Package ‘rstatix’

October 18, 2025

Type Package

Title Pipe-Friendly Framework for Basic Statistical Tests
Version 0.7.3

Description Provides a simple and intuitive pipe-

friendly framework, coherent with the 'tidyverse' design philosophy,

for performing basic statistical tests, including t-test, Wilcoxon test, ANOVA, Kruskal-

Wallis and correlation analyses.

The output of each test is automatically transformed into a tidy data frame to facilitate visualiza-
tion.

Additional functions are available for reshaping, reordering, manipulating and visualizing corre-
lation matrix.

Functions are also included to facilitate the analysis of factorial experiments, includ-

ing purely 'within-Ss' designs

(repeated measures), purely 'between-Ss' designs, and mixed 'within-and-between-Ss' designs.
It's also possible to compute several effect size metrics, includ-

ing " "eta squared" for ANOVA, " " Cohen's d" for t-test and

'‘Cramer V' for the association between categorical variables.

The package contains helper functions for identifying univariate and multivariate outliers, assess-
ing normality and homogeneity of variances.

License GPL-2
Encoding UTF-8
Depends R (>=3.3.0)

Imports stats, utils, tidyr (>= 1.0.0), purrr, broom (>= 0.7.4), rlang

(>=0.3.1), tibble (>= 2.1.3), dplyr (>=0.7.1), magrittr,
corrplot, tidyselect (>= 1.2.0), car, generics (>= 0.0.2)

Suggests knitr, rmarkdown, ggpubr, graphics, emmeans, coin, boot,

testthat, spelling

URL https://rpkgs.datanovia.com/rstatix/

BugReports https://github.com/kassambara/rstatix/issues
RoxygenNote 7.3.3

https://rpkgs.datanovia.com/rstatix/
https://github.com/kassambara/rstatix/issues

2 Contents

Collate 'utilities.R' 'add_significance.R' 'adjust_pvalue.R'
'factorial_design.R' 'utilities_two_sample_test.R’
'anova_summary.R' 'anova_test.R' 'as_cor_mat.R' 'binom_test.R’
'box_m.R' 'chisq_test.R' 'cochran_gtest.R' 'cohens_d.R’
'cor_as_symbols.R' 'replace_triangle.R' 'pull_triangle.R'
'cor_mark_significant.R' 'cor_mat.R' 'cor_plot.R’
'cor_reorder.R' 'cor_reshape.R' 'cor_select.R' 'cor_test.R'
'counts_to_cases.R' ‘cramer_v.R' 'df.R' 'doo.R" 't_test.R'
'dunn_test.R' 'emmeans_test.R' 'eta_squared.R' 'factors.R'
'fisher_test.R' 'freq_table.R' 'friedman_test.R’
'friedman_effsize.R' 'games_howell_test.R' 'get_comparisons.R'
'get_manova_table.R' 'get_mode.R' 'get_pvalue_position.R'
'get_summary_stats.R' 'get_test_label.R' 'kruskal_effesize.R'
'kruskal_test.R' 'levene_test.R' 'mahalanobis_distance.R'
'make_clean_names.R' 'mcnemar_test.R' 'multinom_test.R'
‘outliers.R' "'p_value.R' 'prop_test.R' 'prop_trend_test.R’
'reexports.R' 'remove_ns.R' 'sample_n_by.R' 'shapiro_test.R’
'sign_test.R' 'tukey_hsd.R' 'utils-manova.R'" 'utils-pipe.R’
'welch_anova_test.R' 'wilcox_effsize.R' 'wilcox_test.R'

Language en-US

NeedsCompilation no

Author Alboukadel Kassambara [aut, cre]

Maintainer Alboukadel Kassambara <alboukadel .kassambara@gmail.com>
Repository CRAN

Date/Publication 2025-10-18 13:50:02 UTC

Contents
add_significance L 4
adjust_pvalue 5
ANOVA_SUMMALY .« . . o v o e e e vt e e e e e e e e e e e e e e e e 5
ANOVA_LESE L e e e e e e 7
AS_COT_MAL o o e e e e e e e e e 11
binom_test. e e e 12
DOX_M e e 15
chisg_test e e 15
cochran_qtest L. e 18
cohens_d e e e 19
convert_as_factor e e e 21
Ccor_as_symbolS e e e e e e 23
Cor_gather e e e e 24
cor_mark_significant e 25
COT_MAL . . v v v v e e e e e e e e e e 26
cor_plot . . . e 28
COT_TEOTAET o v o o o e e e e e 30

cor_Select e 31

Contents

3
COT_TESE . v o v e e e e e e e e e e e e 32
COUNES_O_CASES . &« v v v v v e 34
CTAMET V. . v v v v e e e e e e e e e e 35
df_arrange 36
df_get_var_names e e e e e e e 37
df_group_by e 37
df label_both e 38
df nest_by. e e e 39
df_select e 40
df_split_by 41
df unite L e 42
doOo . . e 43
dunn_testo e e s 44
EMMEANS_TESE o o e e e e e e e e e 46
eta_squared L e e e e 48
factorial_design L 49
fisher_test e 50
freq_table e e e e 53
friedman_effsize 54
friedman_test L s 56
games_howell_test 57
GEL_COMPATISONS . .« v v v v v v v e e e e e e e e e e e e e e 58
get_mode oL e e e 59
get_pwc_label 60
L _SUMMATY_StAS v o v v i e e e e e e e e e e e e e e 63
GeLY_POSILION e e e e e 65
identify_outliers 67
kruskal_effsize e 69
kruskal_test e e e e e e e 71
levene test e e e 72
mahalanobis_distance e e e 73
make_clean_names e e e e e 74
MCNEMAr_tESt v i e e e e e e e e e e e e e 75
multinom_teSt e e e 77
PIOP_LESt . . . o o e e e e 78
prop_trend_test L e e e e e 81
pull_triangle L 82
poround ... e e 84
TEMOVE_TIS . &« v v v v e e e e e e e e e e e e e e s 86
replace_triangle 87
sample_n_by 88
Shapiro_test e e e e e e e e e e e e 89
SIGN_ES . o o v v e e e e e e e e e e e e 90
tukey_hsd 92
EteSt . . . e e e e e e 94
welch_anova_test e e 97
wilcox_effsize e e 98

WILCOX_LESt . . . o o o o e e 100

Index

add_significance

104

add_significance

Add P-value Significance Symbols

Description

Add p-value significance symbols into a data frame.

Usage

add_significance(

data,

p.col = NULL,

output.col = NULL,

cutpoints = c(@, 1e-04, 0.001, 0.01, 0.05, 1),
symbols = c("**xx" Txxx" Tkx" "x" 'ng')
)
Arguments
data a data frame containing a p-value column.
p.col column name containing p-values.
output.col the output column name to hold the adjusted p-values.
cutpoints numeric vector used for intervals.
symbols character vector, one shorter than cutpoints, used as significance symbols.
Value

a data frame

Examples

Perform pairwise comparisons and adjust p-values

ToothGrowth %>%

t_test(len ~ dose) %>%
adjust_pvalue() %>%
add_significance("p.adj")

adjust_pvalue 5

adjust_pvalue Adjust P-values for Multiple Comparisons

Description

A pipe-friendly function to add an adjusted p-value column into a data frame. Supports grouped
data.

Usage

adjust_pvalue(data, p.col = NULL, output.col = NULL, method = "holm")

Arguments
data a data frame containing a p-value column
p.col column name containing p-values
output.col the output column name to hold the adjusted p-values
method method for adjusting p values (see p.adjust). Allowed values include "holm",
"hochberg", "hommel", "bonferroni”, "BH", "BY", "fdr", "none". If you don’t
want to adjust the p value (not recommended), use p.adjust.method = "none".
Value

a data frame

Examples

Perform pairwise comparisons and adjust p-values
ToothGrowth %>%

t_test(len ~ dose) %>%

adjust_pvalue()

anova_summary Create Nice Summary Tables of ANOVA Results

Description

Create beautiful summary tables of ANOVA test results obtained from either Anova() or aov().

The results include ANOVA table, generalized effect size and some assumption checks.

Usage

anova_summary (object, effect.size = "ges", detailed = FALSE, observed = NULL)

6 anova_summary

Arguments
object an object of returned by either Anova(), or aov ().
effect.size the effect size to compute and to show in the ANOVA results. Allowed values
can be either "ges" (generalized eta squared) or "pes" (partial eta squared) or
both. Default is "ges".
detailed If TRUE, returns extra information (sums of squares columns, intercept row,
etc.) in the ANOVA table.
observed Variables that are observed (i.e, measured) as compared to experimentally ma-
nipulated. The default effect size reported (generalized eta-squared) requires
correct specification of the observed variables.
Value

return an object of class anova_test a data frame containing the ANOVA table for independent
measures ANOVA. However, for repeated/mixed measures ANOVA, it is a list containing the fol-
lowing components are returned:

* ANOVA: a data frame containing ANOVA results

* Mauchly’s Test for Sphericity: If any within-Ss variables with more than 2 levels are present,
a data frame containing the results of Mauchly’s test for Sphericity. Only reported for effects
that have more than 2 levels because sphericity necessarily holds for effects with only 2 levels.

* Sphericity Corrections: If any within-Ss variables are present, a data frame containing the
Greenhouse-Geisser and Huynh-Feldt epsilon values, and corresponding corrected p-values.

The returned object might have an attribute called args if you compute ANOVA using the
function anova_test(). The attribute args is a list holding the arguments used to fit the ANOVA
model, including: data, dv, within, between, type, model, etc.

The following abbreviations are used in the different results tables:

* DFn Degrees of Freedom in the numerator (i.e. DF effect).

* DFd Degrees of Freedom in the denominator (i.e., DF error).

* SSn Sum of Squares in the numerator (i.e., SS effect).

e SSd Sum of Squares in the denominator (i.e.,SS error).

* F F-value.

* p p-value (probability of the data given the null hypothesis).

* p<.05 Highlights p-values less than the traditional alpha level of .05.
* ges Generalized Eta-Squared measure of effect size.

* GGe Greenhouse-Geisser epsilon.

* p[GGe] p-value after correction using Greenhouse-Geisser epsilon.

* p[GGe]<.05 Highlights p-values (after correction using Greenhouse-Geisser epsilon) less than
the traditional alpha level of .05.

* HFe Huynh-Feldt epsilon.
» p[HFe] p-value after correction using Huynh-Feldt epsilon.

» p[HFe]<.05 Highlights p-values (after correction using Huynh-Feldt epsilon) less than the
traditional alpha level of .05.

* W Mauchly’s W statistic

anova_test 7

Author(s)

Alboukadel Kassambara, <alboukadel . kassambara@gmail.com>

See Also

anova_test(), factorial_design()

Examples

Load data

data("ToothGrowth")

df <- ToothGrowth

df$dose <- as.factor(df$dose)

Independent measures ANOVA

Compute ANOVA and display the summary

res.anova <- Anova(lm(len ~ dosexsupp, data = df))

anova_summary(res.anova)

Display both SSn and SSd using detailed = TRUE

Show generalized eta squared using effect.size = "ges"
anova_summary(res.anova, detailed = TRUE, effect.size = "ges")
Show partial eta squared using effect.size = "pes”
anova_summary(res.anova, detailed = TRUE, effect.size = "pes”)

Repeated measures designs using car::Anova()

Prepare the data
df$id <- as.factor(rep(1:10, 6)) # Add individuals ids
head (df)

Easily perform repeated measures ANOVA using the car package

design <- factorial_design(df, dv = len, wid = id, within = c(supp, dose))

res.anova <- Anova(design$model, idata = design$idata, idesign = design$idesign, type = 3)
anova_summary(res.anova)

Repeated measures designs using stats::Aov()

res.anova <- aov(len ~ dosexsupp + Error(id/(supp*dose)), data = df)
anova_summary(res.anova)

anova_test Anova Test

8 anova_test

Description
Provides a pipe-friendly framework to perform different types of ANOVA tests, including:

* Independent measures ANOVA: between-Subjects designs,
* Repeated measures ANOVA: within-Subjects designs

» Mixed ANOVA: Mixed within within- and between-Subjects designs, also known as split-plot
ANOVA and

¢« ANCOVA: Analysis of Covariance.
The function is an easy to use wrapper around Anova() and aov (). It makes ANOVA computation

handy in R and It’s highly flexible: can support model and formula as input. Variables can be also
specified as character vector using the arguments dv, wid, between, within, covariate.

The results include ANOVA table, generalized effect size and some assumption checks.

Usage

anova_test(
data,
formula,
dv,
wid,
between,
within,
covariate,
type = NULL,
effect.size = "ges",
error = NULL,

white.adjust = FALSE,
observed = NULL,
detailed = FALSE

)

get_anova_table(x, correction = c("auto”, "GG", "HF", "none"))

S3 method for class 'anova_test'
print(x, ...)

S3 method for class 'anova_test'

plot(x, ...)
Arguments
data a data.frame or a model to be analyzed.
formula a formula specifying the ANOVA model similar to aov. Can be of the form

y ~ group where y is a numeric variable giving the data values and group is a
factor with one or multiple levels giving the corresponding groups. For example,
formula = TP53 ~ cancer_group.

Examples of supported formula include:

https://www.datanovia.com/en/lessons/anova-in-r/
https://www.datanovia.com/en/lessons/repeated-measures-anova-in-r/
https://www.datanovia.com/en/lessons/mixed-anova-in-r/
https://www.datanovia.com/en/lessons/ancova-in-r/

anova_test

dv

wid
between
within
covariate

type

effect.size

error

white.adjust

observed

detailed

X

correction

* Between-Ss ANOVA (independent measures ANOVA): y ~ b1xb2

* Within-Ss ANOVA (repeated measures ANOVA): y ~ wi*w2 + Error(id/(w1*w2))

* Mixed ANOVA:y ~ b1*b2*w1 + Error(id/wl)

If the formula doesn’t contain any within vars, a linear model is directly fitted
and passed to the ANOVA function. For repeated designs, the ANOVA variables
are parsed from the formula.

(numeric) dependent variable name.

(factor) column name containing individuals/subjects identifier. Should be unique
per individual.

(optional) between-subject factor variables.
(optional) within-subjects factor variables
(optional) covariate names (for ANCOVA)

the type of sums of squares for ANOVA. Allowed values are either 1, 2 or 3.
type = 2 is the default because this will yield identical ANOVA results as type =
1 when data are balanced but type = 2 will additionally yield various assumption
tests where appropriate. When the data are unbalanced the type = 3 is used by
popular commercial softwares including SPSS.

the effect size to compute and to show in the ANOVA results. Allowed values
can be either "ges" (generalized eta squared) or "pes" (partial eta squared) or
both. Default is "ges".

(optional) for a linear model, an Im model object from which the overall error
sum of squares and degrees of freedom are to be calculated. Read more in
Anova() documentation.

Default is FALSE. If TRUE, heteroscedasticity correction is applied to the coef-
ficient of covariance matrix. Used only for independent measures ANOVA.
Variables that are observed (i.e, measured) as compared to experimentally ma-
nipulated. The default effect size reported (generalized eta-squared) requires
correct specification of the observed variables.

If TRUE, returns extra information (sums of squares columns, intercept row,
etc.) in the ANOVA table.

an object of class anova_test

character. Used only in repeated measures ANOVA test to specify which correc-
tion of the degrees of freedom should be reported for the within-subject factors.
Possible values are:

* "GG": applies Greenhouse-Geisser correction to all within-subjects factors
even if the assumption of sphericity is met (i.e., Mauchly’s test is not sig-
nificant, p > 0.05).

» "HF": applies Hyunh-Feldt correction to all within-subjects factors even if
the assumption of sphericity is met,

* "none": returns the ANOVA table without any correction and

* "auto": apply automatically GG correction to only within-subjects factors
violating the sphericity assumption (i.e., Mauchly’s test p-value is signifi-
cant, p <= 0.05).

additional arguments

10 anova_test

Details

The setting in anova_test() is done in such a way that it gives the same results as SPSS, one

of the most used commercial software. By default, R uses treatment contrasts, where each of the

levels is compared to the first level used as baseline. The default contrast can be checked using
options('contrasts'). Inthe function anova_test (), the following setting is used options(contrasts=c('contr.sum’
which gives orthogonal contrasts where you compare every level to the overall mean. This setting

gives the same output as the most commonly used commercial softwares, like SPSS. If you want to

obtain the same result with the function car: : Anova() as the one obtained with rstatix: :anova_test(),

then don’t forget to set options(contrasts=c('contr.sum', 'contr.poly"')).

Value

return an object of class anova_test a data frame containing the ANOVA table for independent
measures ANOVA.

However, for repeated/mixed measures ANOVA, a list containing the following components are
returned: ANOVA table, Mauchly’s Test for Sphericity, Sphericity Corrections. These table are
described more in the documentation of the function anova_summary ().

The returned object has an attribute called args, which is a list holding the arguments used to fit
the ANOVA model, including: data, dv, within, between, type, model, etc.

Functions

e anova_test(): perform anova test

* get_anova_table(): extract anova table from an object of class anova_test. When within-
subject factors are present, either sphericity corrected or uncorrected degrees of freedom can
be reported.

Author(s)

Alboukadel Kassambara, <alboukadel . kassambara@gmail . com>

See Also

anova_summary (), factorial_design()
Examples
Load data

data("ToothGrowth")
df <- ToothGrowth

One-way ANOVA test
df %>% anova_test(len ~ dose)
Grouped One-way ANOVA test

df %>%

as_cor_mat 11

group_by(supp) %>%
anova_test(len ~ dose)

Two-way ANOVA test
df %>% anova_test(len ~ supp*dose)
Two-way repeated measures ANOVA

df$id <- rep(1:10, 6) # Add individuals id
Use formula

df %>% anova_test(len ~ supp*dose + Error(id/(supp*dose)))

or use character vector
df %>% anova_test(dv = len, wid = id, within = c(supp, dose))

Extract ANOVA table and apply correction

L N R R R R R R R R R R R R R I R
res.aov <- df %>% anova_test(dv = len, wid = id, within = c(supp, dose))
get_anova_table(res.aov, correction = "GG")

Use model as arguments

.my.model <- lm(yield ~ block + N*P*K, npk)
anova_test(.my.model)

as_cor_mat Convert a Correlation Test Data Frame into a Correlation Matrix

Description

Convert a correlation test data frame, returned by the cor_test (), into a correlation matrix format.

