Package 'productplots'

October 27, 2025

Title	Product	Plots	for	F
-------	---------	-------	-----	---

Description Framework for visualising tables of counts, proportions and probabilities. The framework is called product plots, alluding to the computation of area as a product of height and width, and the statistical concept of generating a joint distribution from the product of conditional and marginal distributions. The framework, with extensions, is sufficient to encompass over 20 visualisations previously described in fields of statistical graphics and 'infovis', including bar charts, mosaic plots, 'treemaps', equal area plots and fluctuation diagrams.

Version 0.1.2
Imports plyr, ggplot2
Suggests reshape2, testthat, covr
License GPL-2
LazyData true
RoxygenNote 7.3.3
Encoding UTF-8
<pre>URL https://github.com/hadley/productplots</pre>
BugReports https://github.com/hadley/productplots/issues
NeedsCompilation no
Author Hadley Wickham [aut, cre], Heike Hofmann [aut]
Maintainer Hadley Wickham <hadley@posit.co></hadley@posit.co>
Repository CRAN
Date/Publication 2025-10-27 22:00:02 UTC

Contents

ddecker																							2
find col	level	١.																					3

2 ddecker

	find_row_level
	fluct
	flucts
	парру
	ıbar
	nspine
	mosaic
	nested
	prodplot
	scale_x_product
	scale_y_product
	spine
	stacked
	ile
	vbar
	vspine
Index	1

ddecker

Template for a double decker plot. A double decker plot is composed of a sequence of spines in the same direction, with the final spine in the opposite direction.

Description

Template for a double decker plot. A double decker plot is composed of a sequence of spines in the same direction, with the final spine in the opposite direction.

Usage

```
ddecker(direction = "h")
```

Arguments

direction direction of first split

find_col_level 3

find_col_level

Find the first level which has columns.

Description

Returns NA if no columns at any level.

Usage

```
find_col_level(df)
```

Arguments

df

data frame of rectangle positions

find_row_level

Find the first level which has rows.

Description

Returns NA if no rows at any level.

Usage

```
find_row_level(df)
```

Arguments

df

data frame of rectangle positions

fluct

Fluctation partitioning.

Description

Fluctation partitioning.

Usage

```
fluct(data, bounds, offset = 0.05, max = NULL)
```

Arguments

data bounds data frame

bounds bounds of space to partition offset space between spines max maximum value

4 happy

flucts

Template for a fluctuation diagram.

Description

Template for a fluctuation diagram.

Usage

```
flucts(direction = "h")
```

Arguments

direction

direction of first split

happy

Data related to happiness from the general social survey.

Description

The data is a small sample of variables related to happiness from the general social survey (GSS). The GSS is a yearly cross-sectional survey of Americans, run from 1976. We combine data for 25 years to yield 51,020 observations, and of the over 5,000 variables, we select nine related to happiness:

Usage

data(happy)

Format

A data frame with 51020 rows and 10 variables

Details

- age. age in years: 18–89.
- degree. highest education: It high school, high school, junior college, bachelor, graduate.
- finrela. relative financial status: far above, above average, average, below average, far below.
- happy. happiness: very happy, pretty happy, not too happy.
- health. health: excellent, good, fair, poor.
- marital. marital status: married, never married, divorced, widowed, separated.
- sex. sex: female, male.
- wtsall. probability weight. 0.43-6

hbar 5

hbar

Horizontal bar partition: width constant, height varies.

Description

Horizontal bar partition: width constant, height varies.

Usage

```
hbar(data, bounds, offset = 0.02, max = NULL)
```

Arguments

data bounds data frame

bounds bounds of space to partition

offset space between spines

max maximum value

hspine

Horizontal spine partition: height constant, width varies.

Description

Horizontal spine partition: height constant, width varies.

Usage

```
hspine(data, bounds, offset = 0.01, max = NULL)
```

Arguments

data bounds data frame

bounds bounds of space to partition

offset space between spines

max maximum value

6 nested

mosaic

Template for a mosaic plot. A mosaic plot is composed of spines in alternating directions.

Description

Template for a mosaic plot. A mosaic plot is composed of spines in alternating directions.

