Package ‘rhoR’

October 15, 2025
Title Rho for Inter Rater Reliability
Maintainer Cody L Marquart <cody.marquart@wisc.edu>
Version 1.3.1

Description Rho is used to test the generalization of inter rater reliability
(IRR) statistics. Calculating rho starts by generating a large number of
simulated, fully-coded data sets: a sizable collection of hypothetical
populations, all of which have a kappa value below a given threshold -- which
indicates unacceptable agreement. Then kappa is calculated on a sample from
each of those sets in the collection to see if it is equal to or higher than
the kappa in then real sample. If less than five percent of the distribution
of samples from the simulated data sets is greater than actual observed kappa,
the null hypothesis is rejected and one can conclude that if the two raters had
coded the rest of the data, we would have acceptable agreement (kappa above the
threshold).

Depends R (>=3.0.0)
License GPL-3 | file LICENSE

URL https://rhor.qge-1libs.org

BugReports https://gitlab.com/epistemic-analytics/ge-packages/rhoR/-/issues

LazyData true

RoxygenNote 7.1.1

LinkingTo Rcpp, ReppArmadillo

Imports Rcpp, stats, utils, methods

Suggests testthat (>= 2.1.0), knitr, rmarkdown, microbenchmark

Collate 'RcppExports.R' 'baserate.R' 'baserateCT.R' 'baserateSet.R'
'calcKappa.R' 'calcRho.R' 'calculations.R' 'checkBRPKcombo.R'
'codeSet.R' 'contingencyTable.R' 'contingencyToSet.R'
'createRandomSet.R' 'createSimulatedCodeSet.R' 'genPKcombo.R'
'genPcombo.R' 'generateKPs.R' 'getBootPvalue.R' 'getHandSet.R'
'getHandSetIndices.R' 'getR.R' 'getTestSet.R' 'kappa.R'
'kappaCT.R' 'kappaSet.R' 'prset.R' 'tho.R' 'rho.file.R'

'thoCT.R' 'ThoK.R' thoMin.R' ThoR.R' 'thoSet.R' 'utils.R'
'zzz.R'

https://rhor.qe-libs.org
https://gitlab.com/epistemic-analytics/qe-packages/rhoR/-/issues

Contents

NeedsCompilation yes

Author Brendan Eagan [aut],

Brad Rogers [aut],

Rebecca Pozen [aut],

Cody L Marquart [cre, aut] (ORCID:
<https://orcid.org/0000-0002-3387-6792>),

David Williamson Shaffer [aut]

Repository CRAN
Date/Publication 2025-10-15 08:20:02 UTC

Contents
aS.COAE.SEL e e e e e e e e e e e e 3
as.contingency.table 3
baserate e 4
baserateCT e 5
baserateSet L L 5
codeSet 6
contingencyTable 7
contingency_table L 7
createSimulatedCodeSet 8
generateKPs_c L e 9
getBootPvalue_c L 10
getHandCT e 10
getHandSet e 11
getHandSetIndices 11
getHand_kappa e 12
getTestSet o . L 12
kappa e e 13
kappaCT e 14
kappaSet L 14
kappa_ct 15
random_contingency_table e 15
recall . . .o e 16
tho . . . 16
rhofile e 18
thoCT e e 20
thoK . . . o e e e 21
thoMin e 22
thoR . . . o e 23
thoSet e 24
sample_contingency_table L L 25
$rating.set. e 26

Index

https://orcid.org/0000-0002-3387-6792

as.code.set

as.code.set Convert codeset to contingency table

Description

Convert codeset to contingency table

Usage

as.code.set(x)

Arguments

X matrix contingency table (2x2)

Value

2-column matrix representation of the contingency table

as.contingency.table Convert a codeset to a contingency table

Description

Convert a codeset to a contingency table

Usage

as.contingency.table(x)

Arguments

X codeset

Value

contingency table as a 2x2 matrix

4 baserate

baserate Calculate Baserate

Description
This function calculates the baserate of the first rater, second rater, and the average of both the
raters.