Usage

as_cor_mat(x)

Arguments

X an object of class cor_test.

Value

Returns a data frame containing the matrix of the correlation coefficients. The output has an attribute
named "pvalue", which contains the matrix of the correlation test p-values.

12 binom_test

See Also

cor_mat(), cor_test()
Examples
Pairwise correlation tests between variables
res.cor.test <- mtcars %>%
select(mpg, disp, hp, drat, wt, gsec) %>%
cor_test()
res.cor.test

Convert the correlation test into a correlation matrix

res.cor.test %>% as_cor_mat()

binom_test Exact Binomial Test

Description

Performs exact binomial test and pairwise comparisons following a significant exact multinomial
test. Wrapper around the R base function link[stats]{binom. test}() that returns a data frame
as a result.

Usage

binom_test(
X,
n,
p =0.5,
alternative = "two.sided”,
conf.level = 0.95,
detailed = FALSE

pairwise_binom_test(
X!
p.adjust.method = "holm"”,
alternative = "two.sided",
conf.level = 0.95

pairwise_binom_test_against_p(
X’
p = rep(1/length(x), length(x)),
p.adjust.method = "holm",

binom_test 13

alternative = "two.sided”,
conf.level = 0.95
)
Arguments
X numeric vector containing the counts.
n number of trials; ignored if x has length 2.
p a vector of probabilities of success. The length of p must be the same as the
number of groups specified by x, and its elements must be greater than 0 and
less than 1.
alternative indicates the alternative hypothesis and must be one of "two.sided"”, "greater”
or "less”. You can specify just the initial letter.
conf.level confidence level for the returned confidence interval.
detailed logical value. Default is FALSE. If TRUE, a detailed result is shown.

p.adjust.method
method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",
"bonferroni”, "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

Value

return a data frame containing the p-value and its significance. with some the following columns:

* group, groupl, group2: the categories or groups being compared.
* statistic: the number of successes.

e parameter: the number of trials.

* p: p-value of the test.

* p.adj: the adjusted p-value.

» method: the used statistical test.

* p.signif, p.adj.signif: the significance level of p-values and adjusted p-values, respec-
tively.

* estimate: the estimated probability of success.
* alternative: a character string describing the alternative hypothesis.
* conf.low,conf.high: Lower and upper bound on a confidence interval for the probability of

success.

The returned object has an attribute called args, which is a list holding the test arguments.

Functions

* binom_test(): performs exact binomial test. Wrapper around the R base function binom. test
that returns a dataframe as a result.

14 binom_test

* pairwise_binom_test(): performs pairwise comparisons (binomial test) following a signif-
icant exact multinomial test.

* pairwise_binom_test_against_p(): performs pairwise comparisons (binomial test) fol-
lowing a significant exact multinomial test for given probabilities.

See Also

multinom_test

Examples

Exact binomial test
H%%%%6%%%6%%6%% %% %% %% %6 %96 676765676 %% %% %% %% % %6 6 %676 %676 %%

Data: 160 mice with cancer including 95 male and 65 female
Q1: Does cancer affect more males than females?
binom_test(x = 95, n = 160)

=> yes, there are a significant difference

Q2: compare the observed proportion of males
to an expected proportion (p = 3/5)
binom_test(x = 95, n = 160, p = 3/5)

=> there are no significant difference

Multinomial test

LSS ARSI SIS IS IS I AL ASS LG

Data

tulip <- c(red = 81, yellow = 50, white = 27)
Question 1: are the color equally common ?

this is a test of homogeneity

res <- multinom_test(tulip)

res

attr(res, "descriptives")

Pairwise comparisons between groups
pairwise_binom_test(tulip, p.adjust.method = "bonferroni”)

Question 2: comparing observed to expected proportions
this is a goodness-of-fit test

expected.p <- c(red = 0.5, yellow = 0.33, white = 0.17)
res <- multinom_test(tulip, expected.p)

res

attr(res, "descriptives"”)

Pairwise comparisons against a given probabilities
pairwise_binom_test_against_p(tulip, expected.p)

box_m 15

box_m Box’s M-test for Homogeneity of Covariance Matrices

Description

Performs the Box’s M-test for homogeneity of covariance matrices obtained from multivariate nor-
mal data according to one grouping variable. The test is based on the chi-square approximation.

Usage

box_m(data, group)

Arguments
data a numeric data.frame or matrix containing n observations of p variables; it is
expected that n > p.
group a vector of length n containing the class of each observation; it is usually a factor.
Value

A data frame containing the following components:

statistic an approximated value of the chi-square distribution.

parameter the degrees of freedom related of the test statistic in this case that it follows a
Chi-square distribution.

p.value the p-value of the test.

method the character string "Box’s M-test for Homogeneity of Covariance Matrices".
Examples

data(iris)

box_m(iris[, -51, iris[, 51)

chisqg_test Chi-squared Test for Count Data

Description

Performs chi-squared tests, including goodness-of-fit, homogeneity and independence tests.

16

Usage

chisqg_test(
X,
y = NULL,

chisq_test

correct = TRUE,

p = rep(1/length(x), length(x)),
rescale.p = FALSE,
simulate.p.value = FALSE,

B = 2000
)

pairwise_chisq_gof_test(x, p.adjust.method = "holm”, ...)

pairwise_chisq_test_against_p(

X,

p = rep(1/length(x), length(x)),
p.adjust.method = "holm",

)

chisg_descriptives(res.chisq)

expected_freq(res.chisq)

observed_freq(res.chisq)

pearson_residuals(res.chisq)

std_residuals(res.chisq)

Arguments

X

y

correct

rescale.p

a numeric vector or matrix. x and y can also both be factors.

a numeric vector; ignored if x is a matrix. If x is a factor, y should be a factor of
the same length.

a logical indicating whether to apply continuity correction when computing the
test statistic for 2 by 2 tables: one half is subtracted from all |O — E| differences;
however, the correction will not be bigger than the differences themselves. No
correction is done if simulate.p.value = TRUE.

a vector of probabilities of the same length as x. An error is given if any entry
of p is negative.

a logical scalar; if TRUE then p is rescaled (if necessary) to sum to 1. If
rescale.p is FALSE, and p does not sum to 1, an error is given.

simulate.p.value

a logical indicating whether to compute p-values by Monte Carlo simulation.

an integer specifying the number of replicates used in the Monte Carlo test.

chisq_test 17

p.adjust.method
method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",
"bonferroni”, "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

other arguments passed to the function {chisq_test}().

res.chisq an object of class chisq_test.

Value

return a data frame with some the following columns:

* n: the number of participants.
e group, groupl, group2: the categories or groups being compared.
* statistic: the value of Pearson’s chi-squared test statistic.

o df: the degrees of freedom of the approximate chi-squared distribution of the test statistic.
NA if the p-value is computed by Monte Carlo simulation.

* p: p-value.
* p.adj: the adjusted p-value.
* method: the used statistical test.

* p.signif, p.adj.signif: the significance level of p-values and adjusted p-values, respec-
tively.

e observed: observed counts.

» expected: the expected counts under the null hypothesis.

The returned object has an attribute called args, which is a list holding the test arguments.

Functions

* chisq_test(): performs chi-square tests including goodness-of-fit, homogeneity and inde-
pendence tests.

* pairwise_chisq_gof_test(): perform pairwise comparisons between groups following a
global chi-square goodness of fit test.

* pairwise_chisq_test_against_p(): perform pairwise comparisons after a global chi-squared
test for given probabilities. For each group, the observed and the expected proportions are
shown. Each group is compared to the sum of all others.

* chisq_descriptives(): returns the descriptive statistics of the chi-square test. These in-
clude, observed and expected frequencies, proportions, residuals and standardized residuals.

* expected_freq(): returns the expected counts from the chi-square test result.
* observed_freq(): returns the observed counts from the chi-square test result.
e pearson_residuals(): returns the Pearson residuals, (observed - expected) / sqrt(expected).

e std_residuals(): returns the standardized residuals

18 cochran_qtest

Examples

Chi-square goodness of fit test
H#%%%%%%%6%%%% %% %% %% %6 %% 656765676 %% %% %% %% % %6 % %6 6%

tulip <- c(red = 81, yellow = 50, white = 27)

Q1: Are the colors equally common?

chisqg_test(tulip)

pairwise_chisq_gof_test(tulip)

Q2: comparing observed to expected proportions
chisq_test(tulip, p = c(1/2, 1/3, 1/6))
pairwise_chisq_test_against_p(tulip, p = c(0.5, 0.33, 0.17))

Homogeneity of proportions between groups
LSS AL SIS IS LIS IS I ARSI LN
Data: Titanic
xtab <- as.table(rbind(
c(203, 118, 178, 212),
c(122, 167, 528, 673)

)
dimnames(xtab) <- list(
Survived = c("Yes"”, "No"),
Class = c("1st”, "2nd"”, "3rd”, "Crew”)
)
xtab

Chi-square test

chisqg_test(xtab)

Compare the proportion of survived between groups
pairwise_prop_test(xtab)

cochran_gtest Cochran’s Q Test

Description

Performs the Cochran’s Q test for unreplicated randomized block design experiments with a binary
response variable and paired data. This test is analogue to the friedman.test() with 0,1 coded
response. It’s an extension of the McNemar Chi-squared test for comparing more than two paired
proportions.

Usage

cochran_qtest(data, formula)

Arguments
data a data frame containing the variables in the formula.
formula a formula of the form a ~ b | c, where a is the outcome variable name; b is the

within-subjects factor variables; and c (factor) is the column name containing
individuals/subjects identifier. Should be unique per individual.

cohens_d 19

Examples

Generate a demo data
mydata <- data.frame(
outcome = c(0,1,1,0,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,1),
treatment = gl(3,1,30,1labels=LETTERS[1:3]),
participant = gl(10,3,labels=letters[1:10])
)
mydata$outcome <- factor(
mydata$outcome, levels = c(1, @),
labels = c("success"”, "failure")
)
Cross-tabulation
xtabs(~outcome + treatment, mydata)

Compare the proportion of success between treatments
cochran_qtest(mydata, outcome ~ treatment|participant)

pairwise comparisons between groups
pairwise_mcnemar_test(mydata, outcome ~ treatment|participant)

cohens_d Compute Cohen’s d Measure of Effect Size

Description

Compute the effect size for t-test. T-test conventional effect sizes, proposed by Cohen, are: 0.2
(small effect), 0.5 (moderate effect) and 0.8 (large effect).

Cohen’s d is calculated as the difference between means or mean minus mu divided by the estimated
standardized deviation.

For independent samples t-test, there are two possibilities implemented. If the t-test did not make a
homogeneity of variance assumption, (the Welch test), the variance term will mirror the Welch test,
otherwise a pooled estimate is used.

If a paired samples t-test was requested, then effect size desired is based on the standard deviation
of the differences.

It can also returns confidence intervals by bootstap.

Usage

cohens_d(
data,
formula,
comparisons = NULL,
ref.group = NULL,
paired = FALSE,
mu = 0,
var.equal = FALSE,

20 cohens_d

hedges.correction = FALSE,

ci = FALSE,
conf.level = 0.95,
ci.type = "perc”,
nboot = 1000
)
Arguments
data a data.frame containing the variables in the formula.
formula a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.
comparisons A list of length-2 vectors specifying the groups of interest to be compared. For
example to compare groups "A" vs "B" and "B" vs "C", the argument is as
follow: comparisons = 1ist(c("A", "B"), c("B","C"))
ref.group a character string specifying the reference group. If specified, for a given group-
ing variable, each of the group levels will be compared to the reference group
(i.e. control group).
If ref.group = "all”, pairwise two sample tests are performed for comparing
each grouping variable levels against all (i.e. basemean).
paired a logical indicating whether you want a paired test.
mu theoretical mean, use for one-sample t-test. Default is 0.
var.equal a logical variable indicating whether to treat the two variances as being equal.

If TRUE then the pooled variance is used to estimate the variance otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is used. Used
only for unpaired or independent samples test.

hedges.correction
logical indicating whether apply the Hedges correction by multiplying the usual

value of Cohen’s d by (N-3)/(N-2.25) (for unpaired t-test) and by (n1-2)/(n1-1.25)
for paired t-test; where N is the total size of the two groups being compared (N

=nl +n2).
ci If TRUE, returns confidence intervals by bootstrap. May be slow.
conf.level The level for the confidence interval.
ci.type The type of confidence interval to use. Can be any of "norm", "basic", "perc",

or "bca". Passed to boot: :boot.ci.

nboot The number of replications to use for bootstrap.

Details

Quantification of the effect size magnitude is performed using the thresholds defined in Cohen
(1992). The magnitude is assessed using the thresholds provided in (Cohen 1992), i.e. |d| <@.2
"negligible", |d| < @.5 "small", |d| <0.8 "medium", otherwise "large".

convert_as_factor 21

Value
return a data frame with some of the following columns:

e .y.: the y variable used in the test.

* groupl,group2: the compared groups in the pairwise tests.
* n,n1,n2: Sample counts.

» effsize: estimate of the effect size (d value).

* magnitude: magnitude of effect size.

* conf.low,conf.high: lower and upper bound of the effect size confidence interval.

References

e Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New
York:Academic Press.

e Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159.
» Hedges, Larry & Olkin, Ingram. (1985). Statistical Methods in Meta-Analysis. 10.2307/1164953.

* Navarro, Daniel. 2015. Learning Statistics with R: A Tutorial for Psychology Students and
Other Beginners (Version 0.5).

Examples

One-sample t test effect size
ToothGrowth %>% cohens_d(len ~ 1, mu = Q)

Two indepedent samples t-test effect size
ToothGrowth %>% cohens_d(len ~ supp, var.equal = TRUE)

Paired samples effect size
df <- data.frame(
id = 1:5,
pre = c(110, 122, 101, 120, 140),
post = c(150, 160, 110, 140, 155)
)
df <- df %>% gather(key = "treatment”, value = "value", -id)
head(df)

df %>% cohens_d(value ~ treatment, paired = TRUE)

convert_as_factor Factors

Description

Provides pipe-friendly functions to convert simultaneously multiple variables into a factor variable.

Helper functions are also available to set the reference level and the levels order.

22 convert_as_factor

Usage
convert_as_factor(data, ..., vars = NULL, make.valid.levels = FALSE)

set_ref_level(data, name, ref)

reorder_levels(data, name, order)

Arguments
data a data frame
one unquoted expressions (or variable name) specifying the name of the vari-
ables you want to convert into factor. Alternative to the argument vars.
vars a character vector specifying the variables to convert into factor.

make.valid.levels

logical. Default is FALSE. If TRUE, converts the variable to factor and add a
leading character (x) if starting with a digit.

name a factor variable name. Can be unquoted. For example, use group or "group”.
ref the reference level.
order a character vector specifying the order of the factor levels

Functions

* convert_as_factor(): Convert one or multiple variables into factor.
* set_ref_level(): Change a factor reference level or group.

* reorder_levels(): Change the order of a factor levels

Examples

Create a demo data
df <- tibble(
group = c("a", "a", "b", "b", "c", "c"),
time = c("t1", "t2", "t1", "t2", "t1", "t2"),
value = c(5, 6, 1, 3, 4, 5)
)
df
Convert group and time into factor variable
result <- df %>% convert_as_factor(group, time)
result
Show group levels
levels(result$group)

Set c as the reference level (the first one)
result <- result %>%

set_ref_level("group”, ref = "c")
levels(result$group)

Set the order of levels
result <- result %>%

cor_as_symbols 23

reorder_levels("group”, order = c("b", "c", "a"))
levels(result$group)
cor_as_symbols Replace Correlation Coefficients by Symbols
Description

Take a correlation matrix and replace the correlation coefficients by symbols according to the level
of the correlation.

Usage
cor_as_symbols(
X,
cutpoints = c(@, 0.25, 0.5, 0.75, 1),
SymbOlS = C(H lIy H.H, Il+1l, II*H)
)
Arguments
X a correlation matrix. Particularly, an object of class cor_mat.
cutpoints numeric vector used for intervals. Default values are c(@, 0.25, 0.5, 0.75,
1.
symbols character vector, one shorter than cutpoints, used as correlation coefficient sym-
bols. Default values are c(" ", ".", "+" "%").
See Also
cor_mat()
Examples

Compute correlation matrix

cor.mat <- mtcars %>%
select(mpg, disp, hp, drat, wt, gsec) %>%
cor_mat()

Replace correlation coefficient by symbols
cor.mat %>%

cor_as_symbols() %>%
pull_lower_triangle()

24 cor_gather

cor_gather Reshape Correlation Data

Description
Reshape correlation analysis results. Key functions:

* cor_gather(): takes a correlation matrix and collapses (i.e. melt) it into a paired list (long
format).

» cor_spread(): spread a long correlation data format across multiple columns. Particularly, it
takes the results of cor_test and transforms it into a correlation matrix.

