## ----SETTINGS-knitr, include=FALSE-------------------------------------------- stopifnot(require(knitr)) opts_chunk$set( comment=NA, message = FALSE, warning = FALSE, eval = identical(Sys.getenv("NOT_CRAN"), "true"), dev = "png", dpi = 150, fig.asp = 0.618, fig.width = 5, out.width = "60%", fig.align = "center" ) ## ----SETTINGS-gg, include=TRUE------------------------------------------------ library(ggplot2) library(bayesplot) theme_set(bayesplot::theme_default()) ## ----aov-weightgain-aov------------------------------------------------------- data("weightgain", package = "HSAUR3") coef(aov(weightgain ~ source * type, data = weightgain)) ## ----aov-weightgain-mcmc, results="hide"-------------------------------------- library(rstanarm) post1 <- stan_aov(weightgain ~ source * type, data = weightgain, prior = R2(location = 0.5), adapt_delta = 0.999, seed = 12345) post1 ## ----echo=FALSE--------------------------------------------------------------- print(post1) ## ----aov-weightgain-stan_lmer, eval=FALSE------------------------------------- # post2 <- stan_lmer(weightgain ~ 1 + (1|source) + (1|type) + (1|source:type), # data = weightgain, prior_intercept = cauchy(), # prior_covariance = decov(shape = 2, scale = 2), # adapt_delta = 0.999, seed = 12345)