Usage

baserate(data)

Arguments

data The testSet or contingencyTable for which the baserate is calculatede

Details

A baserate is the percentage, as a decimal, that a positive code appears in data (either a codeSet
or contingencyTable) for a given rater. It is assumed that the first rater is more experienced and
thus provides a better estimation of the actual baserate for a given code, so the first rater’s baserate
is often used as if it is the actual baserate. If the raters are assumed to have the same experience
level, the average baserate may give a better estimation. If the second rater is more experienced,
the second rater’s baserate may give a better estimation. Functions assume that the first rater is the
more experienced rater and thus uses the first rater’s baserate as the overall baserate estimation.

Value
A list of the format:

firstBaserate The percentage of the data for which a positive code, or a 1, appears in the first rater

secondBaserate The percentage of the data for which a positive code, or a 1, appears in the second
rater

averageBaserate The average of the firstBaserate and secondBaserate.

See Also

baserateSet and baserateCT

Examples

#Given a code set
baserate(data = codeSet)

#Given a contingency Table
baserate(data = contingencyTable)

baserateCT 5

baserateCT Calculate Baserate (CT)

Description

This function calculates the baserate of the first rater, second rater, and the average of both the
raters. Called by baserate.

Usage

baserateCT(CT)

Arguments

CT The contingencyTable for which the baserate is calculated

Value
A list of the format:

firstBaserate The percentage of the data for which a positive code, or a 1, appears in the first rater

secondBaserate The percentage of the data for which a positive code, or a 1, appears in the second
rater

averageBaserate The average of the firstBaserate and secondBaserate.

See Also

baserate and baserateSet

baserateSet Calculate Baserate (Set)

Description

This function will calculate the baserate of the first rater, second rater, and the average of both the
raters. Called by baserate.

Usage

baserateSet(set)

Arguments

set The codeSet for which the baserate is calculated

6 codeSet

Value
A list of the format:
firstBaserate The percentage that a positive code, or a 1, appears in the first rater

secondBaserate The percentage that a positive code, or a 1, appears in the second rater

averageBaserate The average percentage that a positive code, or a 1, appears in either of the two
raters

See Also

baserate and baserateCT

codeSet codeSet

Description

A codeSet is a Nx2 binary matrix in which the first column corresponds to the first rater and the
second column corresponds to the second rater.

Usage

codeSet

Format

The codeSet is an object of class matrix with n rows and two columns.

Examples

#An example codeSet

firstRater = c(1,1,1,1,rep(0,36))
secondRater = ¢(1,1,1,0,1,1,rep(0,34))
exampleSet = cbind(firstRater,secondRater)

#This set is included in the package under the variable name "codeSet".

contingencyTable 7

contingencyTable contingencylable

Description
A contingency Table is a 2x2 matrix that contains the counts of all combinations of positive and
negative ratings made by two raters.

Usage

contingencyTable

Format

The contingency Table is an object of class matrix with two rows and two columns. The order-
ing of the combination vector input to the matrix is as follows: c(Rater1Positive & Rater2Positive,
Rater1Negative & Rater2Positive, Rater1Positive & Rater2Negative, Rater1 Negative & Rater2Negative).

Examples

#An example contingencyTable
ct = matrix(c(3,2,1,34), nrow = 2, ncol = 2)

#This contingencyTable is included in the package under the variable name "contingencyTable"”.

contingency_table contingency_table

Description

Create a contingency table using the provied precision, recall, baserate, and length.

