.scam . 6
linear.functional.terms . 7

1

https://doi.org/10.1007/s11222-013-9448-7

2 Contents

logLik.scam . 9
plot.scam . 10
predict.scam . 14
print.scam . 18
qq.scam . 19
residuals.scam . 20
scam . 22
scam.check . 30
scam.control . 32
shape.constrained.smooth.terms . 34
smooth.construct.cv.smooth.spec . 38
smooth.construct.cx.smooth.spec . 40
smooth.construct.lmpi.smooth.spec . 43
smooth.construct.mdcv.smooth.spec . 46
smooth.construct.mdcx.smooth.spec . 48
smooth.construct.micv.smooth.spec . 50
smooth.construct.micx.smooth.spec . 52
smooth.construct.mifo.smooth.spec . 54
smooth.construct.miso.smooth.spec . 55
smooth.construct.mpd.smooth.spec . 57
smooth.construct.mpi.smooth.spec . 60
smooth.construct.po.smooth.spec . 63
smooth.construct.tecvcv.smooth.spec . 65
smooth.construct.tecxcv.smooth.spec . 67
smooth.construct.tecxcx.smooth.spec . 69
smooth.construct.tedecv.smooth.spec . 70
smooth.construct.tedecx.smooth.spec . 72
smooth.construct.tedmd.smooth.spec . 74
smooth.construct.tedmi.smooth.spec . 75
smooth.construct.temicv.smooth.spec . 77
smooth.construct.temicx.smooth.spec . 78
smooth.construct.tescv.smooth.spec . 80
smooth.construct.tescx.smooth.spec . 82
smooth.construct.tesmd1.smooth.spec . 83
smooth.construct.tesmd2.smooth.spec . 85
smooth.construct.tesmi1.smooth.spec . 87
smooth.construct.tesmi2.smooth.spec . 89
smooth.construct.tismd.smooth.spec . 91
smooth.construct.tismi.smooth.spec . 94
summary.scam . 96
vis.scam . 99

Index 102

scam-package 3

scam-package Shape Constrained Additive Models

Description

scam provides functions for generalized additive modelling under shape constraints on the com-
ponent functions of the linear predictor of the GAM. Models can contain multiple univariate and
bivariate shape constrained terms, unconstrained terms and parametric terms. A wide variety of
shape constrained smooths covered in shape.constrained.smooth.terms are provided.

The model set-up is similar to that of gam() of the package mgcv, so unconstrained smooths of
one or more variables of the mgcv can be included in SCAMs. User-defined smooths can be added
as well. SCAM is estimated by penalized log likelihood maximization and provides automatic
smoothness selection by minimizing generalized cross validation or similar. A Bayesian approach is
used to obtain a covariance matrix of the model coefficients and credible intervals for each smooth.
Linear functionals of smooth functions with shape constraints, parametric model terms, simple
linear random effects terms, bivariate interaction smooths with increasing/decreasing constraints
(smooth ANOVA), and identity link Gaussian models with AR1 residuals are supported.

Details

scam provides generalized additive modelling under shape constraints functions scam, summary.scam,
plot.scam, scam.check, predict.scam, anova.scam, and vis.scam. These are based on the
functions of the unconstrained GAM of the package mgcv and are similar in use.

The use of scam() is much like the use of gam(), except that within a scam model formula,
shape constrained smooths of one or two predictors can be specified using s terms with a type
of shape constraints used specified as a letter character string of the argument bs, e.g. s(x,
bs="mpi") for smooth subject to increasing constraint. See shape.constrained.smooth.terms
for a complete overview of what is available. scam model estimation is performed by penal-
ized likelihood maximization, with smoothness selection by GCV, UBRE/AIC criteria. See scam,
linear.functional.terms for a short discussion of model specification and some examples.
See scam arguments optimizer and optim.method, and scam.control for detailed control of
scam model fitting. For checking and visualization, see scam.check, plot.scam, qq.scam and
vis.scam. For extracting fitting results, see summary.scam and anova.scam.

A Bayesian approach to smooth modelling is used to obtain covariance matrix of the model coeffi-
cients and credible intervals for each smooth. Vp element of the fitted object of class scam returns
the Bayesian covariance matrix, Ve returns the frequentist estimated covariance matrix for the pa-
rameter estimators. The frequentist estimated covariance matrix for the reparametrized parameter
estimators (obtained using the delta method) is returned in Ve.t, which is particularly useful for
testing individual smooth terms for equality to the zero function (not so useful for CI’s as smooths
are usually biased). Vp.t returns the Bayesian covariance matrix for the reparametrized parame-
ters. Frequentist approximations can be used for hypothesis testing based on model comparison;
see anova.scam and summary.scam for info on hypothesis testing.

For a complete list of functions type library(help=scam).

4 anova.scam

Author(s)

Natalya Pya [aut, cre] based partly on mgcv by Simon Wood

Maintainer: Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

Wood S.N. (2017) Generalized Additive Models: An Introduction with R (2nd edition). Chapman
and Hall/CRC Press

Wood, S.N. (2008) Fast stable direct fitting and smoothness selection for generalized additive mod-
els. Journal of the Royal Statistical Society (B) 70(3):495-518

Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-36

The package was part supported by EPSRC grants EP/I000917/1, EP/K005251/1 and the Sci-
ence Committee of the Ministry of Science and Education of the Republic of Kazakhstan grant
#2532/GF3.

Examples

see examples for scam

anova.scam Approximate hypothesis tests related to SCAM fits

Description

Performs hypothesis tests relating to one or more fitted scam objects. The function is a clone of
anova.gam of the mgcv package.

The documentation below is similar to that of object anova.gam.

Usage

S3 method for class 'scam'
anova(object, ..., dispersion = NULL, test = NULL,

freq = FALSE,p.type=0)
S3 method for class 'anova.scam'
print(x, digits = max(3, getOption("digits") - 3),...)

anova.scam 5

Arguments

object, ... fitted model objects of class scam as produced by scam().

x an anova.scam object produced by a single model call to anova.scam().

dispersion a value for the dispersion parameter: not normally used.

test what sort of test to perform for a multi-model call. One of "Chisq", "F" or
"Cp".

freq whether to use frequentist or Bayesian approximations for parametric term p-
values. See summary.gam for details.

p.type selects exact test statistic to use for single smooth term p-values. See summary.scam
for details.

digits number of digits to use when printing output.

Details

see anova.gam for details.

Value

In the multi-model case anova.scam produces output identical to anova.glm, which it in fact uses.

In the single model case an object of class anova.scam is produced, which is in fact an object
returned from summary.scam.

print.anova.scam simply produces tabulated output.

WARNING

If models ’a’ and ’b’ differ only in terms with no un-penalized components then p values from
anova(a,b) are unreliable, and usually much too low.

For a single model, interpretation is similar to drop1, not anova.lm.

Author(s)

Simon N. Wood <simon.wood@r-project.org>

References

Scheipl, F., Greven, S. and Kuchenhoff, H. (2008) Size and power of tests for a zero random effect
variance or polynomial regression in additive and linear mixed models. Comp. Statist. Data Anal.
52, 3283-3299

Wood, S.N. (2013a) On p-values for smooth components of an extended generalized additive model.
Biometrika 100:221-228

Wood, S.N. (2013b) A simple test for random effects in regression models. Biometrika 100:1005-
1010

See Also

scam, predict.scam, scam.check, summary.scam, anova.gam

6 derivative.scam

Examples

library(scam)
set.seed(0)
fac <- rep(1:4,20)
x1 <- runif(80)*5
x2 <- runif(80,-1,2)
x3 <- runif(80, 0, 1)
y <- fac+log(x1)/5
y <- y + exp(-1.3*x2) +rnorm(80)*0.1
fac <- factor(fac)
b <- scam(y ~ fac+s(x1,bs="mpi")+s(x2,bs="mpd")+s(x3))

b1 <- scam(y ~ fac+s(x1,bs="mpi")+s(x2,bs="mpd"))
anova(b,b1,test="F")

derivative.scam Derivative of the univariate smooth model terms

Description

Function to get derivatives of the smooth model terms (currently only of the univariate smooths).
Analytical derivatives for SCOP-splines (shape constrained P-splines), finite difference approxima-
tion is used for all others

Usage

derivative.scam(object,smooth.number=1,deriv=1)

Arguments

object fitted scam object
smooth.number ordered number of the smooth model term (1,2,...), ordered as in the formula,

which derivative is needed to be calculated.
deriv either 1 if the 1st derivative is required, or 2 if the 2nd

Value

d values of the derivative of the smooth term.
se.d standard errors of the derivative.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

linear.functional.terms 7

See Also

scam

Examples

set.seed(2)
n <- 200
x1 <- runif(n)*4-1;
f1 <- exp(4*x1)/(1+exp(4*x1)) # monotone increasing smooth
x2 <- sort(runif(n)*3-1) # decreasing smooth
f2 <- exp(-1.3*x2)
f <- f1+ f2
y <- f+ rnorm(n)*0.2
fit model, results, and plot...
b <- scam(y~ s(x1,k=20,bs="mpi")+s(x2,k=15,bs="mpd"))

d1 <- derivative.scam(b,smooth.number=1,deriv=1)

par(mfrow=c(1,2))

xx <- sort(x1,index=TRUE)
plot(xx$x,d1$d[xx$ix],type="l",xlab=expression(x[1]),

ylab=expression(df[1]/dx[1]))

d2 <- derivative.scam(b,smooth.number=2,deriv=1)

xx <- sort(x2,index=TRUE)
plot(xx$x,d2$d[xx$ix],type="l",xlab=expression(x[2]),

ylab=expression(df[2]/dx[2]))

linear.functional.terms

Linear functionals of a smooth in GAMs

Description

Since scam uses the model setup of gam of the mgcv package, in the same way as in gam scam allows
the response variable to depend on linear functionals of smooth terms in the s with additional shape
constraints.

See linear.functional.terms(mgcv).

Examples

###
similar to a "signal" regression
example from mgcv() ...
###
library(scam)

8 linear.functional.terms

decreasing smooth...
set.seed(4)
rf <- function(x=seq(-1,3,length=100)) { ## from mgcv package
generates random functions...

m <- ceiling(runif(1)*5) ## number of components
f <- x*0;
mu <- runif(m,min(x),max(x)); sig <- (runif(m)+.5)*(max(x)-min(x))/10
for (i in 1:m) f <- f+ dnorm(x,mu[i],sig[i])
f

}

simulate 200 functions and store in rows of L...
L <- matrix(NA,200,100)
for (i in 1:200) L[i,] <- rf() ## simulate the functional predictors

x <- seq(-1,3,length=100) ## evaluation points
f2 <- function(x) { ## the coefficient function

-4*exp(4*x)/(1+exp(4*x))
}
f <- f2(x)
plot(x,f ,type="l")
y <- L%*%f + rnorm(200)*20 ## simulated response data
X <- matrix(x,200,100,byrow=TRUE)

b <- scam(y~s(X,by=L,k=20,bs="mpdBy"))
par(mfrow=c(1,2))
plot(b,shade=TRUE);lines(x,f,col=2);
compare with gam() of mgcv package...
require(mgcv)
g <- gam(y~s(X,by=L,k=20))
plot(g,shade=TRUE);lines(x,f,col=2)

increasing smooth....
L <- matrix(NA,200,100)
for (i in 1:200) L[i,] <- rf() ## simulate the functional predictors
x <- seq(-1,3,length=100) ## evaluation points
f2 <- function(x) { ## the coefficient function

4*exp(4*x)/(1+exp(4*x))
}
f <- f2(x)
plot(x,f ,type="l")
y <- L%*%f + rnorm(200)*20 ## simulated response data
X <- matrix(x,200,100,byrow=TRUE)
b <- scam(y~s(X,by=L,k=20,bs="mpiBy"))
par(mfrow=c(1,2))
plot(b,shade=TRUE);lines(x,f,col=2);
compare with unconstrained fit...
g <- scam(y~s(X,by=L,k=20))
plot(g,shade=TRUE);lines(x,f,col=2)

convex smooth...

logLik.scam 9

simulate 200 functions and store in rows of L...
set.seed(4)
L <- matrix(NA,200,100)
for (i in 1:200) L[i,] <- rf(x=sort(2*runif(100)-1)) ## simulate the functional predictors

x <- sort(runif(100,-1,1)) ## evaluation points
f2 <- function(x){4*x^2 } ## the coefficient function
f <- f2(x)
plot(x,f ,type="l")
y <- L%*%f + rnorm(200)*30 ## simulated response data
X <- matrix(x,200,100,byrow=TRUE)

b <- scam(y~s(X,by=L,k=20,bs="cxBy"))
par(mfrow=c(1,2))
plot(b,shade=TRUE);lines(x,f,col=2);

g <- scam(y~s(X,by=L,k=20))
plot(g,shade=TRUE);lines(x,f,col=2)

logLik.scam Log likelihood for a fitted SCAM, for AIC

Description

Function to extract the log-likelihood for a fitted scam model (fitted by penalized likelihood maxi-
mization). Used by AIC.

The function is a clone of logLik.gam of the mgcv package.

The documentation below is similar to that of object logLik.gam.

Usage

S3 method for class 'scam'
logLik(object,...)

Arguments

object fitted model objects of class scam as produced by scam().

... unused in this case

Details

see logLik.gam for details.

Value

Standard logLik object: see logLik.

10 plot.scam

References

Hastie and Tibshirani, 1990, Generalized Additive Models.

Wood, S.N. (2008) Fast stable direct fitting and smoothness selection for generalized additive mod-
els. J.R.Statist. Soc. B 70(3):495-518

See Also

AIC

plot.scam SCAM plotting

Description

The function is a clone of the plot.gam of the mgcv package with the differences in the construction
of the Bayesian confidence intervals of the shape constrained smooth terms. The function takes a
fitted scam object produced by scam() and plots the component smooth functions that make it up, on
the scale of the linear predictor. Optionally produces term plots for parametric model components
as well.

Note: The fitted shape constrained smooth functions are centred when plotted, which is done in
order to be in line with plots of unconstrained smooths (as in gam()). Although ’zeroed intercept’
constraints are applied to deal with identifiability of the scop-splines.

Usage

S3 method for class 'scam'
plot(x,residuals=FALSE,rug=TRUE,se=TRUE,pages=0,select=NULL,scale=-1,

n=100,n2=40,pers=FALSE,theta=30,phi=30,jit=FALSE,xlab=NULL,
ylab=NULL,main=NULL,ylim=NULL,xlim=NULL,too.far=0.1,
all.terms=FALSE,shade=FALSE,shade.col="gray80",
shift=0,trans=I,seWithMean=FALSE,unconditional = FALSE,
by.resids = FALSE,scheme=0,...)

Arguments

The list of the arguments is the same as in plot.gam of the mgcv package.

x a fitted gam object as produced by gam().

residuals If TRUE then partial residuals are added to plots of 1-D smooths. If FALSE then
no residuals are added. If this is an array of the correct length then it is used
as the array of residuals to be used for producing partial residuals. If TRUE then
the residuals are the working residuals from the IRLS iteration weighted by the
IRLS weights. Partial residuals for a smooth term are the residuals that would
be obtained by dropping the term concerned from the model, while leaving all
other estimates fixed (i.e. the estimates for the term plus the residuals).

plot.scam 11

rug when TRUE (default) then the covariate to which the plot applies is displayed
as a rug plot at the foot of each plot of a 1-d smooth, and the locations of the
covariates are plotted as points on the contour plot representing a 2-d smooth.

se when TRUE (default) upper and lower lines are added to the 1-d plots at 2 stan-
dard errors above and below the estimate of the smooth being plotted while for
2-d plots, surfaces at +1 and -1 standard errors are contoured and overlayed on
the contour plot for the estimate. If a positive number is supplied then this num-
ber is multiplied by the standard errors when calculating standard error curves
or surfaces. See also shade, below.

pages (default 0) the number of pages over which to spread the output. For example,
if pages=1 then all terms will be plotted on one page with the layout performed
automatically. Set to 0 to have the routine leave all graphics settings as they are.

select Allows the plot for a single model term to be selected for printing. e.g. if you
just want the plot for the second smooth term set select=2.

scale set to -1 (default) to have the same y-axis scale for each plot, and to 0 for a
different y axis for each plot. Ignored if ylim supplied.

n number of points used for each 1-d plot - for a nice smooth plot this needs to
be several times the estimated degrees of freedom for the smooth. Default value
100.

n2 Square root of number of points used to grid estimates of 2-d functions for con-
touring.

pers Set to TRUE if you want perspective plots for 2-d terms.

theta One of the perspective plot angles.

phi The other perspective plot angle.

jit Set to TRUE if you want rug plots for 1-d terms to be jittered.

xlab If supplied then this will be used as the x label for all plots.

ylab If supplied then this will be used as the y label for all plots.

main Used as title (or z axis label) for plots if supplied.

ylim If supplied then this pair of numbers are used as the y limits for each plot.

xlim If supplied then this pair of numbers are used as the x limits for each plot.

too.far If greater than 0 then this is used to determine when a location is too far from
data to be plotted when plotting 2-D smooths. This is useful since smooths
tend to go wild away from data. The data are scaled into the unit square before
deciding what to exclude, and too.far is a distance within the unit square.

all.terms if set to TRUE then the partial effects of parametric model components are also
plotted, via a call to termplot. Only terms of order 1 can be plotted in this way.

shade Set to TRUE to produce shaded regions as confidence bands for smooths (not
avaliable for parametric terms, which are plotted using termplot).

shade.col define the color used for shading confidence bands.

shift constant to add to each smooth (on the scale of the linear predictor) before plot-
ting. Can be useful for some diagnostics, or with trans.

12 plot.scam

trans function to apply to each smooth (after any shift), before plotting. shift and
trans are occasionally useful as a means for getting plots on the response scale,
when the model consists only of a single smooth.

seWithMean if TRUE the component smooths are shown with confidence intervals that include
the uncertainty about the overall mean. If FALSE then the uncertainty relates
purely to the centred smooth itself. An extension of the argument presented in
Nychka (1988) suggests that TRUE results in better coverage performance, and
this is also suggested by simulation. Note, seWithMean currently works only
when plotting unconstrained smooths.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

by.resids Should partial residuals be plotted for terms with by variables? Usually the
answer is no, they would be meaningless.

scheme Integer (0,1 or 2) or integer vector selecting a plotting scheme for each plot.
scheme == 0 produces a smooth curve with dashed curves indicating 2 stan-
dard error bounds. scheme == 1 illustrates the error bounds using a shaded
region. For scheme==0, contour plots are produced for 2-d smooths with the
x-axes labelled with the first covariate name and the y axis with the second co-
variate name. For 2-d smooths scheme==1 produces a perspective plot, while
scheme==2 produces a heatmap, with overlaid contours.

... other graphics parameters to pass on to plotting commands.

Value

The function generates plots.

Author(s)

Natalya Pya <nat.pya@gmail.com> based on the plot.gam of the mgcv by Simon Wood

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC
Press.

See Also

scam

plot.scam 13

Examples

simulating data...
require(scam)
n <- 200
set.seed(1)
x0 <- rep(1:4,50)
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained smooth term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
x3 <- runif(n)*5;
f3 <- -log(x3)/5 # monotone decreasing smooth
f <- f1+f2+f3
y <- 2*x0 + f + rnorm(n)*.3
x0 <- factor(x0)

fit the model and plot ...
b <- scam(y~x0+s(x1,k=15,bs="cr")+s(x2,k=30,bs="mpi")+s(x3,k=30,bs="mpd"))
plot(b,pages=1,residuals=TRUE,all.terms=TRUE,shade=TRUE,shade.col=3)

same with EFS and BFGS methods for smoothing parameter and models coefficients estimations...
b <- scam(y~x0+s(x1,k=15,bs="cr")+s(x2,k=30,bs="mpi")+s(x3,k=30,bs="mpd"),optimizer=c("efs","bfgs"))
plot(b,pages=1,residuals=TRUE,all.terms=TRUE,shade=TRUE,shade.col=3)

example with 2-d plots...
simulating data...
set.seed(2)
n <- 30
x0 <- rep(1:9,100)
x1 <- sort(runif(n)*4-1)
x2 <- sort(runif(n))
x3 <- runif(n*n, 0, 1)
f <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)

{ f[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i]))+2*sin(pi*x2[j])}
f1 <- as.vector(t(f))
f2 <- x3*0
e <- rnorm(length(f1))*.1
y <- 2*x0 + f1 + f2 + e
x0 <- factor(x0)
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x0=x0,x1=x11,x2=x22,x3=x3,y=y)

fit model and plot ...
b <- scam(y~x0+s(x1,x2,k=c(10,10),bs=c("tesmd1","ps"),m=2)+s(x3),data=dat,optimizer="efs")
op <- par(mfrow=c(2,2))
plot(b,all.terms=TRUE)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=19,cex=.3)
par(op)

14 predict.scam

and use of schemes...
op <- par(mfrow=c(2,2))
plot(b,all.terms=TRUE,scheme=1)
par(op)
op <- par(mfrow=c(2,2))
plot(b,all.terms=TRUE,scheme=c(2,1))
par(op)

predict.scam Prediction from fitted SCAM model

Description

This function is a clone of the mgcv library code predict.gam with some modifications to adopt
shape preserving smooth terms. It takes a fitted scam object produced by scam() and produces
predictions given a new set of values for the model covariates or the original values used for the
model fit. Predictions can be accompanied by standard errors, based on the posterior distribution of
the model coefficients.