Usage
cor_gather(data, drop.na = TRUE)

cor_spread(data, value = "cor")
Arguments
data a data frame or matrix.
drop.na logical. If TRUE, drop rows containing missing values after gathering the data.
value column name containing the value to spread.
Functions

» cor_gather(): takes a correlation matrix and collapses (or melt) it into long format data
frame (paired list)

e cor_spread(): spread a long correlation data frame into wide format. Expects the columns
"varl", "var2" and "cor" in the data. (correlation matrix).
See Also

cor_mat(), cor_reorder()

Examples
Data preparation
mydata <- mtcars %>%

select(mpg, disp, hp, drat, wt, gsec)
head(mydata, 3)

Reshape a correlation matrix
Compute a correlation matrix

cor.mat <- mydata %>% cor_mat()
cor.mat

cor_mark_significant 25

Collapse the correlation matrix into long format
paired list data frame

long.format <- cor.mat %>% cor_gather()
long.format

Spread a correlation data format

L R R R R R S R R
Spread the correlation coefficient value
long.format %>% cor_spread(value = "cor")
Spread the p-value

long.format %>% cor_spread(value = "p")

cor_mark_significant Add Significance Levels To a Correlation Matrix

Description

Combines correlation coefficients and significance levels in a correlation matrix data.

Usage
cor_mark_significant(
X ’
cutpoints = c(@, 1e-04, 0.001, 0.01, 0.05, 1),
symbols = C(“****H’ ll***”’ ”**H’ H*H, IIH)
)
Arguments
X an object of class cor_mat().
cutpoints numeric vector used for intervals.
symbols character vector, one shorter than cutpoints, used as significance symbols.
Value

a data frame containing the lower triangular part of the correlation matrix marked by significance
symbols.

Examples

mtcars %>%
select(mpg, disp, hp, drat, wt, gsec) %>%
cor_mat() %>%
cor_mark_significant()

26 cor_mat

cor_mat Compute Correlation Matrix with P-values

Description

Compute correlation matrix with p-values. Numeric columns in the data are detected and automati-
cally selected for the analysis. You can also specify variables of interest to be used in the correlation

analysis.
Usage

cor_mat(
data,
vars = NULL,
method = "pearson”,
alternative = "two.sided",
conf.level = 0.95

)

cor_pmat(
data,
vars = NULL,
method = "pearson”,
alternative = "two.sided”,
conf.level = 0.95

)

cor_get_pval(x)

Arguments

data a data.frame containing the variables
One or more unquoted expressions (or variable names) separated by commas.
Used to select a variable of interest.

vars a character vector containing the variable names of interest.

method a character string indicating which correlation coefficient is to be used for the
test. One of "pearson”, "kendall”, or "spearman”, can be abbreviated.

alternative indicates the alternative hypothesis and must be one of "two.sided”, "greater”
or "less”. You can specify just the initial letter. "greater” corresponds to pos-
itive association, "less” to negative association.

conf.level confidence level for the returned confidence interval. Currently only used for the

Pearson product moment correlation coefficient if there are at least 4 complete
pairs of observations.

X an object of class cor_mat

cor_mat 27

Value

a data frame

Functions

e cor_mat(): compute correlation matrix with p-values. Returns a data frame containing the
matrix of the correlation coefficients. The output has an attribute named "pvalue", which
contains the matrix of the correlation test p-values.

* cor_pmat(): compute the correlation matrix but returns only the p-values of the tests.

* cor_get_pval(): extract a correlation matrix p-values from an object of class cor_mat().
P-values are not adjusted.

See Also

cor_test(), cor_reorder(), cor_gather(), cor_select(), cor_as_symbols(), pull_triangle(),
replace_triangle()

Examples

Data preparation

mydata <- mtcars %>%
select(mpg, disp, hp, drat, wt, gsec)
head(mydata, 3)

Compute correlation matrix

Correlation matrix between all variables
cor.mat <- mydata %>% cor_mat()
cor.mat

Specify some variables of interest
mydata %>% cor_mat(mpg, hp, wt)

Or remove some variables in the data
before the analysis
mydata %>% cor_mat(-mpg, -hp)

Significance levels

cor.mat %>% cor_get_pval()

Visualize

Insignificant correlations are marked by crosses
cor.mat %>%

cor_reorder() %>%

pull_lower_triangle() %>%

cor_plot(label = TRUE)

28 cor_plot

Gather/collapse correlation matrix into long format

cor.mat %>% cor_gather()

cor_plot Visualize Correlation Matrix Using Base Plot

Description

Provide a tibble-friendly framework to visualize a correlation matrix. Wrapper around the R base
function corrplot(). Compared to corrplot(), it can handle directly the output of the func-
tions cor_mat() (inrstatix), rcorr() (inHmisc), correlate() (in corrr) and cor() (in
stats).

The p-values contained in the outputs of the functions cor_mat() and rcorr() are automatically
detected and used in the visualization.

Usage

cor_plot(
cor.mat,
method = "circle”,
type = "full”,
palette = NULL,
p.mat = NULL,
significant.level = 0.05,
insignificant = c("cross”, "blank"),
label = FALSE,
font.label = list(),

)
Arguments

cor.mat the correlation matrix to visualize

method Character, the visualization method of correlation matrix to be used. Currently,
it supports seven methods, named 'circle’ (default), 'square’, 'ellipse’,
'number’, 'pie', 'shade' and 'color'. See examples for details.
The areas of circles or squares show the absolute value of corresponding correla-
tion coefficients. Method 'pie' and 'shade' came from Michael Friendly’s job
(with some adjustment about the shade added on), and 'ellipse' came from
D.J. Murdoch and E.D. Chow’s job, see in section References.

type Character, 'full' (default), 'upper' or 'lower’, display full matrix, lower

triangular or upper triangular matrix.

palette character vector containing the color palette.

cor_plot

p.mat

29

matrix of p-value corresponding to the correlation matrix.

significant.level

insignificant

label
font.label

See Also

significant level, if the p-value is bigger than significant.level, then the
corresponding correlation coefficient is regarded as insignificant.

character, specialized insignificant correlation coefficients, "cross" (default), "blank".
If "blank", wipe away the corresponding glyphs; if "cross", add crosses (X) on
corresponding glyphs.

logical value. If TRUE, shows the correlation coefficient labels.

a list with one or more of the following elements: size (e.g., 1), color (e.g.,
"black") and style (e.g., "bold"). Used to customize the correlation coefficient
labels. For example font.label = 1list(size =1, color = "black”, style =
"bold").

additional options not listed (i.e. "tl.cex") here to pass to corrplot.

cor_as_symbols()

Examples

Compute correla

cor.mat <- mtcars
select(mpg, dis
cor_mat()

Visualize corre

Full correlatio
insignificant ¢
cor.mat %>% cor_p

Reorder by corr
pull lower tria
cor.lower.tri <-
cor_reorder() %
pull_lower_tria
cor.lower.tri %>%

Change visualiz

cor.lower.tri %>%
cor_plot(method

cor.lower.tri %>%
cor_plot(method

cor.lower.tri %>%
cor_plot(method

tion matrix

%>%
p, hp, drat, wt, gsec) %>%

lation matrix

n matrix,
orrelations are marked by crosses
lot()

elation coefficient
ngle and visualize
cor.mat %>%

>%

ngle()

cor_plot()

ation methods

= "color”)

= "number")

30

Show the correlation coefficient: label = TRUE
Blank the insignificant correlation

cor.lower.tri %>%
cor_plot(
method = "color”,
label = TRUE,
insignificant = "blank”

)

Change the color palettes

Using custom color palette
Require ggpubr: install.packages("ggpubr")
if(require("ggpubr”)){

my.palette <- get_palette(c("red”, "white"”, "blue"), 200)

cor.lower.tri %>%
cor_plot(palette = my.palette)
3

Using RcolorBrewer color palette
if(require("ggpubr”)){
my.palette <- get_palette("PulOr”, 200)
cor.lower.tri %>%
cor_plot(palette = my.palette)

cor_reorder

cor_reorder Reorder Correlation Matrix

Description

reorder correlation matrix, according to the coefficients, using the hierarchical clustering method.

Usage

cor_reorder(x)

Arguments

X a correlation matrix. Particularly, an object of class cor_mat.

Value

a data frame

See Also

cor_mat(), cor_gather(), cor_spread()

cor_select 31

Examples

Compute correlation matrix

cor.mat <- mtcars %>%
select(mpg, disp, hp, drat, wt, gsec) %>%
cor_mat()

Reorder by correlation and get p-values

Reorder
cor.mat %>%
cor_reorder()
Get p-values of the reordered cor_mat
cor.mat %>%
cor_reorder() %>%
cor_get_pval()

cor_select Subset Correlation Matrix

Description

Subset Correlation Matrix

Usage
cor_select(x, ..., vars = NULL)
Arguments
X a correlation matrix. Particularly, an object of class cor_mat.
One or more unquoted expressions (or variable names) separated by commas.
Used to select variables of interest.
vars a character vector containing the variable names of interest.
Value

a data frame

See Also

cor_mat(), pull_triangle(), replace_triangle()

32 cor_test

Examples

Compute correlation matrix

cor.mat <- mtcars %»>%
select(mpg, disp, hp, drat, wt, gsec) %>%
cor_mat()

Subsetting correlation matrix

Select some variables of interest
cor.mat %>%
cor_select(mpg, drat, wt)

Remove variables
cor.mat %>%
cor_select(-mpg, -wt)

cor_test Correlation Test

Description

Provides a pipe-friendly framework to perform correlation test between paired samples, using Pear-
son, Kendall or Spearman method. Wrapper around the function cor. test().

Can also performs multiple pairwise correlation analyses between more than two variables or be-
tween two different vectors of variables. Using this function, you can also compute, for example,
the correlation between one variable vs many.

Usage
cor_test(
data,
vars = NULL,
vars2 = NULL,
alternative = "two.sided”,
method = "pearson”,
conf.level = 0.95,
use = "pairwise.complete.obs”
)
Arguments
data a data.frame containing the variables.

One or more unquoted expressions (or variable names) separated by commas.
Used to select a variable of interest. Alternative to the argument vars.

cor_test 33

vars optional character vector containing variable names for correlation analysis. Ig-
nored when dot vars are specified.

* If vars is NULL, multiple pairwise correlation tests is performed between
all variables in the data.

* If vars contain only one variable, a pairwise correlation analysis is per-
formed between the specified variable vs either all the remaining numeric
variables in the data or variables in vars2 (if specified).

 If vars contain two or more variables: i) if vars2 is not specified, a pair-
wise correlation analysis is performed between all possible combinations
of variables. ii) if vars2 is specified, each element in vars is tested against
all elements in vars2

. Accept unquoted variable names: c(var1, var2).

vars?2 optional character vector. If specified, each element in vars is tested against all
elements in vars2. Accept unquoted variable names: c(var1, var2).

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater”
or "less"”. You can specify just the initial letter. "greater” corresponds to pos-
itive association, "less" to negative association.

method a character string indicating which correlation coefficient is to be used for the
test. One of "pearson”, "kendall”, or "spearman”, can be abbreviated.

conf.level confidence level for the returned confidence interval. Currently only used for the
Pearson product moment correlation coefficient if there are at least 4 complete
pairs of observations.

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be (an abbreviation of) one of the strings

non n on

"everything”, "all.obs"”, "complete.obs”, "na.or.complete”, or "pairwise.complete.obs"”.

Value
return a data frame with the following columns:
e varl, var2: the variables used in the correlation test.
* cor: the correlation coefficient.
* statistic: Test statistic used to compute the p-value.
* p: p-value.
* conf.low,conf.high: Lower and upper bounds on a confidence interval.

* method: the method used to compute the statistic.

Functions

e cor_test(): correlation test between two or more variables.

See Also

cor_mat(), as_cor_mat()

34

Examples

Correlation between the specified variable vs
the remaining numeric variables in the data

mtcars %>% cor_test(mpg)
Correlation test between two variables
mtcars %>% cor_test(wt, mpg)
Pairwise correlation between multiple variables
mtcars %>% cor_test(wt, mpg, disp)
Grouped data
iris %>%
group_by(Species) %>%
cor_test(Sepal.Width, Sepal.Length)
Multiple correlation test
Correlation between one variable vs many
mtcars %>% cor_test(
vars = "mpg”,

vars2 = c("disp”, "hp", "drat")
)

Correlation between two vectors of variables
Each element in vars is tested against all elements in vars2
mtcars %>% cor_test(

counts_to_cases

vars = c("mpg”, "wt"),
vars2 = c("disp”, "hp", "drat")
)
counts_to_cases Convert a Table of Counts into a Data Frame of cases
Description

converts a contingency table or a data frame of counts into a data frame of individual observations.

Usage

counts_to_cases(x, count.col = "Freq")

cramer_v

Arguments

X

count.col

Value

35

a contingency table or a data frame

the name of the column containing the counts. Default is "Freq".

a data frame of cases

Examples

Create a cross-

HULLLLLLLLLLLLL%Y

tabulation demo data

0/0/0/0/0/ 0/ 0/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ Oy

xtab <- as.table(
rbind(c(20, 5),

)

dimnames(xtab) <-
before = c("non
after = c("non.

)
xtab

Convert into a
#%%%%%%%6%6%66%6%6%6%6%%
df <- counts_to_c
head(df)

c(16,9))

list(
.smoker”, "smoker"),
smoker"”, "smoker")

data frame of cases
%7676%6%6%%%%6.%6766%6 %6 %6 %6 % 9676767676 %6 %6
ases(xtab)

cramer_v

Compute Cramer’s V

Description

Compute Cramer’s

Usage

cramer_v(x, y =

Arguments

X

y

correct

V, which measures the strength of the association between categorical variables.

NULL, correct = TRUE, ...)

a numeric vector or matrix. x and y can also both be factors.

a numeric vector; ignored if x is a matrix. If x is a factor, y should be a factor of
the same length.

a logical indicating whether to apply continuity correction when computing the
test statistic for 2 by 2 tables: one half is subtracted from all |O — E| differences;
however, the correction will not be bigger than the differences themselves. No
correction is done if simulate.p.value = TRUE.

other arguments passed to the function chisq.test().

36 df_arrange

Examples

Data preparation
df <- as.table(rbind(c(762, 327, 468), c(484, 239, 477)))
dimnames(df) <- list(
gender = c("F", "M"),
party = c("Democrat”,"Independent”, "Republican”)
)
df
Compute cramer's V
cramer_v(df)

df_arrange Arrange Rows by Column Values

Description

Order the rows of a data frame by values of specified columns. Wrapper arround the arrange()
function. Supports standard and non standard evaluation.

Usage
df_arrange(data, ..., vars = NULL, .by_group = FALSE)
Arguments
data a data frame
One or more unquoted expressions (or variable names) separated by commas.
Used to select a variable of interest. Use desc() to sort a variable in descending
order.
vars a character vector containing the variable names of interest.
.by_group If TRUE, will sort first by grouping variable. Applies to grouped data frames
only.
Value

a data frame

Examples

df <- head(ToothGrowth)
df

Select column using standard evaluation
df %>% df_arrange(vars = c("dose”, "len"))

Select column using non-standard evaluation
df %>% df_arrange(dose, desc(len))

df_get_var_names 37

df_get_var_names Get User Specified Variable Names

Description

Returns user specified variable names. Supports standard and non standard evaluation.

Usage
df_get_var_names(data, ..., vars = NULL)
Arguments
data a data frame
One or more unquoted expressions (or variable names) separated by commas.
Used to select a variable of interest.
vars a character vector containing the variable names of interest.
Value

a character vector

Examples

Non standard evaluation
ToothGrowth %>%
df_get_var_names(dose, len)

Standard evaluation
ToothGrowth %>%

df_get_var_names(vars = c("len”, "dose"))
df_group_by Group a Data Frame by One or more Variables
Description

Group a data frame by one or more variables. Supports standard and non standard evaluation.

Usage

df_group_by(data, ..., vars = NULL)

38

Arguments

data

vars

Examples

df label both

a data frame

One or more unquoted expressions (or variable names) separated by commas.
Used to select a variable of interest.

a character vector containing the variable names of interest.

Non standard evaluation
by_dose <- head(ToothGrowth) %>%
df _group_by(dose)

by_dose

Standard evaluation
head(ToothGrowth) %>%
df_group_by(vars = c("dose”, "supp"))

df_label_both

Functions to Label Data Frames by Grouping Variables

Description

Functions to label data frame rows by one or multiple grouping variables.

Usage
df_label_both(data, ..., vars = NULL, label_col = "label”, sep = c(", ", ":"))
df_label_value(data, ..., vars = NULL, label_col = "label”, sep =", ")
Arguments
data a data frame
One or more unquoted expressions (or variable names) separated by commas.
Used as grouping variables.
vars a character vector containing the grouping variables of interest.
label_col column to hold the label of the data subsets. Default column name is "label".
sep String separating labelling variables and values. Should be of length 2 in the
function df _label_both(). 1) One sep is used to separate groups, for example
’.’; 2) The other sep between group name and levels; for example ’:’.
Value

a modified data frame with a column containing row labels.

df_nest_by 39

Functions

e df_label_both(): Displays both the variable name and the factor value.
» df_label_value(): Displays only the value of a factor.

Examples

Data preparation
df <- head(ToothGrowth)

Labelling: Non standard evaluation
df %>%
df_label_both(dose, supp)

Standard evaluation
df %>%
df_label_both(dose, supp)

Nesting the data then label each subset by groups
ToothGrowth %>%

df_nest_by(dose, supp) %>%

df_label_both(supp, dose)

df_nest_by Nest a Tibble By Groups

Description

Nest a tibble data frame using grouping specification. Supports standard and non standard evalua-

tion.
Usage
df_nest_by(data, ..., vars = NULL)
Arguments
data a data frame
One or more unquoted expressions (or variable names) separated by commas.
Used as grouping variables.
vars a character vector containing the grouping variables of interest.
Value

A tbl with one row per unique combination of the grouping variables. The first columns are the
grouping variables, followed by a list column of tibbles with matching rows of the remaining
columns.