Usage

contingency_table(precision, rec, length, baserate)

Arguments
precision double
rec double
length int

baserate double

createSimulatedCodeSet

createSimulatedCodeSet

Create Simulated codeSet

Description

Creates a simulated codeSet with the given parameters

Usage

createSimulatedCodeSet(

length,
baserate,
kappaMin,
kappaMax,
precisionMin,
precisionMax,

°

tries = 50

Arguments

length

baserate

kappaMin

kappaMax

precisionMin

precisionMax

tries

Details

the length of the simulated codeSet to be created

the baserate of the simulated codeSet

the minimum kappa of the simulated codeSet

the maximum kappa of the simulated codeSet

the minimum precision of the simulated codeSet

the maximum precision of the simulated codeSet

Parameters passed to createRandomSet (e.g. type = "set" or type = "ct")

the maximum number of tries to generate a valid set, smaller set lengths may
require an increased number of tries

codeSets are generated by first picking a random kappa within its range and a random precision
within its range. If the random kappa, random precision, and baserate are not mathematically
possible, then the precision is resampled from a range of mathematically possible values within its
range. A unique simulated codeSet is then constructed given these parameters.

Value

A codeSet that fulfills the given parameters

generateKPs_c

generateKPs_c generate_kp_list

Description

generate_kp_list

Usage

generate_kp_list(
numNeeded,
baserate,
kappaMin,
kappaMax,
precisionMin,
precisionMax,
distributionType = 0oL,
distributionLength = 10000L

)

Arguments
numNeeded int
baserate double
kappaMin double
kappaMax double

precisionMin double

precisionMax double

distributionType
int O - normal (default), 1 - bell

distributionLength
long

Value

matrix of kappa and precision values (column 1 as precision)

10 getHandCT

getBootPvalue_c getBootPvalue_c

Description

returns the percentage of the time that the distribution was greater or equal to the observed kappa
if the result is less than the mean of the distribution, than the p value is 1 else return the number of
times that the distribution is greater than the result as a percentage of the total number of items in
the distribution

Usage

getBootPvalue_c(distribution, result)

Arguments

distribution vector of calculated kappas

result double calculated kappa to compare against

Value

double calculated p-value

getHandCT Get Handset

Description

This function is to get a handset of a set and calculate the kappa

Usage
getHandCT (full.ct, handSetLength, handSetBaserate, as_kappa = TRUE)

Arguments
full.ct This is the set to take a handset of
handSetLength This is the length of the handset to take
handSetBaserate
This is the minimum baserate to inflate the handset to
as_kappa If FALSE then return the handSet, if TRUE (default) return the kappa of the
handSet
Value

The function returns the handSet if returnSet is TRUE or the kappa of the handSet if not

getHandSet 11

getHandSet Get Handset

Description

This function is to get a handset of a set and calculate the kappa

Usage

getHandSet(set, handSetLength, handSetBaserate, returnSet = FALSE)

Arguments
set This is the set to take a handset of
handSetLength This is the length of the handset to take
handSetBaserate
This is the minimum baserate to inflate the handset to
returnSet If TRUE, then return the handSet if FALSE, return the kappa of the handSet
Value

The function returns the handSet if returnSet is TRUE or the kappa of the handSet if not

getHandSetIndices Generate a Handset

Description
Generate a vector representing indices of set, using the handSetBaserate to determine the minimum
number of indices that are positive

Usage
getHandSetIndices(set, handSetLength = 20, handSetBaserate = 0.2)

Arguments

set matrix of two columns

handSetLength number of indices to find
handSetBaserate
number between 0 and 1 to use as a minimum number of positive indices

Value

vector of indices from set

12 getTestSet

getHand_kappa getHand_kappa

Description

This function returns kappa calculated from a Handset taken from a larger Contingency Table

Usage

getHand_kappa(ct, handSetLength, handSetBaserate)

Arguments

ct KPs matrix of kappa (column 1) and precision (column 2) values

handSetLength The length of the testSet (ignored unless data is an observed kappa value)

handSetBaserate
baserate to inflate the sampled contingency table to

Value

Kappa as double

getTestSet Get Test Set

Description

This function gets a festSet from a larger codeSet given certain sampling parameters.