It now alows prediction outside the range of knots, and use linear extrapolation in this case.

Usage

S3 method for class 'scam'
predict(object,newdata,type="link",se.fit=FALSE,terms=NULL,exclude=NULL,

block.size=NULL,newdata.guaranteed=FALSE,na.action=na.pass,...)

Arguments

object a fitted scam object as produced by scam().

newdata A data frame or list containing the values of the model covariates at which pre-
dictions are required. If this is not provided then predictions corresponding to
the original data are returned. If newdata is provided then it should contain all
the variables needed for prediction: a warning is generated if not.

type When this has the value "link" (default) the linear predictor (possibly with as-
sociated standard errors) is returned. When type="terms" each component of
the linear predictor is returned seperately (possibly with standard errors): this
includes parametric model components, followed by each smooth component,
but excludes any offset and any intercept. type="iterms" is the same, except
that any standard errors returned for unconstrained smooth components will in-
clude the uncertainty about the intercept/overall mean. When type="response"
predictions on the scale of the response are returned (possibly with approxi-
mate standard errors). When type="lpmatrix" then a matrix is returned which
yields the values of the linear predictor (minus any offset) when postmultiplied

predict.scam 15

by the parameter vector (in this case se.fit is ignored). The latter option is
most useful for getting variance estimates for quantities derived from the model:
for example integrated quantities, or derivatives of smooths. A linear predic-
tor matrix can also be used to implement approximate prediction outside R (see
example code, below).

se.fit when this is TRUE (not default) standard error estimates are returned for each
prediction.

terms if type=="terms" then only results for the terms given in this array will be
returned.

exclude if type=="terms" or type="iterms" then terms (smooth or parametric) named
in this array will not be returned. Otherwise any smooth terms named in this
array will be set to zero. If NULL then no terms are excluded.

block.size maximum number of predictions to process per call to underlying code: larger is
quicker, but more memory intensive. Set to < 1 to use total number of predictions
as this.

newdata.guaranteed

Set to TRUE to turn off all checking of newdata except for sanity of factor lev-
els: this can speed things up for large prediction tasks, but newdata must be
complete, with no NA values for predictors required in the model.

na.action what to do about NA values in newdata. With the default na.pass, any row
of newdata containing NA values for required predictors, gives rise to NA predic-
tions (even if the term concerned has no NA predictors). na.exclude or na.omit
result in the dropping of newdata rows, if they contain any NA values for re-
quired predictors. If newdata is missing then NA handling is determined from
object$na.action.

... other arguments.

Details

See predict.gam for details.

Value

If type=="lpmatrix" then a matrix is returned which will give a vector of linear predictor values
(minus any offest) at the supplied covariate values, when applied to the model coefficient vector.
Otherwise, if se.fit is TRUE then a 2 item list is returned with items (both arrays) fit and se.fit
containing predictions and associated standard error estimates, otherwise an array of predictions is
returned. The dimensions of the returned arrays depends on whether type is "terms" or not: if it is
then the array is 2 dimensional with each term in the linear predictor separate, otherwise the array
is 1 dimensional and contains the linear predictor/predicted values (or corresponding s.e.s). The
linear predictor returned termwise will not include the offset or the intercept.

newdata can be a data frame, list or model.frame: if it’s a model frame then all variables must be
supplied.

Author(s)

Natalya Pya <nat.pya@gmail.com> based partly on mgcv by Simon Wood

16 predict.scam

References

Chambers and Hastie (1993) Statistical Models in S. Chapman & Hall.

Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC
Press.

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

scam, plot.scam

Examples

library(scam)
set.seed(2)
n <- 200
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
f <- f1+f2
y <- f+rnorm(n)*0.2
dat <- data.frame(x1=x1,x2=x2,y=y)
b <- scam(y~s(x1,k=15,bs="cr")+s(x2,k=30,bs="mpi"),data=dat)

newd <- data.frame(x1=seq(-3,3,length.out=20),x2=seq(-1,3,length.out=20))
pred <- predict(b,newd)
pred
predict(b,newd,type="terms",se=TRUE)

prediction on the original data...
pr <- predict(b,type="terms")
x<-sort(x1,index=TRUE)
old.par <- par(mfrow=c(2,2))
plot(x$x,(pr[,1])[x$ix],type="l",col=3,xlab="x1")
z<-sort(x2,index=TRUE)
plot(z$x,(pr[,2])[z$ix],type="l",col=3,xlab="x2")
plot(b,select=1,scale=0,se=FALSE)
plot(b,select=2,scale=0,se=FALSE)
par(old.par)

linear extrapolation with predict.scam()...
set.seed(3)
n <- 100
x <- sort(runif(n)*3-1)
f <- exp(-1.3*x)
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)

predict.scam 17

b <- scam(y~s(x,k=15,bs="mpd"),family=poisson(link="log"),data=dat)
newd <- data.frame(x=c(2.3,2.7,3.2))
fe <- predict(b,newd,type="link",se=TRUE)
ylim<- c(min(y,exp(fe$fit)),max(y,exp(fe$fit)))
plot(c(x,newd[[1]]),c(y,NA,NA,NA),ylim=ylim,ylab="y",xlab="x")
lines(c(x,newd[[1]]),c(b$fitted,exp(fe$fit)),col=3)

prediction on the original data...
pr <- predict(b)
plot(x,y)
lines(x,exp(pr),col=3)

Gaussian model
simulating data...
set.seed(2)
n <- 200
x <- sort(runif(n)*4-1)
f <- exp(4*x)/(1+exp(4*x)) # monotone increasing smooth
y <- f+rnorm(n)*0.1
dat <- data.frame(x=x,y=y)
b <- scam(y~ s(x,k=25,bs="mpi"),data=dat)
newd <- data.frame(x=c(3.2,3.3,3.6))
fe <- predict(b,newd)
plot(c(x,newd[[1]]),c(y,NA,NA,NA),ylab="y",xlab="x")
lines(c(x,newd[[1]]),c(b$fitted,fe),col=3)

passing observed data + new data...
newd <- data.frame(x=c(x,3.2,3.3,3.6))
fe <- predict(b,newd,se=TRUE)
plot(newd[[1]],c(y,NA,NA,NA),ylab="y",xlab="x")
lines(newd[[1]],fe$fit,col=2)
lines(newd[[1]],fe$fit+2*fe$se.fit,col=3)
lines(newd[[1]],fe$fit-2*fe$se.fit,col=4)

prediction with CI...
newd <- data.frame(x=seq(-1.2,3.5,length.out=100))
fe <- predict(b,newd,se=TRUE)
ylim<- c(min(y,fe$se.fit),max(y,fe$se.fit))
plot(newd[[1]],fe$fit,type="l",ylim=ylim,ylab="y",xlab="x")
lines(newd[[1]],fe$fit+2*fe$se.fit,lty=2)
lines(newd[[1]],fe$fit-2*fe$se.fit,lty=2)

prediction on the original data...
pr <- predict(b)
plot(x,y)
lines(x,pr,col=3)

bivariate example...
set.seed(2)
n <- 30
x1 <- sort(runif(n)); x2 <- sort(runif(n)*4-1)
f <- matrix(0,n,n)

18 print.scam

for (i in 1:n) for (j in 1:n)
f[i,j] <- 2*sin(pi*x1[i]) +exp(4*x2[j])/(1+exp(4*x2[j]))

f <- as.vector(t(f));
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n); x11[,1:n] <- x1; x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
b <- scam(y~s(x1,x2,k=c(10,10),bs="tesmi2"),data=dat,optimizer="efs")
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE); plot(b,pers=TRUE,theta = 80, phi = 40)

n.out <- 20
xp <- seq(0,1.4,length.out=n.out)
zp <- seq(-1,3.4,length.out=n.out)
xp1 <- matrix(0,n.out,n.out); xp1[,1:n.out] <- xp
xp1 <- as.vector(t(xp1)); xp2 <- rep(zp,n.out)
newd <- data.frame(x1=xp1,x2=xp2)
fe <- predict(b,newd)
fc <- t(matrix(fe,n.out,n.out))
persp(xp,zp,fc,expand= 0.85,ticktype = "simple",xlab="x1",

ylab="x2",zlab="f^",main="", theta = 80, phi = 40)

obtaining a 'prediction matrix'...
newd <- data.frame(x1=c(-2,-1),x2=c(0,1))
Xp <- predict(b,newdata=newd,type="lpmatrix")
fv <- Xp%*% b$beta.t
fv

print.scam Print a SCAM object

Description

The default print method for a scam object. The code is a clone of print.gam of the mgcv package
with a slight simplification since only two methods of smoothing parameter selection (by GCV or
UBRE) was implemented for scam.

Usage

S3 method for class 'scam'
print(x,...)

Arguments

x fitted model objects of class scam as produced by scam().

... other arguments.

qq.scam 19

Details

As for mgcv(gam) prints out the family, model formula, effective degrees of freedom for each
smooth term, and optimized value of the smoothness selection criterion used.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC
Press.

See Also

scam, summary.scam

qq.scam QQ plots for scam model residuals

Description

Takes a fitted scam object produced by scam() and produces QQ plots of its residuals (conditional
on the fitted model coefficients and scale parameter). This is an adapted short version of qq.gam()
of mgcv package of Simon N Wood.

Usage

qq.scam(object, rep=0, level=.9,s.rep=10,
type=c("deviance","pearson","response"),
pch=".", rl.col=3, rep.col="gray80", ...)

Arguments

object a fitted scam object as produced by scam() (or a glm object).

rep How many replicate datasets to generate to simulate quantiles of the residual dis-
tribution. 0 results in an efficient simulation free method for direct calculation,
if this is possible for the object family.

level If simulation is used for the quantiles, then reference intervals can be provided
for the QQ-plot, this specifies the level. 0 or less for no intervals, 1 or more to
simply plot the QQ plot for each replicate generated.

s.rep how many times to randomize uniform quantiles to data under direct computa-
tion.

type what sort of residuals should be plotted? See residuals.scam.

pch plot character to use. 19 is good.

20 residuals.scam

rl.col color for the reference line on the plot.

rep.col color for reference bands or replicate reference plots.

... extra graphics parameters to pass to plotting functions.

Details

QQ-plots of the the model residuals can be produced in one of two ways. The cheapest method
generates reference quantiles by associating a quantile of the uniform distribution with each datum,
and feeding these uniform quantiles into the quantile function associated with each datum. The
resulting quantiles are then used in place of each datum to generate approximate quantiles of resid-
uals. The residual quantiles are averaged over s.rep randomizations of the uniform quantiles to
data.

The second method is to use direct simulatation. For each replicate, data are simulated from the
fitted model, and the corresponding residuals computed. This is repeated rep times. Quantiles
are readily obtained from the empirical distribution of residuals so obtained. From this method
reference bands are also computable.

Even if rep is set to zero, the routine will attempt to simulate quantiles if no quantile function is
available for the family. If no random deviate generating function family is available (e.g. for the
quasi families), then a normal QQ-plot is produced. The routine conditions on the fitted model
coefficents and the scale parameter estimate.

The plots are very similar to those proposed in Ben and Yohai (2004), but are substantially cheaper
to produce (the interpretation of residuals for binary data in Ben and Yohai is not recommended).

Author(s)

Simon N. Wood <simon.wood@r-project.org>

Natalya Pya <nat.pya@gmail.com> adapted for usage with scam

References

N.H. Augustin, E-A Sauleaub, S.N. Wood (2012) On quantile quantile plots for generalized linear
models Computational Statistics & Data Analysis. 56(8), 2404-2409.

M.G. Ben and V.J. Yohai (2004) JCGS 13(1), 36-47.

See Also

scam

residuals.scam SCAM residuals

Description

This function is a copy of the mgcv library code residuals.gam, but with an additional type of
residuals, (randomized) quantile residuals, implemented. It returns residuals for a fitted scam model
object. Pearson, deviance, working, response, and (randomized) quantile residuals are available.

residuals.scam 21

Usage

S3 method for class 'scam'
residuals(object, type = c("deviance", "pearson","scaled.pearson", "working",

"response", "rquantile"), setseed=NULL, ...)

Arguments

object a scam fitted model object.

type the type of residuals. Usually one of "deviance", "pearson", "scaled.pearson",
"working", "response", or "rquantile".

setseed seed to be used in getting randomized quantile residuals.

... other arguments.

Details

"deviance": deviance residuals defined by the model family.

"scaled.pearson": scaled Pearson residuals are raw residuals (data minus fitted values) divided by
the standard deviation of the data according to the model mean variance relationship and estimated
scale parameter.

"pearson": Pearson residuals are the same as scaled Pearson, but multiplied by the square root of
the scale parameter (so they are independent of the scale parameter): (y − µ)/

√
V (µ), where y is

data, µ is model fitted value, and V is model mean-variance relationship.

"working": working residuals are the residuals returned from model fitting at convergence.

"response": response residuals are the raw residuals (data minus fitted values).

"rquantile": (randomized) quantile residuals (RQRs) as suggested by Dunn and Smyth (1996).
Based on the idea of inverting the estimated distribution function for each observation to get approx-
imately normally distributed residuals. RQRs are the theoretical standard normal quantiles evalu-
ated at the estimated CDF at each observation. For models with a continuous response distribution
they are simply quantile residuals; for discrete distributions, one realization of randomized quantile
residuals is produced. In case of normal responses, quantile residuals are equivalent to deviance and
Pearson residuals. In non-normal situations, RQRs might be a better choice for performing model
checking.

Value

An array of residuals.

Author(s)

Natalya Pya <nat.pya@gmail.com> based partly on residual.gam by Simon N Wood

References

Dunn, P. K. and Smyth, G. K. (1996) Randomised quantile residuals, J. Comput. Graph. Statist., 5,
236–244

22 scam

See Also

scam, scam.check

Examples

require(scam)
Poisson model ...
set.seed(2)
n <- 200
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
f <- f1+f2
y <- rpois(n,exp(f))
b <- scam(y~s(x1,bs="cr")+s(x2,bs="mpi"),

family=poisson(link="log"),optimizer=c("efs","bfgs"))
scam.check(b)
residuals plots using randomized quantile residuals with seed set...
scam.check(b, type="rquantile", setseed=2)

scam Shape constrained additive models (SCAM) and integrated smooth-
ness selection

Description

This function fits a SCAM to data. Various shape constrained smooths (SCOP-splines), including
univariate smooths subject to monotonicity, convexity, or monotonicity plus convexity, bivariate
smooths with double or single monotonicity are available as model terms. See shape.constrained.smooth.terms
for a complete overview of what is available. Smoothness selection is estimated as part of the fitting.
Confidence/credible intervals are available for each smooth term.

The shaped constrained smooths have been added to the gam() in the mgcv package setup using
the smooth.construct function. The routine calls a gam() function for the model set up, but
there are separate functions for the model fitting, scam.fit, and smoothing parameter selection,
bfgs_gcv.ubre. Any smooth available in the mgcv can be taken as a model term for SCAM. User-
defined smooths can be included as well.

Usage

scam(formula, family = gaussian(), data = list(), gamma = 1,
sp = NULL, weights = NULL, offset = NULL,optimizer=c("bfgs","newton"),
optim.method=c("Nelder-Mead","fd"),scale = 0, knots=NULL,
not.exp=FALSE, start= NULL, etastart=NULL,mustart= NULL,
control=list(),AR1.rho=0, AR.start=NULL,drop.unused.levels=TRUE)

scam 23

Arguments

formula A SCAM formula. This is exactly like the formula for a GAM (see formula.gam
of the mgcv library) except that shape constrained smooth terms, can be added
in the expression of the form, e.g., s(x1,k=12,bs="mpi",by=z), where bs
indicates the basis to use for the constrained smooth (increasing in this case):
the built in options for the shape constrained smooths are described in
shape.constrained.smooth.terms,

family A family object specifying the distribution and link to use in fitting etc. See glm
and family for more details.

data A data frame or list containing the model response variable and covariates re-
quired by the formula. By default the variables are taken from environment(formula):
typically the environment from which gam is called.

gamma A constant multiplier to inflate the model degrees of freedom in the GCV or
UBRE/AIC score.

sp A vector of smoothing parameters can be provided here. Smoothing parame-
ters must be supplied in the order that the smooth terms appear in the model
formula. The default sp=NULL indicates that smoothing parameters should be
estimated. If length(sp) does not correspond to the number of underlying
smoothing parameters or negative values supplied then the vector is ignored and
all the smoothing parameters will be estimated.

weights Prior weights on the data.

offset Used to supply a model offset for use in fitting. Note that this offset will always
be completely ignored when predicting, unlike an offset included in formula.
This conforms to the behaviour of lm, glm and gam.

optimizer An array specifying the numerical optimization methods to optimize the smooth-
ing parameter estimation criterion (specified in the first element of optimizer)
and to use to estimate the model coefficients (specified in the second element
of optimizer). For the model coefficients estimation there are two alternatives:
"newton" (default) and "bfgs" methods. For the smoothing parameter selection
the available methods are "bfgs" (default) for the built in to scam package routine
bfgs_gcv.ubre, "optim", "nlm", "nlm.fd" (based on finite-difference approxi-
mation of the derivatives), "efs". "efs" for the extended Fellner Schall method of
Wood and Fasiolo (2017) (rather than minimizing REML as in gam(mgcv) this
minimizes the GCV/UBRE criterion) Note that ’bfgs’ method for the coefficient
estimation works only with ’efs’.

optim.method In case of optimizer="optim" this specifies the numerical method to be used
in optim in the first element, the second element of optim.method indicates
whether the finite difference approximation should be used ("fd") or analytical
gradient ("grad"). The default is optim.method=c("Nelder-Mead","fd").

scale If this is positive then it is taken as the known scale parameter of the expo-
nential family distribution. Negative value indicates that the scale paraemter is
unknown. 0 indicates that the scale parameter is 1 for Poisson and binomial and
unknown otherwise. This conforms to the behaviour of gam.

knots An optional list containing user specified knot values to be used for basis con-
struction. Different terms can use different numbers of knots.

24 scam

not.exp if TRUE then notExp(x,b,threshold) re-parameterization function will be used
in place of exp() (default value) to ensure positivity in the model coefficients
(scop-splines coefficients). notExp() is a softplus function, 1/b*log(1+exp(b*x),
as implemented in PyTorch, it reverts to the linear function when x*b > thresh-
old, for numerical stability.

start Initial values for the model coefficients.

etastart Initial values for the linear predictor.

mustart Initial values for the expected values.

control A list of fit control parameters to replace defaults returned by scam.control.
Values not set assume default values.

AR1.rho The AR1 correlation parameter. An AR1 error model can be used for the resid-
uals of Gaussian-identity link models. Standardized residuals (approximately
uncorrelated under correct model) returned in std.rsd if non-zero.

AR.start logical variable of same length as data, TRUE at first observation of an indepen-
dent section of AR1 correlation. Very first observation in data frame does not
need this. If NULL (default) then there are no breaks in AR1 correlaion.

drop.unused.levels

as with gam by default unused levels are dropped from factors before fitting.

Details

A shape constrained additive model (SCAM) is a generalized linear model (GLM) in which the
linear predictor is given by strictly parametric components plus a sum of smooth functions of the
covariates where some of the functions are assumed to be shape constrained. For example,

log(E(Yi)) = X∗
i b+ f1(x1i) +m2(x2i) + f3(x3i)

where the independent response variables Yi follow Poisson distribution with log link function, f1,
m2, and f3 are smooth functions of the corresponding covariates, and m2 is subject to monotone
increasing constraint.

Available shape constrained smooths are described in shape.constrained.smooth.terms. The
shape constrained terms are added to the formula via s() terms that can have more that one argu-
ment. Unconstrained terms of the mgcv package, specified using s, te, ti, t2, can be added as well.
There is an option to indicate whether the smooth term is a fixed degrees of freedom regression
spline (unpenalized) or a penalized regression spline, by setting the argument fx of s term to TRUE
or FALSE (default). See an example below.

