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biweight_mid_corr Biweight mid-correlation (bicor)
Description

Use biweight mid-correlatio when you want a Pearson-like measure that is robust to outliers and
heavy-tailed noise. Bicor down-weights extreme observations via Tukey’s biweight while preserv-
ing location/scale invariance, making it well suited to high-throughput data (e.g., gene expression)
where occasional gross errors or platform artefacts occur. Prefer Spearman/Kendall for purely or-
dinal structure or strongly non-linear monotone relations.

Prints a matrix with a compact header, optional truncation for large matrices, and a small summary
of off-diagonal values.

Produces a ggplot2 heatmap of the biweight mid-correlation matrix. Optionally reorders variables
via hierarchical clustering on 1 — 7picor, and can show only a triangle.

Usage

biweight_mid_corr(

data,

c_const = 9,
max_p_outliers = 1,
pearson_fallback = c("hybrid”, "none", "all"),
na_method = c("error”, "pairwise"),
mad_consistent = FALSE,

w = NULL,

sparse_threshold = NULL,
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n_threads = getOption("matrixCorr.threads"”, 1L)

)
## S3 method for class 'biweight_mid_corr'
print(

X’

digits = 4,

max_rows = NULL,
max_cols = NULL,
width = getOption("width", 8@L),
na_print = "NA",

)
## S3 method for class 'biweight_mid_corr'
plot(
X,
title = "Biweight mid-correlation heatmap”,
reorder = c("none”, "hclust"),
triangle = c("full”, "lower", "upper”),
low_color = "indianred1”,
mid_color = "white",

high_color = "steelbluel”,
value_text_size = 3,
na_fill = "grey90",

)
Arguments
data A numeric matrix or a data frame containing numeric columns. Factors, logicals
and common time classes are dropped in the data-frame path. Missing values
are not allowed unless na_method = "pairwise”.
c_const Positive numeric. Tukey biweight tuning constant applied to the raw MAD;

default 9 (Langfelder & Horvath’s convention).

max_p_outliers Numeric in (@, 1]. Optional cap on the maximum proportion of outliers on
each side; if < 1, side-specific rescaling maps those quantiles to |u|=1. Use 1 to
disable.
pearson_fallback
Character scalar indicating the fallback policy. One of:
e "hybrid"” (default): if a column has MAD = 0, that column uses Pearson
standardisation, yielding a hybrid correlation.
* "none”: return NA if a column has MAD = 0 or becomes degenerate after
weighting.
e "all": force ordinary Pearson for all columns.

na_method One of "error” (default, fastest) or "pairwise”. With "pairwise”, each (j, k)
correlation is computed on the intersection of non-missing rows for the pair.
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mad_consistent Logical; if TRUE, use the normal-consistent MAD (MAD_raw * 1.4826) in the
bicor weights. Default FALSE to match Langfelder & Horvath (2012).

w Optional non-negative numeric vector of length nrow(data) giving row weights.
When supplied, weighted medians/MADs are used and Tukey weights are mul-
tiplied by w before normalisation.

sparse_threshold
Optional numeric > 0. If supplied, sets entries with |r| < sparse_threshold
to 0 and returns a sparse "ddiMatrix” (requires Matrix).

n_threads Integer > 1. Number of OpenMP threads. Defaults to getOption("matrixCorr.threads”,
1L).

X An object of class biweight_mid_corr.

digits Integer; number of decimal places used for the matrix.

max_rows Optional integer; maximum number of rows to display (default shows all).

max_cols Optional integer; maximum number of columns to display (default shows all).

width Integer; target console width for wrapping header text.

na_print Character; how to display missing values.

Additional arguments passed to ggplot2: : theme() or other layers.
title Plot title. Default is "Biweight mid-correlation heatmap”.

reorder Character; one of "none"” (default) or "hclust”. If "hclust”, variables are re-
ordered by complete-linkage clustering on the distance d = 1—r, after replacing
NA by O for clustering purposes only.

triangle One of "full” (default), "lower"”, or "upper"” to display the full matrix or a
single triangle.
low_color, mid_color, high_color

Colours for the gradient in scale_fill_gradient2. Defaults are "indianred1”,
"white"”, "steelbluel”.

value_text_size
Numeric; font size for cell labels. Set to NULL to suppress labels (recommended
for large matrices).

na_fill Fill colour for NA cells. Default "grey90".