Usage

getTestSet(set, testSetlLength, testSetBaserateInflation = @)

Arguments

set The codeSet from which the testSet is taken

testSetlLength The length of the testSet to be taken

testSetBaserateInflation
The minimum guaranteed baserate of the testSer. Default to 0

kappa 13

Details

A testSet is a codeSet that is a subset of a larger codeSet with a given set of properties. A festSet is
constructed by sampling (without replacement) P rows from rows in the larger codeSet where the
first rater’s code was 1, and then appending an additional sample (without replacement) of R rows
taken at random from the larger codeSet excluding rows included in the first P rows sampled. P is
computed as the minbaserate * length of the festser. R is computed as testSetLength - P. The result
of this sampling procedure is to create a sample with a minimum baserate regardless of the baserate
of the larger codeSet.If testSetBaserateInflation is set to zero, the function selects rows at random.

Value

A codeSet with the properties specified

kappa Calculate kappa

Description

This function calculates Cohen’s kappa on a contingencyTable or a codeSet

Usage

kappa(data)

Arguments

data A contingencyTable or a codeSet

Value

The kappa of the contingencyTable or codeSet

See Also

kappaSet and kappaCT

Examples

#Given a code set
kappa(data = codeSet)

#Given a contingency Table
kappa(data = contingencyTable)

14

kappaSet

kappaCT Calculate kappa (contingency Table)

Description

This function calculates Cohen’s kappa on a contingencyTable. Called by kappa.

Usage
kappaCT(ct)

Arguments

ct A contingencyTable

Value

The kappa of the contingencyTable

See Also

kappa and kappaSet

kappaSet Calculate kappa (Set)

Description

This function calculates Cohen’s kappa for a given codeSet. Called by kappa.

Usage
kappaSet(set)

Arguments

set A codeSet

Value

The kappa of the codeSet

See Also

kappa and kappaCT

kappa_ct

15

kappa_ct

kappa_ct

Description

Calculate kappa from a contingency table

Usage
kappa_ct(ct)

Arguments

ct

[TBD]

random_contingency_table

random_contingency_table

Description

random_contingency_table

Usage

random_contingency_table(

setlLength,
baserate,
kappaMin,
kappaMax,
minPrecision
maxPrecision

Arguments

setlLength
baserate
kappaMin
kappaMax
minPrecision

maxPrecision

" n
- o

[TBD]
[TBD]
[TBD]
[TBD]
[TBD]
[TBD]

16 rho

recall recall

Description

recall

Usage
recall(kappa, BR, P)

Arguments
kappa double
BR double
P double
Value

Recall calculated from provided kappa, BR, and P

rho Rho

Description

This function calculates rho for a testSet, contingencyTable, or an observed kappa value with
associated set parameters (testSetLength and OcSBaserate).

Usage

rho(
X,
OcSBaserate = NULL,
testSetLength = NULL,
testSetBaseratelInflation = 0,
OcSLength = 10000,
replicates = 800,
ScSKappaThreshold = 0.9,
ScSKappaMin = 0.4,
ScSPrecisionMin = 0.6,
ScSPrecisionMax = 1,
method = "standard”

rho 17

Arguments
X The observed kappa value, testSet or contingencyTable that will be tested
with rho
OcSBaserate The baserate of the observed codeSet (defaults to baserate of testSet or
contingencyTable)

testSetLength The length of the testSet (ignored unless data is an observed kappa value)
testSetBaserateInflation
The minimum baserate from the sampling procedure

OcSLength The length of the observed codeSet

replicates The number of simulated codeSets to use in the null hypothesis distribution for
rho; similar to replicates in a Monte Carlo study

ScSKappaThreshold

The maximum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

ScSKappaMin The minimum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

ScSPrecisionMin
The minimum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho

ScSPrecisionMax
The maximum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho,

method character vector choosing implementation "standard" (Default) or "c"

Details

Rho is a Monte Carlo rejective method of interrater reliability statistics, implemented here for Co-
hen’s Kappa. Rho constructs a collection of data sets in which kappa is below a specified threshold,
and computes the empirical distribution on kappa based on the specified sampling procedure. Rho
returns the percent of the empirical distribution greater than or equal to an observed kappa. As a
result, Rho quantifies the type 1 error in generalizing from an observed test set to a true value of
agreement between two raters.