Residual auto-correlation with a simple AR1 correlation structure can be dealt with, for Gaussian
models with identity link. Currently, the AR1 correlation parameter should be supplied (rather
than estimated) in AR1.rho. AR.start input argument (logical) allows to set independent sections
of AR1 correlation. Standardized residuals (approximately uncorrelated under correct model) are
returned in std.rsd if AR1.rho is non zero. Use acf(model$std.rsd) for computing and plotting
estimates of the autocorrelation function to check correlation.

Value

The function returns an object of class "scam" with the following elements (this agrees with gamObject):

scam 25

aic AIC of the fitted model: the degrees of freedom used to calculate this are the
effective degrees of freedom of the model, and the likelihood is evaluated at the
maximum of the penalized likelihood, not at the MLE.

assign Array whose elements indicate which model term (listed in pterms) each pa-
rameter relates to: applies only to non-smooth terms.

bfgs.info If optimizer[1]="bfgs", a list of convergence diagnostics relating to the BFGS
method of smoothing parameter selection. The items are: conv, indicates why
the BFGS algorithm of the smoothness selection terminated; iter, number of
iterations of the BFGS taken to get convergence; grad, the gradient of the
GCV/UBRE score at convergence; score.hist, the succesive values of the
score up until convergence.

call the matched call.

coefficients the coefficients of the fitted model. Parametric coefficients are first, followed by
coefficients for each spline term in turn.

coefficients.t the parametrized coefficients of the fitted model (exponentiated for the mono-
tonic smooths).

conv indicates whether or not the iterative fitting method converged.

CPU.time indicates the real and CPU time (in seconds) taken by the fitting process in case
of unknown smoothing parameters

data the original supplied data argument. Only included if the scam argument keepData
is set to TRUE (default is FALSE).

deviance model deviance (not penalized deviance).

df.null null degrees of freedom.

df.residual effective residual degrees of freedom of the model.

edf estimated degrees of freedom for each model parameter. Penalization means
that many of these are less than 1.

edf1 alternative estimate of edf.

efs.info If optimizer[1]="efs", a list of convergence diagnostics relating to the ex-
tended Fellner Schall method fot smoothing parameter selection. The items are:
conv, indicates why the efs algorithm of the smoothness selection terminated;
iter, number of iterations of the efs taken to get convergence; score.hist, the
succesive values of the score up until convergence.

family family object specifying distribution and link used.

fitted.values fitted model predictions of expected value for each datum.

formula the model formula.

gcv.ubre the minimized GCV or UBRE score.

dgcv.ubre the gradient of the GCV or UBRE score.

iter number of iterations of the Newton-Raphson method taken to get convergence.
linear.predictors

fitted model prediction of link function of expected value for each datum.

method "GCV" or "UBRE", depending on the fitting criterion used.

26 scam

min.edf Minimum possible degrees of freedom for whole model.

model model frame containing all variables needed in original model fit.

nlm.info If optimizer[1]="nlm" or optimizer[1]="nlm.fd", a list of convergence di-
agnostics relating to the BFGS method of smoothing parameter selection. The
items are: conv, indicates why the BFGS algorithm of the smoothness selection
terminated; iter, number of iterations of BFGS taken to get convergence; grad,
the gradient of the GCV/UBRE score at convergence.

not.exp if TRUE then notExp() function will be used in place of exp (default value) in
positivity ensuring model parameters re-parameterization.

nsdf number of parametric, non-smooth, model terms including the intercept.

null.deviance deviance for single parameter model.

offset model offset.

optim.info If optimizer[1]="optim", a list of convergence diagnostics relating to the
BFGS method of smoothing parameter selection. The items are: conv, indicates
why the BFGS algorithm of the smoothness selection terminated; iter, number
of iterations of BFGS taken to get convergence; optim.method, the numerical
optimization method used.

prior.weights prior weights on observations.

pterms terms object for strictly parametric part of model.

R Factor R from QR decomposition of weighted model matrix, unpivoted to be in
same column order as model matrix.

residuals the working residuals for the fitted model.
scale.estimated

TRUE if the scale parameter was estimated, FALSE otherwise.

sig2 estimated or supplied variance/scale parameter.

smooth list of smooth objects, containing the basis information for each term in the
model formula in the order in which they appear. These smooth objects are
returned by the smooth.construct objects.

sp estimated smoothing parameters for the model. These are the underlying smooth-
ing parameters, subject to optimization.

std.rsd Standardized residuals (approximately uncorrelated under correct model) if AR1.rho
non zero

termcode an integer indicating why the optimization process of the smoothness selection
terminated (see bfgs_gcv.ubre).

terms terms object of model model frame.

trA trace of the influence matrix, total number of the estimated degrees of freedom
(sum(edf)).

var.summary A named list of summary information on the predictor variables. See gamObject.

Ve frequentist estimated covariance matrix for the parameter estimators.

Vp estimated covariance matrix for the parameters. This is a Bayesian posterior
covariance matrix that results from adopting a particular Bayesian model of the
smoothing process.

scam 27

Ve.t frequentist estimated covariance matrix for the reparametrized parameter esti-
mators obtained using the delta method. Particularly useful for testing whether
terms are zero. Not so useful for CI’s as smooths are usually biased.

Vp.t estimated covariance matrix for the reparametrized parameters obtained using
the delta method. Paricularly useful for creating credible/confidence intervals.

weights final weights used in the Newton-Raphson iteration.

cmX column means of the model matrix (with elements corresponding to smooths set
to zero).

contrasts contrasts associated with a factor.

xlevels levels of a factor variable used in the model.

y response data.

Author(s)

Natalya Pya <nat.pya@gmail.com> based partly on mgcv by Simon Wood

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-36

Wood S.N. (2017) Generalized Additive Models: An Introduction with R (2nd edition). Chapman
and Hall/CRC Press

Wood, S.N. (2006) On confidence intervals for generalized additive models based on penalized
regression splines. Australian and New Zealand Journal of Statistics. 48(4): 445-464.

Wood, S.N. and M. Fasiolo (2017) A generalized Fellner-Schall method for smoothing parameter
optimization with application to Tweedie location, scale and shape models. Biometrics 73 (4),
1071-1081

See Also

scam-package, shape.constrained.smooth.terms, gam, s, plot.scam, summary.scam, scam.check,
predict.scam

Examples

Gaussian model, two smooth terms: unconstrained and increasing...
simulating data...
require(scam)
set.seed(4)
n <- 200
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
x2 <- runif(n)*4-1;

28 scam

f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
y <- f1+f2 +rnorm(n)*.5
dat <- data.frame(x1=x1,x2=x2,y=y)
fit model, get results, and plot...
b <- scam(y~s(x1,bs="cr")+s(x2,bs="mpi"),data=dat)
b
summary(b)
plot(b,pages=1,shade=TRUE)

Gaussian model, two smooth terms: increasing and mixed (decreasing and convex)...
simulating data...
set.seed(4)
n <- 200
x1 <- runif(n)*4-1;
f1 <- exp(4*x1)/(1+exp(4*x1)) # increasing smooth
x2 <- runif(n)*3-1;
f2 <- exp(-3*x2)/15 # decreasing and convex smooth
y <- f1+f2 + rnorm(n)*.4
dat <- data.frame(x1=x1,x2=x2,y=y)
fit model, results, and plot...
b <- scam(y~ s(x1,bs="mpi")+s(x2, bs="mdcx"),data=dat)
summary(b)
plot(b,pages=1,scale=0,shade=TRUE)

using the extended Fellner-Schall method for smoothing parameter selection...
b0 <- scam(y~ s(x1,bs="mpi")+s(x2,bs="mdcx"),data=dat,optimizer="efs")
summary(b0)

using the extended Fellner-Schall method for smoothing parameter selection,
and BFGS for model coefficient estimation...
b0 <- scam(y~ s(x1,bs="mpi")+s(x2,bs="mdcx"),data=dat,optimizer=c("efs","bfgs"))
summary(b0)

using optim() for smoothing parameter selection...
b1 <- scam(y~ s(x1,bs="mpi")+s(x2,bs="mdcx"),data=dat,optimizer="optim")
summary(b1)

b2 <- scam(y~ s(x1,bs="mpi")+s(x2,bs="mdcx"),data=dat,optimizer="optim",
optim.method=c("BFGS","fd"))

summary(b2)

using nlm()...
b3 <- scam(y~ s(x1,bs="mpi")+s(x2,bs="mdcx"),data=dat,optimizer="nlm")
summary(b3)

Poisson model
simulating data...
set.seed(2)
n <- 200
x1 <- runif(n)*6-3

scam 29

f1 <- 3*exp(-x1^2) # unconstrained term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
f <- f1+f2
y <- rpois(n,exp(f))
dat <- data.frame(x1=x1,x2=x2,y=y)
fit model, get results, and plot...
b <- scam(y~s(x1,bs="cr")+s(x2,bs="mpi"),

family=poisson(link="log"),data=dat,optimizer=c("efs","bfgs"))
summary(b)
plot(b,pages=1,shade=TRUE)
scam.check(b)

Gamma model...
simulating data...
set.seed(6)
n <- 300
x1 <- runif(n)*6-3
f1 <- 1.5*sin(1.5*x1) # unconstrained term
x2 <- runif(n)*4-1;
f2 <- 1.5/(1+exp(-10*(x2+.75)))+1.5/(1+exp(-5*(x2-.75))) # increasing smooth
x3 <- runif(n)*6-3;
f3 <- 3*exp(-x3^2) # unconstrained term
f <- f1+f2+f3
y <- rgamma(n,shape=1,scale=exp(f))
dat <- data.frame(x1=x1,x2=x2,x3=x3,y=y)
fit model, get results, and plot...
b <- scam(y~s(x1,bs="ps")+s(x2,k=15,bs="mpi")+s(x3,bs="ps"),

family=Gamma(link="log"),data=dat,optimizer=c("efs","bfgs"))
b
summary(b)
old.par <- par(mfrow=c(2,2))
plot(b,shade=TRUE)
par(old.par)

run with unpenalized terms...
b1 <- scam(y~s(x1,bs="ps")+s(x2,k=15,bs="mpi",fx=TRUE)+s(x3,bs="ps",fx=TRUE),

family=Gamma(link="log"),data=dat,optimizer=c("efs","bfgs"))
summary(b1)

example with random effect smoother...
set.seed(2)
n <- 200
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # increasing smooth
f <- f1+f2
a <- factor(sample(1:10,200,replace=TRUE))
Xa <- model.matrix(~a-1) # random main effects
y <- f + Xa%*%rnorm(length(levels(a)))*.5 + rnorm(n)*.4
dat <- data.frame(x1=x1,x2=x2,y=y,a=a)
fit model and plot...

30 scam.check

b <- scam(y~s(x1,bs="cr")+s(x2,bs="mpi")+s(a,bs="re"), data=dat)
summary(b)
scam.check(b)
plot(b,pages=1,shade=TRUE)

example with AR1 errors...
set.seed(8)
n <- 500
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # increasing smooth
f <- f1+f2
e <- rnorm(n,0,sd=2)
for (i in 2:n) e[i] <- .6*e[i-1] + e[i]
y <- f + e
dat <- data.frame(x1=x1,x2=x2,y=y)
b <- scam(y~s(x1,bs="cr")+s(x2,k=25,bs="mpi"),

data=dat, AR1.rho=.6, optimizer="efs")
b
raw residuals still show correlation...
acf(residuals(b))
but standardized are now fine...
acf(b$std.rsd)

scam.check Some diagnostics for a fitted scam object

Description

The function takes a fitted scam object produced by scam() and provides diagnostic information
about the model fitting procedure and results. It is analogous to the gam.check() function from
the mgcv package. By default, the function produces three deviance residual plots and a plot of
the response versus fitted values, and prints information about the convergence of the smoothness
selection optimization. Alternatively, the function can generate plots for checking the normalized
(randomized) quantile residuals of the fitted scam object.

Usage

scam.check(b,type=c("deviance","rquantile","pearson","response"),old.style=FALSE,
pch=".", setseed=NULL, rep=0, level=.9, rl.col=3, rep.col="gray80",...)

Arguments

b a fitted scam object as produced by scam().

old.style produces qq-norm plots as it was in scam versions < 1.2-15 when set to TRUE.

type type of residuals, see residuals.scam, used in all plots.
rep, level, rep.col

arguments passed to qq.scam() when old.style is FALSE (default).

scam.check 31

rl.col color for the reference line on the quantile-quantile plot.

pch plot character to use for the quantile-quantile plot.

setseed seed to be used in getting randomized quantile residuals.

... extra graphics parameters to pass to plotting functions.

Details

scam.check produces four standard residual plots, and some convergence diagnostics. By default,
the residuals are deviance residuals. The QQ plot in this case is created by a call to qq.scam(),
and plots the deviance residuals against approximate theoretical quantilies of the deviance residual
distribution, according to the fitted model.

The type of the residuals can be changed to "rquantile", (randomized) quantile residuals as de-
scribed by Dunn and Smyth (1996). For models with non-normal response distribution, (random-
ized) quantile residuals may provide a better diagnostic tool. The QQ plot for these residuals is a
standard normal QQ plot. Randomization is applied only when the response variable is discrete.

The printed output includes information about the optimization process used for smoothing param-
eter selection.

Author(s)

Natalya Pya <nat.pya@gmail.com> based partly on mgcv by Simon N Wood

References

Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC
Press.

Dunn, P. K. and Smyth, G. K. (1996) Randomised quantile residuals, J. Comput. Graph. Statist., 5,
236–244

See Also

residuals.scam

Examples

library(scam)
set.seed(2)
n <- 200
x1 <- runif(n)*4-1; x2 <- runif(n)*3-1;
f1 <- function(x) exp(4*x)/(1+exp(4*x)) # monotone increasing smooth
f2 <- function(x) exp(-3*x)/15 # monotone decreasing and convex smooth
f <- f1(x1) + f2(x2)
y <- f+ rnorm(n)*0.2
dat <- data.frame(x1=x1,x2=x2,y=y)
b <- scam(y~ s(x1,bs="mpi")+s(x2,bs="mdcx"),data=dat)
plot(b,pages=1)
scam.check(b)

32 scam.control

binomial model...
set.seed(4)
n <- 400
scale <- 3.3
x0 <- runif(n, 0, 1)
f0 <- function(x) 2 * sin(pi * x)
x1 <- runif(n)*4-1
f1 <- function(x) exp(4*x)/(1+exp(4*x))
f <- f0(x0) + f1(x1)
f <- (f-2)*scale
g <- binomial()$linkinv(f)
y <- rbinom(g,1,g)
dat <- data.frame(y=y,x0=x0,x1=x1)

b1 <- scam(y~s(x0)+s(x1,bs="mpi"),family=binomial,data=dat)
scam.check(b1)
residuals plots using randomized quantile residuals...
scam.check(b1, type="rquantile")

Residuals vs linear predictor for four realizations of the quantile residuas...
old.par <- par(mfrow=c(2,2))
plot(b1$linear.predictors,residuals(b1, type="rquantile"))
plot(b1$linear.predictors,residuals(b1, type="rquantile"))
plot(b1$linear.predictors,residuals(b1, type="rquantile"))
plot(b1$linear.predictors,residuals(b1, type="rquantile"))
par(old.par)

scam.control Setting SCAM fitting defaults

Description

This is an internal function of package scam which allows control of the numerical options for fitting
a SCAM.

Usage

scam.control(maxit = 200, maxHalf=30, devtol.fit=1e-7, steptol.fit=1e-7,
keepData=FALSE,efs.lspmax=15,efs.tol=.1, nlm=list(),optim=list(),

bfgs=list(), trace =FALSE, print.warn=FALSE,b.notexp=1, threshold.notexp=20)

Arguments

maxit Maximum number of IRLS iterations to perform used in scam.fit.

maxHalf If a step of the BFGS optimization method leads to a worse penalized deviance,
then the step length of the model coefficients is halved. This is the number of
halvings to try before giving up used in bfgs_gcv.ubre.

scam.control 33

devtol.fit A positive scalar giving the convergence control for the model fitting algorithm
in scam.fit.

steptol.fit A positive scalar giving the tolerance at which the scaled distance between two
successive iterates is considered close enough to zero to terminate the model
fitting algorithm in scam.fit.

keepData Should a copy of the original data argument be kept in the scam object?

efs.lspmax maximum log smoothing parameters to allow under extended Fellner Schall
smoothing parameter optimization.

efs.tol change in GCV to count as negligible when testing for EFS convergence. If the
step is small and the last 3 steps led to a GCV change smaller than this, then
stop.

nlm list of control parameters to pass to nlm if this is used for outer estimation of
smoothing parameters (not default).

optim list of control parameters to pass to optim if this is used for outer estimation of
smoothing parameters (not default).

bfgs list of control parameters to pass to default BFGS optimizer used for outer esti-
mation of log smoothing parameters.

trace turns on or off some de-bugging information.

print.warn when set to FALSE turns off printing warning messages for step halving under
non-finite exponentiated coefficients, non-finite deviance and/or if mu or eta are
out of bounds.

b.notexp parameter b of the model coefficients re-parameterization softPlus() function
used as the notExp() function in place of exp() to ensure positivity.

threshold.notexp

parameter threshold of the softPlus() function used as the notExp() func-
tion. The implementation reverts to the linear function when coef*b > threshold.

Details

Outer iteration is used to estimate smoothing parameters of SCAM by GCV/UBRE score opti-
mization. The default procedure is the built-in BFGS method which is controlled by the list bfgs
with the following elements: steptol.bfgs (default 1e-7) is the relative convergence tolerance;
gradtol.bfgs (default 6.0554*1e-6) is a tolerance at which the gradient is considered to be close
enougth to 0 to terminate the BFGS algorithm; maxNstep is a positive scalar which gives the max-
imum allowable step length (default 5); maxHalf gives the maximum number of step halving in
"backtracking" to permit before giving up(default 30); check.analytical is logical whether the
analytical gradient of GCV/UBRE should be checked numerically (default FALSE); del is an incre-
ment for finite differences when checking analytical gradients (default 1e-4).

If outer iteration using nlm is used for fitting, then the control list nlm stores control arguments
for calls to routine nlm. As in gam.control the list has the following named elements: ndigit is
the number of significant digits in the GCV/UBRE score; gradtol is the tolerance used to judge
convergence of the gradient of the GCV/UBRE score to zero (default 1e-6); stepmax is the maxi-
mum allowable log smoothing parameter step (default 2); steptol is the minimum allowable step
length (default 1e-4); iterlim is the maximum number of optimization steps allowed (default 200);
check.analyticals indicates whether the built in exact derivative calculations should be checked

34 shape.constrained.smooth.terms

numerically (default FALSE). Any of these which are not supplied and named in the list are set to
their default values.

Outer iteration using optim is controlled using list optim, which currently has one element: factr
which takes default value 1e7.

Author(s)

Natalya Pya Arnqvist <nat.pya@gmail.com> based partly on gam.control by Simon Wood

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-36

See Also

scam, scam.fit, gam.control

shape.constrained.smooth.terms

Shape preserving smooth terms in SCAM

Description

As in mgcv(gam), shape preserving smooth terms are specified in a scam formula using s terms.
All the shape constrained smooth terms (SCOP-splines) are constructed using the B-splines basis
proposed by Eilers and Marx (1996) with a discrete penalty on the basis coefficients.

The univariate single penalty built-in shape constrained smooth classes are summarized as follows.

• Monotone increasing SCOP-splines: bs="mpi". To achieve monotone increasing smooths this
reparameterizes the coefficients so that they form an increasing sequence.
For details see smooth.construct.mpi.smooth.spec.

• Monotone decreasing SCOP-splines: bs="mpd". To achieve monotone decreasing smooths
this reparameterizes the coefficients so that they form a decreasing sequence. A first order
difference penalty applied to the basis coefficients starting with the second is used for the
monotone increasing and decreasing cases.

• Convex SCOP-splines: bs="cx". This reparameterizes the coefficients so that the second
order differences of the basis coefficients are greater than zero.
For details see smooth.construct.cx.smooth.spec.

• Concave SCOP-splines: bs="cv". This reparameterizes the coefficients so that the second
order differences of the basis coefficients are less than zero.
For details see smooth.construct.cv.smooth.spec.

shape.constrained.smooth.terms 35

• Increasing and convex SCOP-splines: bs="micx". This reparameterizes the coefficients so
that the first and the second order differences of the basis coefficients are greater than zero.
For details see smooth.construct.micx.smooth.spec.

• Increasing and concave SCOP-splines: bs="micv". This reparameterizes the coefficients so
that the first order differences of the basis coefficients are greater than zero while the second
order difference are less than zero.

• Decreasing and convex SCOP-splines: bs="mdcx". This reparameterizes the coefficients so
that the first order differences of the basis coefficients are less than zero while the second order
difference are greater. For details see smooth.construct.mdcx.smooth.spec.