40 df_select

Examples

Non standard evaluation
ToothGrowth %>%
df_nest_by(dose, supp)

Standard evaluation
ToothGrowth %>%
df_nest_by(vars = c("dose"”, "supp”))

df_select Select Columns in a Data Frame

Description

A wrapper around the select () function for selection data frame columns. Supports standard and
non standard evaluations. Usefull to easily program with dplyr

Usage
df_select(data, ..., vars = NULL)
Arguments
data a data frame
One or more unquoted expressions (or variable names) separated by commas.
Used to select a variable of interest.
vars a character vector containing the variable names of interest.
Value

a data frame

Examples

df <- head(ToothGrowth)
df

Select column using standard evaluation
df %>% df_select(vars = c("dose”, "len"))

Select column using non-standard evaluation
df %>% df_select(dose, len)

df_split_by 41

df_split_by Split a Data Frame into Subset

Description

Split a data frame by groups into subsets or data panel. Very similar to the function df _nest_by().
The only difference is that, it adds label to each data subset. Labels are the combination of the
grouping variable levels. The column holding labels are named "label".

Usage
df_split_by(
data,
vars = NULL,

label_col = "label”,
labeller = df_label_both,

sep = c(", ", ":")
)
Arguments

data a data frame
One or more unquoted expressions (or variable names) separated by commas.
Used as grouping variables.

vars a character vector containing the grouping variables of interest.

label_col column to hold the label of the data subsets. Default column name is "label".

labeller A function that takes a data frame, the grouping variables, label_col and la-

bel_sep arguments, and add labels into the data frame. Example of possible
values are: df _label_both() and df_label_value().

sep String separating labelling variables and values. Should be of length 2 in the
function df _label_both(). 1) One sep is used to separate groups, for example
’.’; 2) The other sep between group name and levels; for example ’:’.

Value

A tbl with one row per unique combination of the grouping variables. The first columns are the
grouping variables, followed by a list column of tibbles with matching rows of the remaining
columns, and a column named label, containing labels.

Examples
Split a data frame

Create a grouped data
res <- ToothGrowth %>%

42

df unite

df_split_by(dose, supp)

res

Show subsets
res$data

Add panel/subset labels
res <- ToothGrowth %>%
df_split_by(dose, supp)

res

df_unite

Unite Multiple Columns into One

Description

Paste together multiple columns into one. Wrapper arround unite() that supports standard and
non standard evaluation.

Usage

df_unite(data, col, ..., vars = NULL, sep = "_", remove = TRUE, na.rm = FALSE)

df_unite_factors(

data,

col,
*

vars

sep =
remove
na.rm

Arguments

data

col

vars
sep
remove

na.rm

TRUE,

a data frame
the name of the new column as a string or a symbol.

a selection of columns. One or more unquoted expressions (or variable names)
separated by commas.

a character vector containing the column names of interest.
Separator to use between values.
If TRUE, remove input columns from output data frame.

If TRUE, missing values will be removed prior to uniting each value.

doo 43

Functions

e df_unite(): Unite multiple columns into one.

e df_unite_factors(): Unite factor columns. First, order factors levels then merge them into
one column. The output column is a factor.

Examples

Non standard evaluation
head(ToothGrowth) %>%
df_unite(col = "dose_supp"”, dose, supp)

Standard evaluation
head(ToothGrowth) %>%

df_unite(col = "dose_supp”, vars = c("dose"”, "supp"))
doo Alternative to dplyr::do for Doing Anything
Description

Provides a flexible alternative to the dplyr:do() function. Technically it uses nest() + mutate()
+map() to apply arbitrary computation to a grouped data frame.

The output is a data frame. If the applied function returns a data frame, then the output will be
automatically unnested. Otherwise, the output includes the grouping variables and a column named
".results." (by default), which is a "list-columns" containing the results for group combinations.

Usage
doo(data, .f, ..., result = ".results."”)
Arguments
data a (grouped) data frame
f A function, formula, or atomic vector. For example ~t. test(len ~ supp, data
=.).
Additional arguments passed on to .f
result the column name to hold the results. Default is ".results.".
Value

a data frame

44 dunn_test

Examples

Custom function
YLD IS AL IS SIS AL AAIIALY
stat_test <- function(data, formula){
t.test(formula, data) %»>%
tidy()

}
Example 1: pipe-friendly stat_test().
Two possibilities of usage are available
H#%%%3%%%%%%%%%3%%3% %% %36 %% %67 %% %% %% %%
Use this
ToothGrowth %>%
group_by(dose) %>%
doo(~stat_test(data =., len ~ supp))

Or this

ToothGrowth %>%
group_by(dose) %>%
doo(stat_test, len ~ supp)

Example 2: R base function t.test() (not pipe friendly)
One possibility of usage
H#%%%%%%76%%6%% %% %% %% %6 %6 76%76 %676 %% %% %%
comparisons <- ToothGrowth %>%

group_by(dose) %>%

doo(~t.test(len ~ supp, data =.))
comparisons
comparisons$.results.

Example 3: R base function combined with tidy()
H#%%%3%%%%%%%%%3%%3% %% %6 %% 76%%6 %% %% %% %%
ToothGrowth %>%

group_by(dose) %>%

doo(~t.test(len ~ supp, data =.) %>% tidy())

dunn_test Dunn’s Test of Multiple Comparisons

Description
Performs Dunn’s test for pairwise multiple comparisons of the ranked data. The mean rank of the
different groups is compared. Used for post-hoc test following Kruskal-Wallis test.

The default of the rstatix: :dunn_test() function is to perform a two-sided Dunn test like the
well known commercial softwares, such as SPSS and GraphPad. This is not the case for some
other R packages (dunn.test and jamovi), where the default is to perform one-sided test. This
discrepancy is documented at https://github.com/kassambara/rstatix/issues/50.

Usage
dunn_test(data, formula, p.adjust.method = "holm"”, detailed = FALSE)

https://github.com/kassambara/rstatix/issues/50

dunn_test 45

Arguments
data a data.frame containing the variables in the formula.
formula a formula of the form x ~ group where x is a numeric variable giving the data

values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.

p.adjust.method
method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",
"bonferroni”, "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

detailed logical value. Default is FALSE. If TRUE, a detailed result is shown.

Details

DunnTest performs the post hoc pairwise multiple comparisons procedure appropriate to follow up a
Kruskal-Wallis test, which is a non-parametric analog of the one-way ANOVA. The Wilcoxon rank
sum test, itself a non-parametric analog of the unpaired t-test, is possibly intuitive, but inappropriate
as a post hoc pairwise test, because (1) it fails to retain the dependent ranking that produced the
Kruskal-Wallis test statistic, and (2) it does not incorporate the pooled variance estimate implied by
the null hypothesis of the Kruskal-Wallis test.

Value

return a data frame with some of the following columns:

e .y.: the y (outcome) variable used in the test.

* groupl, group2: the compared groups in the pairwise tests.

* n1,n2: Sample counts.

* estimate: mean ranks difference.

* estimatel, estimate2: show the mean rank values of the two groups, respectively.

* statistic: Test statistic (z-value) used to compute the p-value.

* p: p-value.

* p.adj: the adjusted p-value.

* method: the statistical test used to compare groups.

* p.signif, p.adj.signif: the significance level of p-values and adjusted p-values, respec-

tively.

The returned object has an attribute called args, which is a list holding the test arguments.

References

Dunn, O. J. (1964) Multiple comparisons using rank sums Technometrics, 6(3):241-252.

46 emmeans_test

Examples

Simple test
ToothGrowth %>% dunn_test(len ~ dose)

Grouped data

ToothGrowth %>%
group_by(supp) %>%
dunn_test(len ~ dose)

emmeans_test Pairwise Comparisons of Estimated Marginal Means

Description

Performs pairwise comparisons between groups using the estimated marginal means. Pipe-friendly
wrapper arround the functions emmans() + contrast() from the emmeans package, which need to
be installed before using this function. This function is useful for performing post-hoc analyses
following ANOVA/ANCOVA ftests.

Usage

emmeans_test(
data,
formula,
covariate = NULL,
ref.group = NULL,
comparisons = NULL,
p.adjust.method = "bonferroni”,
conf.level = 0.95,
model = NULL,
detailed = FALSE

get_emmeans(emmeans.test)

Arguments
data a data.frame containing the variables in the formula.
formula a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.
covariate (optional) covariate names (for ANCOVA)
ref.group a character string specifying the reference group. If specified, for a given group-

ing variable, each of the group levels will be compared to the reference group
(i.e. control group).

If ref.group = "all"”, pairwise two sample tests are performed for comparing
each grouping variable levels against all (i.e. basemean).

emmeans_test 47

comparisons A list of length-2 vectors specifying the groups of interest to be compared. For

example to compare groups "A" vs "B" and "B" vs "C", the argument is as
follow: comparisons = 1ist(c("A", "B"), c("B","C"))

p.adjust.method

method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

conf.level confidence level of the interval.

model a fitted-model objects such as the result of a call to 1m(), from which the overall

degrees of freedom are to be calculated.

detailed logical value. Default is FALSE. If TRUE, a detailed result is shown.

emmeans. test an object of class emmeans_test.

Value

return a data frame with some the following columns:

.y.: the y variable used in the test.

groupl, group2: the compared groups in the pairwise tests.
statistic: Test statistic (t.ratio) used to compute the p-value.
df: degrees of freedom.

p: p-value.

p.adj: the adjusted p-value.

method: the statistical test used to compare groups.

p.signif, p.adj.signif: the significance level of p-values and adjusted p-values, respec-
tively.

estimate: estimate of the effect size, that is the difference between the two emmeans (esti-
mated marginal means).

conf.low,conf.high: Lower and upper bound on a confidence interval of the estimate.

The returned object has an attribute called args, which is a list holding the test arguments. It has
also an attribute named "emmeans", a data frame containing the groups emmeans.

Functions

get_emmeans(): returns the estimated marginal means from an object of class emmeans_test

Examples

Data preparation
df <- ToothGrowth
df$dose <- as.factor(df$dose)

Pairwise comparisons
res <- df %>%

48

group_by (supp) %>%
emmeans_test(len ~ dose, p.adjust.method = "bonferroni”)
res

Display estimated marginal means
attr(res, "emmeans”)

Show details

eta_squared

df %>%
group_by (supp) %>%
emmeans_test(len ~ dose, p.adjust.method = "bonferroni”, detailed = TRUE)
eta_squared Effect Size for ANOVA
Description

Compute eta-squared and partial eta-squared for all terms in an ANOVA model.

Usage

eta_squared(model)

partial_eta_squared(model)

Arguments

model an object of class aov or anova.

Value

a numeric vector with the effect size statistics

Functions

* eta_squared(): compute eta squared

* partial_eta_squared(): compute partial eta squared.

Examples

Data preparation
df <- ToothGrowth
df$dose <- as.factor(df$dose)

Compute ANOVA
res.aov <- aov(len ~ suppxdose, data = df)
summary (res.aov)

Effect size
eta_squared(res.aov)
partial_eta_squared(res.aov)

factorial_design 49

factorial_design Build Factorial Designs for ANOVA

Description

Provides helper functions to build factorial design for easily computing ANOVA using the Anova()
function. This might be very useful for repeated measures ANOVA, which is hard to set up with the
car package.

Usage

factorial_design(data, dv, wid, between, within, covariate)

Arguments
data a data frame containing the variables
dv (numeric) dependent variable name.
wid (factor) column name containing individuals/subjects identifier. Should be unique
per individual.
between (optional) between-subject factor variables.
within (optional) within-subjects factor variables
covariate (optional) covariate names (for ANCOVA)
Value

a list with the following components:

* the specified arguments: dv, wid, between, within

* data: the original data (long format) or independent ANOVA. The wide format is returned for
repeated measures ANOVA.

* idata: an optional data frame giving the levels of factors defining the intra-subject model for
multivariate repeated-measures data.

* idesign: a one-sided model formula using the “data” in idata and specifying the intra-subject
design.

* repeated: logical. Value is TRUE when the data is a repeated design.
¢ Im_formula: the formula used to build the 1m model.

* Im_data: the data used to build the 1m model. Can be either in a long format (i.e., the orig-
inal data for independent measures ANOVA) or in a wide format (case of repeated measures
ANOVA).

¢ model: the 1m model

Author(s)

Alboukadel Kassambara, <alboukadel . kassambara@gmail. com>

50 fisher_test

See Also

anova_test(), anova_summary ()

Examples

Load data

data("ToothGrowth")
df <- ToothGrowth
head(df)

Repeated measures designs

Prepare the data

df$id <- rep(1:10, 6) # Add individuals id

head(df)

Build factorial designs

design <- factorial_design(df, dv = len, wid = id, within = c(supp, dose))

design

Easily perform repeated measures ANOVA using the car package

res.anova <- Anova(design$model, idata = design$idata, idesign = design$idesign, type = 3)
summary(res.anova, multivariate = FALSE)

Independent measures designs

Build factorial designs

df$id <- 1:nrow(df)

design <- factorial_design(df, dv = len, wid = id, between = c(supp, dose))
design

Perform ANOVA

Anova(design$model, type = 3)

fisher_test Fisher’s Exact Test for Count Data

Description

Performs Fisher’s exact test for testing the null of independence of rows and columns in a contin-
gency table.

Wrappers around the R base function fisher.test() but have the advantage of performing pair-
wise and row-wise fisher tests, the post-hoc tests following a significant chi-square test of homo-
geneity for 2xc and rx2 contingency tables.

Usage

fisher_test(
xtab,

fisher_test

51

workspace = 2e+0@5,
alternative = "two.sided",
conf.int = TRUE,
conf.level = 0.95,
simulate.p.value = FALSE,

B = 2000,

detailed = FALSE,

)

pairwise_fisher_test(xtab, p.adjust.method = "holm", detailed = FALSE, ...)

row_wise_fisher_test(xtab, p.adjust.method = "holm"”, detailed = FALSE, ...)

Arguments

xtab a contingency table in a matrix form.

workspace an integer specifying the size of the workspace used in the network algorithm. In
units of 4 bytes. Only used for non-simulated p-values larger than 2 x 2 tables.
This also increases the internal stack size which allows larger problems to be
solved, sometimes needing hours. In such cases, simulate.p.values = TRUE
may be more reasonable.

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater”
or "less". You can specify just the initial letter. Only used in the 2 x 2 case.

conf.int logical indicating if a confidence interval for the odds ratio in a 2 x 2 table should
be computed (and returned).

conf.level confidence level for the returned confidence interval. Only used in the 2 x 2 case

and if conf.int = TRUE.

simulate.p.value

detailed

p.adjust.method

Value

a logical indicating whether to compute p-values by Monte Carlo simulation, in
larger than 2 x 2 tables.

an integer specifying the number of replicates used in the Monte Carlo test when
simulate.p.value is true.

logical value. Default is FALSE. If TRUE, a detailed result is shown.

Other arguments passed to the function fisher_test().

method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",
"bonferroni”, "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

return a data frame with some the following columns:

* group: the categories in the row-wise proportion tests.

* p: p-value.

52 fisher_test

* p.adj: the adjusted p-value.
e method: the used statistical test.

* p.signif, p.adj.signif: the significance level of p-values and adjusted p-values, respec-
tively.

* estimate: an estimate of the odds ratio. Only present in the 2 by 2 case.

* alternative: a character string describing the alternative hypothesis.

* conf.low,conf.high: a confidence interval for the odds ratio. Only present in the 2 by 2

case and if argument conf.int = TRUE.

The returned object has an attribute called args, which is a list holding the test arguments.

Functions

* fisher_test(): performs Fisher’s exact test for testing the null of independence of rows
and columns in a contingency table with fixed marginals. Wrapper around the function
fisher.test().

* pairwise_fisher_test(): pairwise comparisons between proportions, a post-hoc tests fol-
lowing a significant Fisher’s exact test of homogeneity for 2xc design.

e row_wise_fisher_test(): performs row-wise Fisher’s exact test of count data, a post-hoc
tests following a significant chi-square test of homogeneity for rx2 contingency table. The test
is conducted for each category (row).

Examples

Comparing two proportions

BUALL L L LSS LA AL L L LSS LA LS L L AL L LSS LA AL L L LLY

Data: frequencies of smokers between two groups
xtab <- as.table(rbind(c(490, 10), c(400, 100)))
dimnames(xtab) <- list(

group = c("grp1”, "grp2"),

smoker = c("yes"”, "no")
)
xtab
compare the proportion of smokers
fisher_test(xtab, detailed = TRUE)

Homogeneity of proportions between groups

BT e 4 A A IO IO T T T T T e o o A A A)
0/0/0.

HO: the proportion of smokers is similar in the four groups
Ha: this proportion is different in at least one of the populations.
#
Data preparation
grp.size <- c(106, 113, 156, 102)
smokers <- c(50, 100, 139, 80)
no.smokers <- grp.size - smokers
xtab <- as.table(rbind(
smokers,
no.smokers

)

freq_table 53

dimnames(xtab) <- list(

Smokers = c("Yes"”, "No"),

Groups = c("grpl”, "grp2”, "grp3”, "grp4")
)
xtab

Compare the proportions of smokers between groups
fisher_test(xtab, detailed = TRUE)

Pairwise comparison between groups
pairwise_fisher_test(xtab)

Pairwise proportion tests
YL AL IS SIS SIS I LRSI LIS,
Data: Titanic
xtab <- as.table(rbind(
c(122, 167, 528, 673),
c(203, 118, 178, 212)

))
dimnames(xtab) <- list(
Survived = c("No"”, "Yes"),
Class = c("1st”, "2nd"”, "3rd"”, "Crew”)
)
xtab

Compare the proportion of survived between groups
pairwise_fisher_test(xtab)

Row-wise proportion tests
YL IS IS SIS IS IS LIS I ARSI LIALY,
Data: Titanic
xtab <- as.table(rbind(
c(180, 145), c(179, 106),
c(510, 196), c(862, 23)
)
dimnames(xtab) <- list(
Class = c("1st”, "2nd", "3rd", "Crew"),
Gender = c("Male”, "Female")
)
xtab
Compare the proportion of males and females in each category
row_wise_fisher_test(xtab)

A r x c table Agresti (2002, p. 57) Job Satisfaction
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,
dimnames = list(income = c("< 15k", "15-25k", "25-40k", "> 40k"),
satisfaction = c("VeryD"”, "LittleD"”, "ModerateS", "VeryS")))
fisher_test(Job)
fisher_test(Job, simulate.p.value = TRUE, B = 1e5)

54 friedman_effsize

freqg_table Compute Frequency Table

Description

compute frequency table.

