Package ‘mlt’

October 19, 2025

Title Most Likely Transformations
Version 1.7-0
Date 2025-10-17

Description Likelihood-based estimation of conditional transformation
models via the most likely transformation approach described in
Hothorn et al. (2018) <DOI:10.1111/sjos.12291> and Hothorn (2020)
<DOI:10.18637/js5.v092.i01>. Shift-
scale (Siegfried et al, 2023, <DOI:10.1080/00031305.2023.2203177>)
and multivariate (Klein et al, 2022, <DOI:10.1111/sjos.12501>) transformation models
are part of this package. A package vignette is avail-
able from <DOI:10.32614/CRAN.package.mlt.docreg> and
more convenient user interfaces to many models from <DOI:10.32614/CRAN.package.tram>.

Depends basefun (>= 1.2-1), variables (>= 1.1-0)

Imports BB, alabama, stats, quadprog, coneproj, graphics, methods,
grDevices, sandwich, numDeriv, survival, Matrix, nloptr,
mvtnorm, icenReg

Suggests MASS, nnet, TH.data, multcomp, qrng

URL http://ctm.R-forge.R-project.org
License GPL-2

Encoding UTF-8

NeedsCompilation yes

Author Torsten Hothorn [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8301-0471>)

Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>
Repository CRAN
Date/Publication 2025-10-19 11:20:02 UTC

Contents

mlt-package e
confband

https://doi.org/10.1111/sjos.12291
https://doi.org/10.18637/jss.v092.i01
https://doi.org/10.1080/00031305.2023.2203177
https://doi.org/10.1111/sjos.12501
https://doi.org/10.32614/CRAN.package.mlt.docreg
https://doi.org/10.32614/CRAN.package.tram
http://ctm.R-forge.R-project.org
https://orcid.org/0000-0001-8301-0471

2 mlt-package
CLIL . . o e e e 4
ctm-methods 5
mlt . .. e e e e 6
mlt-methods L 7
mItOPLtim e e e e e e e e e 9
mmlt e e 11
mmlt-methods 13
plot-predict-simulate e 14
R e 18

Index 22

mlt-package General Information on the mlt Package

Description

The mlt package implements maximum likelihood estimation in conditional transformation models
as introduced by Hothorn et al. (2020), Klein et al. (2022), and Siegfried et al. (2023).

An introduction to the package is available in the ml1t package vignette from package mlt.docreg
(Hothorn, 2020).

Novice users might find the high(er) level interfaces offered by package tram more convenient.

Author(s)

This package is authored by Torsten Hothorn <Torsten.Hothorn @R-project.org>.

References

Torsten Hothorn, Lisa Moest, Peter Buehlmann (2018), Most Likely Transformations, Scandinavian
Journal of Statistics, 45(1), 110-134, doi:10.1111/sjos.12291.

Torsten Hothorn (2020), Most Likely Transformations: The mlt Package, Journal of Statistical
Software, 92(1), 1-68, doi:10.18637/jss.v092.101

Nadja Klein, Torsten Hothorn, Luisa Barbanti, Thomas Kneib (2022), Multivariate Conditional
Transformation Models. Scandinavian Journal of Statistics, 49, 116—142, doi:10.1111/sjos.12501.

Sandra Siegfried, Lucas Kook, Torsten Hothorn (2023), Distribution-Free Location-Scale Regres-
sion, The American Statistician, 77(4), 345-356, doi:10.1080/00031305.2023.2203177.

Torsten Hothorn (2024), On Nonparanormal Likelihoods. doi:10.48550/arXiv.2408.17346.

https://doi.org/10.1111/sjos.12291
https://doi.org/10.18637/jss.v092.i01
https://doi.org/10.1111/sjos.12501
https://doi.org/10.1080/00031305.2023.2203177
https://doi.org/10.48550/arXiv.2408.17346

confband 3

confband Confidence Bands

Description

Confidence bands for transformation, distribution, survivor or cumulative hazard functions

Usage

confband(object, newdata, level = ©.95, ...)
S3 method for class 'mlt'
confband(object, newdata, level = 0.95,

type = c("trafo”, "distribution”, "survivor”, "cumhazard"),
K = 20, cheat = K, ...)
Arguments
object an object of class mlt
newdata a data frame of observations
level the confidence level
type the function to compute the confidence band for
K number of grid points the function is evaluated at
cheat number of grid points the function is evaluated at when using the quantile ob-
tained for K grid points
additional arguments to confint.glht
Details

The function is evaluated at K grid points and simultaneous confidence intervals are then interpolated
in order to construct the band.

A smoother band can be obtained by setting cheat to something larger than K: The quantile is
obtained for K grid points but the number of evaluated grid points cheat can be much larger at no
additional cost. Technically, the nominal level is not maintained in this case but the deviation will
be small for reasonably large K.

Value

For each row in newdata the function and corresponding confidence band evaluated at the K (or
cheat) grid points is returned.