• Decreasing and concave SCOP-splines: bs="mdcv". This reparameterizes the coefficients so
that the first and the second order differences of the basis coefficients are less than zero.

• Increasing with an additional ’finish-at-zero’ constraint SCOP-splines: bs="mifo". This sets
the last (m+1) spline coefficients to zero. According to the B-spline basis functions properties,
the value of the spline, f(x), is determined by m+2 non-zero basis functions, and only m+1 B-
splines are non-zero at knots. Only m+2 B-splines are non-zero on any (k_i, k_{i+1}), and
the sum of these m+2 basis functions is 1.
For details see smooth.construct.mifo.smooth.spec.

• Increasing with an additional ’start-at-zero’ constraint SCOP-spline: bs="miso". This sets the
first (m+1) spline coefficients to zero. According to the B-spline basis functions properties,
the value of the spline, f(x), is determined by m+2 non-zero basis functions, and only m+1
B-splines are non-zero at knots. Only m+2 B-splines are non-zero on any (k_i, k_{i+1}),
and the sum of these m+2 basis functions is 1.
For details see smooth.construct.miso.smooth.spec.

• SCOP-splines with positivity constraint: bs="po" constructs positive-valued smooths; bs="ipo"
constructs increasing and positive smooths; bs="dpo" constructs decreasing and positive smooths;
bs="cpop" constructs cyclic and positive smooths.
The reparameterization of the coefficients is done to achieve their positivity. For details see
smooth.construct.po.smooth.spec.

• Decreasing/increasing SCOP-splines used with numeric ’by’ variable: bs="mpdBy", bs="mpiBy".
These work similar to mpd.smooth.spec, mpi.smooth.spec, but without applying an identi-
fiability constraint (’zero intercept’ constraint). Use when the smooth term has a numeric by
variable that takes more than one value. For details see smooth.construct.mpd.smooth.spec,
smooth.construct.mpi.smooth.spec.

• Convex/concave SCOP-splines used with numeric ’by’ variable: bs="cxdBy", bs="cvBy".
These work similar to cx.smooth.spec, cv.smooth.spec, but without applying an identifi-
ability constraint (’zero intercept’ constraint). Use when the smooth term has a numeric by
variable that takes more than one value.
For details see smooth.construct.cx.smooth.spec,
smooth.construct.cv.smooth.spec.

• Decreasing/increasing and convex/concave SCOP-splines used with numeric ’by’ variable:
bs="mdcxBy", bs="mdcvBy", bs="micxBy", bs="micvBy".
These work similar to mdcx.smooth.spec, mdcv.smooth.spec, micx.smooth.spec,
micv.smooth.spec, but without applying an identifiability constraint (’zero intercept’ con-
straint). Use when the smooth term has a numeric by variable that takes more than one value.
For details see smooth.construct.mdcx.smooth.spec,

36 shape.constrained.smooth.terms

smooth.construct.mdcv.smooth.spec,
smooth.construct.micx.smooth.spec,
smooth.construct.micv.smooth.spec.

• Locally shape-constrained P-splines (LSCOP-splines): bs="lmpi", bs="lipl". bs="lmpi"
constructs locally increasing splines that are monotone increasing up to a specified change
point and become unconstrained beyond that point. bs="lipl" works similarly, constructing
a monotone increasing smooth up to a specified point but plateaus beyond it. For details see
smooth.construct.lmpi.smooth.spec.

For all types of the mixed constrained smoothing a first order difference penalty applied to the basis
coefficients starting with the third one is used. Centring (’sum-to-zero’) constraint has been applied
to univariate SCOP-splines subject to monotonicity (convexity) constraints after implementing the
’zero intercept’ identifiability constraint. This is achieved by dropping the first (constant) column of
the spline model matrix and subtracting the corresponding column means from the elements of the
remaining columns afterwards. ’Sum-to-zero’ constraint orthogonalized the smooth to the model
intercept term, thus avoiding confounding with the intercept. The standard errors of the estimated
intercept become lower with the centring constraint.

Using the concept of the tensor product spline bases bivariate smooths under monotonicity con-
straint where monotonicity may be assumed on only one of the covariates (single monotonicity) or
both of them (double monotonicity) are added as the smooth terms of the SCAM. Bivariate B-spline
is constructed by expressing the coefficients of one of the marginal univariate B-spline bases as the
B-spline of the other covariate. Double or single monotonicity is achieved by the corresponding
re-parametrization of the bivariate basis coefficients to satisfy the sufficient conditions formulated
in terms of the first order differences of the coefficients. The following explains the built in bivariate
shape constrained smooth classes.

• Double monotone increasing SCOP-splines: bs="tedmi".
See smooth.construct.tedmi.smooth.spec for details.

• Double monotone decreasing SCOP-splines: bs="tedmd".

• Single monotone increasing SCOP-splines along the first covariate direction: bs="tesmi1".

• Single monotone increasing SCOP-splines along the second covariate direction: bs="tesmi2".

• Single monotone decreasing SCOP-splines along the first covariate direction: bs="tesmd1".

• Single monotone decreasing SCOP-splines along the second covariate direction: bs="tesmd2".

• SCOP-splines with double concavity constraint: bs="tecvcv".
See smooth.construct.tecvcv.smooth.spec for details.

• SCOP-splines with double convexity constraint: bs="tecxcx".
See smooth.construct.tecxcx.smooth.spec for details.

• SCOP-splines with convexity wrt the first covariate and concavity wrt the second covariate:
bs="tecxcv". See smooth.construct.tecxcv.smooth.spec for details.

• Decreasing along the first covariate and concave along the second covariate SCOP-splines:
bs="tedecv". See smooth.construct.tedecv.smooth.spec for details.

• Decreasing along the first covariate and convex along the second covariate SCOP-splines:
bs="tedecx". See smooth.construct.tedecx.smooth.spec for details.

• Increasing along the first covariate and concave along the second covariate SCOP-splines:
bs="temicv". See smooth.construct.temicv.smooth.spec for details.

shape.constrained.smooth.terms 37

• Increasing along the first covariate and convex along the second covariate SCOP-splines:
bs="temicx". See smooth.construct.temicx.smooth.spec for details.

• Convex along the second covariate SCOP-splines: bs="tescx".
See smooth.construct.tescx.smooth.spec for details.

• Concave along the second covariate SCOP-splines: bs="tescv".
See smooth.construct.tescv.smooth.spec for details.

• Tensor product interaction with increasing constraint along the first covariate and uncon-
strained along the second covariate: bs="tismi".
See smooth.construct.tismi.smooth.spec for details.

• Tensor product interaction with decreasing constraint along the first covariate and uncon-
strained along the second covariate: bs="tismd".
See smooth.construct.tismd.smooth.spec for details.

Double penalties for the shape constrained tensor product smooths are obtained from the penalties
of the marginal smooths. For the bivariate SCOP-splines with monotonicity (convexity) constraints
along one covariate, the ’sum-to-zero’ constraints are applied after dropping the first columns of
the model matrix of the constrained marginal smooth. The basis for the unconstrained marginal
must be non-negative over the region where the marginal monotonicity (convexity) is to hold. For
the bivariate interaction smooths "tismi" and "tismd" the following identifiability steps are im-
plemented: i) dropped the first column of the "mpi" ("mpd") marginals, ii) applied ’sum-to-zero’
constraints to the marginals and to the unconstrained B-spline basis, iii) tensor product constructed.
The ’sum-to-zero’ constraint is applied to the final tensor product model matrix afters removing
its first column when constructing bivariate SCOP-splines with double monotonicity (convexity).
These result in faster convergence of the optimization routines and more stable intercept estimates.

Also linear functionals of smooths with shape constraints (increasing/decreasing and convex/concave)
are supported. See linear.functional.terms.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

Eilers, P.H.C. and B.D. Marx (1996) Flexible Smoothing with B-splines and Penalties. Statistical
Science, 11(2):89-121

Wood S.N. (2017) Generalized Additive Models: An Introduction with R (2nd edition). Chapman
and Hall/CRC Press

Wood, S.N. (2006) Low rank scale invariant tensor product smooths for generalized additive mixed
models. Biometrics 62(4):1025-1036

38 smooth.construct.cv.smooth.spec

See Also

s, smooth.construct.mpi.smooth.spec, smooth.construct.mpd.smooth.spec,
smooth.construct.cx.smooth.spec, smooth.construct.cv.smooth.spec,
smooth.construct.micx.smooth.spec, smooth.construct.micv.smooth.spec,
smooth.construct.mdcx.smooth.spec, smooth.construct.mdcv.smooth.spec,
smooth.construct.tedmi.smooth.spec, smooth.construct.tedmd.smooth.spec,
smooth.construct.tesmi1.smooth.spec, smooth.construct.tesmi2.smooth.spec,
smooth.construct.tesmd1.smooth.spec, smooth.construct.tesmd2.smooth.spec,
smooth.construct.tismi.smooth.spec, smooth.construct.tismd.smooth.spec

Examples

see examples for scam

smooth.construct.cv.smooth.spec

Constructor for concave P-splines in SCAMs

Description

This is a special method function for creating smooths subject to concavity constraint which is built
by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using
concave P-splines. This smooth is specified via model terms such as s(x,k,bs="cv",m=2), where
k denotes the basis dimension and m+1 is the order of the B-spline basis.
cvBy.smooth.spec works similar to cv.smooth.spec but without applying an identifiability con-
straint (’zero intercept’ constraint). cvBy.smooth.spec should be used when the smooth term has
a numeric by variable that takes more than one value. In such cases, the smooth terms are fully
identifiable without a ’zero intercept’ constraint, so they are left unconstrained. This smooth is
specified as s(x,by=z,bs="cvBy"). See an example below.
However a factor by variable requires identifiability constraints, so s(x,by=fac,bs="cv") is used
in this case.

Usage

S3 method for class 'cv.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'cvBy.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the data required by this term, with names given

by object$term. The by variable is the last element.
knots An optional list containing the knots supplied for basis setup. If it is NULL then

the knot locations are generated automatically.

smooth.construct.cv.smooth.spec 39

Value

An object of class "cv.smooth", "cvBy.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.cx.smooth.spec, smooth.construct.mpi.smooth.spec,

smooth.construct.mdcv.smooth.spec, smooth.construct.mdcx.smooth.spec,

smooth.construct.micx.smooth.spec, smooth.construct.mpd.smooth.spec

Examples

Concave SCOP-splines example
simulating data...
require(scam)
set.seed(1)
n <- 100
x <- sort(2*runif(n)-1)
f <- -4*x^2
y <- f + rnorm(n)*0.45
dat <- data.frame(x=x,y=y)
b <- scam(y~s(x,k=15,bs="cv"),family=gaussian,data=dat,not.exp=FALSE)
fit unconstrained model...
b1 <- scam(y~s(x,k=15,bs="cr"),family=gaussian, data=dat,not.exp=FALSE)
plot results ...
plot(x,y,xlab="x",ylab="y",cex=.5)
lines(x,f) ## the true function
lines(x,b$fitted,col=2) ## constrained fit
lines(x,b1$fitted,col=3) ## unconstrained fit

Poisson version...
y <- rpois(n,15*exp(f))
dat <- data.frame(x=x,y=y)
fit model ...
b <- scam(y~s(x,k=15,bs="cv"),family=poisson(link="log"),data=dat,not.exp=FALSE)

fit unconstrained model...
b1<-scam(y~s(x,k=15,bs="cr"),family=poisson(link="log"), data=dat,not.exp=FALSE)
plot results ...
plot(x,y,xlab="x",ylab="y",cex=.5)

40 smooth.construct.cx.smooth.spec

lines(x,15*exp(f)) ## the true function
lines(x,b$fitted,col=2) ## constrained fit
lines(x,b1$fitted,col=3) ## unconstrained fit

plotting on log scale...
plot(x,log(15*exp(f)),type="l",cex=.5) ## the true function
lines(x,log(b$fitted),col=2) ## constrained fit
lines(x,log(b1$fitted),col=3) ## unconstrained fit

'by' factor example...
set.seed(9)
n <- 400
x <- sort(runif(n,-.5,.5))
f1 <- -.7*x+cos(x)-3
f2 <- -20*x^2
par(mfrow=c(1,2))
plot(x,f1,type="l");plot(x,f2,type="l")
e <- rnorm(n, 0, 1.5)
fac <- as.factor(sample(1:2,n,replace=TRUE))
fac.1 <- as.numeric(fac==1)
fac.2 <- as.numeric(fac==2)
y <- f1*fac.1 + f2*fac.2 + e
dat <- data.frame(y=y,x=x,fac=fac,f1=f1,f2=f2)
b2 <- scam(y ~ fac+s(x,by=fac,bs="cv"),data=dat,optimizer="efs")
plot(b2,pages=1,scale=0,shade=TRUE)
summary(b2)
vis.scam(b2,theta=50,color="terrain")

numeric 'by' variable example...
set.seed(6)
n <- 100
x <- sort(2*runif(n)-1)
z <- runif(n,-2,3)
f <- -4*x^2
y <- f*z + rnorm(n)*0.6
dat <- data.frame(x=x,z=z,y=y)
b <- scam(y~s(x,k=15,by=z,bs="cvBy"),data=dat)
summary(b)
par(mfrow=c(1,2))
plot(b,shade=TRUE)
unconstrained fit...
b1 <- scam(y~s(x,k=15,by=z),data=dat)
plot(b1,shade=TRUE)
summary(b1)

smooth.construct.cx.smooth.spec

Constructor for convex P-splines in SCAMs

smooth.construct.cx.smooth.spec 41

Description

This is a special method function for creating smooths subject to convexity constraint which is built
by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using
convex P-splines. This smooth is specified via model terms such as s(x,k,bs="cx",m=2), where
k denotes the basis dimension and m+1 is the order of the B-spline basis.

cxBy.smooth.spec works similar to cx.smooth.spec but without applying an identifiability con-
straint (’zero intercept’ constraint). cxBy.smooth.spec should be used when the smooth term has
a numeric by variable that takes more than one value. In such cases, the smooth terms are fully
identifiable without a ’zero intercept’ constraint, so they are left unconstrained. This smooth is
specified as s(x,by=z,bs="cxBy"). See an example below.

However a factor by variable requires identifiability constraints, so s(x,by=fac,bs="cx") is used
in this case.

Usage

S3 method for class 'cx.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'cxBy.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the data required by this term, with names given

by object$term. The by variable is the last element.
knots An optional list containing the knots supplied for basis setup. If it is NULL then

the knot locations are generated automatically.

Value

An object of class "cx.smooth", "cxBy.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.cv.smooth.spec, smooth.construct.mpi.smooth.spec,

smooth.construct.mdcv.smooth.spec, smooth.construct.mdcx.smooth.spec,

smooth.construct.micv.smooth.spec, smooth.construct.mpd.smooth.spec

42 smooth.construct.cx.smooth.spec

Examples

Convex SCOP-splines example...
simulating data...
require(scam)
set.seed(16)
n <- 100
x <- sort(2*runif(n)-1)
f <- 4*x^2
y <- f + rnorm(n)*0.4
dat <- data.frame(x=x,y=y)
b <- scam(y~s(x,k=15,bs="cx"),family=gaussian,data=dat)
unconstrained fit...
b1 <- scam(y~s(x,k=15),family=gaussian, data=dat)
plot results ...
plot(x,y,xlab="x",ylab="y")
lines(x,f) ## the true function
lines(x,b$fitted,col=2) ## constrained fit
lines(x,b1$fitted,col=3) ## unconstrained fit

Poisson version...
set.seed(18)
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)
fit shape constrained model ...
b <- scam(y~s(x,k=15,bs="cx"),family=poisson(link="log"),data=dat,optimizer="efs")
unconstrained fit...
b1 <- scam(y~s(x,k=15),family=poisson(link="log"), data=dat,optimizer="efs")
plot results ...
plot(x,y,xlab="x",ylab="y")
lines(x,exp(f)) ## the true function
lines(x,b$fitted,col=2) ## constrained fit
lines(x,b1$fitted,col=3) ## unconstrained fit

'by' factor example...
set.seed(9)
n <- 400
x <- sort(runif(n,-.5,.5))
f1 <- .7*x-cos(x)+3
f2 <- 20*x^2
par(mfrow=c(1,2))
plot(x,f1,type="l");plot(x,f2,type="l")
e <- rnorm(n, 0, 1.5)
fac <- as.factor(sample(1:2,n,replace=TRUE))
fac.1 <- as.numeric(fac==1)
fac.2 <- as.numeric(fac==2)
y <- f1*fac.1 + f2*fac.2 + e
dat <- data.frame(y=y,x=x,fac=fac,f1=f1,f2=f2)
b2 <- scam(y ~ fac+s(x,by=fac,bs="cx"),data=dat,optimizer="efs")
plot(b2,pages=1,scale=0)
summary(b2)

vis.scam(b2,theta=50,color="terrain")

smooth.construct.lmpi.smooth.spec 43

numeric 'by' variable example...
set.seed(6)
n <- 100
x <- sort(2*runif(n)-1)
z <- runif(n,-2,3)
f <- 4*x^2
y <- f*z + rnorm(n)*.6
dat <- data.frame(x=x,z=z,y=y)
b <- scam(y~s(x,k=15,by=z,bs="cxBy"),data=dat)
summary(b)
par(mfrow=c(1,2))
plot(b,shade=TRUE)
unconstrained fit...
b1 <- scam(y~s(x,k=15,by=z),data=dat)
plot(b1,shade=TRUE)
summary(b1)

smooth.construct.lmpi.smooth.spec

Locally shape-constrained P-spline based constructor (LSCOP-
spline): locally increasing splines up to a change point.

Description

Two types of LSCOP-splines are currently developed: smooths that are locally increasing up to
a specified change point and become unconstrained beyond that point, lmpi.smooth.spec; and
smooths that are increasing up to a specified change point and plateauing beyond it, lipl.smooth.spec.

lmpi.smooth.spec smooth is specified via model terms like s(x,bs="lmpi",xt=list(xc=xc)),
where xc sets a change point. The construction of the smooths uses B-spline bases with mildly non-
linear re-parametrization of the basis coefficients over the shape-constrained interval. The ’wiggli-
ness’ of the smooths is controlled by discrete penalties applied directly to the basis coefficients.

lipl.smooth.spec works similarly to lpmi.smooth.spec, constructing a monotone increasing
smooth up to a specified change point xc but plateaus beyond it.

The method is build by the mgcv constructor function for smooth terms, smooth.construct.

Usage

S3 method for class 'lmpi.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'lipl.smooth.spec'
smooth.construct(object, data, knots)

44 smooth.construct.lmpi.smooth.spec

Arguments

object A smooth specification object, generated by an s term in a SCAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Details

A smooth term of the form s(x,k,bs="lmpi",xt=list(xc=xc),m=2), where xc specifies a change
point. k denotes the basis dimension and m+1 is the order of the B-spline basis. The default is a
cubic spline m=2. The smooth uses a first order difference penalty on the coefficients starting from
the second coefficient over the constrained part, and a second order difference penalty (a second
order P-spline penalty) over the unconstrained part. The first order difference penalty over the
constrained part shares with a second order P-spline penalty the feature of ’smoothing towards a
straight line’. lipl.smooth.spec smooth sets zero values for the coefficients beyond the change
point, which keeps the coefficient values constant (no change in the B-spline’s coefficients beyond
xc).

The default basis dimension is k=10. The basis dimensions for constrained and unconstrained parts
are set proportionally to the share of each part from the total range of the covariate value, but with
a minimum of 5 basis functions on each side.

The smooth currently does not support user-supplied knots. The knots are placed evenly through-
out the constrained and unconstrained ranges of the covariate values (inner knots) and outside the
covariate values range (outer knots). The change point xc is set as an inner knot m times. Having
multiple knots at the change point guarantees the correct imposing of the shape constraints up to
the change point, avoiding ’leakage’ of the transformed basis functions of the constrained part into
the unconstrained part.

Sum-to-zero (’centering’) constraint is applied to the LSCOP-splines after imposing the shape-
constrained model matrix transformation. Linear extrapolation is (only) used for prediction that
requires extrapolation, i.e. prediction outside the range of the interior knots.

