Package ‘mir3fda’

October 15, 2025
Title Extending 'mlr3' to Functional Data Analysis
Version 0.3.0

Description Extends the 'mlr3' ecosystem to functional analysis by adding
support for irregular and regular functional data as defined in the
'tf' package. The package provides 'PipeOps' for preprocessing
functional columns and for extracting scalar features, thereby
allowing standard machine learning algorithms to be applied
afterwards. Available operations include simple functional features
such as the mean or maximum, smoothing, interpolation, flattening, and
functional 'PCA".

License LGPL-3
URL https://mlr3fda.mlr-org.com, https://github.com/mlr-org/mlr3fda

BugReports https://github.com/mlr-org/mlr3fda/issues

Depends mlr3 (>=0.14.0), mlr3pipelines (>= 0.5.2), R (>=4.1.0)

Imports checkmate, data.table, Igr, mlr3misc (>= 0.14.0), paradox, R6,
tf (>=0.3.4)

Suggests FDboost, Ime4, mboost, rpart, testthat (>= 3.2.0),
tsfeatures, wavelets, withr

Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.3

Collate 'zzz.R' 'PipeOpFDABsignal.R' PipeOpFDACor.R'
'PipeOpFDAE«xtract.R' 'PipeOpFDAFlatten.R' PipeOpFDAInterpol.R’
'"PipeOpFDARandomEffect.R' 'PipeOpFDAScaleRange.R'
'"PipeOpFDASmooth.R' 'PipeOpFDATsfeatures.R'
'"PipeOpFDAWavelets.R' 'PipeOpFDAZoom.R' 'PipeOpFPCA.R'
"TaskClassif_phoneme.R' 'TaskRegr_dti.R' 'TaskRegr_fuel.R'
'bibentries.R' 'datasets.R' 'hash_input.R’

NeedsCompilation no

https://mlr3fda.mlr-org.com
https://github.com/mlr-org/mlr3fda
https://github.com/mlr-org/mlr3fda/issues

mlir3fda-package

Author Sebastian Fischer [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9609-3197>),
Maximilian Miicke [aut] (ORCID: <https://orcid.org/0009-0000-9432-9795>),
Fabian Scheipl [ctb] (ORCID: <https://orcid.org/0000-0001-8172-3603>),
Bernd Bischl [ctb] (ORCID: <https://orcid.org/0000-0001-6002-6980>)

Maintainer Sebastian Fischer <sebf.fischer@gmail.com>

Repository CRAN

Date/Publication 2025-10-15 08:30:02 UTC

Contents
mir3fda-package 2
mlr_pipeops_fda.bsignal L oL 3
mlr_pipeops_fda.cor 5
mlr_pipeops_fda.extract 6
mlr_pipeops_fda.flatten oL 8
mlr_pipeops_fdafpca 9
mlr_pipeops_fda.nterpol 11
mlr_pipeops_fda.random_effect Lo oL 12
mlr_pipeops_fda.scalerange 14
mlr_pipeops_fda.smooth o 15
mlr_pipeops_fda.tsfeats 16
mlr_pipeops_fda.wavelets 18
mlr_pipeops_fda.zoom Lo 19
mlr_tasks_dti 20
mir_tasks_fuel e 22
mlr_tasks_phoneme 23

Index 25

mlr3fda-package

mlr3fda: Extending 'mlir3’ to Functional Data Analysis

Description

Extends the "mlr3’ ecosystem to functional analysis by adding support for irregular and regular
functional data as defined in the 'tf* package. The package provides 'PipeOps’ for preprocessing
functional columns and for extracting scalar features, thereby allowing standard machine learning
algorithms to be applied afterwards. Available operations include simple functional features such
as the mean or maximum, smoothing, interpolation, flattening, and functional "PCA’.

https://orcid.org/0000-0002-9609-3197
https://orcid.org/0009-0000-9432-9795
https://orcid.org/0000-0001-8172-3603
https://orcid.org/0000-0001-6002-6980

mlr_pipeops_fda.bsignal 3

Data types

To extend mlr3 to functional data, two data types from the tf package are added:

» tfd_irreg - Irregular functional data, i.e. the functions are observed for potentially different
inputs for each observation.

» tfd_reg - Regular functional data, i.e. the functions are observed for the same input for each
individual.

Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G, Kotthoff L,
Bischl B (2019). “mlr3: A modern object-oriented machine learning framework in R.” Journal of
Open Source Software. doi:10.21105/joss.01903, https://joss.theoj.org/papers/10.21105/
joss.01903.
Author(s)

Maintainer: Sebastian Fischer <sebf.fischer@gmail.com> (ORCID)
Authors:

¢ Maximilian Miicke <muecke.maximilian@gmail.com> (ORCID)

Other contributors:

* Fabian Scheipl <fabian.scheipl@googlemail.com> (ORCID) [contributor]
* Bernd Bischl <bernd_bischl@gmx.net> (ORCID) [contributor]

See Also
Useful links:
e https://mlr3fda.mlr-org.com

e https://github.com/mlr-org/mlr3fda
* Report bugs at https://github.com/mlr-org/mlr3fda/issues

mlr_pipeops_fda.bsignal
B-spline Feature Extraction

Description

This PipeOp extracts features from functional data using B-spline basis functions. The extracted
features are B-spline coefficients that represent the functional data in the B-spline basis space. For
more details, see FDboost: :bsignal(), which is called internally.

https://doi.org/10.21105/joss.01903
https://joss.theoj.org/papers/10.21105/joss.01903
https://joss.theoj.org/papers/10.21105/joss.01903
https://orcid.org/0000-0002-9609-3197
https://orcid.org/0009-0000-9432-9795
https://orcid.org/0000-0001-8172-3603
https://orcid.org/0000-0001-6002-6980
https://mlr3fda.mlr-org.com
https://github.com/mlr-org/mlr3fda
https://github.com/mlr-org/mlr3fda/issues

4 mlr_pipeops_fda.bsignal

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as the fol-
lowing parameters:

e inS:: character(1)
Type of effect in the covariate index: one of "smooth”, "linear”, "constant"”. Default
"smooth".

e knots :: numeric()
Either the number of interior knots or a vector of their positions.

* boundary.knots :: numeric(2)
Boundary points at which to anchor the B-spline basis. Lower and upper boundary points for
the spline basis. Defaults to the range of the data.

e degree :: integer(1)
The degree of the regression spline. Default is 3L.

e differences :: integer(1)
Order of difference penalty. Default is 1L.

e df :: numeric(1)
Trace of the hat matrix, controlling smoothness. Default is 4.

e lambda :: any
Smoothing parameter of the penalty term.

e center :: logical(1)
Reparameterize the unpenalized part to zero-mean? Default is FALSE.

e cyclic:: logical(1)

If true the fitted coefficient function coincides at the boundaries.
e Z: any

Custom transformation matrix for the spline design.

e penalty :: character(1)
The penalty type: "ps” (P-spline) or "pss” (shrinkage). DEfault is "ps”.

e check.ident :: logical(1)
Use checks for identifiability of the effect. Default is FALSE.

Super classes
mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDABsignal

Methods

Public methods:

e PipeOpFDABsignal$new()
¢ PipeOpFDABsignal$clone()

Method new(): Initializes a new instance of this Class.

Usage:
PipeOpFDABsignal$new(id = "fda.bsignal”, param_vals = list())

mlr_pipeops_fda.cor 5

Arguments:

id (character(1))
Identifier of resulting object, default is "fda.bsignal”.

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpFDABsignal$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

task = tsk("fuel")

po_bsignal = po("”fda.bsignal”)

task_bsignal = po_bsignal$train(list(task))[[1L]]
task_bsignal$data()

mlr_pipeops_fda.cor Cross-Correlation of Functional Data

Description

Calculates the cross-correlation between two functional vectors using tf: :tf_crosscor(). Note
that it only operates on regular data and that the cross-correlation assumes that each column has the
same domain.

To apply this PipeOp to irregualr data, convert it to a regular grid first using PipeOpFDAInterpol.
If you need to change the domain of the columns, use PipeOpFDAScaleRange.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as the fol-
lowing parameters:

e arg:: numeric()
Grid to use for the cross-correlation.

Super classes

mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDACor

6 mlr_pipeops_fda.extract

Methods

Public methods:

e PipeOpFDACors$new()
¢ PipeOpFDACor$clone()

Method new(): Initializes a new instance of this Class.

Usage:
PipeOpFDACor$new(id = "fda.cor”, param_vals = list())

Arguments:

id (character(1))
Identifier of resulting object, default "fda.cor".

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist ().