Usage

```
mosaic(direction = "v")
```

Arguments

direction

direction of first split

nested

Template for a nested barchart. A nested bar is just a sequence of bars in the same direction.

Description

Template for a nested barchart. A nested bar is just a sequence of bars in the same direction.

Usage

```
nested(direction = "h")
```

Arguments

direction

direction of first split

prodplot 7

prodplot

Create a product plot

Description

Create a product plot

Usage

```
prodplot(
  data,
  formula,
  divider = mosaic(),
  cascade = 0,
  scale_max = TRUE,
  na.rm = FALSE,
  levels = -1L,
  ...
)
```

Arguments

data input data frame formula formula specifying display of plot divider divider function cascading amount, per nested layer cascade scale_max Logical vector of length 1. If TRUE maximum values within each nested layer will be scaled to take up all available space. If FALSE, areas will be comparable between nested layers. Logical vector of length 1 - should missing levels be silently removed? na.rm levels an integer vector specifying which levels to draw. other arguments passed on to draw

Examples

```
if (require("ggplot2")) {
prodplot(happy, ~ happy, "hbar")
prodplot(happy, ~ happy, "hspine")

prodplot(happy, ~ sex + happy, c("vspine", "hbar"))
prodplot(happy, ~ sex + happy, stacked())

prodplot(happy, ~ happy + sex | health, mosaic("h")) + aes(fill=happy)
# The levels argument can be used to extract a given level of the plot prodplot(happy, ~ sex + happy, stacked(), level = 1)
prodplot(happy, ~ sex + happy, stacked(), level = 2)
}
```

8 spine

scale_x_product

Generate an x-scale for ggplot2 graphics.

Description

Generate an x-scale for ggplot2 graphics.

Usage

```
scale_x_product(df)
```

Arguments

df

list of data frame produced by prodcalc, formula and divider

scale_y_product

Generate a y-scale for ggplot2 graphics.

Description

Generate a y-scale for ggplot2 graphics.

Usage

```
scale_y_product(df)
```

Arguments

df

list of data frame produced by prodcalc, formula and divider

spine

Spine partition: divide longest dimesion.

Description

Spine partition: divide longest dimesion.

Usage

```
spine(data, bounds, offset = 0.01, max = NULL)
```

Arguments

data bounds data frame

bounds bounds of space to partition offset space between spines max maximum value

stacked 9

stacked	Template for a stacked bar chart. A stacked bar chart starts with a bar
	and then continues with spines in the opposite direction.

Description

Template for a stacked bar chart. A stacked bar chart starts with a bar and then continues with spines in the opposite direction.

Usage

```
stacked(direction = "h")
```

Arguments

direction direction of first split

tile

Tree map partitioning.

Description

 $Adapated\ from\ Squarified Layout\ in\ http://www.cs.umd.edu/hcil/treemap-history/Treemaps-Java-Algorithms.$ zip

Usage

```
tile(data, bounds, max = 1)
```

Arguments

data bounds data frame

bounds bounds of space to partition

max maximum value

10 vspine

vbar

Vertical bar partition: height constant, width varies.

Description

Vertical bar partition: height constant, width varies.

Usage

```
vbar(data, bounds, offset = 0.02, max = NULL)
```

Arguments

data bounds data frame

bounds of space to partition

offset space between spines

max maximum value

vspine

Vertical spine partition: width constant, height varies.

Description

Vertical spine partition: width constant, height varies.

Usage

```
vspine(data, bounds, offset = 0.01, max = NULL)
```

Arguments

data bounds data frame

bounds bounds of space to partition

offset space between spines

max maximum value

Index

```
\ast datasets
     happy, 4
ddecker, 2
{\tt find\_col\_level, 3}
\verb|find_row_level|, 3
fluct, 3
flucts, 4
happy, 4
hbar, 5
hspine, 5
mosaic, 6
\mathsf{nested}, \textcolor{red}{6}
prodcalc, 8
prodplot, 7
scale_x\_product, 8
scale_y_product, 8
spine, 8
stacked, 9
tile, 9
vbar, 10
vspine, 10
```