Usage
freg_table(data, ..., vars = NULL, na.rm = TRUE)
Arguments
data a data frame
One or more unquoted expressions (or variable names) separated by commas.
Used to specify variables of interest.
vars optional character vector containing variable names.
na.rm logical value. If TRUE (default), remove missing values in the variables used to
create the frequency table.
Value

a data frame

Examples

data("ToothGrowth")
ToothGrowth %>% freq_table(supp, dose)

friedman_effsize Friedman Test Effect Size (Kendall’s W Value)

Description

Compute the effect size estimate (referred to as w) for Friedman test: W = X2/N(K-1); where W is the
Kendall’s W value; X2 is the Friedman test statistic value; N is the sample size. k is the number of
measurements per subject.

The Kendall’s W coefficient assumes the value from O (indicating no relationship) to 1 (indicating
a perfect relationship).

Kendalls uses the Cohen’s interpretation guidelines of @.1 - < @. 3 (small effect), 0.3 - < 0.5 (mod-
erate effect) and >= 0.5 (large effect)

Confidence intervals are calculated by bootstap.

friedman_ effsize 55

Usage
friedman_effsize(
data,
formula,
ci = FALSE,
conf.level = 0.95,
ci.type = "perc”,
nboot = 1000,
)
Arguments
data a data.frame containing the variables in the formula.
formula a formula of the form a ~b | ¢, where a (numeric) is the dependent variable
name; b is the within-subjects factor variables; and c (factor) is the column name
containing individuals/subjects identifier. Should be unique per individual.
ci If TRUE, returns confidence intervals by bootstrap. May be slow.
conf.level The level for the confidence interval.
ci.type The type of confidence interval to use. Can be any of "norm", "basic", "perc",
or "bca". Passed to boot: :boot.ci.
nboot The number of replications to use for bootstrap.
other arguments passed to the function friedman.test()
Value

return a data frame with some of the following columns:

e .y.: the y variable used in the test.

* n: Sample counts.

» effsize: estimate of the effect size.
* magnitude: magnitude of effect size.

* conf.low,conf.high: lower and upper bound of the effect size confidence interval.

References

Maciej Tomczak and Ewa Tomczak. The need to report effect size estimates revisited. An overview
of some recommended measures of effect size. Trends in Sport Sciences. 2014; 1(21):19-25.

Examples

Load data

data("ToothGrowth")

df <- ToothGrowth %>%
filter(supp == "VC") %>%
mutate(id = rep(1:10, 3))

56 friedman_ test

head(df)
Friedman test effect size

df %>% friedman_effsize(len ~ dose | id)

friedman_test Friedman Rank Sum Test

Description

Provides a pipe-friendly framework to perform a Friedman rank sum test, which is the non-parametric
alternative to the one-way repeated measures ANOVA test. Wrapper around the function friedman.test().
Read more: Friedman test in R.

Usage
friedman_test(data, formula, ...)
Arguments
data a data.frame containing the variables in the formula.
formula a formula of the form a ~b | ¢, where a (numeric) is the dependent variable
name; b is the within-subjects factor variables; and c (factor) is the column name
containing individuals/subjects identifier. Should be unique per individual.
other arguments to be passed to the function friedman. test.
Value

return a data frame with the following columns:

* .y.: the y (dependent) variable used in the test.

* n: sample count.

* statistic: the value of Friedman’s chi-squared statistic, used to compute the p-value.
* p: p-value.

* method: the statistical test used to compare groups.

Examples

Load data

data("ToothGrowth")

df <- ToothGrowth %>%
filter(supp == "VC") %>%
mutate(id = rep(1:10, 3))

head(df)

https://www.datanovia.com/en/lessons/friedman-test-in-r/

games_howell_test 57

Friedman rank sum test

df %>% friedman_test(len ~ dose | id)

games_howell_test Games Howell Post-hoc Tests

Description

Performs Games-Howell test, which is used to compare all possible combinations of group differ-
ences when the assumption of homogeneity of variances is violated. This post hoc test provides
confidence intervals for the differences between group means and shows whether the differences
are statistically significant.

The test is based on Welch’s degrees of freedom correction and uses Tukey’s studentized range
distribution for computing the p-values. The test compares the difference between each pair of
means with appropriate adjustment for the multiple testing. So there is no need to apply additional
p-value corrections.

Usage

games_howell_test(data, formula, conf.level = 0.95, detailed = FALSE)

Arguments
data a data.frame containing the variables in the formula.
formula a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.
conf.level confidence level of the interval.
detailed logical value. Default is FALSE. If TRUE, a detailed result is shown.
Details

The Games-Howell method is an improved version of the Tukey-Kramer method and is applicable
in cases where the equivalence of variance assumption is violated. It is a t-test using Welch’s degree
of freedom. This method uses a strategy for controlling the type I error for the entire comparison
and is known to maintain the preset significance level even when the size of the sample is different.
However, the smaller the number of samples in each group, the it is more tolerant the type I error
control. Thus, this method can be applied when the number of samples is six or more.

58 get_comparisons

Value

return a data frame with some of the following columns:

e .y.: the y (outcome) variable used in the test.

* groupl, group2: the compared groups in the pairwise tests.

* n1,n2: Sample counts.

e estimate, conf.low, conf.high: mean difference and its confidence intervals.
* statistic: Test statistic (t-value) used to compute the p-value.

 df: degrees of freedom calculated using Welch’s correction.

* p.adj: adjusted p-value using Tukey’s method.

* method: the statistical test used to compare groups.

* p.adj.signif: the significance level of p-values.

The returned object has an attribute called args, which is a list holding the test arguments.

References

* Aaron Schlege, https://rpubs.com/aaronsc32/games-howell-test.

» Sangseok Lee, Dong Kyu Lee. What is the proper way to apply the multiple comparison test?.
Korean J Anesthesiol. 2018;71(5):353-360.

Examples

Simple test
ToothGrowth %>% games_howell_test(len ~ dose)

Grouped data

ToothGrowth %>%
group_by(supp) %>%
games_howell_test(len ~ dose)

get_comparisons Create a List of Possible Comparisons Between Groups

Description
Create a list of possible pairwise comparisons between groups. If a reference group is specified,
only comparisons against reference will be kept.

Usage

get_comparisons(data, variable, ref.group = NULL)

get_mode 59

Arguments
data a data frame
variable the grouping variable name. Can be unquoted.
ref.group a character string specifying the reference group. Can be unquoted. If numeric,
then it should be quoted. If specified, for a given grouping variable, each of the
group levels will be compared to the reference group (i.e. control group).
If ref.group = "all"”, pairwise comparisons are performed between each group-
ing variable levels against all (i.e. basemean).
Value

a list of all possible pairwise comparisons.

Examples

All possible pairwise comparisons
ToothGrowth %>%
get_comparisons(”dose")

Comparisons against reference groups
ToothGrowth %>%
get_comparisons(”dose”, ref.group = "0.5")

Comparisons against all (basemean)
ToothGrowth %>%

get_comparisons(”dose”, ref.group = "all")
get_mode Compute Mode
Description

Compute the mode in a given vector. Mode is the most frequent value.

Usage

get_mode(x)

Arguments

X a vector. Can be numeric, factor or character vector.

60 get_pwec_label

Examples

Mode of numeric vector
x <- ¢(1:5, 6, 6, 7:10)
get_mode (x)

Bimodal
x <- ¢c(1:5, 6, 6, 7, 8, 9, 9, 10)
get_mode (x)

No mode
x <- c(1, 2, 3, 4, 5)
get_mode(x)

Nominal vector
fruits <- c(rep(”"orange”, 10), rep("apple”, 5), rep(”"lemon”, 2))
get_mode(fruits)

get_pwc_label Extract Label Information from Statistical Tests

Description

Extracts label information from statistical tests. Useful for labelling plots with test outputs.

Usage

get_pwc_label(stat.test, type = c("expression”, "text"))

get_test_label(

stat. test,

description = NULL,

p.col = "p",

type = c("expression”, "text"),

correction = c("auto”, "GG", "HF", "none"),
row = NULL,

detailed = FALSE

create_test_label(
statistic.text,
statistic,
P,
parameter = NA,
description = NULL,
n = NA,
effect.size = NA,
effect.size.text = NA,
type = c("expression”, "text"),

get_pwc_label

61

detailed = FALSE

get_n(stat.test)

get_description(stat.test)

Arguments
stat. test
type

description

p.col

correction

row

detailed

statistic.text

statistic

p
parameter

n

effect.size

statistical test results returned by rstatix functions.

the label type. Can be one of "text" and "expression". Partial match allowed.
If you want to add the label onto a ggplot, it might be useful to specify type =
"expresion”.

the test description used as the prefix of the label. Examples of description are
"ANOVA", "Two Way ANOVA". To remove the default description, specify
description = NULL. If missing, we’ll try to guess the statistical test default
description.

nn

character specifying the column containing the p-value. Default is "p”, can be
n p . adj n .

character, considered only in the case of ANOVA test. Which sphericity cor-
rection of the degrees of freedom should be reported for the within-subject
factors (repeated measures). The default is set to "GG" corresponding to the
Greenhouse-Geisser correction. Possible values are "GG", "HF" (i.e., Hyunh-
Feldt correction), "none” (i.e., no correction) and "auto” (apply automatically
GG correction if the sphericity assumption is not for within-subject design.

numeric, the row index to be considered. If NULL, the last row is automatically
considered for ANOVA test.

logical value. If TRUE, returns detailed label.

character specifying the test statistic. For example statistic.text = "F" (for
ANOVA test); statistic.text = "t" (for t-test).

the numeric value of a statistic.
the p-value of the test.

string containing the degree of freedom (if exists). Default is NA to accommodate
non-parametric tests. For example parameter = "1,9" (for ANOVA test. Two
parameters exist: DFn and DFd); sparameter = "9" (for t-test).

sample count, example: n = 10.

the effect size value

effect.size.text

Value

a character specifying the relevant effect size. For example, for Cohens d statis-
tic, effect.size.text = "d"”. You can also use plotmath expression as follow
quote(italic("d")).

a text label or an expression to pass to a plotting function.

62 get_pwec_label

Functions
» get_pwc_label(): Extract label from pairwise comparisons.
e get_test_label(): Extract labels for statistical tests.
* create_test_label(): Create labels from user specified test results.
* get_n(): Extracts sample counts (n) from an rstatix test outputs. Returns a numeric vector.

* get_description(): Extracts the description of an rstatix test outputs. Returns a character
vector.

Examples

Load data

data("ToothGrowth")
df <- ToothGrowth

One-way ANOVA test

anov <- df %>% anova_test(len ~ dose)
get_test_label(anov, detailed = TRUE, type = "text")

Two-way ANOVA test

anov <- df %>% anova_test(len ~ supp*dose)

get_test_label(anov, detailed = TRUE, type = "text",
description = "Two Way ANOVA")

Kruskal-Wallis test

kruskal<- df %>% kruskal_test(len ~ dose)
get_test_label(kruskal, detailed = TRUE, type = "text")

Wilcoxon test

Unpaired test

wilcox <- df %>% wilcox_test(len ~ supp)
get_test_label(wilcox, detailed = TRUE, type = "text")
Paired test

wilcox <- df %>% wilcox_test(len ~ supp, paired = TRUE)
get_test_label(wilcox, detailed = TRUE, type = "text")
T test

ttest <- df %>% t_test(len ~ dose)
get_test_label(ttest, detailed = TRUE, type = "text")

Pairwise comparisons labels

get_pwc_label(ttest, type = "text")

get_summary_stats 63

Create test labels

create_test_label(
statistic.text = "F", statistic = 71.82,
parameter = "4, 294",
p = "<0.0001",
description = "ANOVA",
type = "text”

Extract infos

stat.test <- df %>% t_test(len ~ dose)
get_n(stat.test)
get_description(stat.test)

get_summary_stats Compute Summary Statistics

Description

Compute summary statistics for one or multiple numeric variables.

Usage

get_summary_stats(
data,

Cel,
type = c("full”, "common”, "robust”, "five_number”, "mean_sd", "mean_se", "mean_ci”,

"median_iqr"”, "median_mad", "quantile”, "mean"”, "median”, "min”, "max"),
show = NULL,
probs = seq(@, 1, 0.25)
)
Arguments
data a data frame
(optional) One or more unquoted expressions (or variable names) separated by
commas. Used to select a variable of interest. If no variable is specified, then
the summary statistics of all numeric variables in the data frame is computed.
type type of summary statistics. Possible values include: "full”, "common”, "robust”,

"five_number”, "mean_sd”, "mean_se", "mean_ci”, "median_iqgr"”, "median_mad",

n n

"quantile”, "mean”, "median”, "min", "max

64 get_summary_stats

show a character vector specifying the summary statistics you want to show. Example:
show =c("n", "mean”, "sd"). This is used to filter the output after computa-
tion.
probs numeric vector of probabilities with values in [0,1]. Used only when type =
"quantile".
Value

A data frame containing descriptive statistics, such as:

* n: the number of individuals

* min: minimum

* max: maximum

¢ median: median

* mean: mean

* ql, q3: the first and the third quartile, respectively.
* iqr: interquartile range

* mad: median absolute deviation (see ZMAD)

* sd: standard deviation of the mean

* se: standard error of the mean

* ci: 95 percent confidence interval of the mean

Examples

Full summary statistics
data("ToothGrowth")
ToothGrowth %>% get_summary_stats(len)

Summary statistics of grouped data

Show only common summary

ToothGrowth %>%
group_by(dose, supp) %>%
get_summary_stats(len, type = "common")

Robust summary statistics
ToothGrowth %>% get_summary_stats(len, type = "robust”)

Five number summary statistics
ToothGrowth %>% get_summary_stats(len, type

"five_number")

Compute only mean and sd
ToothGrowth %>% get_summary_stats(len, type = "mean_sd")

Compute full summary statistics but show only mean, sd, median, iqgr
ToothGrowth %>%
get_summary_stats(len, show = c("mean”, "sd", "median”, "iqr"))

get_y_position 65

get_y_position Autocompute P-value Positions For Plotting Significance

Description

Compute p-value x and y positions for plotting significance levels. Many examples are provided at

* How to Add P-Values onto a Grouped GGPLOT using the GGPUBR R Package
* How to Add Adjusted P-values to a Multi-Panel GGPlot
* How to Add P-Values Generated Elsewhere to a GGPLOT

Usage

get_y_position(
data,
formula,
fun = "max",
ref.group = NULL,
comparisons = NULL,
step.increase = 0.12,
y.trans = NULL,
stack = FALSE,
scales = c("fixed", "free", "free_y")

)

add_y_position(
test,
fun = "max",
step.increase = 0.12,
data = NULL,
formula = NULL,
ref.group = NULL,
comparisons = NULL,
y.trans = NULL,
stack = FALSE,
scales = c("fixed", "free", "free_y")

)
add_x_position(test, x = NULL, group = NULL, dodge = 0.8)

add_xy_position(
test,
x = NULL,
group = NULL,
dodge = 0.8,

https://www.datanovia.com/en/blog/how-to-add-p-values-onto-a-grouped-ggplot-using-the-ggpubr-r-package/
https://www.datanovia.com/en/blog/ggpubr-how-to-add-adjusted-p-values-to-a-multi-panel-ggplot/
https://www.datanovia.com/en/blog/ggpubr-how-to-add-p-values-generated-elsewhere-to-a-ggplot/

66 get_y_position

stack = FALSE,

fun = "max”,

step.increase = 0.12,

scales = c("fixed", "free", "free_y"),

Arguments

data a data.frame containing the variables in the formula.

formula a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.

fun summary statistics functions used to compute automatically suitable y posi-
tions of p-value labels and brackets. Possible values include: "max”, "mean”,
"mean_sd", "mean_se"”, "mean_ci"”, "median”, "median_iqr", "median_mad".

For example, if fun = "max”, the y positions are guessed as follow:

¢ 1. Compute the maximum of each group (groups.maximum)
* 2. Use the highest groups maximum as the first bracket y position
* 3. Add successively a step increase for remaining bracket y positions.

When the main plot is a boxplot, you need the option fun = "max”, to have the
p-value bracket displayed at the maximum point of the group.

In some situations the main plot is a line plot or a barplot showing the mean+/-error
bars of the groups, where error can be SE (standard error), SD (standard devi-
ation) or CI (confidence interval). In this case, to correctly compute the bracket

y position you need the option fun = "mean_se", etc.

ref.group a character string specifying the reference group. If specified, for a given group-
ing variable, each of the group levels will be compared to the reference group
(i.e. control group).

comparisons A list of length-2 vectors specifying the groups of interest to be compared. For
example to compare groups "A" vs "B" and "B" vs "C", the argument is as
follow: comparisons = list(c("A", "B"), c("B","C"))

step.increase numeric vector with the increase in fraction of total height for every additional
comparison to minimize overlap.

y.trans a function for transforming y axis scale. Value can be log2, 1log10 and sqrt.
Can be also any custom function that can take a numeric vector as input and
returns a numeric vector, example: y.trans = function(x){log2(x+1)}

stack logical. If TRUE, computes y position for a stacked plot. Useful when dealing
with stacked bar plots.

scales Should scales be fixed ("fixed", the default), free ("free"), or free in one di-
mension ("free_y")?. This option is considered only when determining the
y position. If the specified value is "free” or "free_y", then the step in-
crease of y positions will be calculated by plot panels. Note that, using "free"
or "free_y" gives the same result. A global step increase is computed when
scales = "fixed".

identity_outliers 67

test an object of class rstatix_test as returned by t_test(), wilcox_test(),
sign_test(), tukey_hsd(), dunn_test().