4 ctm

ctm Conditional Transformation Models

Description

Specification of conditional transformation models

Usage

ctm(response, interacting = NULL, shifting = NULL, scaling = NULL,
scale_shift = FALSE, data = NULL,
todistr = c(”Normal”, "Logistic”, "MinExtrVal", "MaxExtrVal",
"Exponential”, "Laplace”", "Cauchy"),
sumconstr = inherits(interacting, c("formula”, "formula_basis")), ...)
has_scale(object)

Arguments
response a basis function, ie, an object of class basis
interacting a basis function, ie, an object of class basis
shifting a basis function, ie, an object of class basis
scaling a basis function, ie, an object of class basis
scale_shift alogical choosing between two different model types in the presence of a scaling
term
data either a data. frame containing the model variables or a formal description of
these variables in an object of class vars
todistr a character vector describing the distribution to be transformed
sumconstr a logical indicating if sum constraints shall be applied
object an object of class ctm
arguments to as.basis when shifting is a formula
Details

This function only specifies the model which can then be fitted using m1t. The shift term is pos-
itive by default. All arguments except response can be missing (in this case an unconditional
distribution is estimated). Hothorn et al. (2018) explain the model class.

Possible choices of the distributions the model transforms to (the inverse link functions F'z) in-
clude the standard normal ("Normal”), the standard logistic ("Logistic"), the standard minimum
extreme value ("MinExtrVal”, also known as Gompertz distribution), and the standard maximum
extreme value ("MaxExtrVal”, also known as Gumbel distribution) distributions. The exponential
distribution ("Exponential”) can be used to fit Aalen additive hazard models. Laplace and Cauchy
distributions are also available.

ctm-methods 5

Shift-scale models (Siegfried et al., 2023) of the form

P(Y <y | X =) = Fz(y/exp(s(x)Ty)[(aly) @ b(x)) " 9] + d(x) " B)
(scale_shift = FALSE) or
P(Y <y | X =1z) = Fz(y/exp(s(z) T)[(aly) @ b(x)) "9 + d(x) " 8))
(scale_shift = TRUE) with bases a(y) (response), b(x) (interacting), d(z) (shifting), and
s(x) (scaling) can be specified as well.
Value
An object of class ctm; and a logical is returned by has_scale when a scale term is present in
object.
References

Torsten Hothorn, Lisa Moest, Peter Buehlmann (2018), Most Likely Transformations, Scandinavian
Journal of Statistics, 45(1), 110-134, doi:10.1111/sjos.12291.

Sandra Siegfried, Lucas Kook, Torsten Hothorn (2023), Distribution-Free Location-Scale Regres-
sion, The American Statistician, 77(4), 345-356, doi:10.1080/00031305.2023.2203177.

ctm-methods Methods for ctm Objects

Description

Methods for objects of class ctm

Usage

S3 method for class 'ctm'
variable.names(object,
which = c("all”, "response”, "interacting”,
"shifting", "scaling"),

o)
S3 method for class 'ctm'
coef(object, ...)
Arguments
object an unfitted conditional transformation model as returned by ctm
which a character specifying which names shall be returned
additional arguments
Details

coef can be used to get and set model parameters.

https://doi.org/10.1111/sjos.12291
https://doi.org/10.1080/00031305.2023.2203177

mlt

mlt

Most Likely Transformations

Description

Likelihood-based model estimation in conditional transformation models

Usage

mlt(model, data, weights = NULL, offset = NULL, fixed = NULL,

theta =
dofit =

Arguments

model
data
weights
offset

fixed

theta
pstart

scaleparm

dofit

optim

Details

NULL, pstart = NULL, scaleparm = TRUE,
TRUE, optim = mltoptim(hessian = has_scale(model)))

a conditional transformation model as specified by ctm
a data.frame containing all variables specified in model
an optional vector of case weights

an optional vector of offset values; offsets are not added to an optional scaling
term (see link{ctm})

a named vector of fixed regression coefficients; the names need to correspond to
column names of the design matrix

optional starting values for the model parameters
optional starting values for the distribution function evaluated at the data

a logical indicating if (internal) scaling shall be applied to the model parameters;
TRUE unless a location-scale model is fitted where the numerically approximated
Hessian is only available on the original parameter scale

a logical indicating if the model shall be fitted to the data (TRUE) or not. If theta
is given, a model of class ml1t (a full "fitted" model) featuring these parameters
is returned. Otherwise, an unfitted model of class ctm is returned

a list of functions implementing suitable optimisers, requires numerical Hessian
for location-scale models

This function fits a conditional transformation model by searching for the most likely transformation
as described in Hothorn et al. (2018) and Hothorn (2020).

Value

An object of class m1t with corresponding methods.

mlit-methods 7

References

Torsten Hothorn, Lisa Moest, Peter Buehlmann (2018), Most Likely Transformations, Scandinavian
Journal of Statistics, 45(1), 110-134, doi:10.1111/sjos.12291.