Value

An object of class "lmpi.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

with contributions from Jens Lichter

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

smooth.construct.lmpi.smooth.spec 45

See Also

smooth.construct.mpd.smooth.spec, smooth.construct.cv.smooth.spec,

smooth.construct.cx.smooth.spec, smooth.construct.mdcv.smooth.spec,

smooth.construct.mdcx.smooth.spec, smooth.construct.micv.smooth.spec,

smooth.construct.micx.smooth.spec

Examples

Local monotone increasing LSCOP-spline example...
simulating data...
require(scam)
set.seed(4)
n <- 200
x <- sort(runif(n)*6)
f <- 4*tanh(2*x-5)-5*exp(-(x-4)^2) ## increasing up untill xt=2.978
xc <- 2.978
y <- f+rnorm(n)*.7
old.par <- par(mfrow=c(1,2))
plot(x,y,cex=.5)
lines(x,f,lty=2); abline(v=xc,lty=2,col="red")
fit model ...
b <- scam(y~s(x,bs="lmpi",xt=list(xc=xc),k=15))
summary(b)
lines(x,fitted(b),col=2,lwd=2)
plot(b,shade=TRUE)
par(old.par)

unconstrained model to compare with...
g <- scam(y~s(x))
plot(x,y,cex=.5)
lines(x,f,lty=2); abline(v=xc,lty=2,col=2)
lines(x,fitted(g),col=4,lwd=2)
lines(x,fitted(b),col=2,lwd=1)

example with bs="lipl"...
set.seed(5)
n <- 200
x <- sort(runif(n)*4-1)
f <- 1.5*(1-exp(-2*x))
xc <- 1.5
y <- f+rnorm(n)*1.5
b <- scam(y~s(x,bs="lipl",xt=list(xc=xc)))
g <- scam(y~s(x,bs="ps")) ## unconstrained
old.par <- par(mfrow=c(1,2))
plot(x,y,cex=.5)
lines(x,f,lty=2); abline(v=xc,lty=2,col="red")
lines(x,fitted(b),col=2,lwd=2)
lines(x,fitted(g),col=3,lwd=2)
plot(b,shade=TRUE)
par(old.par)

46 smooth.construct.mdcv.smooth.spec

smooth.construct.mdcv.smooth.spec

Constructor for monotone decreasing and concave P-splines in
SCAMs

Description

This is a special method function for creating smooths subject to both monotone decreasing and con-
cavity constraints which is built by the mgcv constructor function for smooth terms, smooth.construct.
It is constructed using mixed constrained P-splines. This smooth is specified via model terms such
as s(x,k,bs="mdcv",m=2), where k denotes the basis dimension and m+1 is the order of the B-
spline basis.

mdcvBy.smooth.spec works similar to mdcv.smooth.spec but without applying an identifiability
constraint (’zero intercept’ constraint). mdcvBy.smooth.spec should be used when the smooth
term has a numeric by variable that takes more than one value. In such cases, the smooth terms are
fully identifiable without a ’zero intercept’ constraint, so they are left unconstrained. This smooth
is specified as s(x,by=z,bs="mdcvBy"). See an example below.

However a factor by variable requires identifiability constraints, so s(x,by=fac,bs="mdcv") is
used in this case.

Usage

S3 method for class 'mdcv.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'mdcvBy.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Value

An object of class "mdcv.smooth", "mdcvBy.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

smooth.construct.mdcv.smooth.spec 47

See Also

smooth.construct.mpi.smooth.spec, smooth.construct.mpd.smooth.spec,

smooth.construct.cx.smooth.spec, smooth.construct.cv.smooth.spec,

smooth.construct.mdcx.smooth.spec, smooth.construct.micx.smooth.spec,

smooth.construct.micv.smooth.spec

Examples

Monotone decreasing and concave SCOP-splines example
simulating data...
require(scam)
set.seed(2)
n <- 100
x <- sort(runif(n))
f <- -x^4
y <- f+rnorm(n)*.2
dat <- data.frame(x=x,y=y)
fit model ...
b <- scam(y~s(x,bs="mdcv"),data=dat)

fit unconstrained model ...
b1 <- scam(y~s(x,bs="ps"),data=dat)
plot results ...
plot(x,y,xlab="x",ylab="y",cex=.5)
lines(x,f) ## the true function
lines(x,b$fitted.values,col=2) ## mixed constrained fit
lines(x,b1$fitted.values,col=3) ## unconstrained fit

numeric 'by' variable example...
set.seed(6)
n <- 100
x <- sort(runif(n))
z <- runif(n,-2,3)
f <- -x^4
y <- f*z + rnorm(n)*0.4
dat <- data.frame(x=x,z=z,y=y)
b <- scam(y~s(x,k=15,by=z,bs="mdcvBy"),data=dat)
summary(b)
par(mfrow=c(1,2))
plot(b,shade=TRUE)
unconstrained fit...
b1 <- scam(y~s(x,k=15,by=z),data=dat)
plot(b1,shade=TRUE)
summary(b1)

48 smooth.construct.mdcx.smooth.spec

smooth.construct.mdcx.smooth.spec

Constructor for monotone decreasing and convex P-splines in SCAMs

Description

This is a special method function for creating smooths subject to both monotone decreasing and con-
vexity constraints which is built by the mgcv constructor function for smooth terms, smooth.construct.
It is constructed using mixed constrained P-splines. This smooth is specified via model terms such
as s(x,k,bs="mdcx",m=2), where k denotes the basis dimension and m+1 is the order of the B-
spline basis.

mdcxBy.smooth.spec works similar to mdcx.smooth.spec but without applying an identifiability
constraint (’zero intercept’ constraint). mdcxBy.smooth.spec should be used when the smooth
term has a numeric by variable that takes more than one value. In such cases, the smooth terms are
fully identifiable without a ’zero intercept’ constraint, so they are left unconstrained. This smooth
is specified as s(x,by=z,bs="mdcxBy"). See an example below.

However a factor by variable requires identifiability constraints, so s(x,by=fac,bs="mdcx") is
used in this case.

Usage

S3 method for class 'mdcx.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'mdcxBy.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Value

An object of class "mdcx.smooth", "mdcxBy.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

smooth.construct.mdcx.smooth.spec 49

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.mpi.smooth.spec, smooth.construct.mpd.smooth.spec,

smooth.construct.cx.smooth.spec, smooth.construct.cv.smooth.spec,

smooth.construct.mdcv.smooth.spec, smooth.construct.micx.smooth.spec,

smooth.construct.micv.smooth.spec

Examples

Monotone decreasing and convex SCOP-splines example
simulating data...
require(scam)
set.seed(2)
n <- 100
x <- sort(runif(n)*3-1)
f <- (x-3)^6/1000 # monotone decreasing and convex smooth
y <- f+rnorm(n)*.4
dat <- data.frame(x=x,y=y)
fit model ...
b <- scam(y~s(x,k=15,bs="mdcx"),data=dat)
fit unconstrained model ...
b1 <- scam(y~s(x,k=15,bs="ps"),data=dat)
plot results ...
plot(x,y,xlab="x",ylab="y")
lines(x,f) ## the true function
lines(x,b$fitted.values,col=2) ## mixed constrained fit
lines(x,b1$fitted.values,col=3) ## unconstrained fit

numeric 'by' variable example...
set.seed(6)
n <- 100
x <- sort(runif(n)*3-1)
z <- runif(n,-2,3)
f <- (x-3)^6/1000
y <- f*z + rnorm(n)*.4
dat <- data.frame(x=x,z=z,y=y)
b <- scam(y~s(x,k=15,by=z,bs="mdcxBy"),data=dat)
summary(b)
par(mfrow=c(1,2))
plot(b,shade=TRUE)
unconstrained fit...
b1 <- scam(y~s(x,k=15,by=z),data=dat)
plot(b1,shade=TRUE)
summary(b1)

50 smooth.construct.micv.smooth.spec

smooth.construct.micv.smooth.spec

Constructor for monotone increasing and concave P-splines in
SCAMs

Description

This is a special method function for creating smooths subject to both monotone increasing and con-
cavity constraints which is built by the mgcv constructor function for smooth terms, smooth.construct.
It is constructed using mixed constrained P-splines. This smooth is specified via model terms such
as s(x,k,bs="micv",m=2), where k denotes the basis dimension and m+1 is the order of the B-
spline basis.

micvBy.smooth.spec works similar to micv.smooth.spec but without applying an identifiability
constraint (’zero intercept’ constraint). micvBy.smooth.spec should be used when the smooth
term has a numeric by variable that takes more than one value. In such cases, the smooth terms are
fully identifiable without a ’zero intercept’ constraint, so they are left unconstrained. This smooth
is specified as s(x,by=z,bs="micvBy"). See an example below.

However a factor by variable requires identifiability constraints, so s(x,by=fac,bs="micv") is
used in this case.

Usage

S3 method for class 'micv.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'micvBy.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Value

An object of class "micv.smooth", "micvBy.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

smooth.construct.micv.smooth.spec 51

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.mpi.smooth.spec, smooth.construct.cx.smooth.spec,

smooth.construct.cv.smooth.spec, smooth.construct.mdcv.smooth.spec,

smooth.construct.mdcx.smooth.spec, smooth.construct.micx.smooth.spec,

smooth.construct.mpd.smooth.spec

Examples

Monotone increasing and concave SCOP-splines example
simulating data...
set.seed(3)
n <- 100
x <- sort(runif(n)*99+1)
f <- log(x)/2
y <- f+rnorm(n)*.3
dat <- data.frame(x=x,y=y)
fit model ...
b <- scam(y~s(x,k=15,bs="micv"), data=dat)
summary(b)
fit unconstrained model ...
b1 <- scam(y~s(x,k=15,bs="ps"),data=dat)
plot results ...
plot(x,y,xlab="x",ylab="y",cex=.5)
lines(x,f) ## the true function
lines(x,b$fitted.values,col=2) ## mixed constrained fit
lines(x,b1$fitted.values,col=3) ## unconstrained fit

numeric 'by' variable example...
set.seed(3)
n <- 100
x <- sort(runif(n)*99+1)
f <- log(x)/2
z <- runif(n,-2,3)
y <- f*z + rnorm(n)*0.3
dat <- data.frame(x=x,z=z,y=y)
b <- scam(y~s(x,k=15,by=z,bs="micvBy")-1,data=dat)
summary(b)
par(mfrow=c(1,2))
plot(b,shade=TRUE)
unconstrained fit...
b1 <- scam(y~s(x,k=15,by=z)-1,data=dat)
plot(b1,shade=TRUE)
summary(b1)

52 smooth.construct.micx.smooth.spec

smooth.construct.micx.smooth.spec

Constructor for monotone increasing and convex P-splines in SCAMs

Description

This is a special method function for creating smooths subject to both monotone increasing and con-
vexity constraints which is built by the mgcv constructor function for smooth terms, smooth.construct.
It is constructed using the mixed constrained P-splines. This smooth is specified via model terms
such as s(x,k,bs="micx",m=2), where k denotes the basis dimension and m+1 is the order of the
B-spline basis.

micxBy.smooth.spec works similar to micx.smooth.spec but without applying an identifiability
constraint (’zero intercept’ constraint). micxBy.smooth.spec should be used when the smooth
term has a numeric by variable that takes more than one value. In such cases, the smooth terms are
fully identifiable without a ’zero intercept’ constraint, so they are left unconstrained. This smooth
is specified as s(x,by=z,bs="micvBy"). See an example below.

However a factor by variable requires identifiability constraints, so s(x,by=fac,bs="micx") is
used in this case.

Usage

S3 method for class 'micx.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'micxBy.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Value

An object of class "micx.smooth", "micxBy.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

smooth.construct.micx.smooth.spec 53

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.mpi.smooth.spec, smooth.construct.cx.smooth.spec,

smooth.construct.cv.smooth.spec, smooth.construct.mdcv.smooth.spec,

smooth.construct.mdcx.smooth.spec, smooth.construct.micv.smooth.spec,

smooth.construct.mpd.smooth.spec

Examples

Monotone increasing and convex SCOP-splines example
simulating data...
set.seed(1)
n <- 100
x <- runif(n)*2
f <- 5*x^2/8
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)
fit model ...
b <- scam(y~s(x,bs="micx"),family=poisson,data=dat)
fit unconstrained model ...
b1 <- scam(y~s(x,bs="cr"),family=poisson,data=dat)
plot results ...
plot(x,y,xlab="x",ylab="y",cex=.5)
x1 <- sort(x,index=TRUE)
lines(x1$x,exp(f)[x1$ix]) ## the true function
lines(x1x,bfitted.values[x1$ix],col=2) ## mixed constrained fit
lines(x1$x,b1$fitted.values[x1$ix],col=3) ## unconstrained fit

numeric 'by' variable example...
set.seed(10)
n <- 100
x <- runif(n)*2
f <- x^2
z <- runif(n,-2,3)
y <- f*z + rnorm(n)*0.4
dat <- data.frame(x=x,z=z,y=y)
b <- scam(y~s(x,by=z,bs="micxBy"),data=dat)
summary(b)
par(mfrow=c(1,2))
plot(b,shade=TRUE)
unconstrained fit...
b1 <- scam(y~s(x,by=z),data=dat)
plot(b1,shade=TRUE)
summary(b1)

54 smooth.construct.mifo.smooth.spec

smooth.construct.mifo.smooth.spec

Constructor for monotone increasing SCOP-splines with an additional
’finish at zero’ constraint

Description

This is a special method function for creating smooths subject to a monotone increasing constraint
plus the smooths should pass through zero at the right-end point of the covariate range. This is
similar to the pc argument to s in mgcv(gam) when pc=max(x), where x is a covariate. The smooth
is built by the mgcv constructor function for smooth terms, smooth.construct. ’Zero intercept’
identifiability constraints used for univariate SCOP-splines are substituted with a ’finish at zero’
constraint here. This smooth is specified via model terms such as s(x,k,bs="mifo",m=2), where
k denotes the basis dimension and m+1 is the order of the B-spline basis.

Usage

S3 method for class 'mifo.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Details

The constructor is not called directly, but as with gam(mgcv) is used internally.

A ’finish at zero’ constraint is achieved by setting the last (m+1) spline coefficients to zero. Ac-
cording to the B-spline basis functions properties, the value of the spline, f(x), is determined by
m+2 non-zero basis functions, and only m+1 B-splines are non-zero at knots. Only m+2 B-splines are
non-zero on any [k_i, k_{i+1}), and the sum of these m+2 basis functions is 1.

If the knots of the spline are not supplied, then they are placed evenly throughout the covariate
values with an exception of the m inner knots preceeding the last inner knot that are joined with that
last knot. This is done in order to avoid an otherwise plateau fit at the right-end region. If the knots
are supplied, then the number of supplied knots should be k+m+2, and the range of the middle k-m
knots must include all the covariate values.

Note: when a plateau region is expected at the righ-end covariate region, the smooth might result in
some decrease when approaching to zero.

smooth.construct.miso.smooth.spec 55

Value

An object of class "mifo.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.mpi.smooth.spec, smooth.construct.miso.smooth.spec,

smooth.construct.mpd.smooth.spec, smooth.construct.mdcv.smooth.spec,

smooth.construct.mdcx.smooth.spec, smooth.construct.micv.smooth.spec,

smooth.construct.micx.smooth.spec

Examples

Monotone increasing SCOP-spline examples with a finish at zero constraint...
require(scam)
set.seed(53)
n <- 100;x <- runif(n);z <- runif(n)
pc <- max(x)
y <- exp(3*x)/10-exp(3*pc)/10 + z*(1-z)*5 + rnorm(100)*.4
m1 <- scam(y~s(x,bs='mifo')+s(z)) #,knots=knots)
plot(m1,pages=1,scale=0)
summary(m1)
newd<- data.frame(x=pc,z=0)
predict(m1,newd, type='terms')

smooth.construct.miso.smooth.spec

Constructor for monotone increasing SCOP-splines with an additional
’start at zero’ constraint

56 smooth.construct.miso.smooth.spec

Description

This is a special method function for creating smooths subject to a monotone increasing constraint
plus the smooths should pass through zero at the left-end point of the covariate range. This is
similar to the pc argument to s in mgcv(gam) when pc=min(x), where x is a covariate. The smooth
is built by the mgcv constructor function for smooth terms, smooth.construct. ’Zero intercept’
identifiability constraints used for univariate SCOP-splines are substituted with a ’start at zero’
constraint here. This smooth is specified via model terms such as s(x,k,bs="miso",m=2), where
k denotes the basis dimension and m+1 is the order of the B-spline basis.

Usage

S3 method for class 'miso.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Details

The constructor is not called directly, but as with gam(mgcv) is used internally.

A ’start at zero’ constraint is achieved by setting the first (m+1) spline coefficients to zero. Ac-
cording to the B-spline basis functions properties, the value of the spline, f(x), is determined by
m+2 non-zero basis functions, and only m+1 B-splines are non-zero at knots. Only m+2 B-splines are
non-zero on any [k_i, k_{i+1}), and the sum of these m+2 basis functions is 1.

If the knots of the spline are not supplied, then they are placed evenly throughout the covariate
values with an exception of the m inner knots following the first inner knot that are joined with that
first knot. This is done in order to avoid an otherwise plateau fit at the left-end region. If the knots
are supplied, then the number of supplied knots should be k+m+2, and the range of the middle k-m
knots must include all the covariate values.

Value

An object of class "miso.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

smooth.construct.mpd.smooth.spec 57

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.mpi.smooth.spec, smooth.construct.mifo.smooth.spec,

smooth.construct.mpd.smooth.spec, smooth.construct.mdcv.smooth.spec,

smooth.construct.mdcx.smooth.spec, smooth.construct.micv.smooth.spec,

smooth.construct.micx.smooth.spec

Examples

Monotone increasing SCOP-spline examples with a start at zero constraint...
passing through 0 at -1...
require(scam)
set.seed(2)
n <- 100;
x <- c(-1,runif(n-1)*4-1); ## starting at -1 for a function to be zero at a start
z <- runif(n)
y <- exp(4*x)/(1+exp(4*x)) -0.01798621+ z*(1-z)*5 + rnorm(100)*.4
m1 <- scam(y~s(x,bs='miso')+s(z))
plot(m1,pages=1)
newd<- data.frame(x=-1,z=0)
predict(m1,newd, type='terms')

passing through 0 at 0...
set.seed(2)
n <- 100;
x <- c(0,runif(n-1)); ## starting at 0 for a function to be zero at a start
z <- runif(n)
y <- exp(3*x)/10-.1 + z*(1-z)*5 + rnorm(100)*.4
m2 <- scam(y~s(x,bs='miso')+s(z))
plot(m2,pages=1)
newd<- data.frame(x=0,z=0)
predict(m2,newd, type='terms')

smooth.construct.mpd.smooth.spec

Constructor for monotone decreasing P-splines in SCAMs

Description

This is a special method function for creating smooths subject to monotone decreasing constraints
which is built by the mgcv constructor function for smooth terms, smooth.construct. It is con-
structed using monotonic P-splines. This smooth is specified via model terms such as s(x,k,bs="mpd",m=2),
where k denotes the basis dimension and m+1 is the order of the B-spline basis.

58 smooth.construct.mpd.smooth.spec

mpdBy.smooth.spec works similar to mpd.smooth.spec but without applying an identifiability
constraint (’zero intercept’ constraint). mpdBy.smooth.spec should be used when the smooth term
has a numeric by variable that takes more than one value. In such cases, the smooth terms are
fully identifiable without a ’zero intercept’ constraint, so they are left unconstrained. This smooth
is specified as s(x,by=z,bs="mpdBy"). See an example below.

However a factor by variable requires identifiability constraints, so s(x,by=fac,bs="mpd") is used
in this case.

Usage

S3 method for class 'mpd.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'mpdBy.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Value

An object of class "mpd.smooth", "mpdBy.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.mpi.smooth.spec, smooth.construct.cx.smooth.spec,

smooth.construct.cv.smooth.spec, smooth.construct.mdcv.smooth.spec,

smooth.construct.mdcx.smooth.spec, smooth.construct.micv.smooth.spec,

smooth.construct.micx.smooth.spec

smooth.construct.mpd.smooth.spec 59

Examples

Monotone decreasing SCOP-splines example...
simulating data...
require(scam)
set.seed(3)
n <- 100
x <- runif(n)*3-1
f <- exp(-1.3*x)
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)

fit model ...
b <- scam(y~s(x,k=15,bs="mpd"),family=poisson(link="log"),

data=dat)
unconstrained model fit for comparison...

b1 <- scam(y~s(x,k=15,bs="ps"),family=poisson(link="log"),
data=dat)

plot results ...
plot(x,y,xlab="x",ylab="y",cex=.5)
x1 <- sort(x,index=TRUE)
lines(x1$x,exp(f)[x1$ix]) ## the true function
lines(x1x,bfitted.values[x1$ix],col=2) ## decreasing fit
lines(x1$x,b1$fitted.values[x1$ix],col=3) ## unconstrained fit

'by' factor example...
set.seed(3)
n <- 400
x <- runif(n, 0, 1)
all three smooths are decreasing...
f1 <- -log(x *5)
f2 <- -exp(2 * x) + 4
f3 <- -5* sin(x)
e <- rnorm(n, 0, 2)
fac <- as.factor(sample(1:3,n,replace=TRUE))
fac.1 <- as.numeric(fac==1)
fac.2 <- as.numeric(fac==2)
fac.3 <- as.numeric(fac==3)
y <- f1*fac.1 + f2*fac.2 + f3*fac.3 + e
dat <- data.frame(y=y,x=x,fac=fac,f1=f1,f2=f2,f3=f3)
b2 <- scam(y ~ fac+s(x,by=fac,bs="mpd"),data=dat)
plot(b2,pages=1,scale=0,shade=TRUE)
summary(b2)
vis.scam(b2,theta=120,color="terrain")

comparing with unconstrained fit...
b3 <- scam(y ~ fac+s(x,by=fac),data=dat)
plot(b3,pages=1,scale=0,shade=TRUE)
summary(b3)

Note that since in scam() as in mgcv::gam() when using factor 'by' variables, 'centering'
constraints are applied to the smooths, which usually means that the 'by'
factor variable should be included as a parametric term, as well.