Details

For a column = = (z,)7-,, let med(x) be the median and MAD(z) = med(|xz — med(z)|) the
(raw) median absolute deviation. If mad_consistent = TRUE, the consistent scale MAD*(z) =
1.4826 MAD(z) is used. With tuning constant ¢ > 0, define

Zq — med(x)

~ ¢eMAD® (2)’

Uq

The Tukey biweight gives per-observation weights

wy = (1 —u2)?1{|u,| < 1}.
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Robust standardisation of a column is
B (4 — med(x)) wq
. 2"
\/Zl')":l [(J:b —med(z)) wb]

For two columns z, y, the biweight mid-correlation is

bicor(x, y) Z TqTa € ,1].

Capping the maximum proportion of outliers (max_p_outliers). If max_p_outliers <1, let
qr, = Q. (max_p_outliers) and ¢y = @, (1 — max_p_outliers) be the lower/upper quantiles of .
If the corresponding |u| at either quantile exceeds 1, u is rescaled separately on the negative and
positive sides so that those quantiles land at |u| = 1. This guarantees that all observations between
the two quantiles receive positive weight. Note the bound applies per side, so up to 2 max_p_outliers
of observations can be treated as outliers overall.

Fallback when for zero MAD / degeneracy (pearson_fallback). If a column has MAD = 0 or
the robust denominator becomes zero, the following rules apply:

* "none"” when correlations involving that column are NA (diagonal remains 1).

* "hybrid” when only the affected column switches to Pearson standardisation Z, = (z, —

Z)//>_p(xy — T)?, yielding the hybrid correlation

bicornyn (x, y) E ZTa Ya,

with the other column still robust-standardised.

* "all” when all columns use ordinary Pearson standardisation; the result equals stats: :cor(. . .

method="pearson") when the NA policy matches.
Handling missing values (na_method).
* "error” (default): inputs must be finite; this yields a symmetric, positive semidefinite (PSD)

matrix since R = X ' X.

* "pairwise”: each IZ;; is computed on the intersection of rows where both columns are finite.
Pairs with fewer than 5 overlapping rows return NA (guarding against instability). Pairwise
deletion can break PSD, as in the Pearson case.

Row weights (w). When w is supplied (non-negative, length m), the weighted median med,, () and
weighted MAD MAD,, () = med,,(|]z — med,,(z)|) are used to form w. The Tukey weights are
then multiplied by the observation weights prior to normalisation:

(xq — medy, () wq w)

\/Zb [(zy — med,, () wy wl()ObS)]

where w((fbs) > 0 are the user-supplied row weights and w,, are the Tukey biweights built from the
weighted median/MAD. Weighted pairwise behaves analogously on each column pair’s overlap.
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MAD choice (mad_consistent). Setting mad_consistent = TRUE multiplies the raw MAD by
1.4826 inside u. Equivalently, it uses an effective tuning constant ¢* = ¢ x 1.4826. The default
FALSE reproduces the convention in Langfelder & Horvath (2012).

Optional sparsification (sparse_threshold). If provided, entries with |r| < sparse_threshold
are set to 0 and the result is returned as a "ddiMatrix” (diagonal is forced to 1). This is a post-
processing step that does not alter the per-pair estimates.

Computation and threads. Columns are robust-standardised in parallel and the matrix is formed as
R = X T X. n_threads selects the number of OpenMP threads; by default it uses getOption("matrixCorr.threads”,
1L).

Basic properties. bicor(ax + b, cy + d) = sign(ac) bicor(z,y). With no missing data (and
with per-column hybrid/robust standardisation), the output is symmetric and PSD. As with Pearson,
affine equivariance does not hold for the associated biweight midcovariance.

Value

A symmetric correlation matrix with class biweight_mid_corr (oradgCMatrixif sparse_threshold
is used), with attributes: method = "biweight_mid_correlation”, description, and package =
"matrixCorr”. Downstream code should be prepared to handle either a dense numeric matrix or a
sparse dgCMatrix. Internally, all medians/MADs, Tukey weights, optional pairwise-NA handling,
and OpenMP loops are implemented in the C++ helpers (bicor_*_cpp()), so the R wrapper mostly
validates arguments and dispatches to the appropriate backend.

Invisibly returns x.

A ggplot object.