Torsten Hothorn (2020), Most Likely Transformations: The mlt Package, Journal of Statistical
Software, 92(1), 1-68, doi:10.18637/js5.v092.i101

Sandra Siegfried, Lucas Kook, Torsten Hothorn (2023), Distribution-Free Location-Scale Regres-
sion, The American Statistician, 77(4), 345-356, doi:10.1080/00031305.2023.2203177.

Examples

#i## set-up conditional transformation model for conditional

distribution of dist given speed

dist <- numeric_var("dist"”, support = c(2.0, 100), bounds = c(@, Inf))

speed <- numeric_var("speed”, support = c(5.0, 23), bounds = c(@, Inf))

ctmm <- ctm(response = Bernstein_basis(dist, order = 4, ui = "increasing”),
interacting = Bernstein_basis(speed, order = 3))

fit model
mltm <- mlt(ctmm, data = cars)

plot data

plot(cars)

predict quantiles and overlay data with model via a "quantile sheet”

q <- predict(mltm, newdata = data.frame(speed = 0:24), type = "quantile”,
p=12:8/10, K=500)

tmp <- apply(q, 1, function(x) lines(@:24, x, type = "1"))

mlt-methods Methods for mlt Objects

Description

Methods for objects of class mlt

Usage

S3 method for class 'mlt'
coef(object, fixed = TRUE, ...)
coef(object) <- value

S3 method for class 'mlt'

weights(object, ...)

S3 method for class 'mlt'

loglik(object, parm = coef(object, fixed = FALSE), w = NULL, newdata, ...)
S3 method for class 'mlt'

vcov(object, parm = coef(object, fixed = FALSE), complete = FALSE, ...)

Hessian(object, ...)

https://doi.org/10.1111/sjos.12291
https://doi.org/10.18637/jss.v092.i01
https://doi.org/10.1080/00031305.2023.2203177

mlt-methods

S3 method for class 'mlt'

Hessian(object, parm = coef(object, fixed = FALSE), ...)
Gradient(object, ...)

S3 method for class 'mlt'

Gradient(object, parm = coef(object, fixed = FALSE), ...)

S3 method for class 'mlt'

estfun(x, parm

= coef(x, fixed = FALSE),

w = NULL, newdata, ...)
S3 method for class 'mlt'
residuals(object, parm = coef(object, fixed = FALSE),

w = NULL, newdata, what = c("shifting”, "scaling”), ...)
S3 method for class 'mlt'
mkgrid(object, n, ...)

S3 method for class 'mlt'

bounds(object)

S3 method for class 'mlt'

variable.names(object,

)

S3 method for class 'mlt_fit'

update(object, weights = stats::weights(object),
subset = NULL, offset = object$offset, theta = coef(object, fixed = FALSE),
fixed = NULL, ...)

S3 method for class 'mlt'

as.mlt(object)

Arguments

object, x
fixed

value

parm

what

weights

newdata

n

subset

offset
theta

a fitted conditional transformation model as returned by mlt

a logical indicating if only estimated coefficients (fixed = FALSE) should be
returned OR (for update) a named vector of fixed regression coefficients; the
names need to correspond to column names of the design matrix

coefficients to be assigned to the model
model parameters
model weights

type of residual: shifting means score with respect to a constant intercept for
the shift term and scaling means score with respect to a constant intercept in
the scaling term. This works whether or not such terms are actually present in
the model

model weights

an optional data frame of new observations. Allows evaluation of the log-
likelihood for a given model object on these new observations. The parameters
parm and w are ignored in this situation.

number of grid points

an optional integer vector indicating the subset of observations to be used for
fitting.

an optional vector of offset values

optional starting values for the model parameters

mltoptim

complete

currently ignored

additional arguments

Details

coef can be used to get and set model parameters, weights and logl ik extract weights and evaluate
the log-likelihood (also for parameters other than the maximum likelihood estimate). Hessian re-
turns the Hessian (of the negative log-likelihood) and vcov the inverse thereof. Gradient gives the
negative gradient (minus sum of the score contributions) and estfun the negative score contribu-
tion by each observation. mkgrid generates a grid of all variables (as returned by variable.names)
in the model. update allows refitting the model with alternative weights and potentially different
starting values. bounds gets bounds for bounded variables in the model.

mltoptim

Control Optimisation

Description

Define optimisers and their control parameters

Usage

mltoptim(
auglag = list(

kkt2.check = hessian,

eps = abstol,
itmax = 1000L,
method = "BFGS",
maxit = 500L
),
spg = list(
ftol = abstol,
quiet = TRUE,
checkGrad = FALSE
),
nloptr = list(
algorithm = "NLOPT_LD_MMA",
ftol_rel = reltol,
ftol_abs = abstol,
maxeval = 1000L
),
constrOptim = list(
method = "BFGS",
maxit = 1000L,
outer.iterations = 500L,
outer.eps = reltol