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpFDACor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

set.seed(1234L)

dt = data.table(y = 1:100, x1 = tf::tf_rgp(100L), x2 = tf::tf_rgp(100L))
task = as_task_regr(dt, target = "y")

po_cor = po("fda.cor")

task_cor = po_cor$train(list(task))[[1L]]

task_cor

mlr_pipeops_fda.extract
Extracts Simple Features from Functional Columns

Description

This is the class that extracts simple features from functional columns. Note that it only operates on
values that were actually observed and does not interpolate.

mlr_pipeops_fda.extract 7

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as the fol-
lowing parameters:

e drop :: logical(1)
Whether to drop the original functional features and only keep the extracted features. Note
that this does not remove the features from the backend, but only from the active column role
feature. Initial value is TRUE.

e features:: list() | character()
A list of features to extract. Each element can be either a function or a string. If the element
if is function it requires the following arguments: arg and value and returns a numeric. For

n o s non non n

string elements, the following predefined features are available: "mean”, "max"”,"min","slope"”,"median","var".

n n

Initial is c("mean”, "max"”, "min"”, "slope”, "median”, "var”

e left :: numeric()
The left boundary of the window. Initial is -Inf. The window is specified such that the all
values >=left and <=right are kept for the computations.

e right :: numeric()
The right boundary of the window. Initial is Inf.

Naming

The new names generally append a _{feature} to the corresponding column name. However this
can lead to name clashes with existing columns. This is solved as follows: If a column was called
"x" and the feature is "mean”, the corresponding new column will be called "x_mean". In case of
duplicates, unique names are obtained using make.unique() and a warning is given.

Super classes

mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDAExtract

Methods

Public methods:

* PipeOpFDAExtract$new()
e PipeOpFDAExtract$clone()

Method new(): Initializes a new instance of this Class.

Usage:
PipeOpFDAExtract$new(id = "fda.extract”, param_vals = list())

Arguments:

id (character(1))
Identifier of resulting object, default is "fda.extract".

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

8 mlr_pipeops_fda.flatten

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpFDAExtract$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

task = tsk("fuel”)
po_fmean = po(”"fda.extract”, features = "mean”)
task_fmean = po_fmean$train(list(task))[[1L]]

add more than one feature
pop = po("fda.extract”, features = c("mean”, "median”, "var"))
task_features = pop$train(list(task))[[1L]]

add a custom feature
po_custom = po("fda.extract"”,
features = list(mean = function(arg, value) mean(value, na.rm = TRUE))
)
task_custom = po_custom$train(list(task))[[1L]]
task_custom

mlr_pipeops_fda.flatten
Flattens Functional Columns

Description

Convert regular functional features (e.g. all individuals are observed at the same time-points) to
new columns, one for each input value to the function.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple.

Naming

The new names generally append a _1, ..., to the corresponding column name. However this can
lead to name clashes with existing columns. This is solved as follows: If a column was called
"x" and the feature is "mean”, the corresponding new column will be called "x_mean". In case of
duplicates, unique names are obtained using make.unique() and a warning is given.

Super classes

mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDAFlatten

mlr_pipeops_fda.fpca 9

Methods

Public methods:
e PipeOpFDAFlatten$new()
e PipeOpFDAFlatten$clone()

Method new(): Initializes a new instance of this Class.
Usage:
PipeOpFDAFlatten$new(id = "fda.flatten”, param_vals = list())
Arguments:

id (character(1))
Identifier of resulting object, default "fda.flatten".

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpFDAFlatten$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

task = tsk("fuel”)
pop = po("fda.flatten")
task_flat = pop$train(list(task))

mlr_pipeops_fda.fpca Functional Principal Component Analysis

Description
This PipeOp applies a functional principal component analysis (FPCA) to functional columns and
then extracts the principal components as features. This is done using a (truncated) weighted SVD.
To apply this PipeOp to irregular data, convert it to a regular grid first using PipeOpFDAInterpol.
For more details, see tf::tfb_fpc(), which is called internally.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as the following
parameters:

* pve :: numeric(1)
The percentage of variance explained that should be retained. Default is @.995.

* n_components :: integer (1)
The number of principal components to extract. This parameter is initialized to Inf.

10 mlr_pipeops_tfda.fpca

Naming

The new names generally append a _pc_{number} to the corresponding column name. If a column
was called "x" and the there are three principcal components, the corresponding new columns will
be called "x_pc_1", "x_pc_2", "x_pc_3".