Rho starts with an observed kappa value, calculated on a subset of a codeSet, known as an observed
testSet, and a kappa threshold which indicates what is considered significant agreement between
raters.

It then generates a collection of fully-coded, simulated codeSets (ScS), further described in createSimulatedCodeSet,
all of which have a kappa value below the kappa threshold and similar properties as the original
codeSet.

Then, kappa is calculated on a testSet sampled from each of the ScSs in the collection to create
a null hypothesis distribution. These testSets mirror the observed testSets in their size and
sampling method. How these testSets are sampled is futher described in getTestSet.

The null hypothesis is that the observed testSet, was sampled from a data set, which, if both raters
were to code in its entirety, would result in a level of agreement below the kappa threshold.

For example, using an alpha level of 0.05, if the observed kappa is greater than 95 percent of the
kappas in the null hypothesis distribution, the null hypothesis is rejected. Then one can conclude
that the two raters would have acceptable agreement had they coded the entire data set.

18 rho.file

Value

rho for the given parameters

rho and kappa for the given data and parameters (unless kappa is given)

See Also

rho

Examples

Given an observed kappa value
rho(x = 0.88, OcSBaserate = 0.2, testSetLength = 80)

Given a test Set
rho(x = codeSet)

Given a contingency Table
rho(x = contingencyTable)

rho.file Rho using a file

Description

This function calculates rho and kappa for a given testSet as defined by the file and columns (coll,
col2), and returns a list containing both values. Called by rho.

Usage

rho.file(
X,
coll,
col2,
OcSBaserate = NULL,
testSetBaseratelInflation = 0,
OcSLength = 10000,
replicates = 800,
ScSKappaThreshold = 0.9,
ScSKappaMin = 0.4,
ScSPrecisionMin = 0.6,
ScSPrecisionMax = 1,
method = "standard”

rho.file 19

Arguments
X The observed kappa value, testSet or contingencyTable that will be tested
with rho
coll The first column from file
col2 The second column from file
OcSBaserate The baserate of the observed codeSet (defaults to baserate of testSet or
contingencyTable)

testSetBaserateInflation
The minimum baserate from the sampling procedure

OcSLength The length of the observed codeSet

replicates The number of simulated codeSets to use in the null hypothesis distribution for
rho; similar to replicates in a Monte Carlo study

ScSKappaThreshold

The maximum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

ScSKappaMin The minimum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

ScSPrecisionMin
The minimum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho

ScSPrecisionMax
The maximum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho,

method character vector choosing implementation "standard" (Default) or "c"

Value
rho for the given parameters

A list of the format:

rho The rho of the codeSet

kappa The Cohen’s Kappa of the codeSet

See Also

rho

20

rhoCT

rhoCT Rho (contingency Table)

Description

This function calculates rho and kappa for a given contingencyTable, and returns a list containing
both values. Called by rho.

Usage

rhoCT(
X,
OcSBaserate = NULL,
testSetBaserateInflation = 0,
OcSLength = 10000,
replicates = 800,
ScSKappaThreshold = 0.9,
ScSKappaMin = 0.4,
ScSPrecisionMin = 0.6,
ScSPrecisionMax = 1,

method = "standard”
)
Arguments
X The observed kappa value, testSet or contingencyTable that will be tested
with rho
OcSBaserate The baserate of the observed codeSet (defaults to baserate of testSet or
contingencyTable)

testSetBaserateInflation
The minimum baserate from the sampling procedure

OcSLength The length of the observed codeSet

replicates The number of simulated codeSets to use in the null hypothesis distribution for
rho; similar to replicates in a Monte Carlo study

ScSKappaThreshold

The maximum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

ScSKappaMin The minimum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

ScSPrecisionMin
The minimum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho

ScSPrecisionMax
The maximum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho,

method character vector choosing implementation "standard" (Default) or "c"

rhoK 21

Value

rho for the given parameters

A list of the format:
rho The rho of the contingencyTable

kappa The Cohen’s Kappa of the contingencyTable

See Also

rho

rhoK Rho (kappa)