X variable on x axis.
group group variable (legend variable).
dodge dodge width for grouped ggplot/test. Default is 0.8. Used only when x specified.

other arguments to be passed to the function t. test.

Functions

* get_y_position(): compute the p-value y positions
* add_y_position(): add p-value y positions to an object of class rstatix_test
* add_x_position(): compute and add p-value x positions.

* add_xy_position(): compute and add both x and y positions.

Examples

Data preparation

df <- ToothGrowth

df$dose <- as.factor(df$dose)
df$group <- factor(rep(c(1, 2), 30))
head(df)

Stat tests
stat.test <- df %>%

t_test(len ~ dose)
stat.test

Add the test into box plots

stat.test <- stat.test %>%
add_y_position()

if(require("ggpubr”)){
ggboxplot(df, x = "dose”, y = "len") +
stat_pvalue_manual(stat.test, label = "p.adj.signif"”, tip.length = 0.01)

identify_outliers Identify Univariate Outliers Using Boxplot Methods

68 identify_outliers

Description

Detect outliers using boxplot methods. Boxplots are a popular and an easy method for identifying
outliers. There are two categories of outlier: (1) outliers and (2) extreme points.

Values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR are considered as outliers. Values above Q3 +
3xIQR or below Q1 - 3xIQR are considered as extreme points (or extreme outliers).

Q1 and Q3 are the first and third quartile, respectively. IQR is the interquartile range (IQR = Q3 -
QD).

Generally speaking, data points that are labelled outliers in boxplots are not considered as trouble-
some as those considered extreme points and might even be ignored. Note that, any NA and NaN are
automatically removed before the quantiles are computed.

Usage
identify_outliers(data, ..., variable = NULL)
is_outlier(x, coef = 1.5)

is_extreme(x)

Arguments
data a data frame
One unquoted expressions (or variable name). Used to select a variable of inter-
est. Alternative to the argument variable.
variable variable name for detecting outliers
X a numeric vector
coef coefficient specifying how far the outlier should be from the edge of their box.
Possible values are 1.5 (for outlier) and 3 (for extreme points only). Default is
1.5
Value

e identify_outliers(). Returns the input data frame with two additional columns: "is.outlier’
and "is.extreme", which hold logical values.

e is_outlier() and is_extreme(). Returns logical vectors.

Functions

e identify_outliers(): takes a data frame and extract rows suspected as outliers according
to a numeric column. The following columns are added "is.outlier" and "is.extreme".

e is_outlier(): detect outliers in a numeric vector. Returns logical vector.

* is_extreme(): detect extreme points in a numeric vector. An alias of is_outlier(), where
coef = 3. Returns logical vector.

kruskal_effsize

Examples

Generate a demo data

set.seed(123)

demo.data <- data.frame(
sample = 1:20,
score = c(rnorm(19, mean = 5, sd = 2), 50),
gender = rep(c("Male”, "Female"), each = 10)

)

Identify outliers according to the variable score

demo.data %>%
identify_outliers(score)

Identify outliers by groups

demo.data %>%
group_by(gender) %>%
identify_outliers(”score")

69

kruskal_effsize Kruskal-Wallis Effect Size

Description

Compute the effect size for Kruskal-Wallis test as the eta squared based on the H-statistic: eta2[H]
= (H-k+1)/(n-k); where H is the value obtained in the Kruskal-Wallis test; k is the number of

groups; n is the total number of observations.

The eta-squared estimate assumes values from 0 to 1 and multiplied by 100 indicates the percentage
of variance in the dependent variable explained by the independent variable. The interpretation
values commonly in published litterature are: @.01- < .06 (small effect), @.06 - < @.14 (moderate

effect) and >= 0. 14 (large effect).

Confidence intervals are calculated by bootstap.

Usage

kruskal_effsize(
data,
formula,
ci = FALSE,
conf.level = 0.95,
ci.type = "perc”,
nboot = 1000

Arguments

data a data.frame containing the variables in the formula.

70

formula

ci
conf.level

ci.type

nboot

Value

kruskal_effsize

a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.

If TRUE, returns confidence intervals by bootstrap. May be slow.
The level for the confidence interval.

non

The type of confidence interval to use. Can be any of "norm", "basic", "perc",
or "beca". Passed to boot: :boot.ci.

The number of replications to use for bootstrap.

return a data frame with some of the following columns:

* .y.: the y variable used in the test.

* n: Sample counts.

e effsize: estimate of the effect size.

* magnitude: magnitude of effect size.

* conf.low,conf.high: lower and upper bound of the effect size confidence interval.

References

Maciej Tomczak and Ewa Tomczak. The need to report effect size estimates revisited. An overview
of some recommended measures of effect size. Trends in Sport Sciences. 2014; 1(21):19-25.

http://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize

http://www.psy.gla.ac.uk/~steve/best/effect.html

Examples

Load data

data("ToothGrowth")

df <- ToothGrowth

Kruskal-wallis rank sum test

df %>% kruskal_effsize(len ~ dose)

Grouped data

df %>%

group_by(supp) %>%
kruskal_effsize(len ~ dose)

kruskal test 71

kruskal_test Kruskal-Wallis Test

Description

Provides a pipe-friendly framework to perform Kruskal-Wallis rank sum test. Wrapper around the
function kruskal . test().

Usage
kruskal_test(data, formula, ...)
Arguments
data a data.frame containing the variables in the formula.
formula a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.
other arguments to be passed to the function kruskal. test.
Value

return a data frame with the following columns:

e .y.: the y variable used in the test.

* n: sample count.

* statistic: the kruskal-wallis rank sum statistic used to compute the p-value.
* p: p-value.

* method: the statistical test used to compare groups.

Examples

Load data

data("ToothGrowth")
df <- ToothGrowth

Kruskal-wallis rank sum test
df %>% kruskal_test(len ~ dose)
Grouped data

df %>%

group_by (supp) %>%
kruskal_test(len ~ dose)

72 levene_test

levene_test Levene’s Test

Description

Provide a pipe-friendly framework to easily compute Levene’s test for homogeneity of variance
across groups.

Wrapper around the function leveneTest (), which can additionally handles a grouped data.

Usage

levene_test(data, formula, center = median)

Arguments
data a data frame for evaluating the formula or a model
formula a formula
center The name of a function to compute the center of each group; mean gives the
original Levene’s test; the default, median, provides a more robust test.
Value

a data frame with the following columns: df1, df2 (df.residual), statistic and p.

Examples

Prepare the data
data("ToothGrowth")

df <- ToothGrowth

df$dose <- as.factor(df$dose)
Compute Levene's Test

df %>% levene_test(len ~ dose)

Grouped data

df %>%
group_by (supp) %>%
levene_test(len ~ dose)

mahalanobis_distance 73

mahalanobis_distance Compute Mahalanobis Distance and Flag Multivariate Outliers

Description

Pipe-friendly wrapper around to the function mahalanobis(), which returns the squared Maha-
lanobis distance of all rows in x. Compared to the base function, it automatically flags multivariate
outliers.

Mahalanobis distance is a common metric used to identify multivariate outliers. The larger the
value of Mahalanobis distance, the more unusual the data point (i.e., the more likely it is to be a
multivariate outlier).

The distance tells us how far an observation is from the center of the cloud, taking into account the
shape (covariance) of the cloud as well.

To detect outliers, the calculated Mahalanobis distance is compared against a chi-square (X"2)
distribution with degrees of freedom equal to the number of dependent (outcome) variables and an
alpha level of 0.001.

The threshold to declare a multivariate outlier is determined using the function qchisq(@.999, df)
, where df is the degree of freedom (i.e., the number of dependent variable used in the computation).

Usage
mahalanobis_distance(data, ...)
Arguments
data a data frame. Columns are variables.
One unquoted expressions (or variable name). Used to select a variable of inter-
est. Can be also used to ignore a variable that are not needed for the computation.
For example specify -id to ignore the id column.
Value

Returns the input data frame with two additional columns: 1) "mahal.dist": Mahalanobis distance
values; and 2) "is.outlier": logical values specifying whether a given observation is a multivariate
outlier

Examples

Compute mahalonobis distance and flag outliers if any
iris %>%
doo(~mahalanobis_distance(.))

Compute distance by groups and filter outliers
iris %>%

group_by(Species) %>%
doo(~mahalanobis_distance(.)) %>%

74 make_clean names

filter(is.outlier == TRUE)

make_clean_names Make Clean Names

Description

Pipe-friendly function to make syntactically valid names out of character vectors.

Usage

make_clean_names(data)

Arguments

data a data frame or vector

Value

a data frame or a vector depending on the input data

Examples

Vector
make_clean_names(c(”a and b", "a-and-b"))
make_clean_names(1:10)

data frame

df <- data.frame(

“a and bT = 1:4,

“c and d° = 5:8,
check.names = FALSE
)

df
make_clean_names (df)

mcnemar_test 75

mcnemar_test McNemar’s Chi-squared Test for Count Data

Description

Performs McNemar chi-squared test to compare paired proportions.

Wrappers around the R base function mcnemar . test (), but provide pairwise comparisons between
multiple groups

Usage

mcnemar_test(x, y = NULL, correct = TRUE)

pairwise_mcnemar_test(

data,
formula,
type = c("mcnemar”, "exact"),
correct = TRUE,
p.adjust.method = "bonferroni”
)
Arguments
X either a two-dimensional contingency table in matrix form, or a factor object.
y a factor object; ignored if x is a matrix.
correct a logical indicating whether to apply continuity correction when computing the
test statistic.
data a data frame containing the variables in the formula.
formula a formula of the form a ~ b | ¢, where a is the outcome variable name; b is the
within-subjects factor variables; and c (factor) is the column name containing
individuals/subjects identifier. Should be unique per individual.
type type of statistical tests used for pairwise comparisons. Allowed values are one

of c("mcnemar”, "exact").

p.adjust.method
method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",
"bonferroni”, "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

Value
return a data frame with the following columns:

* n: the number of participants.

e statistic: the value of McNemar’s statistic.

76 mcnemar._test

 df the degrees of freedom of the approximate chi-squared distribution of the test statistic.
* p: p-value.

* p.adj: the adjusted p-value.

method: the used statistical test.

* p.signif: the significance level of p-values.

The returned object has an attribute called args, which is a list holding the test arguments.

Functions

e mcnemar_test(): performs McNemar’s chi-squared test for comparing two paired propor-
tions

* pairwise_mcnemar_test(): performs pairwise McNemar’s chi-squared test between multi-
ple groups. Could be used for post-hoc tests following a significant Cochran’s Q test.

Examples

Comparing two paired proportions

ELAA A AR AR TR A TR TR A T TR A A T T TR A e TR A T e A4

Data: frequencies of smokers before and after interventions
xtab <- as.table(
rbind(c(25, 6), c(21,10))

)

dimnames(xtab) <- list(
before = c("non.smoker"”, "smoker"),
after = c("non.smoker”, "smoker")

)

xtab

Compare the proportion of smokers
mcnemar_test(xtab)

Comparing multiple related proportions

E I ARSI AT TR AT TR A AT T TR A T TR A T T A A T T A A A T

Generate a demo data
mydata <- data.frame(
outcome = c(0,1,1,0,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,1),
treatment = gl1(3,1,30,labels=LETTERS[1:3]),
participant = gl(10,3,labels=letters[1:10])
)
mydata$outcome <- factor(
mydata$outcome, levels = c(1, 0),
labels = c("success"”, "failure")
)
Cross-tabulation
xtabs(~outcome + treatment, mydata)

Compare the proportion of success between treatments
cochran_qtest(mydata, outcome ~ treatment|participant)

pairwise comparisons between groups

multinom_test 77

pairwise_mcnemar_test(mydata, outcome ~ treatment|participant)

multinom_test Exact Multinomial Test

Description
Performs an exact multinomial test. Alternative to the chi-square test of goodness-of-fit-test when
the sample size is small.

Usage

multinom_test(x, p = rep(1/length(x), length(x)), detailed = FALSE)

Arguments
X numeric vector containing the counts.
p a vector of probabilities of success. The length of p must be the same as the
number of groups specified by x, and its elements must be greater than 0 and
less than 1.
detailed logical value. Default is FALSE. If TRUE, a detailed result is shown.
Value

return a data frame containing the p-value and its significance.

The returned object has an attribute called args, which is a list holding the test arguments.

See Also

binom_test

Examples
Data
tulip <- c(red = 81, yellow = 50, white = 27)

Question 1: are the color equally common ?

ErT AT TR T TR A A A A A A T T T T T T T T 4 4 4 A A A 40 T T Y T T
l0/o/o

this is a test of homogeneity
res <- multinom_test(tulip)
res

attr(res, "descriptives”)

Pairwise comparisons between groups
pairwise_binom_test(tulip, p.adjust.method = "bonferroni”)

78 prop._test

Question 2: comparing observed to expected proportions

LA A A SRR AT T AT TR T AT T R A T T A T e A A o A

this is a goodness-of-fit test

expected.p <- c(red = 0.5, yellow = 0.33, white = 0.17)
res <- multinom_test(tulip, expected.p)

res

attr(res, "descriptives”)

Pairwise comparisons against a given probabilities
pairwise_binom_test_against_p(tulip, expected.p)

prop_test Proportion Test

Description

Performs proportion tests to either evaluate the homogeneity of proportions (probabilities of suc-
cess) in several groups or to test that the proportions are equal to certain given values.

Wrappers around the R base function prop. test () but have the advantage of performing pairwise
and row-wise z-test of two proportions, the post-hoc tests following a significant chi-square test of
homogeneity for 2xc and rx2 contingency tables.

Usage

prop_test(
X,
n,
p = NULL,
alternative = c("two.sided”, "less"”, "greater"),
correct = TRUE,
conf.level = 0.95,
detailed = FALSE

)

pairwise_prop_test(xtab, p.adjust.method = "holm”, ...)

row_wise_prop_test(xtab, p.adjust.method = "holm"”, detailed = FALSE, ...)

Arguments

X a vector of counts of successes, a one-dimensional table with two entries, or
a two-dimensional table (or matrix) with 2 columns, giving the counts of suc-
cesses and failures, respectively.

n a vector of counts of trials; ignored if x is a matrix or a table.

p a vector of probabilities of success. The length of p must be the same as the

number of groups specified by x, and its elements must be greater than 0 and
less than 1.

prop_test 79

alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”. You can specify just the initial letter. Only
used for testing the null that a single proportion equals a given value, or that two
proportions are equal; ignored otherwise.

correct alogical indicating whether Yates’ continuity correction should be applied where
possible.
conf.level confidence level of the returned confidence interval. Must be a single number

between 0 and 1. Only used when testing the null that a single proportion equals
a given value, or that two proportions are equal; ignored otherwise.

detailed logical value. Default is FALSE. If TRUE, a detailed result is shown.

xtab a cross-tabulation (or contingency table) with two columns and multiple rows
(rx2 design). The columns give the counts of successes and failures respectively.

p.adjust.method
method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",
"bonferroni”, "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

Other arguments passed to the function prop_test().

Value

return a data frame with some the following columns:

* n: the number of participants.

* group: the categories in the row-wise proportion tests.

* statistic: the value of Pearson’s chi-squared test statistic.

 df: the degrees of freedom of the approximate chi-squared distribution of the test statistic.
* p: p-value.

* p.adj: the adjusted p-value.

* method: the used statistical test.

* p.signif, p.adj.signif: the significance level of p-values and adjusted p-values, respec-
tively.

* estimate: a vector with the sample proportions x/n.
* estimatel, estimate2: the proportion in each of the two populations.
* alternative: a character string describing the alternative hypothesis.

» conf.low,conf.high: Lower and upper bound on a confidence interval. a confidence interval
for the true proportion if there is one group, or for the difference in proportions if there are
2 groups and p is not given, or NULL otherwise. In the cases where it is not NULL, the
returned confidence interval has an asymptotic confidence level as specified by conf.level, and
is appropriate to the specified alternative hypothesis.

The returned object has an attribute called args, which is a list holding the test arguments.

80 prop._test

Functions
* prop_test(): performs one-sample and two-samples z-test of proportions. Wrapper around
the function prop.test().

* pairwise_prop_test(): pairwise comparisons between proportions, a post-hoc tests follow-
ing a significant chi-square test of homogeneity for 2xc design. Wrapper around pairwise.prop.test()

* row_wise_prop_test(): performs row-wise z-test of two proportions, a post-hoc tests fol-
lowing a significant chi-square test of homogeneity for rx2 contingency table. The z-test of
two proportions is calculated for each category (row).