)’

H#it#

#iH#
H#iH#
i

#iH#
H#iH#
i

#iH#
H#iH#
H#iH#
i

H#iH#
i
i

turn off/on numerical hessian

absolute tolerance for _parameter_ updates

max number of outer iterations
inner algorithm
max number of inner (BFGS) iterations

absolute tolerance for _neg. loglLik_
don't talk
don't check analytical gradient

inner algorithm

relative change for _neg. loglik_
absolute tolerance for _neg. loglik_
max number of evaluations

inner algorithm
max number of inner (BFGS) iterations
max number of outer iterations

relative change for _neg. loglLik_

10 mltoptim

optim = list(

checkconstraints = TRUE, ### return -Inf if violated
method = "BFGS", ### inner algorithm
maxit = 1000L, ### max number of inner (BFGS) iterations
reltol = reltol ### relative change for _neg. loglLik_
),
nlminb = list(
checkconstraints = TRUE, ### return -Inf if violated
iter.max = 1000L, ### max number of iterations
eval.max = 1500L, ### max number of function evaluations
rel.tol = reltol, ### relative change for _neg. loglLik_
abs.tol = 0.0, ### absolute tolerance (nll is not >= @)
xf.tol = Te-10
),
abstol = 1e-07,
reltol = le-6,
trace = FALSE,
hessian = FALSE)
Arguments
auglag A list with control parameters for the auglag optimiser. maxtry is the number
of times the algorithm is re-started in case it failed.
spg A list with control parameters for the BBoptim optimiser (calling spg internally).
nloptr A list with control parameters for the nloptr family of optimisers.
constrOptim A list with control parameters for the constrOptim optimiser.
optim A list with control parameters for the optim optimiser producing an uncon-
strained fit.
nlminb A list with control parameters for the nlminb optimiser producing an uncon-

strained fit.

abstol, reltol Absolute and relative tolerances used as stopping criterion by various algo-

rithms.
trace A logical switching trace reports by the optimisers off.
hessian A logical indicating if a numerically differentiated Hessian matrix be returned.

Details

This function sets-up functions to be called in ml1t internally.

Value

A list of functions with arguments theta (starting values), f (log-likelihood), g (scores), h (Hes-
sian), ui and ci (linear inequality constraints). Adding further such functions is a way to add more
optimisers to mlt. The first one in this list converging defines the resulting model.

mmlt 11

All procedures except optim and nlminb perform constained optimisation. The model is only
defined for parameters meeting the constraints. For parameter configurations not meeting the con-
straints, the resulting log-likelihood is -Inf. This, however, does not mean that unconstraint opti-
misation will always produce parameter estimates which lead to valid models, so one should always
check the unconstrained (but probably faster obtained) result against the (slower) constrained solu-
tion.

Examples

set-up linear transformation model for conditional

distribution of dist given speed

dist <- numeric_var("dist"”, support = c(2.0, 100), bounds = c(@, Inf))

ctmm <- ctm(response = Bernstein_basis(dist, order = 4, ui = "increasing”),
shifting = ~ speed, data = cars)

the numerically determined

hessian is returned as "optim_hessian” slot

op <- mltoptim(hessian = TRUE)

mltm <- mlt(ctmm, data = cars, scale = FALSE, optim = op)

compare analytical and numerical hessian
all.equal(c(Hessian(mltm)), c(mltm$optim_hessian), tol = le-4)

mmlt Multivariate Conditional Transformation Models

Description

Conditional transformation models for multivariate continuous, discrete, or a mix of continuous and
discrete outcomes

Usage

mmlt(..., formula = ~ 1, data, conditional = FALSE,
theta = NULL, fixed = NULL, scaleparm = FALSE,
optim = mltoptim(hessian = TRUE), ### provides hessian
args = list(seed = 1, M = 1000),
dofit = TRUE, domargins = TRUE)
S3 method for class 'cmmlt'
coef(object, newdata,
type = c("all”, "conditional”, "Lambdapar"”, "Lambda"”, "Lambdainv",
"Precision”, "PartialCorr"”, "Sigma", "Corr",
"Spearman”, "Kendall"), fixed = TRUE,
L))
S3 method for class 'mmmlt'
coef(object, newdata,
type = c("all”, "marginal”, "Lambdapar”, "Lambda"”, "Lambdainv",

12 mmlt

"Precision”, "PartialCorr"”, "Sigma", "Corr",
"Spearman”, "Kendall"), fixed = TRUE,
L)
S3 method for class 'mmlt'
predict(object, newdata, margins = 1:7J,

type = c("trafo”, "distribution”, "survivor”, "density”, "hazard"),
log = FALSE, args = object$args, ...)
S3 method for class 'mmlt'
simulate(object, nsim = 1L, seed = NULL, newdata, K = 50, ...)
Arguments

marginal transformation models, one for each response, for mmlt. Additional
arguments for the methods.