Description

This function calculates rho for an observed kappa value with associated set parameters (test-
SetLength and OcSBaserate). Called by rho. A p-value is returned and if this value is less than
0.05, it is said that the handset does generalize to the entire set

Usage

rhoK (
X,
OcSBaserate,
testSetLength,
testSetBaserateInflation = 0,
OcSLength = 10000,
replicates = 800,
ScSKappaThreshold = 0.9,
ScSKappaMin = 0.4,
ScSPrecisionMin = 0.6,
ScSPrecisionMax = 1,

method = "standard”
)
Arguments
X The observed kappa value, testSet or contingencyTable that will be tested
with rho
OcSBaserate The baserate of the observed codeSet (defaults to baserate of testSet or
contingencyTable)

testSetLength The length of the testSet (ignored unless data is an observed kappa value)
testSetBaserateInflation
The minimum baserate from the sampling procedure

22 rhoMin

OcSLength The length of the observed codeSet

replicates The number of simulated codeSets to use in the null hypothesis distribution for
rho; similar to replicates in a Monte Carlo study

ScSKappaThreshold

The maximum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

ScSKappaMin The minimum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

ScSPrecisionMin
The minimum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho

ScSPrecisionMax
The maximum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho,

method set to "c" to calculate using the C++ implmentation. Defaults to "standard"
Value
rho for the given parameters

rho for the given parameters

See Also

rho

rhoMin Rho Min

Description

This function calculates the minimum testSetLength where it is possible to get a rho less than alpha
for the given parameters of rho.

Usage
rhoMin(baserate, alpha = 0.05, inc = 10, printInc = FALSE, ...)
Arguments
baserate A baserate
alpha The threshold of significance for rho (similar to an alpha level for a p value),
defaulted to 0.05
inc An integer indicating by how much the testSetLength should increase each iter-
ation
printInc A boolean indicating whether to print out each increment value with it’s corre-

sponding significance for rho

Any additional parameters passed into rho

rhoR 23

Value
The minimum length of testSet, to the nearest multiple of inc, greater than the minimum length,
that would give a value where rho less than alpha becomes mathematically possible.

Examples

#Add testSetBaserateInflation as an additional parameter
rhoMin(0.2, testSetBaseratelInflation = 0.33)

#Add testSetBaserateInflation as well as changing inc and selecting printInc
rhoMin(@0.2, inc = 5, printInc = TRUE, testSetBaserateInflation = 0.33)

rhoR rhoR: A package for computing rho

Description

Rho is used to test the generalization of inter rater reliability (IRR) statistics, in this case Cohen’s
Kappa.

Rho is a Monte Carlo rejective method of interrater reliability statistics, implemented here for Co-
hen’s Kappa. Rho constructs a collection of data sets in which kappa is below a specified threshold,
and computes the empirical distribution on kappa based on the specified sampling procedure. Rho
returns the percent of the empirical distribution greater than or equal to an observed kappa. As a
result, Rho quantifies the type 1 error in generalizing from an observed test set to a true value of
agreement between two raters.

Rho starts with an observed kappa value, calculated on a subset of a codeSet, known as an observed
testSet, and a kappa threshold which indicates what is considered significant agreement between
raters.

It then generates a collection of fully-coded, simulated codeSets (ScS), further described in createSimulatedCodeSet,
all of which have a kappa value below the kappa threshold and similar properties as the original
codeSet.

Then, kappa is calculated on a testSet sampled from each of the ScSs in the collection to create
a null hypothesis distribution. These testSets mirror the observed testSet in their size and
sampling method. How these testSets are sampled is futher described in testSet.

The null hypothesis is that the observed testSet, was sampled from a data set, which, if both raters
were to code in its entirety, would result in a level of agreement below the kappa threshold.

