Package ‘ri2’

October 14, 2025
Type Package
Title Randomization Inference for Randomized Experiments
Version 0.4.1

Description Randomization inference procedures for simple and complex randomized designs, in-
cluding multi-armed trials, as described in Gerber and Green (2012, ISBN: 978-
0393979954). Users formally describe their randomization procedure and test statistic. The ran-
domization distribution of the test statistic under some null hypothesis is efficiently simulated.

License MIT + file LICENSE

Encoding UTF-8

Imports generics, ggplot2, pbapply
Depends randomizr (>= 0.16.0), estimatr
Suggests testthat, knitr, rmarkdown
RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation no

Author Alexander Coppock [aut, cre]
Maintainer Alexander Coppock <acoppock@gmail.com>
Repository CRAN

Date/Publication 2025-10-14 20:10:02 UTC

Contents
condUCt_Ii o o e e

Index

conduct_ri

conduct_ri

Conduct Randomization Inference

Description

This function makes it easy to conduct three kinds of randomization inference.

Usage

conduct_ri(

formula = NULL,

model_1
model_2

test_function

NULL,
NULL,

= NULL,

assignment = "Z",
outcome = NULL,

declaration

NULL,

sharp_hypothesis = 0,

studentize
IPW = TRUE,
IPW_weights

FALSE,

NULL,

sampling_weights = NULL,
permutation_matrix = NULL,

data,

sims = 1000,
progress_bar

= FALSE,

p = "two-tailed”

Arguments

formula

model_1

model_2

test_function

assignment

outcome

declaration

an object of class formula, as in Im. Use formula when conducting significance
tests of an Average Treatment Effect estimate under a sharp null hypothesis.
For the difference-in-means estimate, do not include covariates. For the OLS
covariate-adjusted estimate, include covariates.

an object of class formula, as in 1m. Models 1 and 2 must be "nested.” model_1
should be the "restricted" model and model_2 should be the "unrestricted" model.

an object of class formula, as in 1m. Models 1 and 2 must be "nested." model_1
should be the "restricted" model and model_2 should be the "unrestricted" model.

A function that takes data and returns a scalar test statistic.

a character string that indicates which variable is randomly assigned. Defaults
to "Z".

a character string that indicates which variable is the outcome variable. Defaults
to NULL.

A random assignment declaration, created by declare_ra.

conduct_ri 3

sharp_hypothesis
either a numeric scalar or a numeric vector of length k - 1, where k is the number
of treatment conditions. In a two-arm trial, this number is the *hypothesized*
difference between the treated and untreated potential potential outcomes for
each unit.. In a multi-arm trial, each number in the vector is the hypothesized
difference in potential outcomes between the baseline condition and each suc-
cessive treatment condition.

studentize logical, defaults to FALSE. Should the test statistic be the t-ratio rather than the
estimated ATE? T-ratios will be calculated using HC2 robust standard errors or
their clustered equivalent. CLUSTERING NOT YET IMPLEMENTED.

IPW logical, defaults to TRUE. Should inverse probability weights be calculated?

IPW_weights a character string that indicates which variable is the existing inverse probabil-
ity weights vector. Usually unnecessary, as IPW weights will be incorporated
automatically if IPW = TRUE. Defaults to NULL.

sampling_weights
a character string that indicates which variable is the sampling weights vector.
Optional, defaults to NULL. NOT YET IMPLEMENTED

permutation_matrix
An optional matrix of random assignments, typically created by obtain_permutation_matrix.

data A data.frame.
sims the number of simulations. Defaults to 1000.
progress_bar logical, defaults to FALSE. Should a progress bar be displayed in the console?

p Should "two-tailed", "upper", or "lower" p-values be reported? Defaults to "two-
tailed". For two-tailed p-values, whether or not a simulated value is as large or
larger than the observed value is determined with respect to the distance to the
sharp null.

Details

1. Conduct hypothesis tests under the sharp null when the test statistic is the difference-in-means or
covariate-adjusted average treatment effect estimate. 2. Conduct "ANOVA" style hypothesis tests,
where the f-statistic from two nested models is the test statistic. This procedure is especially helpful
when testing interaction terms under null of constant effects. 3. Arbitrary (scalar) test statistics

Examples

Data from Gerber and Green Table 2.2

Randomization Inference for the Average Treatment Effect

table_2.2 <-
data.frame(d = c(1, 0, @, 9, 9, 0, 1),
y = c(15, 15, 20, 20, 10, 15, 30))

Declare randomization procedure
declaration <- declare_ra(N =7, m = 2)

conduct_ri

Conduct Randomization Inference

out <- conduct_ri(y ~ d,
declaration = declaration,
assignment = "d",
sharp_hypothesis = 0,
data = table_2.2)

summary (out)
plot(out)
tidy(out)

Using a custom permutation matrix

permutation_matrix <-

matrix(c(e, o, o, 0, 0, 0, 1,
0, 0, 0, 9, 0, 1, 0,
0, 0, 0, 9, 1, 0, 0o,
0, 0, 0, 1, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0,
o, 1, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0,),
ncol = 7)

conduct_ri(y ~d, assignment = "d", data = table_2.2,
permutation_matrix = permutation_matrix)

Randomization Inference for an Interaction

N <- 100
declaration <- randomizr::declare_ra(N = N, m = 50)

Z <- randomizr::conduct_ra(declaration)

X <= rnorm(N)

Y<-.9% X+ .2%xZ+1xXxZ+ rnorm(N)
dat <- data.frame(Y, X, 2)

ate_obs <- coef(Im(Y ~ Z, data = dat))[2]

out <-

conduct_ri(
model_1 =Y ~ Z + X,
model 2 =Y ~Z + X + Z % X,
declaration = declaration,
assignment = "Z",
sharp_hypothesis = ate_obs,
data = dat, sims = 100

)

plot(out)

conduct_ri

summary (out)

summary (out, p = "two-tailed")
summary (out, p = "upper”)
summary (out, p = "lower")
tidy(out)

Randomization Inference for arbitrary test statistics
In this example we're conducting a randomization check (in this case, a balance test).

N <- 100
declaration <- randomizr::declare_ra(N = N, m = 50)

Z <- randomizr::conduct_ra(declaration)
X <= rnorm(N)

Y <- .9 % X+ .2 *x Z+ rnorm(N)

dat <- data.frame(Y, X, 2)

balance_fun <- function(data) {
f_stat <- summary(lm(Z ~ X, data = data))$f[1]
names(f_stat) <- NULL
return(f_stat)

confirm function works as expected
balance_fun(dat)

conduct randomization inference

out <-
conduct_ri(
test_function = balance_fun,
declaration = declaration,
assignment = "Z",
sharp_hypothesis = 0,
data = dat, sims = 100

plot(out)
summary (out)
tidy(out)

Index

conduct_ri, 2
declare_ra, 2
Im, 2

obtain_permutation_matrix, 3

	conduct_ri
	Index