Author(s)

Thiago de Paula Oliveira

References

Langfelder, P. & Horvath, S. (2012). Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. doi:10.18637/jss.v046.i11

Examples

set.seed(1)

X <= matrix(rnorm(2000 * 40), 2000, 40)

R <- biweight_mid_corr(X, c_const = 9, max_p_outliers = 1,
pearson_fallback = "hybrid")

print(attr(R, "method"))


https://doi.org/10.18637/jss.v046.i11
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bland_altman Bland-Altman statistics with confidence intervals

Description

Computes Bland-Altman mean difference and limits of agreement (LoA) between two numeric
measurement vectors, including t-based confidence intervals for the mean difference and for each
LoA using ’C++’ backend.

Note: Lin’s concordance correlation coefficient (CCC) is a complementary, single-number sum-
mary of agreement (precision + accuracy). It is useful for quick screening or reporting an over-
all CI, but may miss systematic or magnitude-dependent bias; consider reporting CCC alongside
Bland-Altman.

Usage

bland_altman(
groupl,
group2,
two = 1.96,
mode = 1L,
conf_level = 0.95,
verbose = FALSE

)

## S3 method for class 'ba'
print(x, digits = 3, ci_digits = 3, ...)

## S3 method for class 'ba’
plot(
X,
title = "Bland-Altman Plot”,
subtitle = NULL,
point_alpha = 0.7,
point_size = 2.2,
line_size = 0.8,
shade_ci = TRUE,
shade_alpha = 0.08,
smoother = c(”"none”, "loess”, "1m"),
symmetrize_y = TRUE,

Arguments

groupl, group2  Numeric vectors of equal length.
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two Positive scalar; the multiple of the standard deviation used to define the LoA
(default 1.96 for nominal 95\ intervals always use ¢, _1 1_q/2 regardless of this
choice.

mode Integer; 1 uses groupl - group2, 2 uses group2 - group1.

conf_level Confidence level for CIs (default 0.95).

verbose Logical; if TRUE, prints how many OpenMP threads are used.

X A "ba" object.

digits Number of digits for estimates (default 3).

ci_digits Number of digits for CI bounds (default 3).
Passed to ggplot2: : theme () (ggplot path) or plot().

title Plot title.

subtitle Optional subtitle. If NULL, shows n and LoA summary.

point_alpha Point transparency.

point_size Point size.

line_size Line width for mean/LoA.

shade_ci Logical; if TRUE, draw shaded CI bands instead of 6 dashed lines.

shade_alpha Transparency of CI bands.
smoother One of "none", "loess", "Im" to visualize proportional bias.

symmetrize_y  Logical; if TRUE, y-axis centered at mean difference with symmetric limits.

Details

Given paired measurements (z;, y; ), Bland-Altman analysis uses d; = x; — y; (or y; — x; if mode =
2) and m; = (x; +17;)/2. The mean difference d estimates bias. The limits of agreement (LoA) are
d + z - 54, where s, is the sample standard deviation of d; and z (argument two) is typically 1.96
for nominal 95% LoA.

Confidence intervals use Student’s ¢ distribution with n — 1 degrees of freedom, with
* Mean-difference CI given by d + t,,_1,1_a/2 sa/y/n; and
« LoA Clgivenby (d+zs4) + t, 1 1—a/2 54 V/3/n.

Assumptions include approximately normal differences and roughly constant variability across the
measurement range; if differences increase with magnitude, consider a transformation before analy-
sis. Missing values are removed pairwise (rows with an NA in either input are dropped before calling
the C++ backend).

Value

An object of class "ba" (list) with elements:

e means, diffs: numeric vectors
e groups: data.frame used after NA removal

* based.on: integer, number of pairs used
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e lower.limit, mean.diffs, upper.limit

* lines: named numeric vector (lower, mean, upper)

e CI.lines: named numeric vector for CIs of those lines
* two, critical.diff

Author(s)

Thiago de Paula Oliveira

References

Bland JM, Altman DG (1986). Statistical methods for assessing agreement between two methods
of clinical measurement. The Lancet, 307-310.

Bland JM, Altman DG (1999). Measuring agreement in method comparison studies. Statistical
Methods in Medical Research, 8(2), 135-160.

See Also

print.ba, plot.ba, ccc,ccc_pairwise_u_stat, ccc_lmm_reml

Examples

set.seed(1)

X <= rnorm(100, 100, 10)
y <= x + rnorm(100, 0, 8)
ba <- bland_altman(x, y)
print(ba)

plot(ba)

bland_altman_repeated Bland-Altman for repeated measurements

Description

Repeated-measures Bland-Altman (BA) for method comparison based on a mixed-effects model
fitted to subject-time matched paired differences. A subject-specific random intercept accounts
for clustering, and (optionally) an AR(1) process captures serial correlation across replicates within
subject. The function returns bias (mean difference), limits of agreement (LoA), confidence inter-
vals, and variance components, for either two methods or all pairwise contrasts when >3 methods
are supplied.