For example, using an alpha level of 0.05, if the observed kappa is greater than 95 percent of the
kappas in the null hypothesis distribution, the null hypothesis is rejected. Then one can conclude
that the two raters would have acceptable agreement had they coded the entire data set.

rho

Use rho rhoK rhoSet
rhoCT

24 rhoSet

kappa
Use kappa kappaSet
kappaCT

rhoMin

Use rhoMin

rhoSet Rho (set)

Description

This function calculates rho and kappa for a given testSet, and returns a list containing both
values. Called by rho.

Usage

rhoSet (
X,
OcSBaserate = NULL,
testSetBaserateInflation = 0,
OcSLength = 10000,
replicates = 800,
ScSKappaThreshold = 0.9,
ScSKappaMin = 0.4,
ScSPrecisionMin = 0.6,

ScSPrecisionMax = 1,
method = "standard”
)
Arguments
X The observed kappa value, testSet or contingencyTable that will be tested
with rho
OcSBaserate The baserate of the observed codeSet (defaults to baserate of testSet or
contingencyTable)

testSetBaserateInflation
The minimum baserate from the sampling procedure

OcSLength The length of the observed codeSet

replicates The number of simulated codeSets to use in the null hypothesis distribution for
rho; similar to replicates in a Monte Carlo study

ScSKappaThreshold

The maximum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

sample_contingency_table 25

ScSKappaMin The minimum kappa value used to generate simulated codeSets in the null
hypothesis distribution for rho

ScSPrecisionMin

The minimum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho

ScSPrecisionMax

The maximum precision to be used for generation of simulated codeSets in the
null hypothesis distribution for rho,

method character vector choosing implementation "standard" (Default) or "c"

Value

rho for the given parameters

A list of the format:

rho The rho of the codeSet
kappa The Cohen’s Kappa of the codeSet

See Also

rho

sample_contingency_table
sample_contingency_table

Description

sample_contingency_table

Usage

sample_contingency_table(xx, n, forR = TRUE)

Arguments
XX contingency table matrix
n int size of the contingency table

forR bool if true, add 1 to the results accounting for R indices starting at 1

26

$.rating.set

$.rating.set Helper function to return special values on a rating set

Description

Helper function to return special values on a rating set

Usage
S3 method for class 'rating.set'
x$1

Arguments
X Set or Contingency.Table

i Value to search for

Index

x datasets rhoSet, 23, 24
codeSet, 6
contingencyTable, 7 sample_contingency_table, 25

$.rating.set, 26
testSet, 4, 12, 16-21, 23, 24

as.code.set, 3 testSets, 17,23
as.contingency.table, 3

baserate, 4, 5,6, 8, 12,17, 19-22, 24
baserateCT, 4, 5,6
baserateSet, 4, 5,5

codeSet, 4, 5,6, 8, 12-14, 17, 19-25
codeSets, 17, 19, 20, 22-25
contingency_table, 7
contingencyTable, 4, 5,7, 13, 14, 16, 17,
19-21, 24
createSimulatedCodeSet, 8, 17, 23

generate_kp_list (generateKPs_c), 9
generateKPs_c, 9
getBootPvalue_c, 10
getHand_kappa, 12

getHandCT, 10

getHandSet, 11
getHandSetIndices, 11
getTestSet, 12, 17

kappa, 13, 14, 24
kappa_ct, 15
kappaCT, 13, 14, 14, 24
kappaSet, 13, 14, 14, 24

random_contingency_table, 15
recall, 16

rho, 16, 18-25

rho.file, 18

rhoCT, 20, 23

rhok, 21, 23

rhoMin, 22, 24

rhoR, 23

27

	as.code.set
	as.contingency.table
	baserate
	baserateCT
	baserateSet
	codeSet
	contingencyTable
	contingency_table
	createSimulatedCodeSet
	generateKPs_c
	getBootPvalue_c
	getHandCT
	getHandSet
	getHandSetIndices
	getHand_kappa
	getTestSet
	kappa
	kappaCT
	kappaSet
	kappa_ct
	random_contingency_table
	recall
	rho
	rho.file
	rhoCT
	rhoK
	rhoMin
	rhoR
	rhoSet
	sample_contingency_table
	$.rating.set
	Index