Super classes

mlr3pipelines: :PipeOp -> mlr3pipelines: :PipeOpTaskPreproc -> PipeOpFPCA

Methods

Public methods:

e PipeOpFPCA$new()
* PipeOpFPCA$clone()

Method new(): Initializes a new instance of this Class.

Usage:
PipeOpFPCA$new(id = "fda.fpca”, param_vals = list())

Arguments:

id (character(1))
Identifier of resulting object, default is "fda. fpca”.

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpFPCA$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

task = tsk("fuel”)

po_fpca = po("fda.fpca”, n_components = 3L)
task_fpca = po_fpca$train(list(task))L[1L]]
task_fpcas$data()

mlr_pipeops_fda.interpol 11

mlr_pipeops_fda.interpol
Interpolate Functional Columns

Description

Interpolate functional features (e.g. all individuals are observed at different time-points) to a com-
mon grid. This is useful if you want to compare functional features across observations. The
interpolation is done using the tf package. See tfd() for details.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as the fol-
lowing parameters:

e grid:: character(1) I numeric()
The grid to use for interpolation. If grid is numeric, it must be a sequence of values to use for
the grid or a single value that specifies the number of points to use for the grid, requires left
and right to be specified in the latter case. If grid is a character, it must be one of:

— "union”: This option creates a grid based on the union of all argument points from
the provided functional features. This means that if the argument points across features
are \(t_1, t_2, ..., t_n\), then the grid will be the combined unique set of these points.
This option is generally used when the argument points vary across observations and a
common grid is needed for comparison or further analysis.

— "intersect”: Creates a grid using the intersection of all argument points of a feature.
This grid includes only those points that are common across all functional features, facil-
itating direct comparison on a shared set of points.

— "minmax”: Generates a grid within the range of the maximum of the minimum argument
points to the minimum of the maximum argument points across features. This bounded
grid encapsulates the argument point range common to all features. Note: For regular
functional data this has no effect as all argument points are the same. Initial value is
"union”.

e method :: character(1)
Defaults to "linear"”. One of:

— "linear": applies linear interpolation without extrapolation (see tf: : tf_approx_linear()).
— "spline”: applies cubic spline interpolation (see tf: :tf_approx_spline()).
— "fill_extend": applies linear interpolation with constant extrapolation (see tf: : tf_approx_fill_extend()).
— "locf": applies "last observation carried forward" interpolation (see tf: : tf_approx_locf()).
— "nocb"”: applies "next observation carried backward" interpolation (see tf: : tf_approx_nocb()).
e left :: numeric()
The left boundary of the window. The window is specified such that the all values >=left and
<=right are kept for the computations.
e right :: numeric()
The right boundary of the window.

12 mlr_pipeops_fda.random_effect

Super classes

mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDAInterpol

Methods

Public methods:

¢ PipeOpFDAInterpol$new()
e PipeOpFDAInterpol$clone()

Method new(): Initializes a new instance of this Class.
Usage:
PipeOpFDAInterpol$new(id = "fda.interpol”, param_vals = list())
Arguments:

id (character(1))
Identifier of resulting object, default "fda.interpol”.

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpFDAInterpol$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

task = tsk("fuel”)

pop = po("fda.interpol”)

task_interpol = pop$train(list(task))[[1L]1]
task_interpol$data()

mlr_pipeops_fda.random_effect
Extracts Random Effects from Functional Columns

Description

This is the class that extracts random effects, specifically random intercepts and random slopes,
from functional columns. This PipeOp fits a linear mixed model, specifically a random intercept
and random slope model, using the 1me4: :1mer () function. The target variable is the value of the
functional feature which is regressed on the functional feature’s argument while subject id deter-
mines the grouping structure. After model estimation, the random effects are extracted and assigned
to the correct id.

mlr_pipeops_fda.random_effect 13

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple.

Naming

The new names append _random_intercept and _random_slope to the corresponding column
name of the functional feature.

Super classes

mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDARandomEffect

Methods

Public methods:

¢ PipeOpFDARandomEffect$new()
¢ PipeOpFDARandomEffect$clone()

Method new(): Initializes a new instance of this Class

Usage:
PipeOpFDARandomEffect$new(id = "fda.random_effect”, param_vals = list())

Arguments:
id (character (1)) Identifier of the operator, default is "fda.random_effect".

param_vals (named list()) List of hyperparameter settings, overwriting default settings set
during construction.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpFDARandomEffect$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

task = tsk("dti")
po_fre = po("fda.random_effect")
task_fre = po_fre$train(list(task))[[1L]]

14 mlr_pipeops_fda.scalerange

mlr_pipeops_fda.scalerange
Linearly Transform the Domain of Functional Data

Description

Linearly transform the domain of functional data so they are between lower and upper. The for-
mula for this is ' = of fset + x * scale, where scale is (upper — lower)/(maz(x) — min(z))
and of fset is —min(x) * scale + lower. The same transformation is applied during training and
prediction.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as the following
parameters:

e lower :: numeric(1)
Target value of smallest item of input data. Initialized to .

e uppper :: numeric(1)
Target value of greatest item of input data. Initialized to 1.