60 smooth.construct.mpi.smooth.spec

numeric 'by' variable example...
set.seed(3)
n <- 100
x <- sort(runif(n,-1,2))
z <- runif(n,-2,3)
f <- exp(-1.3*x)
y <- f*z + rnorm(n)*0.4
dat <- data.frame(x=x,y=y,z=z)
b <- scam(y~s(x,k=15,by=z,bs="mpdBy"),data=dat,optimizer="efs")
plot(b,shade=TRUE)
summary(b)
unconstrained fit...
b1 <- scam(y~s(x,k=15,by=z),data=dat)
plot(b1,shade=TRUE)
summary(b1)

smooth.construct.mpi.smooth.spec

Constructor for monotone increasing P-splines in SCAMs

Description

This is a special method function for creating smooths subject to a monotone increasing con-
straint which is built by the mgcv constructor function for smooth terms, smooth.construct.
It is constructed using monotonic P-splines. This smooth is specified via model terms such as
s(x,k,bs="mpi",m=2), where k denotes the basis dimension and m+1 is the order of the B-spline
basis.

mpiBy.smooth.spec works similar to mpi.smooth.spec but without applying an identifiability
constraint (’zero intercept’ constraint). mpiBy.smooth.spec should be used when the smooth term
has a numeric by variable that takes more than one value. In such cases, the smooth terms are
fully identifiable without a ’zero intercept’ constraint, so they are left unconstrained. This smooth
is specified as s(x,by=z,bs="mpiBy"). See an example below.

However a factor by variable requires identifiability constraints, so s(x,by=fac,bs="mpi") is used
in this case.

Usage

S3 method for class 'mpi.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'mpiBy.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

smooth.construct.mpi.smooth.spec 61

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Details

The constructor is not called directly, but as with gam(mgcv) is used internally.

If the knots of the spline are not supplied, then they are placed evenly throughout the covariate
values. If the knots are supplied, then the number of supplied knots should be k+m+2, and the range
of the middle k-m knots must include all the covariate values.

Value

An object of class "mpi.smooth", "mpiBy.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.mpd.smooth.spec, smooth.construct.cv.smooth.spec,

smooth.construct.cx.smooth.spec, smooth.construct.mdcv.smooth.spec,

smooth.construct.mdcx.smooth.spec, smooth.construct.micv.smooth.spec,

smooth.construct.micx.smooth.spec

Examples

Monotone increasing SCOP-splines example
simulating data...
require(scam)
set.seed(12)
n <- 100
x <- runif(n)*4-1
f <- 4*exp(4*x)/(1+exp(4*x))
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)

fit model ...
b <- scam(y~s(x,k=15,bs="mpi"),family=poisson(link="log"),

data=dat)
fit unconstrained model...

b1 <- scam(y~s(x,k=15,bs="ps"),family=poisson(link="log"),
data=dat)

62 smooth.construct.mpi.smooth.spec

plot results ...
plot(x,y,xlab="x",ylab="y")
x1 <- sort(x,index=TRUE)
lines(x1$x,exp(f)[x1$ix]) ## the true function
lines(x1x,bfitted.values[x1$ix],col=2) ## monotone fit
lines(x1$x,b1$fitted.values[x1$ix],col=3) ## unconstrained fit

example with supplied knots...
knots <- list(x=c (-1.5, -1.2, -.99, -.97, -.7, -.5, -.3, 0, 0.7,

0.9,1.1, 1.22,1.5,2.2,2.77,2.93,2.99, 3.2,3.6))
b2 <- scam(y~s(x,k=15,bs="mpi"),knots=knots,

family=poisson(link="log"), data=dat)
summary(b2)
plot(b2,shade=TRUE)

example with two terms...
set.seed(0)
n <- 200
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
f <- f1+f2
y <- f+rnorm(n)*.7
dat <- data.frame(x1=x1,x2=x2,y=y)
knots <- list(x1=c(-4,-3.5,-2.99,-2.7,-2.5,-1.9,-1.1,-.9,-.3,0.3,.8,1.2,1.9,2.3,

2.7,2.99,3.5,4.1,4.5), x2=c(-1.5,-1.2,-1.1, -.89,-.69,-.5,-.3,0,0.7,
0.9,1.1,1.22,1.5,2.2,2.77,2.99,3.1, 3.2,3.6))

b3 <- scam(y~s(x1,k=15)+s(x2,bs="mpi", k=15),
knots=knots,data=dat)

summary(b3)
plot(b3,pages=1,shade=TRUE)

setting knots for f(x2) only...
knots <- list(x2=c(-1.5,-1.2,-1.1, -.89,-.69,-.5,-.3,
0,0.7,0.9,1.1,1.22,1.5,2.2,2.77,2.99,3.1, 3.2,3.6))
b4 <- scam(y~s(x1,k=15,bs="bs")+s(x2,bs="mpi",k=15),

knots=knots,data=dat)
summary(b4)
plot(b4,pages=1,shade=TRUE)

'by' factor example...
set.seed(10)
n <- 400
x <- runif(n, 0, 1)
all three smooths are increasing...
f1 <- log(x *5)
f2 <- exp(2*x) - 4
f3 <- 5* sin(x)
e <- rnorm(n, 0, 2)
fac <- as.factor(sample(1:3,n,replace=TRUE))
fac.1 <- as.numeric(fac==1)
fac.2 <- as.numeric(fac==2)

smooth.construct.po.smooth.spec 63

fac.3 <- as.numeric(fac==3)
y <- f1*fac.1 + f2*fac.2 + f3*fac.3 + e
dat <- data.frame(y=y,x=x,fac=fac,f1=f1,f2=f2,f3=f3)
b5 <- scam(y ~ fac+s(x,by=fac,bs="mpi"),data=dat)
plot(b5,pages=1,scale=0,shade=TRUE)
summary(b5)
vis.scam(b5,theta=50,color="terrain")

comparing with unconstrained fit...
b6 <- scam(y ~ fac+s(x,by=fac),data=dat)
plot(b6,pages=1,scale=0,shade=TRUE)
summary(b6)
vis.scam(b6,theta=50,color="terrain")

Note that since in scam() as in mgcv::gam() when using factor 'by' variables, 'centering'
constraints are applied to the smooths, which usually means that the 'by'
factor variable should be included as a parametric term, as well.

numeric 'by' variable example...
set.seed(3)
n <- 200
x <- sort(runif(n,-1,2))
z <- runif(n,-2,3)
f <- exp(1.3*x)-5
y <- f*z + rnorm(n)*2
dat <- data.frame(x=x,y=y,z=z)
b <- scam(y~s(x,by=z,bs="mpiBy"),data=dat)
plot(b,shade=TRUE)
summary(b)

smooth.construct.po.smooth.spec

Constructor for SCOP-splines with positivity constraint

Description

This is a special method function for creating univariate smooths subject to a positivity constraint
which is built by the mgcv constructor function for smooth terms, smooth.construct. It is con-
structed using P-splines. This smooth is specified via model terms such as s(x,k,bs="po",m=2),
where k denotes the basis dimension and m+1 is the order of the B-spline basis. Increasing and posi-
tive SCOP-splines are specified by model terms like s(x,bs="ipo"). Model terms s(x,bs="dpo")
specify decreasing and positive SCOP-splines. Cyclic and positive splines are specified by s(x,bs="cpop").

Note: Models that include positive-valued smooth should not have an intercept. See examples
below.

Usage

S3 method for class 'po.smooth.spec'

64 smooth.construct.po.smooth.spec

smooth.construct(object, data, knots)
S3 method for class 'ipo.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'dpo.smooth.spec'
smooth.construct(object, data, knots)
S3 method for class 'cpop.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the data required by this term, with names given
by object$term. The by variable is the last element.

knots An optional list containing the knots supplied for basis setup. If it is NULL then
the knot locations are generated automatically.

Value

An object of class "po.smooth", "ipo.smooth", "dpo.smooth", "cpop.smooth"

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.mpd.smooth.spec, smooth.construct.cv.smooth.spec,

smooth.construct.cx.smooth.spec, smooth.construct.mdcv.smooth.spec,

smooth.construct.mdcx.smooth.spec, smooth.construct.micv.smooth.spec,

smooth.construct.micx.smooth.spec

Examples

example with positivity constraint...
simulating data...

require(scam)
set.seed(3)
n <- 100
x <- seq(-3,3,length.out=100)
f <- dnorm(x)
y <- f + rnorm(n)*0.1

smooth.construct.tecvcv.smooth.spec 65

b <- scam(y~s(x,bs="po")-1)

b1 <- scam(y~s(x)) ## unconstrained model
plot(x,y)
lines(x,f)
lines(x,fitted(b),col=2)
lines(x,fitted(b1),col=3)

two-term example...
set.seed(3)
n <- 200
x1 <- seq(-3,3,length.out=n)
f1 <- 3*exp(-x1^2) ## positively constrained smooth
x2 <- runif(n)*3-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) ## increasing smooth
f <- f1+f2
y <- f+rnorm(n)*0.3
dat <- data.frame(x1=x1,x2=x2,y=y)
fit model, results, and plot...
b2 <- scam(y~s(x1,bs="po")+s(x2,bs="mpi")-1,data=dat)
summary(b2)
plot(b2,pages=1)

b3 <- scam(y~s(x1,bs="ps")+s(x2,bs="ps"),data=dat) ## unconstrained model
summary(b3)
plot(b3,pages=1)

three-term example: decreasing positive, cyclic positive, piece-wise linear positive...
set.seed(3)
n <- 200
x1 <- runif(n)*3-1
f1 <- exp(-1.3*x1)# decreasing positive smooth
x2 <- runif(200)*10
f2 <- sin(x2*2*pi/10)+1 ## cyclic positive
x3 <- f3 <- seq(0.34,1.9,length.out=n) ## for piece-wise linear positive
ind <- x3 > 1
f3[!ind] <- 3*x3[!ind] -1
f3[ind] <- -2*x3[ind] +4
y <- f1+f2+f3 + rnorm(n)*.7
b <- scam(y ~ s(x1,bs="dpo") +s(x2,bs="cpop",k=7)+ s(x3,bs="po",m=0,k=5) -1)
plot(b,pages=1)

smooth.construct.tecvcv.smooth.spec

Tensor product smoothing constructor for bivariate function subject to
double concavity constraint

66 smooth.construct.tecvcv.smooth.spec

Description

This is a special method function for creating tensor product bivariate smooths subject to double
concavity constraint, i.e. concavity constraint wrt both the first and the second covariates. This is
built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from
a pair of single penalty marginal smooths which are represented using the B-spline basis functions.
This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tecvcv",m=c(2,2)),
where q1 and q2 denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'tecvcv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tecvcv.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.temicx.smooth.spec

smooth.construct.tedecx.smooth.spec smooth.construct.tecxcx.smooth.spec

smooth.construct.tecxcv.smooth.spec

smooth.construct.tecxcv.smooth.spec 67

Examples

tensor product `tecvcv' example
require(scam)
simu <- function(x,z) {-4*(x^2+z^2) }
xs <- zs <- seq(-1,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(3)
n <- 500
x <- 2*runif(n)-1
z <- 2*runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.1
fit model ...
b <- scam(y~s(x,z,k=c(10,10),bs="tecvcv"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tecvcv")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.tecxcv.smooth.spec

Tensor product smoothing constructor for bivariate function subject
to mixed constraints: convexity constraint wrt the first covariate and
concavity wrt the second one

Description

This is a special method function for creating tensor product bivariate smooths subject to mixed con-
straints, convexity constraint wrt the first covariate and concavity wrt the second one. This is built by
the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of
single penalty marginal smooths which are represented using the B-spline basis functions. This ten-
sor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tecxcv",m=c(2,2)),
where q1 and q2 denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'tecxcv.smooth.spec'
smooth.construct(object, data, knots)

68 smooth.construct.tecxcv.smooth.spec

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tecxcv.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.tedecv.smooth.spec

smooth.construct.tedecx.smooth.spec smooth.construct.tecvcv.smooth.spec

smooth.construct.tecxcx.smooth.spec

Examples

tensor product `tecxcv' example
simulating data...
require(scam)
simu <- function(x,z) {2*x^2 - 4*z^2 }
xs <- zs <- seq(-1,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(5)
n <- 500
x <- 2*runif(n)-1
z <- 2*runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.1
fit model ...
b <- scam(y~s(x,z,k=c(10,10),bs="tecxcv"),optimizer=c("efs","bfgs"))

smooth.construct.tecxcx.smooth.spec 69

summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tecxcv")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.tecxcx.smooth.spec

Tensor product smoothing constructor for bivariate function subject to
double convexity constraint

Description

This is a special method function for creating tensor product bivariate smooths subject to double
convexity constraint, convexity constraint wrt both the first and the second covariates. This is built
by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair
of single penalty marginal smooths which are represented using the B-spline basis functions. This
tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tecxcx",m=c(2,2)),
where q1 and q2 denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'tecxcx.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tecxcx.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

70 smooth.construct.tedecv.smooth.spec

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.tedecv.smooth.spec

smooth.construct.tedecx.smooth.spec smooth.construct.tecvcv.smooth.spec

smooth.construct.tecxcv.smooth.spec

Examples

tensor product `tecxcx' example
require(scam)
simu <- function(x,z) { 2*(x^2 + z^2) }
xs <- zs <- seq(-1,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(2)
n <- 500
x <- 2*runif(n)-1
z <- 2*runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.09
fit model ...
b <- scam(y~s(x,z,k=c(10,10),bs="tecxcx"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tecxcx")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.tedecv.smooth.spec

Tensor product smoothing constructor for bivariate function subject
to mixed constraints: monotone decreasing constraint wrt the first co-
variate and concavity wrt the second one

smooth.construct.tedecv.smooth.spec 71

Description

This is a special method function for creating tensor product bivariate smooths subject to mixed con-
straints, monotone decreasing constraint wrt the first covariate and concavity wrt the second one,
which is built by the mgcv constructor function for smooth terms, smooth.construct. It is con-
structed from a pair of single penalty marginal smooths which are represented using the B-spline ba-
sis functions. This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tedecv",m=c(2,2)),
where q1 and q2 denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'tedecv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tedecv.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.temicx.smooth.spec

smooth.construct.tedecx.smooth.spec

72 smooth.construct.tedecx.smooth.spec

Examples

tensor product `tedecv' example
require(scam)
simu <- function(x,z) {-exp(4*x)/(1+exp(4*x))- 4*z^2 }
xs <- seq(-1,3,length=30); zs <- seq(-1,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(2)
n <- 500
x <- runif(n)*4-1
z <- 2*runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.3
fit model ...
b <- scam(y~s(x,z,k=c(10,10),bs="tedecv"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tedecv")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.tedecx.smooth.spec

Tensor product smoothing constructor for bivariate function subject
to mixed constraints: monotone decreasing constraint wrt the first co-
variate and convexity wrt the second one

Description

This is a special method function for creating tensor product bivariate smooths subject to mixed con-
straints, monotone decreasing constraint wrt the first covariate and convexity wrt the second one,
which is built by the mgcv constructor function for smooth terms, smooth.construct. It is con-
structed from a pair of single penalty marginal smooths which are represented using the B-spline ba-
sis functions. This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tedecx",m=c(2,2)),
where q1 and q2 denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'tedecx.smooth.spec'
smooth.construct(object, data, knots)

smooth.construct.tedecx.smooth.spec 73

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tedecx.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.tedecv.smooth.spec

Examples

tensor product `tedecx' example
require(scam)
simu <- function(x,z) { -exp(4*x)/(1+exp(4*x)) + 2*z^2 }
xs <- seq(-1,3,length=30); zs <- seq(-1,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(4)
n <- 500
x <- runif(n)*4-1
z <- 2*runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.2
fit model ...
b <- scam(y~s(x,z,k=c(10,10),bs="tedecx"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tedecx")

74 smooth.construct.tedmd.smooth.spec

plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.tedmd.smooth.spec

Tensor product smoothing constructor for bivariate function subject to
double monotone decreasing constraint

Description

This is a special method function for creating tensor product bivariate smooths subject to double
monotone decreasing constraints which is built by the mgcv constructor function for smooth terms,
smooth.construct. It is constructed from a pair of single penalty marginal smooths which are
represented using the B-spline basis functions. This tensor product is specified by model terms such
as s(x1,x2,k=c(q1,q2),bs="tedmd",m=c(2,2)), where q1 and q2 denote the basis dimensions
for the marginal smooths.

From scam version 1.2-15, the sum-to-zero contraint is now applied to all bivariate SCOP-splines
after imposing the scop-constraints (including scop identifiability constraint). This simply shifts the
smooth vertically, leaving the shape of the smooths unchanged.

Usage

S3 method for class 'tedmd.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tedmd.smooth". In addition to the usual elements of a smooth class documented
under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

smooth.construct.tedmi.smooth.spec 75

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.tedmi.smooth.spec

Examples

tensor product `tedmd' example
require(scam)
simu <- function(x,z) { -exp(4*x)/(1+exp(4*x))-2*exp(z-0.5) }
xs <- seq(-1,3,length=30); zs <- seq(0,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(2)
n <- 500
x <- runif(n)*4-1
z <- runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.2
fit model ...
b <- scam(y~s(x,z,k=c(10,10),bs="tedmd"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 80, phi = 40);title("tedmd")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 80, phi = 40);title("truth")
par(old.par)

smooth.construct.tedmi.smooth.spec

Tensor product smoothing constructor for bivariate function subject to
double monotone increasing constraint

Description

This is a special method function for creating tensor product bivariate smooths subject to double
monotone increasing constraints which is built by the mgcv constructor function for smooth terms,
smooth.construct. It is constructed from a pair of single penalty marginal smooths which are
represented using the B-spline basis functions. This tensor product is specified by model terms such
as s(x1,x2,k=c(q1,q2),bs="tedmi",m=c(2,2)), where q1 and q2 denote the basis dimensions
for the marginal smooths.

76 smooth.construct.tedmi.smooth.spec

Usage

S3 method for class 'tedmi.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tedmi.smooth". In addition to the usual elements of a smooth class documented
under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.tedmd.smooth.spec

Examples

tensor product `tedmi' example
require(scam)
simu <- function(x,z) { exp(4*x)/(1+exp(4*x))+2*exp(z-0.5) }
xs <- seq(-1,3,length=30); zs <- seq(0,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(2)
n <- 500
x <- runif(n)*4-1
z <- runif(n)-1

smooth.construct.temicv.smooth.spec 77

f <- simu(x,z)
y <- f + rnorm(n)*.1
fit model ...
b <- scam(y~s(x,z,k=c(10,10),bs="tedmi"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tedmi")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.temicv.smooth.spec

Tensor product smoothing constructor for bivariate function subject
to mixed constraints: monotone increasing constraint wrt the first co-
variate and concavity wrt the second one

Description

This is a special method function for creating tensor product bivariate smooths subject to mixed
constraints, monotone increasing constraint wrt the first covariate and concavity wrt the second one,
which is built by the mgcv constructor function for smooth terms, smooth.construct. It is con-
structed from a pair of single penalty marginal smooths which are represented using the B-spline ba-
sis functions. This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="temicv",m=c(2,2)),
where q1 and q2 denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'temicv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the values of the elements of object$term, with

names given by object$term.
knots An optional list containing the knots corresponding to object$term. If it is

NULL then the knot locations are generated automatically.