formula a model formula describing a model for the dependency structure via the lambda
parameters. The default is set to ~ 1 for constant lambdas.

data a data.frame.

conditional logical; parameters are defined conditionally (only possible when all models are
probit models). This is the default as described by Klein et al. (2022). If FALSE,
parameters can be directly interpreted marginally, this is explained in Section 2.6
by Klein et al. (2022). Using conditional = FALSE with probit-only models
gives the same likelihood but different parameter estimates.

theta an optional vector of starting values.

fixed an optional named numeric vector of predefined parameter values or a logical
(for coef) indicating to also return fixed parameters (only when type = "all").

scaleparm a logical indicating if (internal) scaling shall be applied to the model parameters.

optim a list of optimisers as returned by mLtoptim

args a list of arguments for 1pmvnorm.

dofit logical; parameters are fitted by default, otherwise a list with log-likelihood and
score function is returned.

domargins logical; all model parameters are fitted by default, including the parameters of
marginal models.

object an object of class mmlt.

newdata an optional data.frame coefficients and predictions shall be computed for.

type type of coefficient or prediction to be returned.

margins indices defining marginal models to be evaluated. Can be single integers giv-
ing the marginal distribution of the corresponding variable, or multiple integers
(currently only 1: j implemented).

log logical; return log-probabilities or log-densities if TRUE.

nsim number of samples to generate.

seed optional seed for the random number generator.

K number of grid points to generate.

mmlt-methods 13

Details
The function implements core functionality for fitting multivariate conditional transformation mod-
els as described by Klein et al (2020).

Value

An object of class mmlt with coef and predict methods.

References

Nadja Klein, Torsten Hothorn, Luisa Barbanti, Thomas Kneib (2022), Multivariate Conditional
Transformation Models. Scandinavian Journal of Statistics, 49, 116—142, doi:10.1111/sjos.12501.

Torsten Hothorn (2024), On Nonparanormal Likelihoods. doi:10.48550/arXiv.2408.17346.

mmlt-methods Methods for mmlt Objects

Description

Methods for objects of class mmlt

Usage
S3 method for class 'mmlt'
weights(object, ...)
S3 method for class 'mmlt'
loglLik(object, parm = coef(object, fixed = FALSE), w = NULL, newdata = NULL, ...)
S3 method for class 'mmlt'
vcov(object, parm = coef(object, fixed = FALSE), complete = FALSE, ...)
S3 method for class 'mmlt'
Hessian(object, parm = coef(object, fixed = FALSE), ...)
S3 method for class 'mmlt'
Gradient(object, parm = coef(object, fixed = FALSE), ...)

S3 method for class 'mmlt'
estfun(x, parm = coef(x, fixed = FALSE),
w = NULL, newdata = NULL, ...)
S3 method for class 'mmlt'
mkgrid(object, ...)
S3 method for class 'mmlt'
variable.names(object, response_only = FALSE, ...)

Arguments

object, x a fitted multivariate transformation model as returned by mm1t

fixed a logical indicating if only estimated coefficients (fixed = FALSE) should be
returned OR (for update) a named vector of fixed regression coefficients; the
names need to correspond to column names of the design matrix

https://doi.org/10.1111/sjos.12501
https://doi.org/10.48550/arXiv.2408.17346

14 plot-predict-simulate

parm model parameters

w model weights

weights model weights

newdata an optional data frame of new observations. Allows evaluation of the log-

likelihood for a given model object on these new observations. The parameters
parm and w are ignored in this situation.

response_only only return the names of the response variables
complete currently ignored

additional arguments

Details

coef can be used to get and set model parameters, weights and loglL ik extract weights and evaluate
the log-likelihood (also for parameters other than the maximum likelihood estimate). Hessian re-
turns the Hessian (of the negative log-likelihood) and vcov the inverse thereof. Gradient gives the
negative gradient (minus sum of the score contributions) and estfun the negative score contribution
by each observation. mkgrid generates a grid of all variables (as returned by variable.names) in
the model.

plot-predict-simulate Plots, Predictions and Samples from mlit Objects

Description

Plot, predict and sample from objects of class mlt

Usage

S3 method for class 'ctm'
plot(x, newdata, type = c(
"distribution”, "logdistribution”,
"survivor"”, "logsurvivor",
"density”, "logdensity"”,
"hazard"”, "loghazard",
"cumhazard”, "logcumhazard”,
"odds"”, "logodds",
"quantile”, "trafo"),
g = NULL, prob =1:(K -1) / K, K =50, col = rgb(.1, .1, .1, .1), 1ty =1,

add = FALSE, ...)
S3 method for class 'mlt'
plot(x, ...)