Super classes

mlr3pipelines: :PipeOp ->mlr3pipelines: :PipeOpTaskPreproc -> PipeOpFDAScaleRange

Methods

Public methods:

e PipeOpFDAScaleRange$new()
* PipeOpFDAScaleRange$clone()

Method new(): Initializes a new instance of this Class.
Usage:
PipeOpFDAScaleRange$new(id = "fda.scalerange”, param_vals = list())
Arguments:

id (character(1))
Identifier of resulting object, default "fda.scalerange”.

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpFDAScaleRange$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

mlr_pipeops_fda.smooth 15

Examples

task = tsk("fuel”)

po_scale = po("fda.scalerange”, lower = -1, upper = 1)
task_scale = po_scale$train(list(task))[[1L]]
task_scale$data()

mlr_pipeops_fda.smooth
Smoothing Functional Columns

Description

Smoothes functional data using tf: : tf_smooth (). This preprocessing operator is similar to PipeOpFDAInterpol,
however it does not interpolate to unobserved x-values, but rather smooths the observed values.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as the fol-
lowing parameters:

e method :: character(1)
One of:
— "lowess": locally weighted scatterplot smoothing (default)

— "rollmean”: rolling mean
— "rollmedian”: rolling meadian
— "savgol": Savitzky-Golay filtering
All methods but "lowess" ignore non-equidistant arg values.

e args ::named list()
List of named arguments that is passed to tf_smooth(). See the help page of tf_smooth()
for default values.

e verbose :: logical(1)
Whether to print messages during the transformation. Is initialized to FALSE.
Super classes
mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDASmooth
Methods

Public methods:

¢ PipeOpFDASmooth$new()
¢ PipeOpFDASmooth$clone()

Method new(): Initializes a new instance of this Class.

16 mlr_pipeops_fda.tsfeats

Usage:
PipeOpFDASmooth$new(id = "fda.smooth", param_vals = list())

Arguments:

id (character(1))
Identifier of resulting object, default "fda.smooth".

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpFDASmooth$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

task = tsk("fuel”)

po_smooth = po("fda.smooth”, method = "rollmean”, args = list(k = 5))
task_smooth = po_smooth$train(list(task))[[1L]]

task_smooth

task_smooth$data(cols = c("NIR", "UVVIS"))

mlr_pipeops_fda.tsfeats
Time Series Feature Extraction

Description

This PipeOp extracts time series features from functional columns.

For more details, see tsfeatures: :tsfeatures(), which is called internally.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as the fol-
lowing parameters:

e features :: character()
Function names which return numeric vectors of features. All features returned by these
functions must be named if they return more than one feature. Default is c("frequency”,
"stl_features”, "entropy”, "acf_features”).

e scale:: logical(1)
If TRUE, data is scaled to mean 0 and sd 1 before features are computed. Default is TRUE.

e trim:: logical(1)
If TRUE, data is trimmed by trim_amount before features are computed. Values larger than
trim_amount in absolute value are set to NA. Default is FALSE.

mlr_pipeops_fda.tsfeats 17

e trim_amount :: numeric(1)
Default level of trimming. Defaultis @. 1.

e parallel :: logical(1)
If TRUE, the features are computed in parallel. Default is FALSE.

e multiprocess :: any
The function from the future package to use for parallel processing. Defaultis future: :multisession().

* na.action:: any
A function to handle missing values. Default is stats: :na.pass().

Naming

The new names generally append a _{feature} to the corresponding column name. If a column
was called "x" and the feature is "trend"”, the corresponding new column will be called "x_trend".

Super classes

mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDATsfeatures

Methods

Public methods:

e PipeOpFDATsfeatures$new()
* PipeOpFDATsfeatures$clone()

Method new(): Initializes a new instance of this Class.
Usage:
PipeOpFDATsfeatures$new(id = "fda.tsfeats”, param_vals = list())
Arguments:

id (character(1))
Identifier of resulting object, default is "fda.tsfeats”.