Examples

Comparing an observed proportion to an expected proportion

ELAA A AR AT AT A A T TR AT TR A A T T R A e TR A T e A4

prop_test(x = 95, n = 160, p = 0.5, detailed = TRUE)

Comparing two proportions
H#%%%3%%3%%%6%%%%%%3% %% %% %6 66766 %% % %% %% %% %6 %6 6%
Data: frequencies of smokers between two groups
xtab <- as.table(rbind(c(490, 10), c(400, 100)))
dimnames(xtab) <- list(

group = c("grp1”, "grp2"),

smoker = c("yes"”, "no")
)
xtab
compare the proportion of smokers
prop_test(xtab, detailed = TRUE)

Homogeneity of proportions between groups
H#9%%3%%3%%%6%%%%% %% %% %% %6 %6676 %6 % %6 %% %% %% %6 % %6 6%

HO: the proportion of smokers is similar in the four groups

Ha: this proportion is different in at least one of the populations.
#

Data preparation

grp.size <- c(106, 113, 156, 102)

smokers <- c(50, 100, 139, 80)

no.smokers <- grp.size - smokers

xtab <- as.table(rbind(

smokers,
no.smokers
))
dimnames(xtab) <- list(
Smokers = c("Yes"”, "No"),
Groups - C(”grp1”, ngrpzn’ ngrp3n, ugrp4n)
)
xtab

Compare the proportions of smokers between groups
prop_test(xtab, detailed = TRUE)

Pairwise comparison between groups
pairwise_prop_test(xtab)

prop_trend_test 81

Pairwise proportion tests
LTI I IS I IS IAI SIS IAIIIASIIY
Data: Titanic
xtab <- as.table(rbind(
c(122, 167, 528, 673),
c(203, 118, 178, 212)

)
dimnames(xtab) <- list(
Survived = c("No", "Yes"),
Class = c("1st”, "2nd", "3rd"”, "Crew")
)
xtab

Compare the proportion of survived between groups
pairwise_prop_test(xtab)

Row-wise proportion tests
H#%%%3%%%%%6%%%%%%3% %% %% %6 %6767 % % %% %% %% %% % %6 6%
Data: Titanic
xtab <- as.table(rbind(
c(180, 145), c(179, 106),
c(510, 196), c(862, 23)
))
dimnames(xtab) <- list(
Class = c("1st”, "2nd", "3rd", "Crew"),
Gender = c("Male”, "Female")
)
xtab
Compare the proportion of males and females in each category
row_wise_prop_test(xtab)

prop_trend_test Test for Trend in Proportions

Description

Performs chi-squared test for trend in proportion. This test is also known as Cochran-Armitage
trend test.

Wrappers around the R base function prop. trend.test() but returns a data frame for easy data
visualization.
Usage

prop_trend_test(xtab, score = NULL)

Arguments

xtab a cross-tabulation (or contingency table) with two columns and multiple rows
(rx2 design). The columns give the counts of successes and failures respectively.

score group score. If NULL, the default is group number.

82 pull_triangle

Value

return a data frame with some the following columns:

* n: the number of participants.

e statistic: the value of Chi-squared trend test statistic.
 df: the degrees of freedom.

* p: p-value.

* method: the used statistical test.

* p.signif: the significance level of p-values and adjusted p-values, respectively.

The returned object has an attribute called args, which is a list holding the test arguments.

Examples

Proportion of renal stone (calculi) across age
B s
Data
xtab <- as.table(rbind(
c(384, 536, 335),
c(951, 869, 438)

)
dimnames(xtab) <- list(
stone = c("yes"”, "no"),
age = c("30-39", "40-49", "50-59")
)
xtab

Compare the proportion of survived between groups
prop_trend_test(xtab)

pull_triangle Pull Lower and Upper Triangular Part of a Matrix

Description

Returns the lower or the upper triangular part of a (correlation) matrix.

Usage

pull_triangle(x, triangle = c("lower"”, "upper"), diagonal = FALSE)

FALSE)

pull _upper_triangle(x, diagonal

pull_lower_triangle(x, diagonal = FALSE)

pull_triangle 83

Arguments
X a (correlation) matrix
triangle the triangle to pull. Allowed values are one of "upper" and "lower".
diagonal logical. Default is FALSE. If TRUE, the matrix diagonal is included.
Value

an object of class cor_mat_tri, which is a data frame

Functions

* pull_triangle(): returns either the lower or upper triangular part of a matrix.

e pull_upper_triangle(): returns an object of class upper_tri, which is a data frame con-
taining the upper triangular part of a matrix.

e pull_lower_triangle(): returns an object of class lower_tri, which is a data frame con-
taining the lower triangular part of a matrix.

See Also

replace_triangle()

Examples
Data preparation
mydata <- mtcars %>%
select(mpg, disp, hp, drat, wt, gsec)
head(mydata, 3)
Compute correlation matrix and pull triangles
Correlation matrix

cor.mat <- cor_mat(mydata)
cor.mat

Pull lower triangular part
cor.mat %>% pull_lower_triangle()

Pull upper triangular part
cor.mat %>% pull_upper_triangle()

84 p_round

p_round Rounding and Formatting p-values

Description

Round and format p-values. Can also mark significant p-values with stars.

Usage

p_round(x, ..., digits = 3)

p_format(
X,
new.col = FALSE,
digits = 2,
accuracy = le-04,
decimal.mark = "."
leading.zero = TRUE,
trailing.zero = FALSE,
add.p = FALSE,
space = FALSE

)

p_mark_significant(
X,
new.col = FALSE,
cutpoints = c(@, 1e-04, 0.001, 0.01, 0.05, 1),
symbols = C(”****H’ ”***”, ”**"7 H*”’ "”)

)
p_detect(data, type - C(“all“, npn’ "p.adj”>)
p_names ()

p_adj_names()

Arguments

X a numeric vector of p-values or a data frame containing a p value column. If data
frame, the p-value column(s) will be automatically detected. Known p-value
column names can be obtained using the functions p_names () and p_adj_names ()

column names to manipulate in the case where x is a data frame. P value
columns are automatically detected if not specified.

digits the number of significant digits to be used.

p_round

new.col

accuracy

decimal.mark
leading.zero
trailing.zero
add.p

space

cutpoints
symbols

data
type

Value

85

logical, used only when x is a data frame. If TRUE, add a new column to hold
the results. The new column name is created by adding, to the p column, the
suffix "format" (for p_format()), "signif" (for p_mak_significant()).

number to round to, that is the threshold value above wich the function will
replace the pvalue by "<0.0xxx".

the character to be used to indicate the numeric decimal point.
logical. If FALSE, remove the leading zero.

logical. If FALSE (default), remove the training extra zero.
logical value. If TRUE, add "p="before the value.

logical. If TRUE (default) use space as separator between different elements
and symbols.

numeric vector used for intervals
character vector, one shorter than cutpoints, used as significance symbols.
a data frame

the type of p-value to detect. Can be one of c("all”, "p”, "p.adj").

a vector or a data frame containing the rounded/formatted p-values.

Functions

* p_round(): round p-values

e p_format(): format p-values. Add a symbol "<" for small p-values.

* p_mark_significant(): mark p-values with significance levels

* p_detect(): detects and returns p-value column names in a data frame.

* p_names(): returns known p-value column names

* p_adj_names(): returns known adjust p-value column names

Examples

Round and format a vector of p-values

Format

p <- c(0.5678, 0.127, 0.045, 0.011, 0.009, 0.00002, NA)

p_format(p)

Specify the accuracy
p_format(p, accuracy = 0.01)

Add p and remove the leading zero
p_format(p, add.p = TRUE, leading.zero = FALSE)

Remove space before and after

n_n

or nen

p_format(p, add.p = TRUE, leading.zero = FALSE, space = FALSE)

86 remove_ns

Mark significant p-values
p_mark_significant(p)

Round, the mark significant
p %>% p_round(digits = 2) %>% p_mark_significant()

Format, then mark significant
p %>% p_format(digits = 2) %>% p_mark_significant()

Perform stat test, format p and mark significant

ToothGrowth %>%
group_by(dose) %>%
t_test(len ~ supp) %>%
p_format(digits = 2, leading.zero = FALSE) %>%
p_mark_significant()

remove_ns Remove Non-Significant from Statistical Tests

Description
Filter out non-significant (NS) p-values from a statistical test. Can detect automatically p-value
columns

Usage

remove_ns(stat.test, col = NULL, signif.cutoff = 0.05)

Arguments
stat.test statistical test results returned by rstatix functions or any data frame contain-
ing a p-value column.
col (optional) character specifying the column containing the p-value or the signifi-

cance information, to be used for the filtering step. Possible values include: "p”,

snon

"p.adj", "p.signif”, "p.adj.signif". If missing, the function will automat-
ically look for p.adj.signif, p.adj, p.signif, p in this order.

signif.cutoff the significance cutoff; default is 0.05. Significance is declared at p-value <=
signif.cutoff

Value

a data frame

replace_triangle 87

Examples

Statistical test

stat.test <- PlantGrowth %>% wilcox_test(weight ~ group)
Remove ns: automatic detection of p-value columns
stat.test %>% remove_ns()

Remove ns by the column p

stat.test %>% remove_ns(col ="p")

replace_triangle Replace Lower and Upper Triangular Part of a Matrix

Description

Replace the lower or the upper triangular part of a (correlation) matrix.

Usage
replace_triangle(x, triangle = c("lower"”, "upper”), by = "", diagonal = FALSE)

nn

replace_upper_triangle(x, by = , diagonal FALSE)

nn

replace_lower_triangle(x, by = , diagonal = FALSE)

Arguments
X a (correlation) matrix
triangle the triangle to replace. Allowed values are one of "upper" and "lower".
by areplacement argument. Appropriate values are either "" or NA. Used to replace
the upper, lower or the diagonal part of the matrix.
diagonal logical. Default is FALSE. If TRUE, the matrix diagonal is included.
Value

an object of class cor_mat_tri, which is a data frame

Functions

* replace_triangle(): replaces the specified triangle by empty or NA.

* replace_upper_triangle(): replaces the upper triangular part of a matrix. Returns an ob-
ject of class lower_tri.

* replace_lower_triangle(): replaces the lower triangular part of a matrix. Returns an ob-
ject of class lower_tri

See Also
pull_triangle()

88 sample_n_by

Examples

Compute correlation matrix and pull triangles

Correlation matrix
cor.mat <- mtcars %>%
select(mpg, disp, hp, drat, wt, gsec) %>%
cor_mat()
cor.mat

Replace upper triangle by NA

cor.mat %>% replace_upper_triangle(by = NA)

Replace upper triangle by NA and reshape the

correlation matrix to have unique combinations of variables
cor.mat %>%

replace_upper_triangle(by = NA) %>%
cor_gather()

sample_n_by Sample n Rows By Group From a Table

Description

sample n rows by group from a table using the sample_n() function.

Usage

sample_n_by(data, ..., size = 1, replace = FALSE)

Arguments
data a data frame
Variables to group by
size the number of rows to select
replace with or without replacement?
Examples

ToothGrowth %>% sample_n_by(dose, supp, size = 2)

shapiro_test 89

shapiro_test Shapiro-Wilk Normality Test

Description

Provides a pipe-friendly framework to performs Shapiro-Wilk test of normality. Support grouped
data and multiple variables for multivariate normality tests. Wrapper around the R base function
shapiro.test(). Can handle grouped data. Read more: Normality Test in R.

Usage

shapiro_test(data, ..., vars = NULL)

mshapiro_test(data)

Arguments
data a data frame. Columns are variables.
One or more unquoted expressions (or variable names) separated by commas.
Used to select a variable of interest.
vars optional character vector containing variable names. Ignored when dot vars are
specified.
Value

a data frame containing the value of the Shapiro-Wilk statistic and the corresponding p.value.

Functions

* shapiro_test(): univariate Shapiro-Wilk normality test

* mshapiro_test(): multivariate Shapiro-Wilk normality test. This is a modified copy of the
mshapiro.test() function of the package mvnormtest, for internal convenience.

Examples

Shapiro Wilk normality test for one variable
iris %>% shapiro_test(Sepal.Length)

Shapiro Wilk normality test for two variables
iris %>% shapiro_test(Sepal.Length, Petal.Width)

Multivariate normality test
mshapiro_test(iris[, 1:3])

https://www.datanovia.com/en/lessons/normality-test-in-r/

90 sign_test

sign_test Sign Test

Description

Performs one-sample and two-sample sign tests. Read more: Sign Test in R.

Usage

sign_test(
data,
formula,
comparisons = NULL,
ref.group = NULL,
p.adjust.method = "holm",
alternative = "two.sided”,
mu = @,
conf.level = 0.95,
detailed = FALSE

)

pairwise_sign_test(
data,
formula,
comparisons = NULL,
ref.group = NULL,
p.adjust.method = "holm",
detailed = FALSE,

)
Arguments

data a data.frame containing the variables in the formula.

formula a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ treatment.

comparisons A list of length-2 vectors specifying the groups of interest to be compared. For
example to compare groups "A" vs "B" and "B" vs "C", the argument is as
follow: comparisons = 1ist(c("A", "B"), c("B","C"))

ref.group a character string specifying the reference group. If specified, for a given group-

ing variable, each of the group levels will be compared to the reference group
(i.e. control group).

p.adjust.method
method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",

https://www.datanovia.com/en/lessons/sign-test-in-r/

sign_test 91

"bonferroni”, "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less"”. You can specify just the initial letter.

mu a single number representing the value of the population median specified by
the null hypothesis.

conf.level confidence level of the interval.

detailed logical value. Default is FALSE. If TRUE, a detailed result is shown.

other arguments passed to the function sign_test()

Value

return a data frame with some the following columns:

e .y.: the y variable used in the test.
* groupl, group2: the compared groups in the pairwise tests.
* n,n1,n2: Sample counts.

* statistic: Test statistic used to compute the p-value. That is the S-statistic (the number of
positive differences between the data and the hypothesized median), with names attribute "S".

e df, parameter: degrees of freedom. Here, the total number of valid differences.
* p: p-value.
* method: the statistical test used to compare groups.

* p.signif, p.adj.signif: the significance level of p-values and adjusted p-values, respec-
tively.

* estimate: estimate of the effect size. It corresponds to the median of the differences.
* alternative: a character string describing the alternative hypothesis.

* conf.low,conf.high: Lower and upper bound on a confidence interval of the estimate.

The returned object has an attribute called args, which is a list holding the test arguments.

Functions

* sign_test(): Sign test

* pairwise_sign_test(): performs pairwise two sample Wilcoxon test.

Note

This function is a reimplementation of the function SignTest () from the DescTools package.

92 tukey_hsd

Examples

Load data

data("ToothGrowth")
df <- ToothGrowth

One-sample test

df %>% sign_test(len ~ supp)

Compare supp levels after grouping the data by "dose”

R R R R R
df %>%
group_by(dose) %>%
sign_test(data =., len ~ supp) %>%
adjust_pvalue(method = "bonferroni”) %>%

add_significance("p.adj")
pairwise comparisons
As dose contains more than two levels ==>
pairwise test is automatically performed.
df %>% sign_test(len ~ dose)

Comparison against reference group

each level is compared to the ref group
df %>% sign_test(len ~ dose, ref.group = "0.5")

tukey_hsd Tukey Honest Significant Differences

Description

Provides a pipe-friendly framework to performs Tukey post-hoc tests. Wrapper around the function
TukeyHSD(). It is essentially a t-test that corrects for multiple testing.

Can handle different inputs formats: aov, Im, formula.

Usage
tukey_hsd(x, ...)

tukey_hsd 93

Default S3 method:
tukey_hsd(x, ...)

S3 method for class 'lm'
tukey_hsd(x, ...)

S3 method for class 'data.frame'

tukey_hsd(x, formula, ...)
Arguments
X an object of class aov, 1m or data.frame containing the variables used in the
formula.

other arguments passed to the function TukeyHSD (). These include:
* which: A character vector listing terms in the fitted model for which the
intervals should be calculated. Defaults to all the terms.

» ordered: A logical value indicating if the levels of the factor should be
ordered according to increasing average in the sample before taking differ-
ences. If ordered is true then the calculated differences in the means will all
be positive. The significant differences will be those for which the Iwr end
point is positive.

formula a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.

data a data.frame containing the variables in the formula.

Value

a tibble data frame containing the results of the different comparisons.

Methods (by class)

* tukey_hsd(default): performs tukey post-hoc test from aov () results.
e tukey_hsd(1m): performs tukey post-hoc test from 1m() model.

* tukey_hsd(data.frame): performs tukey post-hoc tests using data and formula as inputs.
ANOVA will be automatically performed using the function aov ()

Examples

Data preparation

df <- ToothGrowth

df$dose <- as.factor(df$dose)

Tukey HSD from ANOVA results

aov(len ~ dose, data = df) %>% tukey_hsd()

two-way anova with interaction
aov(len ~ dosexsupp, data = df) %>% tukey_hsd()

94 t_test

Tukey HSD from 1lm() results
Im(len ~ dose, data = df) %>% tukey_hsd()

Tukey HSD from data frame and formula
tukey_hsd(df, len ~ dose)

Tukey HSD using grouped data
df %>%
group_by(supp) %>%
tukey_hsd(len ~ dose)

t_test T-test

Description

Provides a pipe-friendly framework to performs one and two sample t-tests. Read more: T-test in
R.

Usage

t_test(
data,
formula,
comparisons = NULL,
ref.group = NULL,
p.adjust.method = "holm",
paired = FALSE,
var.equal = FALSE,
alternative = "two.sided”,
mu = @,
conf.level = 0.95,
detailed = FALSE

pairwise_t_test(
data,
formula,
comparisons = NULL,
ref.group = NULL,
p.adjust.method = "holm",
paired = FALSE,
pool.sd = !paired,
detailed = FALSE,

https://www.datanovia.com/en/lessons/t-test-in-r/
https://www.datanovia.com/en/lessons/t-test-in-r/

t test

Arguments

data

formula

comparisons

ref.group

p.adjust.method

paired

var.equal

alternative

mu
conf.level
detailed
pool.sd

Details

95

a data.frame containing the variables in the formula.

a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.

A list of length-2 vectors specifying the groups of interest to be compared. For
example to compare groups "A" vs "B" and "B" vs "C", the argument is as
follow: comparisons = 1list(c("A", "B"), c("B","C"))

a character string specifying the reference group. If specified, for a given group-
ing variable, each of the group levels will be compared to the reference group
(i.e. control group).

If ref.group = "all”, pairwise two sample tests are performed for comparing
each grouping variable levels against all (i.e. basemean).

method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",
"bonferroni”, "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

a logical indicating whether you want a paired test.

a logical variable indicating whether to treat the two variances as being equal.
If TRUE then the pooled variance is used to estimate the variance otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is used.

a character string specifying the alternative hypothesis, must be one of "two.sided”

(default), "greater” or "less"”. You can specify just the initial letter.

a number specifying an optional parameter used to form the null hypothesis.
confidence level of the interval.

logical value. Default is FALSE. If TRUE, a detailed result is shown.

logical value used in the function pairwise_t_test(). Switch to allow/disallow
the use of a pooled SD.