S3 method for class 'ctm'

predict(object, newdata, type = c("trafo”,
"distribution”, "logdistribution”,
"survivor"”, "logsurvivor",

plot-predict-simulate 15

"density”, "logdensity"”,
"hazard"”, "loghazard",
"cumhazard”, "logcumhazard”,
"odds", "logodds"”,
"quantile”),
terms = c("bresponse”, "binteracting”, "bshifting”),
g = NULL, prob = NULL, K = 5@, interpolate = FALSE, ...)
S3 method for class 'mlt'
predict(object, newdata = object$data, ...)
S3 method for class 'ctm'
simulate(object, nsim = 1, seed = NULL, newdata, K = 50, q = NULL,

interpolate = FALSE, bysim = TRUE, ...)
S3 method for class 'mlt'
simulate(object, nsim = 1, seed = NULL, newdata = object$data, bysim = TRUE, ...)
Arguments

object a fitted conditional transformation model as returned by m1t or an unfitted con-
ditional transformation model as returned by ctm

X a fitted conditional transformation model as returned by m1t

newdata an optional data frame of observations

type type of prediction or plot to generate

q quantiles at which to evaluate the model

prob probabilities for the evaluation of the quantile function (type = "quantile”)

terms terms to evaluate for the predictions, corresponds to the argument response,
interacting and shiftingin ctm

K number of grid points to generate (in the absence of q)

col color for the lines to plot

1ty line type for the lines to plot

add logical indicating if a new plot shall be generated (the default)

interpolate logical indicating if quantiles shall be interpolated linearily. This unnecessary
option is no longer implemented (starting with 1.2-1).

nsim number of samples to generate

seed optional seed for the random number generator

bysim logical, if TRUE a list with nsim elements is returned, each element is of length

nrow(newdata) and contains one sample from the conditional distribution for
each row of newdata. If FALSE, a list of length nrow(newdata) is returned, its
ith element of length nsim contains nsim samples from the conditional distribu-
tion given newdatali,].

additional arguments

16 plot-predict-simulate

Details

plot evaluates the transformation function over a grid of q values for all observations in newdata
and plots these functions (according to type). predict evaluates the transformation function over a
grid of q values for all observations in newdata and returns the result as a matrix (where _columns_
correspond to _rows_ in newdata, see examples). Lack of type = "mean” is a feature and not a bug.

Argument type defines the scale of the plots or predictions: type = "distribution” means the
cumulative distribution function, type = "survivor" is the survivor function (one minus distribu-
tion function), type = "density” the absolute continuous or discrete density (depending on the
response), type = "hazard"”, type = "cumhazard”, and type = "odds" refers to the hazard (abso-
lute continuous or discrete), cumulative hazard (defined as minus log-survivor function in both the
absolute continuous and discrete cases), and odds (distribution divided by survivor) functions. The
quantile function can be evaluated for probabilities prob by type = "quantile”.

Note that the predict method for ctm objects requires all model coefficients to be specified in
this unfitted model. simulate draws samples from object by numerical inversion of the quantile
function.

Note that offsets are ALWAYS IGNORED when computing predictions. If you want the methods
to pay attention to offsets, specify them as a variable in the model with fixed regression coefficient
using the fixed argument in mlt.

More examples can be found in Hothorn (2018).

References

Torsten Hothorn (2020), Most Likely Transformations: The mlt Package, Journal of Statistical
Software, 92(1), 1-68, doi:10.18637/jss.v092.i01

Examples

library("survival")
op <- options(digits = 2)

GBSG2 dataset
data("GBSG2", package = "TH.data")

right-censored response
GBSG2%y <- with(GBSG2, Surv(time, cens))

define Bernstein(log(time)) parameterisation
of transformation function. The response
is bounded (log(@) doesn't work, so we use log(1))
support defines the support of the Bernstein polynomial
and add can be used to make the grid wider (see below)
rvar <- numeric_var("y", bounds = c(@, Inf),
support = c(100, 2000))
rb <- Bernstein_basis(rvar, order = 6, ui = "increasing")
dummy coding of menopausal status
hb <- as.basis(~ @ + menostat, data = GBSG2)
treatment contrast of hormonal treatment
xb <- as.basis(~ horTh, data = GBSG2, remove_intercept = TRUE)

https://doi.org/10.18637/jss.v092.i01

plot-predict-simulate 17

set-up and fit Cox model, stratified by menopausal status
m <- ctm(rb, interacting = hb, shifting = xb, todistr = "MinExtrVal")
fm <- mlt(m, data = GBSG2)

generate grid for all three variables

note that the response grid ranges between 1 (bounds[1])
and 2000 (support[2])