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpFDATsfeatures$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

task = tsk("fuel”)

po_tsfeats = po("fda.tsfeats")

task_tsfeats = po_tsfeats$train(list(task))[[1L]]
task_tsfeats$data()

18 mlr_pipeops_fda.wavelets

mlr_pipeops_fda.wavelets
Discrete Wavelet transform features

Description

This PipeOp extracts discrete wavelet transform coefficients from functional columns. For more
details, see wavelets: :dwt(), which is called internally.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as the fol-
lowing parameters:

e filter :: character (1) I numeric() Iwavelets::wt.filter()
Specifies which filter should be used. Must be either wavelets: :wt.filter () object, an even
numeric vector or a string. In case of a string must be one of "d""1a"["b1"|"c" followed by an
even number for the level of the filter. The level of the filter needs to be smaller or equal then
the time-series length. For more information and acceptable filters see help(wt.filter).
Defaults to "1a8".

* n.levels:: integer(1)
An integer specifying the level of the decomposition.

e boundary :: character(1)
Boundary to be used. "periodic” assumes circular time series, for "reflection” the series
is extended to twice its length. Default is "periodic”.

e fast :: logical(1)
Should the pyramid algorithm be calculated with an internal C function? Default is TRUE.

Super classes

mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDAWavelets

Methods

Public methods:

e PipeOpFDAWavelets$new()
* PipeOpFDAWavelets$clone()

Method new(): Initializes a new instance of this Class.
Usage:
PipeOpFDAWavelets$new(id = "fda.wavelets”, param_vals = list())
Arguments:

id (character(1))
Identifier of resulting object, default is "fda.wavelets”.

mlr_pipeops_fda.zoom 19

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpFDAWavelets$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

task = tsk("fuel”)

po_wavelets = po("fda.wavelets”)

task_wavelets = po_wavelets$train(list(task))[[1L]]
task_wavelets$data()

mlr_pipeops_fda.zoom Zoom In/Out on Functional Columns

Description

Zoom in or out on functional features by restricting their domain to a specified window. This
operation extracts a subset of each function by defining new lower and upper boundaries, effectively
cropping the functional data to focus on a specific region of interest. Calls tf::tf_zoom() from
package tf.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as the fol-
lowing parameters:

* begin :: numeric()
The lower limit of the domain. Can be a single value applied to all functional columns, or a
numeric of length equal to the number of observations. The window includes all values where
argument >= begin. If not specified, defaults to the lower limit of each function’s domain.

* end :: numeric()
The upper limit of the domain.

Super classes

mlr3pipelines: :PipeOp->mlr3pipelines: :PipeOpTaskPreproc->mlr3pipelines: :PipeOpTaskPreprocSimple
-> PipeOpFDAZoom

https://CRAN.R-project.org/package=tf

20 mlr_tasks_dti

Methods

Public methods:

* PipeOpFDAZoom$new()
* PipeOpFDAZoom$clone()

Method new(): Initializes a new instance of this Class.
Usage:
PipeOpFDAZoom$new(id = "fda.zoom"”, param_vals = list())
Arguments:

id (character(1))
Identifier of resulting object, default "fda.zoom".

param_vals (named list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction. Default 1ist().

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpFDAZoom$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

task = tsk("fuel”)

pop = po(”fda.zoom”, begin = 50, end = 100)
task_zoom = pop$train(list(task))[[1L]]
task_zoom$data()

mlr_tasks_dti Diffusion Tensor Imaging (DTI) Regression Task

Description

This dataset contains two functional covariates and three scalar covariate. The goal is to predict the
PASAT score. pasat represents the PASAT score at each vist. subject_id represents the subject
ID. cca represents the fractional anisotropy tract profiles from the corpus callosum. sex indicates
subject’s sex. rcst represents the fractional anisotropy tract profiles from the right corticospinal
tract. Rows containing NAs are removed.

This is a subset of the full dataset, which is contained in the package refund.

Format

R6::R6Class inheriting from mlr3::TaskRegr.

mlr_tasks_dti 21

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("dti”)
tsk("dti")

Meta Information

* Task type: “regr”

e Dimensions: 340x4
* Properties: “groups”
* Has Missings: FALSE
* Target: “pasat”

EEINT3 9% i)

¢ Features: “cca”, “rcst”, “sex

References

Goldsmith, Jeff, Bobb, Jennifer, Crainiceanu, M C, Caffo, Brian, Reich, Daniel (2011). “Penalized
functional regression.” Journal of Computational and Graphical Statistics, 20(4), 830-851.