Value

An object of class "temicv.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

78 smooth.construct.temicx.smooth.spec

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.temicx.smooth.spec

Examples

tensor product `temicv' example
require(scam)
simu <- function(x,z) { exp(4*x)/(1+exp(4*x)) - 4*z^2 }
xs <-seq(-1,3,length=30); zs <- seq(-1,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(5)
n <- 500
x <- runif(n)*4-1
z <- 2*runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.2
fit model ...
b <- scam(y~s(x,z,k=c(10,10),bs="temicv"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("temicv")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.temicx.smooth.spec

Tensor product smoothing constructor for bivariate function subject
to mixed constraints: monotone increasing constraint wrt the first co-
variate and convexity wrt the second one

smooth.construct.temicx.smooth.spec 79

Description

This is a special method function for creating tensor product bivariate smooths subject to mixed
constraints, monotone increasing constraint wrt the first covariate and convexity wrt the second one,
which is built by the mgcv constructor function for smooth terms, smooth.construct. It is con-
structed from a pair of single penalty marginal smooths which are represented using the B-spline ba-
sis functions. This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="temicx",m=c(2,2)),
where q1 and q2 denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'temicx.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "temicx.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

See Also

smooth.construct.tedmd.smooth.spec

Examples

tensor product `temicx' example
require(scam)
simu <- function(x,z) { exp(4*x)/(1+exp(4*x)) +2*z^2 }
xs <-seq(-1,3,length=30); zs <- seq(-1,1,length=30)

80 smooth.construct.tescv.smooth.spec

pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(4)
n <- 500
x <- runif(n)*4-1
z <- 2*runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.4
fit model ...
b <- scam(y~s(x,z,bs="temicx"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("temicx")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.tescv.smooth.spec

Tensor product smoothing constructor for a bivariate function concave
in the second covariate

Description

This is a special method function for creating tensor product bivariate smooths concave in the sec-
ond covariate which is built by the mgcv constructor function for smooth terms, smooth.construct.
It is constructed from a pair of single penalty marginal smooths. This tensor product is specified by
model terms such as s(x1,x2,k=c(q1,q2),bs="tescv",m=c(2,2)), where the basis for the first
marginal smooth is specified in the second element of bs.

Usage

S3 method for class 'tescv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

smooth.construct.tescv.smooth.spec 81

Value

An object of class "tescv.smooth". In addition to the usual elements of a smooth class documented
under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

See Also

smooth.construct.temicv.smooth.spec smooth.construct.temicx.smooth.spec

smooth.construct.tedecv.smooth.spec smooth.construct.tedecx.smooth.spec

smooth.construct.tescx.smooth.spec

Examples

tensor product `tescv' example
require(scam)
simu <- function(x,z) { sin(2*x) - 4*z^2 }
xs <-seq(0,1,length=30); zs <- seq(-1,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(5)
n <- 500
x <- runif(n)
z <- 2*runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.2
fit model ...
b <- scam(y~s(x,z,bs="tescv"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 50, phi = 20);title("tescv")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 50, phi = 20);title("truth")
par(old.par)
vis.scam(b,theta = 50, phi = 20)

82 smooth.construct.tescx.smooth.spec

smooth.construct.tescx.smooth.spec

Tensor product smoothing constructor for a bivariate function convex
in the second covariate

Description

This is a special method function for creating tensor product bivariate smooths convex in the second
covariate which is built by the mgcv constructor function for smooth terms, smooth.construct. It
is constructed from a pair of single penalty marginal smooths. This tensor product is specified by
model terms such as s(x1,x2,k=c(q1,q2),bs="tescx",m=c(2,2)), where the basis for the first
marginal smooth is specified in the second element of bs.

Usage

S3 method for class 'tescx.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tescx.smooth". In addition to the usual elements of a smooth class documented
under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

smooth.construct.tesmd1.smooth.spec 83

See Also

smooth.construct.temicv.smooth.spec smooth.construct.temicx.smooth.spec

smooth.construct.tedecv.smooth.spec smooth.construct.tedecx.smooth.spec

smooth.construct.tescv.smooth.spec

Examples

tensor product `tescx' example
require(scam)
simu <- function(x,z) { sin(x) + 2*z^2 }
xs <-seq(0,1,length=30); zs <- seq(-1,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(5)
n <- 500
x <- runif(n)
z <- 2*runif(n)-1
f <- simu(x,z)
y <- f + rnorm(n)*.2
fit model ...
b <- scam(y~s(x,z,bs="tescx"))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 50, phi = 20);title("tescx")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 50, phi = 20);title("truth")
par(old.par)
vis.scam(b,theta = 50, phi = 20)

smooth.construct.tesmd1.smooth.spec

Tensor product smoothing constructor for a bivariate function mono-
tone decreasing in the first covariate

Description

This is a special method function for creating tensor product bivariate smooths monotone de-
creasing in the first covariate which is built by the mgcv constructor function for smooth terms,
smooth.construct. It is constructed from a pair of single penalty marginal smooths. This ten-
sor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tesmd1",m=2). The
default basis for the second marginal smooth is P-spline. Cyclic cubic regression spline ("cc") is
implemented in addition to the P-spline. See an example below on how to call for it.

84 smooth.construct.tesmd1.smooth.spec

Usage

S3 method for class 'tesmd1.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tesmd1.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

margin.bs A two letter character string indicating the (penalized) smoothing basis to use
for the second unconstrained marginal smooth. (eg "ps" for P-splines).

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.tesmd2.smooth.spec

Examples

tensor product `tesmd1' example
require(scam)
simu <- function(x,z) { -exp(4*x)/(1+exp(4*x))+2*sin(pi*z) }
xs <-seq(-1,3,length=30); zs <- seq(0,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(5)
n <- 500

smooth.construct.tesmd2.smooth.spec 85

x <- runif(n)*4-1
z <- runif(n)
f <- simu(x,z)
y <- f + rnorm(n)*.3
fit model ...
b <- scam(y~s(x,z,bs="tesmd1",k=10))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tesmd1")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

example with cyclic cubic regression spline along the second covariate...
simu2 <- function(x,z) { -exp(4*x)/(1+exp(4*x))+sin(2*pi*z) }
xs <-seq(-1,3,length=30); zs <- seq(0,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu2(prx,prz),30,30)

set.seed(2)
n <- 500
x <- runif(n)*4-1
z <- runif(n)
f <- simu2(x,z)
y <- f + rnorm(n)*.3
fit model ...
b <- scam(y~s(x,z,bs="tesmd1",xt=list("cc"),k=10))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tesmd1, cyclic")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.tesmd2.smooth.spec

Tensor product smoothing constructor for a bivariate function mono-
tone decreasing in the second covariate

Description

This is a special method function for creating tensor product bivariate smooths monotone decreas-
ing in the second covariate which is built by the mgcv constructor function for smooth terms,
smooth.construct. It is constructed from a pair of single penalty marginal smooths. This ten-
sor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tesmd2",m=c(2,2)).

86 smooth.construct.tesmd2.smooth.spec

The default basis for the first marginal smooth is P-spline. Cyclic cubic regression spline ("cc") is
implemented in addition to the P-spline. See an example below on how to call for it.

Usage

S3 method for class 'tesmd2.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tesmd2.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

margin.bs A two letter character string indicating the (penalized) smoothing basis to use
for the first unconstrained marginal smooth. (eg "ps" for P-splines).

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.tesmd1.smooth.spec

Examples

tensor product `tesmd2' example
require(scam)
simu <- function(x,z) { 2*sin(pi*x)-exp(4*z)/(1+exp(4*z))}
xs <-seq(0,1,length=30); zs <- seq(-1,3,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))

smooth.construct.tesmi1.smooth.spec 87

truth <- matrix(simu(prx,prz),30,30)

set.seed(5)
n <- 500
x <- runif(n)
z <- runif(n)*4-1
f <- simu(x,z)
y <- f + rnorm(n)*.3
fit model ...
b <- scam(y~s(x,z,bs="tesmd2",k=10))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tesmd2")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

example with cyclic cubic regression spline along the second covariate...
simu2 <- function(x,z) { sin(2*pi*x)-exp(4*z)/(1+exp(4*z)) }
xs <-seq(0,1,length=30); zs <- seq(-1,3,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu2(prx,prz),30,30)

set.seed(5)
n <- 500
x <- runif(n)
z <- runif(n)*4-1
f <- simu2(x,z)
y <- f + rnorm(n)*.3
fit model ...
b <- scam(y~s(x,z,bs="tesmd2",xt=list("cc"),k=10))
summary(b)
old.par <- par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40);title("tesmd2, cyclic")
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)
persp(xs,zs,truth,theta = 30, phi = 40);title("truth")
par(old.par)
vis.scam(b,theta = 30, phi = 40)

smooth.construct.tesmi1.smooth.spec

Tensor product smoothing constructor for a bivariate function mono-
tone increasing in the first covariate

88 smooth.construct.tesmi1.smooth.spec

Description

This is a special method function for creating tensor product bivariate smooths monotone increasing
in the first covariate which is built by the mgcv constructor function for smooth terms, smooth.construct.
It is constructed from a pair of single penalty marginal smooths. This tensor product is specified by
model terms such as s(x1,x2,k=c(q1,q2),bs="tesmi1",m=2). The basis for the second marginal
smooth can be specified as a two letter character string of the argument xt (eg xt="cc" to spec-
ify cyclic cubic regression spline). See example below. The default basis for the second marginal
smooth is P-spline. Cyclic cubic regression spline ("cc") is implemented in addition to the P-spline.
See an example below on how to call for it.

Usage

S3 method for class 'tesmi1.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the values of the elements of object$term, with

names given by object$term.
knots An optional list containing the knots corresponding to object$term. If it is

NULL then the knot locations are generated automatically.

Value

An object of class "tesmi1.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.
margin.bs A two letter character string indicating the (penalized) smoothing basis to use for

the second unconstrained marginal smooth. (eg "cc" for cyclic cubic regression
spline).

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.tesmi2.smooth.spec

smooth.construct.tesmi2.smooth.spec 89

Examples

tensor product `tesmi1' example...
simulating data...
require(scam)
simu <- function(x,z) exp(4*x)/(1+exp(4*x))+2*sin(pi*z)
xs <- seq(-1,3,length=30); zs <- seq(0,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(24)
n <- 500
x <- runif(n)*4-1
z <- runif(n)
f <- simu(x,z)
y <- f + rnorm(n)*.3
fit model ...
b <- scam(y~s(x,z,bs="tesmi1",k=c(10,10)))
old.par <- par(mfrow=c(2,2))
persp(xs,zs,truth);title("truth")
vis.scam(b,theta=40,phi=20);title("tesmi1")
plot(b,se=TRUE)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
par(old.par)

example with cyclic cubic regression spline along the second covariate...
simu2 <- function(x,z)

exp(4*x)/(1+exp(4*x))+sin(2*pi*z)
xs <- seq(-1,3,length=30); zs <- seq(0,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth2 <- matrix(simu2(prx,prz),30,30)

set.seed(2)
n <- 500
x <- runif(n)*4-1
z <- runif(n)
f <- simu2(x,z)
y <- f + rnorm(n)*.2
fit model ...
b1 <- scam(y~s(x,z,bs="tesmi1",xt=list("cc"),k=10))
old.par <- par(mfrow=c(2,2))
plot(b1,se=TRUE)
vis.scam(b1,theta=40,phi=20);title("tesmi1, cyclic")
plot(y,b1$fitted.values,xlab="Simulated data",ylab="Fitted data")
persp(xs,zs,truth2,theta = 30, phi = 40);title("truth")
par(old.par)

smooth.construct.tesmi2.smooth.spec

Tensor product smoothing constructor for a bivariate function mono-
tone increasing in the second covariate

90 smooth.construct.tesmi2.smooth.spec

Description

This is a special method function for creating tensor product bivariate smooths monotone increas-
ing in the second covariate which is built by the mgcv constructor function for smooth terms,
smooth.construct. It is constructed from a pair of single penalty marginal smooths. This ten-
sor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tesmi2",m=c(2,2)).
The default basis for the first marginal smooth is P-spline. Cyclic cubic regression spline ("cc") is
implemented in addition to the P-spline. See an example below on how to call for it.

Usage

S3 method for class 'tesmi2.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Value

An object of class "tesmi2.smooth". In addition to the usual elements of a smooth class docu-
mented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

margin.bs A two letter character string indicating the (penalized) smoothing basis to use
for the first unconstrained marginal smooth. (eg "cc" for cyclic cubic regression
spline).

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

smooth.construct.tesmi1.smooth.spec

smooth.construct.tismd.smooth.spec 91

Examples

tensor product `tesmi2' example
require(scam)
simu <- function(x,z) {2*sin(pi*x) +exp(4*z)/(1+exp(4*z)) }
xs <- seq(0,1,length=30); zs <- seq(-1,3,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(simu(prx,prz),30,30)

set.seed(24)
n <- 500
x <- runif(n)
z <- runif(n)*4-1
f <- simu(x,z)
y <- f + rnorm(n)*.3
fit model ...
b <- scam(y~s(x,z,bs="tesmi2",k=c(10,10)))
old.par <- par(mfrow=c(2,2))
persp(xs,zs,truth,theta=50,phi=20);title("truth")
vis.scam(b,theta=50,phi=20);title("tesmi2")
plot(b,se=TRUE)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
par(old.par)

example with cyclic cubic regression spline along the first covariate...
simu2 <- function(x,z) {sin(2*pi*x)+ exp(4*z)/(1+exp(4*z))}
xs <- seq(0,1,length=30); zs <- seq(-1,3,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth2 <- matrix(simu2(prx,prz),30,30)

set.seed(2)
n <- 500
x <- runif(n)
z <- runif(n)*4-1
f <- simu2(x,z)
y <- f + rnorm(n)*.3
fit model ...
b1 <- scam(y~s(x,z,bs="tesmi2",xt=list("cc"),k=10))
old.par <- par(mfrow=c(2,2))
plot(b1,se=TRUE)
vis.scam(b1,theta=50,phi=20);title("tesmi2, cyclic")
plot(y,b1$fitted.values,xlab="Simulated data",ylab="Fitted data")
persp(xs,zs,truth2,theta = 50, phi = 20);title("truth")
par(old.par)

smooth.construct.tismd.smooth.spec

Tensor product interaction with decreasing constraint along the first
covariate and unconstrained along the second covariate

92 smooth.construct.tismd.smooth.spec

Description

This is a special method function for creating tensor product bivariate interaction smooths with
decreasing constraint in the first covariate, appropriate when the main effects (and any lower interac-
tions) are also present. It is built by the mgcv constructor function for smooth terms, smooth.construct,
and constructed from a pair of single penalty marginal smooths. This tensor product is specified by
model terms such as s(x1,x2,k=c(q1,q2),bs="tismd"). See example below.

Usage

S3 method for class 'tismd.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Details

In some cases, it is helpful to consider models with a main-effects + interactions structure, for
example,

f1(x) + f2(z) + f3(x, z)

where f1 and f2 are smooth ‘main effects’ and f3 is a smooth ‘interaction’ subject to decreasing
constraint wrt x (f1 can be subject to decreasing constraint).

Constructing such functional ANOVA decomposition recognises the fact that the tensor produc ba-
sis construction is exactly the same as the construction used for any interaction in a linear model.
tismd produce tensor product interactions with decreasing constraint along the first covariate from
which the main effects have been excluded, under the assumption that they will be included sep-
arately. For example, the ~ s(x) + s(z) + s(x,z,bs="tismd") would produce the above main
effects + interaction structure. Specifically, the marginal smooths of a tensor product, tismd, are
subject to identifiability constraints before constructing the tensor product basis. This results in the
interaction smooths that do not include the corresponding main effects. tismd apply SCOP iden-
tifiability constraints to the first marginal and sum-to-zero constraints to the second unconstrained
marginal. See Wood (2017, section 5.6.3) for ANOVA decompositions of unconstrained smooths.

Value

An object of class "tismd.smooth". In addition to the usual elements of a smooth class documented
under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

smooth.construct.tismd.smooth.spec 93

margin.bs A two letter character string indicating the (penalized) smoothing basis to use for
the second unconstrained marginal smooth. (eg "cc" for cyclic cubic regression
spline).

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Wood S.N. (2017) Generalized Additive Models: An Introduction with R (2nd edition). Chapman
and Hall/CRC Press.

See Also

smooth.construct.tesmd1.smooth.spec

smooth.construct.tismi.smooth.spec

Examples

tensor product `tismd' example...
simulating data...

require(scam)
test <- function(x,z){

-exp(4*x)/(1+exp(4*x))-2*sin(pi*z)-(x+1)^0.6*z
}
set.seed(7)
n <- 600
x <- runif(n)*4-1
z <- runif(n)
xs <- seq(-1,3,length=30); zs <- seq(0,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(test(prx,prz),30,30)
f <- test(x,z)
y <- f + rnorm(n)*0.3
bi <- scam(y~ ti(x)+ti(z)+ s(x,z,bs="tismd"))
summary(bi)
old.par <- par(mfrow=c(2,2))
persp(xs,zs,truth);title("truth")
vis.scam(bi);title("tismd")

fitting with "tesmd1" instead...
bc <- scam(y~s(x,z,bs="tesmd1"))
vis.scam(bc);title("tesmd1")
par(old.par)
other plots..
plot(bi,pages=1,scheme=2)
plot(bi,select=3,scheme=1,zlim=c(-3,3))

94 smooth.construct.tismi.smooth.spec

smooth.construct.tismi.smooth.spec

Tensor product interaction with increasing constraint along the first
covariate and unconstrained along the second covariate

Description

This is a special method function for creating tensor product bivariate interaction smooths with
increasing constraint in the first covariate, appropriate when the main effects (and any lower interac-
tions) are also present. It is built by the mgcv constructor function for smooth terms, smooth.construct,
and constructed from a pair of single penalty marginal smooths. This tensor product is specified by
model terms such as s(x1,x2,k=c(q1,q2),bs="tismi"). See example below.

Usage

S3 method for class 'tismi.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.

data A data frame or list containing the values of the elements of object$term, with
names given by object$term.

knots An optional list containing the knots corresponding to object$term. If it is
NULL then the knot locations are generated automatically.

Details

In some cases, it is helpful to consider models with a main-effects + interactions structure, for
example,

f1(x) + f2(z) + f3(x, z)

where f1 and f2 are smooth ‘main effects’ and f3 is a smooth ‘interaction’ subject to increasing
constraint wrt x (f1 can be subject to increasing constraint).

Constructing such functional ANOVA decomposition recognises the fact that the tensor produc ba-
sis construction is exactly the same as the construction used for any interaction in a linear model.
tismi produce tensor product interactions with increasing constraint along the first covariate from
which the main effects have been excluded, under the assumption that they will be included sep-
arately. For example, the ~ s(x) + s(z) + s(x,z,bs="tismi") would produce the above main
effects + interaction structure. Specifically, the marginal smooths of a tensor product, tismi, are
subject to identifiability constraints before constructing the tensor product basis. This results in the
interaction smooths that do not include the corresponding main effects. tismi apply SCOP iden-
tifiability constraints to the first marginal and sum-to-zero constraints to the second unconstrained
marginal. See Wood (2017, section 5.6.3) for ANOVA decompositions of unconstrained smooths.

smooth.construct.tismi.smooth.spec 95

Value

An object of class "tismi.smooth". In addition to the usual elements of a smooth class documented
under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parame-
ters which will be exponentiated, 0’s - otherwise.

Zc A matrix of identifiability constraints.

margin.bs A two letter character string indicating the (penalized) smoothing basis to use for
the second unconstrained marginal smooth. (eg "cc" for cyclic cubic regression
spline).

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Wood S.N. (2017) Generalized Additive Models: An Introduction with R (2nd edition). Chapman
and Hall/CRC Press

See Also

smooth.construct.tismd.smooth.spec

smooth.construct.tesmi1.smooth.spec

Examples

tensor product `tismi' example...
require(scam)
test <- function(x,z){

exp(4*x)/(1+exp(4*x))+2*sin(pi*z)+(x+1)^0.6*z
}
set.seed(7)
n <- 600
x <- runif(n)*4-1
z <- runif(n)
xs <- seq(-1,3,length=30); zs <- seq(0,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(test(prx,prz),30,30)
f <- test(x,z)
y <- f + rnorm(n)*0.3
bi <- scam(y~ ti(x)+ti(z)+ s(x,z,bs="tismi"))
summary(bi)
old.par <- par(mfrow=c(2,2))
persp(xs,zs,truth);title("truth")
vis.scam(bi);title("tismi")

fitting with "tesmi1"...

96 summary.scam

bc <- scam(y~s(x,z,bs="tesmi1"))
vis.scam(bc);title("tesmi1")
par(old.par)

plot(bi,pages=1,scheme=2)
plot(bi,select=3,scheme=1,zlim=c(-5,5))

summary.scam Summary for a SCAM fit

Description

Takes a fitted scam object produced by scam() and produces various useful summaries from it.
The same code as in summary.gam of the mgcv package is used here with slight modifications to
accept the exponentiated parameters of the shape constrained smooth terms and the corresponding
covariance matrix.