(d <= mkgrid(m, n = 10))

data.frame of menopausal status and treatment

nd <- do.call("expand.grid”, d[-11)

plot model on different scales, for all four combinations
of menopausal status and hormonal treatment
typ <- c("distribution”, "survivor”, "density"”, "hazard",
"cumhazard”, "odds")
layout(matrix(1:6, nrow = 2))
nl <- sapply(typ, function(tp)
K = 500 makes densities and hazards smooth
plot(fm, newdata = nd, type = tp, col = 1:nrow(nd), K = 500))
legend("topleft”, 1ty = 1, col = 1:nrow(nd),
legend = do.call(”paste”, nd), bty = "n")

plot calls predict, which generates a grid with K = 50
response values

note that a K x nrow(newdata) matrix is returned

(for reasons explained in the next example)
predict(fm, newdata = nd, type = "survivor")

newdata can take a list, and evaluates the survivor

function on the grid defined by newdata

using a linear array model formulation and is

extremely efficient (wrt computing time and memory)

d[1] (the response grid) varies fastest

=> the first dimension of predict() is always the response,
not the dimension of the predictor variables (like one

might expect)

predict(fm, newdata = d, type = "survivor")

owing to this structure, the result can be quickly stored in
a data frame as follows

cd <- do.call("expand.grid”, d)

cd$surv <- c(S <- predict(fm, newdata = d, type = "survivor"))

works for distribution functions

all.equal(1 - S, predict(fm, newdata = d, type = "distribution”))

cumulative hazard functions

all.equal(-log(S), predict(fm, newdata = d, type = "cumhazard"))

log-cumulative hazard functions (= trafo, for Cox models)
all.equal(log(-log(S)), predict(fm, newdata = d, type = "logcumhazard"))
all.equal(log(-log(S)), predict(fm, newdata = d, type = "trafo"))

densities, hazards, or odds functions

predict(fm, newdata = d, type = "density")

predict(fm, newdata = d, type = "hazard")

18

predict(fm, newdata = d, type = "odds")
and quantiles (10 and 20%)
predict(fm, newdata = d[-1], type = "quantile”, prob = 1:2 / 10)

note that some quantiles are only defined as intervals

(> 2000, in this case). Intervals are returned as an "response”
object, see ?R. Unfortunately, these can't be stored as array, so
a data.frame is returned where the quantile varies first

p <- c(list(prob = 1:9/10), d[-11)

np <- do.call("expand.grid”, p)

(Q <- predict(fm, newdata = d[-1], type = "quantile”, prob = 1:9 / 10))
np$Q <- Q

np

simulating from the model works by inverting the distribution
function; some obs are right-censored at 2000

(s <- simulate(fm, newdata = nd, nsim = 3))

convert to Surv

sapply(s, as.Surv)

generate 3 parametric bootstrap samples from the model
tmp <- GBSG2[, c("menostat”, "horTh")]

s <- simulate(fm, newdata = tmp, nsim = 3)

refit the model using the simulated response

lapply(s, function(y) {

tmpsy <- y
coef(mlt(m, data = tmp))
b))
options(op)
R Response Variables
Description

Represent a possibly censored or truncated response variable

Usage

R(object, ...)
S3 method for class 'numeric'
R(object = NA, cleft = NA, cright = NA,
tleft = NA, tright = NA, tol = sqrt(.Machine$double.eps),

as.R.ordered = FALSE, as.R.interval = FALSE, ...)
S3 method for class 'ordered'
R(object, cleft = NA, cright = NA, ...)

S3 method for class 'integer'

R(object, cleft = NA, cright = NA, bounds = c(min(object), Inf), ...)
S3 method for class 'factor'

R(object, ...)

S3 method for class 'Surv'

R(object, as.R.ordered = FALSE, as.R.interval = FALSE, ...)

as.Surv(object)

S3 method for class 'response'
as.Surv(object)

S3 method for class 'response'
as.double(x, ...)

Arguments
object A vector of (conceptually) exact measurements or an object of class response
(for as.Surv) or a list.
X same as object.
cleft A vector of left borders of censored measurements
cright A vector of right borders of censored measurements
tleft A vector of left truncations
tright A vector of right truncations
tol Tolerance for checking if cleft < cright
bounds Range of possible values for integers

as.R.ordered logical, should numeric responses or right-censored (and possible left-truncated
survival) times be coded as ordered factor? This leads to a parameterisation
allowing to maximise the nonparametric maximum likelihood

as.R.interval logical, should numeric responses be coded for the nonparametric maximum
likelihood

other arguments, ignored except for t1left and tright toR.ordered andR. integer

Details

R is basically an extention of Surv for the representation of arbitrarily censored or truncated mea-
surements at any scale. The storage.mode of object determines if models are fitted by the dis-
crete likelihood (integers or factors) or the continuous likelihood (log-density for numeric objects).
Interval-censoring is given by intervals (cleft, cright], also for integers and factors (see example
below). Left- and right-truncation can be defined by the tleft and tright arguments. Existing
Surv objects can be converted using R(Surv(...))$ and, in some cases, an as.Surv() method
exists for representing response objects as Surv objects.

R applied to a list calls R for each of the list elements and returns a joint object.