Brain dataset courtesy of Gordon Kindlmann at the Scientific Computing and Imaging Institute,
University of Utah, and Andrew Alexander, W. M. Keck Laboratory for Functional Brain Imaging
and Behavior, University of Wisconsin-Madison.

See Also

» Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

» Package mlr3data for more toy tasks.

» Package mlr3oml for downloading tasks from https://www.openml.org.
* Package mlr3viz for some generic visualizations.

* Dictionary of Tasks: mlr_tasks

* as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending
on the loaded packages).

* mlr3fselect and mir3filters for feature selection and feature filtering.
» Extension packages for additional task types:

— Unsupervised clustering: mlr3cluster

— Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.
com/.

Other Task: mlr_tasks_fuel, mlr_tasks_phoneme

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://CRAN.R-project.org/package=mlr3data
https://CRAN.R-project.org/package=mlr3oml
https://www.openml.org
https://CRAN.R-project.org/package=mlr3viz
https://CRAN.R-project.org/package=mlr3fselect
https://CRAN.R-project.org/package=mlr3filters
https://CRAN.R-project.org/package=mlr3cluster
https://mlr3proba.mlr-org.com/
https://mlr3proba.mlr-org.com/

22 mlr_tasks_fuel

mlr_tasks_fuel Fuel Regression Task

Description

This dataset contains two functional covariates and one scalar covariate. The goal is to predict the
heat value of some fuel based on the ultraviolet radiation spectrum and infrared ray radiation and
one scalar column called h2o.

This is a subset of the full dataset, which is contained in the package FDboost.

Format

R6::R6Class inheriting from mlr3::TaskRegr.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("fuel”)
tsk("fuel”)

Meta Information
* Task type: “regr”
* Dimensions: 129x4
* Properties: -
* Has Missings: FALSE
 Target: “heatan”
¢ Features: “NIR”, “UVVIS”, “h20”

References
Brockhaus, Sarah, Scheipl, Fabian, Hothorn, Torsten, Greven, Sonja (2015). “The functional linear
array model.” Statistical Modelling, 15(3), 279-300.

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

Package mlr3data for more toy tasks.

Package mlr3oml for downloading tasks from https://www.openml.org.

Package mlr3viz for some generic visualizations.

* Dictionary of Tasks: mlr_tasks

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://CRAN.R-project.org/package=mlr3data
https://CRAN.R-project.org/package=mlr3oml
https://www.openml.org
https://CRAN.R-project.org/package=mlr3viz

mlr_tasks_phoneme 23

* as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending
on the loaded packages).

* mlr3fselect and mlir3filters for feature selection and feature filtering.
* Extension packages for additional task types:

— Unsupervised clustering: mlr3cluster

— Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.
com/.

Other Task: mlr_tasks_dti, mlr_tasks_phoneme

mlr_tasks_phoneme Phoneme Classification Task

Description

The task contains a single functional covariate and 5 equally big classes (aa, ao, dcl, iy, sh). The
aim is to predict the class of the phoneme in the functional, which is a log-periodogram.
This is a subset of the full dataset, which is contained in the package fda.usc.

Format

R6::R6Class inheriting from mlr3::TaskClassif.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("phoneme")
tsk("phoneme")

Meta Information

* Task type: “classif”

e Dimensions: 250x2

* Properties: “multiclass”
* Has Missings: FALSE
 Target: “class”

¢ Features: “X”

References

Ferraty, Frédric, Vieu, Philippe (2003). “Curves discrimination: a nonparametric functional ap-
proach.” Computational Statistics & Data Analysis, 44(1-2), 161-173.

https://CRAN.R-project.org/package=mlr3fselect
https://CRAN.R-project.org/package=mlr3filters
https://CRAN.R-project.org/package=mlr3cluster
https://mlr3proba.mlr-org.com/
https://mlr3proba.mlr-org.com/

24 mlr_tasks_phoneme

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

* Package mir3data for more toy tasks.

» Package mlr3oml for downloading tasks from https://www.openml.org.
» Package mlr3viz for some generic visualizations.

* Dictionary of Tasks: mlr_tasks

* as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending
on the loaded packages).