Usage

S3 method for class 'scam'
summary(object, dispersion=NULL, freq=FALSE, ...)

S3 method for class 'summary.scam'
print(x,digits = max(3, getOption("digits") - 3),

signif.stars = getOption("show.signif.stars"),...)

Arguments

object a fitted scam object as produced by scam().

x a summary.scam object produced by summary.scam().

dispersion A known dispersion parameter. NULL to use estimate or default (e.g. 1 for Pois-
son).

freq By default p-values for individual terms are calculated using the Bayesian esti-
mated covariance matrix of the parameter estimators. If this is set to TRUE then
the frequentist covariance matrix of the parameters is used instead.

digits controls number of digits printed in output.

signif.stars Should significance stars be printed alongside output.

... other arguments.

summary.scam 97

Value

summary.scam produces the same list of summary information for a fitted scam object as in the
unconstrained case summary.gam except for the last element BFGS termination condition.

p.coeff is an array of estimates of the strictly parametric model coefficients.

p.t is an array of the p.coeff’s divided by their standard errors.

p.pv is an array of p-values for the null hypothesis that the corresponding parameter
is zero. Calculated with reference to the t distribution with the estimated resid-
ual degrees of freedom for the model fit if the dispersion parameter has been
estimated, and the standard normal if not.

m The number of smooth terms in the model.

chi.sq An array of test statistics for assessing the significance of model smooth terms.
See details.

s.pv An array of approximate p-values for the null hypotheses that each smooth term
is zero. Be warned, these are only approximate.

se array of standard error estimates for all parameter estimates.

r.sq The adjusted r-squared for the model. Defined as the proportion of variance
explained, where original variance and residual variance are both estimated us-
ing unbiased estimators. This quantity can be negative if your model is worse
than a one parameter constant model, and can be higher for the smaller of two
nested models! Note that proportion null deviance explained is probably more
appropriate for non-normal errors.

dev.expl The proportion of the null deviance explained by the model.

edf array of estimated degrees of freedom for the model terms.

residual.df estimated residual degrees of freedom.

n number of data.

gcv minimized GCV score for the model, if GCV used.

ubre minimized UBRE score for the model, if UBRE used.

scale estimated (or given) scale parameter.

family the family used.

formula the original scam formula.

dispersion the scale parameter.

pTerms.df the degrees of freedom associated with each parameteric term (excluding the
constant).

pTerms.chi.sq a Wald statistic for testing the null hypothesis that the each parametric term is
zero.

pTerms.pv p-values associated with the tests that each term is zero. For penalized fits these
are approximate. The reference distribution is an appropriate chi-squared when
the scale parameter is known, and is based on an F when it is not.

cov.unscaled The estimated covariance matrix of the parameters (or estimators if freq=TRUE),
divided by scale parameter.

98 summary.scam

cov.scaled The estimated covariance matrix of the parameters (estimators if freq=TRUE).

p.table significance table for parameters

s.table significance table for smooths

pTerms.table significance table for parametric model terms
BFGS termination condition

the value of the maximum component of the scaled GCV/UBRE gradient used
as stopping condition. This value is printed if the termination code of the BFGS
optimization process is not ‘1’ (not full convergence) (see bfgs_gcv.ubrefor
details)

WARNING

The p-values are approximate.

Author(s)

Natalya Pya <nat.pya@gmail.com> based on mgcv by Simon Wood

References

Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC
Press.

Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3),
543-559

Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department
of Mathematical Sciences

See Also

scam

Examples

simulating data...
require(scam)
n <- 200
set.seed(1)
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained smooth term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
x3 <- runif(n)*5;
f3 <- -log(x3)/5 # monotone decreasing smooth
f <- f1+f2+f3
y <- f + rnorm(n)*.3
dat <- data.frame(x1=x1,x2=x2,x3=x3,y=y)
fit model ...
b <- scam(y~s(x1,k=15,bs="cr")+s(x2,k=30,bs="mpi")+s(x3,k=30,bs="mpd"),

data=dat)

vis.scam 99

summary(b)
plot(b,pages=1,shade=TRUE)

vis.scam Visualization of SCAM objects

Description

Produces perspective or contour plot views of scam model predictions. The code is a clone of
vis.gam of the mgcv package.

Usage

vis.scam(x,view=NULL,cond=list(),n.grid=30,too.far=0,col=NA,
color="heat",contour.col=NULL,se=-1,type="link",
plot.type="persp",zlim=NULL,nCol=50,...)

Arguments

The documentation below is the same as in documentation object vis.gam.

x a scam object, produced by scam()

view an array containing the names of the two main effect terms to be displayed on
the x and y dimensions of the plot. If omitted the first two suitable terms will be
used.

cond a named list of the values to use for the other predictor terms (not in view). Vari-
ables omitted from this list will have the closest observed value to the median
for continuous variables, or the most commonly occuring level for factors. Para-
metric matrix variables have all the entries in each column set to the observed
column entry closest to the column median.

n.grid The number of grid nodes in each direction used for calculating the plotted sur-
face.

too.far plot grid nodes that are too far from the points defined by the variables given in
view can be excluded from the plot. too.far determines what is too far. The
grid is scaled into the unit square along with the view variables and then grid
nodes more than too.far from the predictor variables are excluded.

col The colours for the facets of the plot. If this is NA then if se>0 the facets are
transparent, otherwise the colour scheme specified in color is used. If col is
not NA then it is used as the facet colour.

color the colour scheme to use for plots when se<=0. One of "topo", "heat", "cm",
"terrain", "gray" or "bw". Schemes "gray" and "bw" also modify the colors
used when se>0.

contour.col sets the colour of contours when using plot.type="contour". Default scheme
used if NULL.

100 vis.scam

se if less than or equal to zero then only the predicted surface is plotted, but if
greater than zero, then 3 surfaces are plotted, one at the predicted values minus
se standard errors, one at the predicted values and one at the predicted values
plus se standard errors.

type "link" to plot on linear predictor scale and "response" to plot on the response
scale.

plot.type one of "contour" or "persp".

zlim a two item array giving the lower and upper limits for the z-axis scale. NULL to
choose automatically.

nCol The number of colors to use in color schemes.

... other options to pass on to persp, image or contour.

Value

Simply produces a plot.

Author(s)

Simon Wood <simon.wood@r-project.org>

See Also

persp, vis.gam, and scam.

Examples

library(scam)

Example with factor variable
set.seed(0)
fac<-rep(1:4,20)
x <- runif(80)*5;
y <- fac+log(x)/5+rnorm(80)*0.1
fac <- factor(fac)
b <- scam(y~fac+s(x,bs="mpi"))

vis.scam(b,theta=-35,color="heat") # factor example

Example with "by" variable
require(mgcv)
z<-rnorm(80)*0.4
y<-as.numeric(fac)+log(x)*z+rnorm(80)*0.1
b<-scam(y~fac+s(x,by=z))
g <- gam(y~fac+s(x,by=z))

vis.scam(b,theta=-35,color="terrain",cond=list(z=1)) # by variable example
vis.scam(b,view=c("z","x"),theta= 65) # plot against by variable
compare with gam(mgcv)...
vis.gam(g,theta=-35,color="terrain",cond=list(z=1)) # by variable example
vis.gam(g,view=c("z","x"),theta= 65) # plot against by variable

vis.scam 101

all three smooths are increasing...
set.seed(2)
n <- 400
x <- runif(n, 0, 1)
f1 <- log(x *5)
f2 <- exp(2 * x) - 4
f3 <- 5* sin(x)
e <- rnorm(n, 0, 2)
fac <- as.factor(sample(1:3,n,replace=TRUE))
fac.1 <- as.numeric(fac==1)
fac.2 <- as.numeric(fac==2)
fac.3 <- as.numeric(fac==3)
y <- f1*fac.1 + f2*fac.2 + f3*fac.3 + e
dat <- data.frame(y=y,x=x,fac=fac,f1=f1,f2=f2,f3=f3)

b1 <- scam(y ~ s(x,by=fac,bs="mpi"),data=dat,optimizer="efs")
plot(b1,pages=1,scale=0,shade=TRUE)
summary(b1)
vis.scam(b1,theta=-40,color="terrain",cond=list(z=1))

note that the preceding, b1, fit is the same as....
b2 <- scam(y ~ s(x,by=as.numeric(fac==1),bs="mpi")+s(x,by=as.numeric(fac==2),bs="mpi")+

s(x,by=as.numeric(fac==3),bs="mpi"),data=dat,optimizer="efs")
summary(b2)

Note that as in gam() when using factor 'by' variables, centering
constraints are applied to the smooths, which usually means that the 'by'
variable should be included as a parametric term, as well.
The difference with scam() is that here a 'zero intercept' constraint is
applied in place of 'centering' (although scam's fitted smooths are centred for plotting).
compare with the gam() fits..
g1 <- gam(y ~ fac+s(x,by=fac),data=dat)
g2 <- gam(y ~ s(x,by=fac),data=dat)
summary(g1)
summary(g2)
plot(g1,pages=1,scale=0,shade=TRUE)

Index

∗ Functional linear model
scam, 22

∗ Generalized Additive Model
scam, 22

∗ Generalized Cross Validation
scam, 22

∗ P-spline
scam, 22

∗ Penalized GLM
scam, 22

∗ Penalized regression spline
scam, 22

∗ Penalized regression
scam, 22

∗ Smoothing parameter selection
scam, 22

∗ Spline smoothing
scam, 22

∗ Varying coefficient model
scam, 22

∗ convexity
scam-package, 3

∗ hplot
plot.scam, 10
vis.scam, 99

∗ models
anova.scam, 4
derivative.scam, 6
linear.functional.terms, 7
logLik.scam, 9
plot.scam, 10
predict.scam, 14
print.scam, 18
qq.scam, 19
residuals.scam, 20
scam, 22
scam-package, 3
scam.check, 30
scam.control, 32

smooth.construct.cv.smooth.spec,
38

smooth.construct.cx.smooth.spec,
40

smooth.construct.lmpi.smooth.spec,
43

smooth.construct.mdcv.smooth.spec,
46

smooth.construct.mdcx.smooth.spec,
48

smooth.construct.micv.smooth.spec,
50

smooth.construct.micx.smooth.spec,
52

smooth.construct.mifo.smooth.spec,
54

smooth.construct.miso.smooth.spec,
55

smooth.construct.mpd.smooth.spec,
57

smooth.construct.mpi.smooth.spec,
60

smooth.construct.po.smooth.spec,
63

smooth.construct.tecvcv.smooth.spec,
65

smooth.construct.tecxcv.smooth.spec,
67

smooth.construct.tecxcx.smooth.spec,
69

smooth.construct.tedecv.smooth.spec,
70

smooth.construct.tedecx.smooth.spec,
72

smooth.construct.tedmd.smooth.spec,
74

smooth.construct.tedmi.smooth.spec,
75

smooth.construct.temicv.smooth.spec,

102

INDEX 103

77
smooth.construct.temicx.smooth.spec,

78
smooth.construct.tescv.smooth.spec,

80
smooth.construct.tescx.smooth.spec,

82
smooth.construct.tesmd1.smooth.spec,

83
smooth.construct.tesmd2.smooth.spec,

85
smooth.construct.tesmi1.smooth.spec,

87
smooth.construct.tesmi2.smooth.spec,

90
smooth.construct.tismd.smooth.spec,

91
smooth.construct.tismi.smooth.spec,

94
summary.scam, 96
vis.scam, 99

∗ monotonicity
scam-package, 3

∗ package
scam-package, 3

∗ regression
anova.scam, 4
derivative.scam, 6
linear.functional.terms, 7
logLik.scam, 9
plot.scam, 10
predict.scam, 14
print.scam, 18
qq.scam, 19
residuals.scam, 20
scam, 22
scam-package, 3
scam.check, 30
scam.control, 32
shape.constrained.smooth.terms, 34
smooth.construct.cv.smooth.spec,

38
smooth.construct.cx.smooth.spec,

40
smooth.construct.lmpi.smooth.spec,

43
smooth.construct.mdcv.smooth.spec,

46

smooth.construct.mdcx.smooth.spec,
48

smooth.construct.micv.smooth.spec,
50

smooth.construct.micx.smooth.spec,
52

smooth.construct.mifo.smooth.spec,
54

smooth.construct.miso.smooth.spec,
55

smooth.construct.mpd.smooth.spec,
57

smooth.construct.mpi.smooth.spec,
60

smooth.construct.po.smooth.spec,
63

smooth.construct.tecvcv.smooth.spec,
65

smooth.construct.tecxcv.smooth.spec,
67

smooth.construct.tecxcx.smooth.spec,
69

smooth.construct.tedecv.smooth.spec,
70

smooth.construct.tedecx.smooth.spec,
72

smooth.construct.tedmd.smooth.spec,
74

smooth.construct.tedmi.smooth.spec,
75

smooth.construct.temicv.smooth.spec,
77

smooth.construct.temicx.smooth.spec,
78

smooth.construct.tescv.smooth.spec,
80

smooth.construct.tescx.smooth.spec,
82

smooth.construct.tesmd1.smooth.spec,
83

smooth.construct.tesmd2.smooth.spec,
85

smooth.construct.tesmi1.smooth.spec,
87

smooth.construct.tesmi2.smooth.spec,
90

smooth.construct.tismd.smooth.spec,
91

104 INDEX

smooth.construct.tismi.smooth.spec,
94

summary.scam, 96
vis.scam, 99

∗ smooth
anova.scam, 4
logLik.scam, 9
plot.scam, 10
predict.scam, 14
print.scam, 18
qq.scam, 19
residuals.scam, 20
scam, 22
scam-package, 3
scam.check, 30
scam.control, 32
summary.scam, 96
vis.scam, 99

∗ tensor product smoothing
scam, 22

AIC, 10
AIC.scam (logLik.scam), 9
anova.gam, 4, 5
anova.glm, 5
anova.scam, 3, 4

bfgs_gcv.ubre, 22, 23, 26, 32, 98

contour, 100

derivative.scam, 6

family, 23
function.predictors

(linear.functional.terms), 7

gam, 27
gam.control, 33, 34
gamObject, 26
glm, 23

image, 100

linear.functional.terms, 3, 7, 37
logLik, 9
logLik.gam, 9
logLik.scam, 9

nlm, 33

optim, 33

persp, 100
persp (vis.scam), 99
plot.scam, 3, 10, 16, 27
predict.gam, 14, 15
predict.scam, 3, 5, 14, 27
print.anova.scam (anova.scam), 4
print.scam, 18
print.summary.scam (summary.scam), 96

qq.scam, 3, 19, 30

residuals.scam, 19, 20, 30, 31

s, 27, 34, 38
scam, 3–5, 7, 12, 16, 19, 20, 22, 22, 34, 98, 100
scam-package, 3
scam.check, 3, 5, 22, 27, 30
scam.control, 3, 24, 32
scam.fit, 22, 32–34
shape.constrained.smooth.terms, 3,

22–24, 27, 34
signal.regression

(linear.functional.terms), 7
smooth.construct, 26
smooth.construct.cpop.smooth.spec

(smooth.construct.po.smooth.spec),
63

smooth.construct.cv.smooth.spec, 34, 35,
38, 38, 41, 45, 47, 49, 51, 53, 58, 61,
64

smooth.construct.cvBy.smooth.spec
(smooth.construct.cv.smooth.spec),
38

smooth.construct.cx.smooth.spec, 34, 35,
38, 39, 40, 45, 47, 49, 51, 53, 58, 61,
64

smooth.construct.cxBy.smooth.spec
(smooth.construct.cx.smooth.spec),
40

smooth.construct.dpo.smooth.spec
(smooth.construct.po.smooth.spec),
63

smooth.construct.ipo.smooth.spec
(smooth.construct.po.smooth.spec),
63

smooth.construct.lipl.smooth.spec
(smooth.construct.lmpi.smooth.spec),
43

INDEX 105

smooth.construct.lmpi.smooth.spec, 36,
43

smooth.construct.mdcv.smooth.spec, 36,
38, 39, 41, 45, 46, 49, 51, 53, 55, 57,
58, 61, 64

smooth.construct.mdcvBy.smooth.spec
(smooth.construct.mdcv.smooth.spec),
46

smooth.construct.mdcx.smooth.spec, 35,
38, 39, 41, 45, 47, 48, 51, 53, 55, 57,
58, 61, 64

smooth.construct.mdcxBy.smooth.spec
(smooth.construct.mdcx.smooth.spec),
48

smooth.construct.micv.smooth.spec, 36,
38, 41, 45, 47, 49, 50, 53, 55, 57, 58,
61, 64

smooth.construct.micvBy.smooth.spec
(smooth.construct.micv.smooth.spec),
50

smooth.construct.micx.smooth.spec, 35,
36, 38, 39, 45, 47, 49, 51, 52, 55, 57,
58, 61, 64

smooth.construct.micxBy.smooth.spec
(smooth.construct.micx.smooth.spec),
52

smooth.construct.mifo.smooth.spec, 35,
54, 57

smooth.construct.miso.smooth.spec, 35,
55, 55

smooth.construct.mpd.smooth.spec, 35,
38, 39, 41, 45, 47, 49, 51, 53, 55, 57,
57, 61, 64

smooth.construct.mpdBy.smooth.spec
(smooth.construct.mpd.smooth.spec),
57

smooth.construct.mpi.smooth.spec, 34,
35, 38, 39, 41, 47, 49, 51, 53, 55, 57,
58, 60

smooth.construct.mpiBy.smooth.spec
(smooth.construct.mpi.smooth.spec),
60

smooth.construct.po.smooth.spec, 35, 63
smooth.construct.tecvcv.smooth.spec,

36, 65, 68, 70
smooth.construct.tecxcv.smooth.spec,

36, 66, 67, 70
smooth.construct.tecxcx.smooth.spec,

36, 66, 68, 69
smooth.construct.tedecv.smooth.spec,

36, 68, 70, 70, 73, 81, 83
smooth.construct.tedecx.smooth.spec,

36, 66, 68, 70, 71, 72, 81, 83
smooth.construct.tedmd.smooth.spec, 38,

66, 68, 70, 71, 73, 74, 76, 78, 79
smooth.construct.tedmi.smooth.spec, 36,

38, 75, 75
smooth.construct.temicv.smooth.spec,

36, 77, 81, 83
smooth.construct.temicx.smooth.spec,

37, 66, 71, 78, 78, 81, 83
smooth.construct.tescv.smooth.spec, 37,

80, 83
smooth.construct.tescx.smooth.spec, 37,

81, 82
smooth.construct.tesmd1.smooth.spec,

38, 83, 86, 93
smooth.construct.tesmd2.smooth.spec,

38, 84, 85
smooth.construct.tesmi1.smooth.spec,

38, 87, 90, 95
smooth.construct.tesmi2.smooth.spec,

38, 88, 89
smooth.construct.tismd.smooth.spec, 37,

38, 91, 95
smooth.construct.tismi.smooth.spec, 37,

38, 93, 94
summary.gam, 5
summary.scam, 3, 5, 19, 27, 96

termplot, 11

vis.gam, 99, 100
vis.scam, 3, 99

	scam-package
	anova.scam
	derivative.scam
	linear.functional.terms
	logLik.scam
	plot.scam
	predict.scam
	print.scam
	qq.scam
	residuals.scam
	scam
	scam.check
	scam.control
	shape.constrained.smooth.terms
	smooth.construct.cv.smooth.spec
	smooth.construct.cx.smooth.spec
	smooth.construct.lmpi.smooth.spec
	smooth.construct.mdcv.smooth.spec
	smooth.construct.mdcx.smooth.spec
	smooth.construct.micv.smooth.spec
	smooth.construct.micx.smooth.spec
	smooth.construct.mifo.smooth.spec
	smooth.construct.miso.smooth.spec
	smooth.construct.mpd.smooth.spec
	smooth.construct.mpi.smooth.spec
	smooth.construct.po.smooth.spec
	smooth.construct.tecvcv.smooth.spec
	smooth.construct.tecxcv.smooth.spec
	smooth.construct.tecxcx.smooth.spec
	smooth.construct.tedecv.smooth.spec
	smooth.construct.tedecx.smooth.spec
	smooth.construct.tedmd.smooth.spec
	smooth.construct.tedmi.smooth.spec
	smooth.construct.temicv.smooth.spec
	smooth.construct.temicx.smooth.spec
	smooth.construct.tescv.smooth.spec
	smooth.construct.tescx.smooth.spec
	smooth.construct.tesmd1.smooth.spec
	smooth.construct.tesmd2.smooth.spec
	smooth.construct.tesmi1.smooth.spec
	smooth.construct.tesmi2.smooth.spec
	smooth.construct.tismd.smooth.spec
	smooth.construct.tismi.smooth.spec
	summary.scam
	vis.scam
	Index