The pool.sd = TRUE (default) calculates a common SD for all groups and uses
that for all comparisons (this can be useful if some groups are small). This
method does not actually call t.test, so extra arguments are ignored. Pooling
does not generalize to paired tests so pool.sd and paired cannot both be TRUE.

If pool.sd = FALSE the standard two sample t-test is applied to all possible
pairs of groups. This method calls the t.test(), so extra arguments, such as
var.equal are accepted.

other arguments to be passed to the function t. test.

- If a list of comparisons is specified, the result of the pairwise tests is filtered to keep only the
comparisons of interest. The p-value is adjusted after filtering.

- For a grouped data, if pairwise test is performed, then the p-values are adjusted for each group
level independently.

96 t_test

Value

return a data frame with some the following columns:

e .y.: the y variable used in the test.

* groupl,group2: the compared groups in the pairwise tests.
* n,n1,n2: Sample counts.

* statistic: Test statistic used to compute the p-value.
 df: degrees of freedom.

* p: p-value.

* p.adj: the adjusted p-value.

* method: the statistical test used to compare groups.

* p.signif, p.adj.signif: the significance level of p-values and adjusted p-values, respec-
tively.

* estimate: estimate of the effect size. It corresponds to the estimated mean or difference in
means depending on whether it was a one-sample test or a two-sample test.

* estimatel, estimate2: show the mean values of the two groups, respectively, for indepen-
dent samples t-tests.

* alternative: a character string describing the alternative hypothesis.

* conf.low,conf.high: Lower and upper bound on a confidence interval.

The returned object has an attribute called args, which is a list holding the test arguments.

Functions

e t_test(): ttest

* pairwise_t_test(): performs pairwise two sample t-test. Wrapper around the R base func-
tion pairwise.t.test.

Examples
Load data

data("ToothGrowth")
df <- ToothGrowth

One-sample test

df %>% t_test(len ~ supp)

Two-samples paired test

welch_anova_test 97

df %>% t_test (len ~ supp, paired = TRUE)

Compare supp levels after grouping the data by "dose”

R S S S S S SRR R R S S S S S S S
df %>%
group_by(dose) %>%
t_test(data =., len ~ supp) %>%
adjust_pvalue(method = "bonferroni”) %>%

add_significance("p.adj")
pairwise comparisons
As dose contains more than two levels ==>
pairwise test is automatically performed.
df %>% t_test(len ~ dose)

Comparison against reference group

each level is compared to the ref group
df %>% t_test(len ~ dose, ref.group = "0.5")

Comparison against all

df %>% t_test(len ~ dose, ref.group = "all")

welch_anova_test Welch One-Way ANOVA Test

Description

Tests for equal means in a one-way design (not assuming equal variance). A wrapper around the
base function oneway.test(). This is is an alternative to the standard one-way ANOVA in the
situation where the homogeneity of variance assumption is violated.

Usage

welch_anova_test(data, formula)

Arguments
data a data frame containing the variables in the formula.
formula a formula specifying the ANOVA model similar to aov. Can be of the form

y ~ group where y is a numeric variable giving the data values and group is a
factor with one or multiple levels giving the corresponding groups. For example,
formula = TP53 ~ cancer_group.

98 wilcox_effsize

Value
return a data frame with the following columns:

e .y.: the y variable used in the test.

* n: sample count.

e statistic: the value of the test statistic.
* p: p-value.

* method: the statistical test used to compare groups.

Examples

Load data

data(”"ToothGrowth")

df <- ToothGrowth

df$dose <- as.factor(df$dose)

Welch one-way ANOVA test (not assuming equal variance)

df %>% welch_anova_test(len ~ dose)

Grouped data

df %>%

group_by(supp) %>%
welch_anova_test(len ~ dose)

wilcox_effsize Wilcoxon Effect Size

Description
Compute Wilcoxon effect size (r) for:

* one-sample test (Wilcoxon one-sample signed-rank test);
* paired two-samples test (Wilcoxon two-sample paired signed-rank test) and

* independent two-samples test (Mann-Whitney, two-sample rank-sum test).

It can also returns confidence intervals by bootstap.

The effect size r is calculated as Z statistic divided by square root of the sample size (N) (Z/ V'N).
The Z value is extracted from either coin: :wilcoxsign_test() (case of one- or paired-samples
test) or coin: :wilcox_test () (case of independent two-samples test).

Note that N corresponds to total sample size for independent samples test and to total number of
pairs for paired samples test.

The r value varies from 0O to close to 1. The interpretation values for r commonly in published
litterature and on the internet are: .10 - < @. 3 (small effect), .30 - < 0.5 (moderate effect) and
>= 0.5 (large effect).

wilcox_effsize

Usage

wilcox_effsize(
data,
formula,
comparisons = NULL,
ref.group = NULL,
paired = FALSE,

99

alternative = "two.sided",
mu = 0,
ci = FALSE,
conf.level = 0.95,
ci.type = "perc”,
nboot = 1000,
)
Arguments
data a data.frame containing the variables in the formula.
formula a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.
comparisons A list of length-2 vectors specifying the groups of interest to be compared. For
example to compare groups "A" vs "B" and "B" vs "C", the argument is as
follow: comparisons = 1ist(c("A", "B"), c("B","C"))
ref.group a character string specifying the reference group. If specified, for a given group-
ing variable, each of the group levels will be compared to the reference group
(i.e. control group).
If ref.group = "all”, pairwise two sample tests are performed for comparing
each grouping variable levels against all (i.e. basemean).
paired a logical indicating whether you want a paired test.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less"”. You can specify just the initial letter.
mu a number specifying an optional parameter used to form the null hypothesis.
ci If TRUE, returns confidence intervals by bootstrap. May be slow.
conf.level The level for the confidence interval.
ci.type The type of confidence interval to use. Can be any of "norm", "basic", "perc",
or "bca". Passed to boot: :boot.ci.
nboot The number of replications to use for bootstrap.

Additional arguments passed to the functions coin: :wilcoxsign_test() (case
of one- or paired-samples test) or coin: :wilcox_test() (case of independent
two-samples test).

100 wilcox_test

Value

return a data frame with some of the following columns:

e .y.: the y variable used in the test.

* groupl, group2: the compared groups in the pairwise tests.
* n,n1,n2: Sample counts.

e effsize: estimate of the effect size (r value).

* magnitude: magnitude of effect size.

e conf.low,conf.high: lower and upper bound of the effect size confidence interval.

References

Maciej Tomczak and Ewa Tomczak. The need to report effect size estimates revisited. An overview
of some recommended measures of effect size. Trends in Sport Sciences. 2014; 1(21):19-25.

Examples

if(require(”coin")){

One-sample Wilcoxon test effect size
ToothGrowth %>% wilcox_effsize(len ~ 1, mu = @)

Independent two-samples wilcoxon effect size
ToothGrowth %>% wilcox_effsize(len ~ supp)

Paired-samples wilcoxon effect size
ToothGrowth %>% wilcox_effsize(len ~ supp, paired = TRUE)

Pairwise comparisons
ToothGrowth %>% wilcox_effsize(len ~ dose)

Grouped data

ToothGrowth %>%
group_by(supp) %>%
wilcox_effsize(len ~ dose)

wilcox_test Wilcoxon Tests

Description

Provides a pipe-friendly framework to performs one and two sample Wilcoxon tests. Read more:
Wilcoxon in R.

https://www.datanovia.com/en/lessons/wilcoxon-test-in-r/

wilcox_test 101

Usage

wilcox_test(
data,
formula,
comparisons = NULL,
ref.group = NULL,
p.adjust.method = "holm",
paired = FALSE,

exact = NULL,
alternative = "two.sided”,
mu = @,

conf.level = 0.95,
detailed = FALSE

)

pairwise_wilcox_test(
data,
formula,
comparisons = NULL,
ref.group = NULL,
p.adjust.method = "holm",
detailed = FALSE,

)
Arguments

data a data.frame containing the variables in the formula.

formula a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding
groups. For example, formula = TP53 ~ cancer_group.

comparisons A list of length-2 vectors specifying the groups of interest to be compared. For
example to compare groups "A" vs "B" and "B" vs "C", the argument is as
follow: comparisons = 1list(c("A", "B"), c("B","C"))

ref.group a character string specifying the reference group. If specified, for a given group-

ing variable, each of the group levels will be compared to the reference group
(i.e. control group).
If ref.group = "all”, pairwise two sample tests are performed for comparing
each grouping variable levels against all (i.e. basemean).

p.adjust.method
method to adjust p values for multiple comparisons. Used when pairwise com-
parisons are performed. Allowed values include "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY", "fdr", "none". If you don’t want to adjust the p value
(not recommended), use p.adjust.method = "none".

paired a logical indicating whether you want a paired test.

exact a logical indicating whether an exact p-value should be computed.

102 wilcox_test
alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less"”. You can specify just the initial letter.
mu a number specifying an optional parameter used to form the null hypothesis.
conf.level confidence level of the interval.
detailed logical value. Default is FALSE. If TRUE, a detailed result is shown.
other arguments to be passed to the function wilcox. test.
Details

- pairwise_wilcox_test() applies the standard two sample Wilcoxon test to all possible pairs of
groups. This method calls the wilcox. test(), so extra arguments are accepted.

- If a list of comparisons is specified, the result of the pairwise tests is filtered to keep only the
comparisons of interest.The p-value is adjusted after filtering.

- For a grouped data, if pairwise test is performed, then the p-values are adjusted for each group
level independently.

- a nonparametric confidence interval and an estimator for the pseudomedian (one-sample case) or
for the difference of the location parameters x-y is computed, where x and y are the compared sam-
ples or groups. The column estimate and the confidence intervals are displayed in the test result
when the option detailed = TRUE is specified in the wilcox_test() and pairwise_wilcox_test()
functions. Read more about the calculation of the estimate in the details section of the R base func-
tion wilcox.test () documentation by typing ?wilcox. test in the R console.

Value

return a data frame with some of the following columns:

.y.: the y variable used in the test.

groupl, group2: the compared groups in the pairwise tests.
n,n1,n2: Sample counts.

statistic: Test statistic used to compute the p-value.

p: p-value.

p.adj: the adjusted p-value.

method: the statistical test used to compare groups.

p.signif, p.adj.signif: the significance level of p-values and adjusted p-values, respec-
tively.

estimate: an estimate of the location parameter (Only present if argument detailed = TRUE).
This corresponds to the pseudomedian (for one-sample case) or to the difference of the loca-
tion parameter (for two-samples case).

— The pseudomedian of a distribution F is the median of the distribution of (u+v)/2, where
u and v are independent, each with distribution F. If F is symmetric, then the pseudome-
dian and median coincide.

— Note that in the two-sample case the estimator for the difference in location parameters
does not estimate the difference in medians (a common misconception) but rather the
median of the difference between a sample from x and a sample from y.

wilcox_test 103

* conf.low, conf.high: a confidence interval for the location parameter. (Only present if
argument conf.int = TRUE.)

The returned object has an attribute called args, which is a list holding the test arguments.

Functions

e wilcox_test(): Wilcoxon test
* pairwise_wilcox_test(): performs pairwise two sample Wilcoxon test.

Examples
Load data

data("ToothGrowth")
df <- ToothGrowth

One-sample test

df %>% wilcox_test(len ~ supp)
Two-samples paired test
df %>% wilcox_test (len ~ supp, paired = TRUE)
Compare supp levels after grouping the data by "dose”
df %>%
group_by(dose) %>%
wilcox_test(data =., len ~ supp) %>%
adjust_pvalue(method = "bonferroni”) %>%
add_significance("p.adj")
pairwise comparisons
As dose contains more than two levels ==>
pairwise test is automatically performed.
df %>% wilcox_test(len ~ dose)

Comparison against reference group

each level is compared to the ref group
df %>% wilcox_test(len ~ dose, ref.group = "0.5")

Comparison against all

df %>% wilcox_test(len ~ dose, ref.group = "all")

Index

add_significance, 4

add_x_position (get_y_position), 65
add_xy_position (get_y_position), 65
add_y_position (get_y_position), 65
adjust_pvalue, 5

Anova, 5, 6, 8, 9,49
anova_summary, 5, 10, 50
anova_test, 6, 7,7, 50

aov, 5, 6,8, 93

arrange, 36

as_cor_mat, 11, 33

binom.test, 13
binom_test, 12, 77
box_m, 15

chisq.test, 35
chisg_descriptives (chisqg_test), 15
chisq_test, 15
cochran_qtest, 18
cohens_d, 19
convert_as_factor, 21
cor.test, 32
cor_as_symbols, 23, 27, 29
cor_gather, 24, 27, 30
cor_get_pval (cor_mat), 26
cor_mark_significant, 25
cor_mat, 12, 23-25, 26, 28, 30, 31, 33
cor_plot, 28

cor_pmat (cor_mat), 26
cor_reorder, 24, 27, 30
cor_select, 27, 31
cor_spread, 30

cor_spread (cor_gather), 24
cor_test, 11, 12,24, 27,32
corrplot, 28
counts_to_cases, 34
cramer_v, 35

create_test_label (get_pwc_label), 60

desc, 36

df_arrange, 36
df_get_var_names, 37
df_group_by, 37
df_label_both, 38, 41
df_label_value, 4/
df_label_value (df_label_both), 38
df_nest_by, 39, 41

df_select, 40

df_split_by, 41

df_unite, 42
df_unite_factors (df _unite), 42
doo, 43

dunn_test, 44, 67

emmeans_test, 46
eta_squared, 48
expected_freq (chisq_test), 15

factorial_design, 7, 10, 49
fisher.test, 50, 52
fisher_test, 50
freq_table, 53
friedman.test, I8, 55, 56
friedman_effsize, 54
friedman_test, 56

games_howell_test, 57
get_anova_table (anova_test), 7
get_comparisons, 58
get_description (get_pwc_label), 60
get_emmeans (emmeans_test), 46
get_mode, 59

get_n (get_pwc_label), 60
get_pwc_label, 60
get_summary_stats, 63
get_test_label (get_pwc_label), 60
get_y_position, 65

identify_outliers, 67

INDEX

is_extreme (identify_outliers), 67
is_outlier (identify_outliers), 67

kruskal.test, 71
kruskal_effsize, 69
kruskal_test, 71

levene_test, 72
leveneTest, 72

mahalanobis, 73
mahalanobis_distance, 73
make_clean_names, 74

mcnemar. test, 75
mcnemar_test, 75

mshapiro_test (shapiro_test), 89
multinom_test, /4, 77

observed_freq (chisqg_test), 15
oneway.test, 97

p.adjust, 5
p_adj_names (p_round), 84
p_detect (p_round), 84
p_format (p_round), 84
p_mark_significant (p_round), 84
p_names (p_round), 84
p_round, 84
pairwise.prop.test, 80
pairwise.t.test, 96
pairwise_binom_test (binom_test), 12
pairwise_binom_test_against_p
(binom_test), 12
pairwise_chisq_gof_test (chisq_test), 15
pairwise_chisq_test_against_p
(chisq_test), 15
pairwise_fisher_test (fisher_test), 50
pairwise_mcnemar_test (mcnemar_test), 75
pairwise_prop_test (prop_test), 78
pairwise_sign_test (sign_test), 90
pairwise_t_test (t_test), 94
pairwise_wilcox_test (wilcox_test), 100
partial_eta_squared (eta_squared), 48
pearson_residuals (chisqg_test), 15
plot.anova_test (anova_test), 7
print.anova_test (anova_test), 7
prop.test, 78, 80
prop.trend.test, 8/
prop_test, 78

105

prop_trend_test, 81
pull_lower_triangle (pull_triangle), 82
pull_triangle, 27, 31, 82, 87
pull_upper_triangle (pull_triangle), 82

remove_ns, 86
reorder_levels (convert_as_factor), 21
replace_lower_triangle
(replace_triangle), 87
replace_triangle, 27, 31, 83, 87
replace_upper_triangle
(replace_triangle), 87
row_wise_fisher_test (fisher_test), 50
row_wise_prop_test (prop_test), 78

sample_n, 88

sample_n_by, 88

select, 40

set_ref_level (convert_as_factor), 21
shapiro. test, 89

shapiro_test, 89

sign_test, 67,90

std_residuals (chisqg_test), 15

t.test, 67,95
t_test, 67,94
tukey_hsd, 67, 92
TukeyHSD, 92, 93

unite, 42

welch_anova_test, 97
wilcox.test, 102
wilcox_effsize, 98
wilcox_test, 67, 100

	add_significance
	adjust_pvalue
	anova_summary
	anova_test
	as_cor_mat
	binom_test
	box_m
	chisq_test
	cochran_qtest
	cohens_d
	convert_as_factor
	cor_as_symbols
	cor_gather
	cor_mark_significant
	cor_mat
	cor_plot
	cor_reorder
	cor_select
	cor_test
	counts_to_cases
	cramer_v
	df_arrange
	df_get_var_names
	df_group_by
	df_label_both
	df_nest_by
	df_select
	df_split_by
	df_unite
	doo
	dunn_test
	emmeans_test
	eta_squared
	factorial_design
	fisher_test
	freq_table
	friedman_effsize
	friedman_test
	games_howell_test
	get_comparisons
	get_mode
	get_pwc_label
	get_summary_stats
	get_y_position
	identify_outliers
	kruskal_effsize
	kruskal_test
	levene_test
	mahalanobis_distance
	make_clean_names
	mcnemar_test
	multinom_test
	prop_test
	prop_trend_test
	pull_triangle
	p_round
	remove_ns
	replace_triangle
	sample_n_by
	shapiro_test
	sign_test
	tukey_hsd
	t_test
	welch_anova_test
	wilcox_effsize
	wilcox_test
	Index