* mir3fselect and mir3filters for feature selection and feature filtering.
» Extension packages for additional task types:

— Unsupervised clustering: mlr3cluster

— Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.
com/.

Other Task: mlr_tasks_dti, mlr_tasks_fuel

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://CRAN.R-project.org/package=mlr3data
https://CRAN.R-project.org/package=mlr3oml
https://www.openml.org
https://CRAN.R-project.org/package=mlr3viz
https://CRAN.R-project.org/package=mlr3fselect
https://CRAN.R-project.org/package=mlr3filters
https://CRAN.R-project.org/package=mlr3cluster
https://mlr3proba.mlr-org.com/
https://mlr3proba.mlr-org.com/

Index

x Task
mlr_tasks_dti, 20
mlr_tasks_fuel, 22
mlr_tasks_phoneme, 23

Dictionary, 21, 22, 24
dictionary, 21-23

FDboost: :bsignal(), 3
future::multisession(), 17

Ime4: :1mer(), 12

mlr3::TaskClassif, 23

mlr3::TaskRegr, 20, 22

mlr3fda (mlr3fda-package), 2

mlr3fda-package, 2

mlr3pipelines::PipeOp, 4, 5,7, 8, 10,
12-15,17-19

mlr3pipelines: :PipeOpTaskPreproc, 4, 5,
7,8,10, 12-15, 17-19

mlr3pipelines: :PipeOpTaskPreprocSimple,
4,5,7,8,12,13,15,17-19

mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.
mlr_pipeops_fda.

mlr_tasks, 21-24

bsignal, 3
cor, 5
extract, 6
flatten, 8
fpca, 9
interpol, 11
random_effect, 12
scalerange, 14
smooth, 15
tsfeats, 16
wavelets, 18
zoom, 19

mlr_tasks_dti, 20, 23, 24
mlr_tasks_fuel, 21,22, 24
mlr_tasks_phoneme, 21, 23, 23

25

PipeOpFDABsignal
(mlr_pipeops_fda.bsignal), 3
PipeOpFDACor (mlr_pipeops_fda.cor), 5
PipeOpFDAExtract
(mlr_pipeops_fda.extract), 6
PipeOpFDAFlatten
(mlr_pipeops_fda.flatten), 8
PipeOpFDAInterpol, 5, 9, 15
PipeOpFDAInterpol
(mlr_pipeops_fda.interpol), 11
PipeOpFDARandomEffect
(mlr_pipeops_fda.random_effect),
12
PipeOpFDAScaleRange, 5
PipeOpFDAScaleRange
(mlr_pipeops_fda.scalerange),
14
PipeOpFDASmooth
(mlr_pipeops_fda.smooth), 15
PipeOpFDATsfeatures
(mlr_pipeops_fda.tsfeats), 16
PipeOpFDAWavelets
(mlr_pipeops_fda.wavelets), 18
PipeOpFDAZoom (mlr_pipeops_fda.zoom), 19
PipeOpFPCA (mlr_pipeops_fda.fpca), 9
PipeOpTaskPreproc, 9, 14
PipeOpTaskPreprocSimple, 4, 5,7, 8,11, 13,
15,16, 18, 19

R6::R6Class, 20, 22, 23
stats::na.pass(), 17

Task, 21-23

Tasks, 21-24
tf::tf_approx_fill_extend(), 11
tf::tf_approx_linear(), 11
tf::tf_approx_locf(), 11
tf::tf_approx_nocb(), 11
tf::tf_approx_spline(), 11

26 INDEX

tf::tf_crosscor(), 5
tf::tf_smooth(), 15
tf::tf_zoom(), 19
tf::tfb_fpc(), 9

tfd(), 11

tsfeatures: :tsfeatures(), 16
tsk(), 21-23

wavelets::dwt(), I8
wavelets::wt.filter(), I8

	mlr3fda-package
	mlr_pipeops_fda.bsignal
	mlr_pipeops_fda.cor
	mlr_pipeops_fda.extract
	mlr_pipeops_fda.flatten
	mlr_pipeops_fda.fpca
	mlr_pipeops_fda.interpol
	mlr_pipeops_fda.random_effect
	mlr_pipeops_fda.scalerange
	mlr_pipeops_fda.smooth
	mlr_pipeops_fda.tsfeats
	mlr_pipeops_fda.wavelets
	mlr_pipeops_fda.zoom
	mlr_tasks_dti
	mlr_tasks_fuel
	mlr_tasks_phoneme
	Index