More examples can be found in Hothorn (2018) and in vignette("tram”, package = "tram").

References

Torsten Hothorn (2020), Most Likely Transformations: The mlt Package, Journal of Statistical
Software, 92(1), 1-68, doi:10.18637/jss.v092.i101

https://doi.org/10.18637/jss.v092.i01

20

Examples

library("survival”)

randomly right-censored continuous observations
time <- as.double(1:9)
event <- rep(c(FALSE, TRUE), length = length(time))

Surv(time, event)
R(Surv(time, event))

right-censoring, left-truncation
1tm <- 1:9 / 10

Surv(ltm, time, event)

R(Surv(ltm, time, event))

interval-censoring
Surv(ltm, time, type = "interval2")
R(Surv(1ltm, time, type = "interval2"))

interval-censoring, left/right-truncation

lc <- as.double(1:4)

1t <= c(NA, NA, 7, 8)

rt <- c(NA, 9, NA, 10)

x <= c(3, NA, NA, NA)

rc <- as.double(11:14)

R(x, cleft = 1t, cright = rt)

as.Surv(R(x, cleft = 1t, cright = rt))

R(x, tleft =1, cleft = 1t, cright = rt)

R(x, tleft =1, cleft = 1t, cright = rt, tright = 15)
R(x, tleft = lc, cleft = 1t, cright = rt, tright = rc)

discrete observations: counts

X <- 0:9

R(x)

partially interval-censored counts
rx <- c(rep(NA, 6), rep(15L, 4))

R(x, cright = rx)

ordered factor
x <- gl(5, 2, labels = LETTERS[1:5], ordered = TRUE)
R(x)
interval-censoring (ie, observations can have multiple levels)
1x <- ordered(c("A", "A", "B", "C", "D", "E"),
levels = LETTERS[1:5], labels = LETTERS[1:5])
rx <- ordered(c("B", "D", "E", "D", "D", "E"),
levels = LETTERS[1:5], labels = LETTERS[1:5])
R(rx, cleft = 1x, cright = rx)

facilitate nonparametric maximum likelihood
(y <= round(runif(10), 1))
R(y, as.R.ordered = TRUE)

R(Surv(time, event), as.R.ordered = TRUE)
R(Surv(ltm, time, event), as.R.ordered = TRUE)

21

Index

x list mkgrid.mlt (mlt-methods), 7
mltoptim, 9 mkgrid.mmlt (mmlt-methods), 13

+ models mlt, 3,4,6,8, 10,15, 16
mmlt, 11 mlt-methods, 7

+ package mlt-package, 2
mlt-package, 2 mltoptim, 9, 12

mmlt, 11, 13

as.double.response (R), 18 mmlt-methods, 13

as.mlt (mlt-methods), 7

as.Surv (R), 18 nlminb, 70

auglag, 10 nloptr, 10

BBoptim, /0 optim, 710

bounds.mlt (mlt-methods), 7
plot-predict-simulate, 14

coef.cmmlt (mmlt), 11 plot.ctm(plot-predict-simulate), 14
coef.ctm (ctm-methods), 5 plot.mlt (plot-predict-simulate), 14
coef.mlt (mlt-methods), 7 predict.ctm (plot-predict-simulate), 14
coef.mmmlt (mmlt), 11 predict.mlt (plot-predict-simulate), 14
coef<- (mlt-methods), 7 predict.mmlt (mmlt), 11
coef<-.ctm(ctm-methods), 5

coef<-.mmlt (mmlt-methods), 13 R, 18

confband, 3 residuals.mlt (mlt-methods), 7

confint.glht, 3

constroptim, 10 simulate.ctm (plot-predict-simulate), 14

ctm. 4.5 6. 15 simulate.mlt (plot-predict-simulate), 14
ctm’—m’et’ho;js 5 simulate.mmlt (mmlt), 11

, spg, 10
estfun.mlt (mlt-methods), 7 Surv, 19

estfun.mmlt (mmlt-methods), 13)
update.mlt_fit (mlt-methods), 7

Gradient (mlt-methods), 7

Gradient.mmlt (mmlt-methods), 13 variable.names.ctm (ctm-methods), 5

variable.names.mlt (mlt-methods), 7

has_scale (ctm), 4 variable.names.mmlt (mmlt-methods), 13
Hessian (mlt-methods), 7 vcov.mlt (mlt-methods), 7

Hessian.mmlt (mmlt-methods), 13 veov.mmlt (mmlt-methods), 13
loglLik.mlt (mlt-methods), 7 weights.mlt (mlt-methods), 7
logLik.mmlt (mmlt-methods), 13 weights.mmlt (mmlt-methods), 13

lpmvnorm, 12

22

	mlt-package
	confband
	ctm
	ctm-methods
	mlt
	mlt-methods
	mltoptim
	mmlt
	mmlt-methods
	plot-predict-simulate
	R
	Index