Required columns / vectors

* response: numeric measurements.
* subject: subject identifier (integer/factor/numeric).
* method: method label with >2 levels (factor/character/integer).

* time: replicate index used to form pairs; only records where both methods are present for the
same subject and time contribute to a given pairwise BA (rows with missing components
are dropped before fitting each pair).
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Usage

bland_altman_repeated(

)

data = NULL,
response,

subject,

method,

time,

two = 1.96,
conf_level = 0.95,
include_slope = FALSE,
use_arl = FALSE,
ari_rho = NA_real_,
max_iter = 200L,
tol = 1e-06,
verbose = FALSE

## S3 method for class 'ba_repeated'
print(x, digits = 3, ci_digits =3, ...)

## S3 method for class 'ba_repeated_matrix'
print(x, digits = 3, ci_digits = 3, style = c("pairs”, "matrices”), ...)

## S3 method for class 'ba_repeated'
plot(

X7

title = "Bland-Altman (repeated measurements)"”,
subtitle = NULL,

point_alpha = 0.7,

point_size = 2.2,

line_size = 0.8,

shade_ci = TRUE,

shade_alpha = 0.08,

smoother = c("none”, "loess”, "1m"),
symmetrize_y = TRUE,

show_points = TRUE,

)
## S3 method for class 'ba_repeated_matrix'
plot(

X,

pairs = NULL,

against = NULL,

facet_scales = c("free_y"”, "fixed"),

title = "Bland-Altman (repeated, pairwise)”,
point_alpha = 0.6,
point_size = 1.8,

bland_altman_repeated
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line_size =

11

0.7,

shade_ci = TRUE,

shade_alpha
smoother =

0.08,

C(“none”, Illoessn, lllmn) ,

show_points = TRUE,

Arguments

data

response

subject

method

time

two
conf_level

include_slope

use_arl
arl_rho
max_iter, tol
verbose

X

digits

ci_digits

style
title

subtitle

point_alpha

Optional data. frame/data. table containing required columns.

Numeric vector (stacked outcomes) or a single character string giving the col-
umn name in data.

Subject ID (integer/factor/numeric) or a single character string giving the col-
umn name in data.

Method label (factor/character/integer; N >= 2 levels) or a single character string
giving the column name in data.

Integer/numeric replicate/time index (pairs within subject) or a single character
string giving the column name in data.

Positive scalar; LoA multiple of SD (default 1.96).
Confidence level for CIs (default 0.95).

Logical. If TRUE, the model includes the pair mean as a fixed effect and esti-
mates a proportional-bias slope. Look at details for deeper information. We rec-
ommend fit both with and without the slope. If 37 is materially non-zero over a
wide level range, consider a scale transformation (e.g., log or percent-logit) and
re-fit without the slope.

Logical; AR(1) within-subject residual correlation.
AR(1) parameter (Irhol<1).

EM control for the backend (defaults 200, 1e-6).
Logical; print brief progress.

A "ba_repeated_matrix" object.

Number of digits for estimates (default 3).
Number of digits for CI bounds (default 3).

Additional theme adjustments passed to ggplot2: :theme(...) (e.g., plot.title.position

="plot”, axis.title.x = element_text(size=11)).

Show as pairs or matrix format?

Plot title (character scalar). Defaults to "Bland-Altman (repeated measurements)"”

for two methods and "Bland-Altman (repeated, pairwise)"” for the faceted
matrix plot.

Optional subtitle (character scalar). If NULL, a compact summary is shown using
the fitted object.

Numeric in [0, 1]. Transparency for scatter points drawn at (pair mean, pair

difference) when point data are available. Passed to ggplot2: : geom_point(alpha

=...). Default0.7.
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point_size Positive numeric. Size of scatter points; passed to ggplot2: :geom_point(size
=...). Default 2. 2.
line_size Positive numeric. Line width for horizontal bands (bias and both LoA) and,

when requested, the proportional-bias line. Passed to ggplot2: :geom_hline(linewidth
=...) (and geom_abline). Default 0. 8.

shade_ci Logical. If TRUE and confidence intervals are available in the object (CI.lines
for two methods; *_ci_#* matrices for the pairwise case), semi-transparent rect-
angles are drawn to indicate CI bands for the bias and each LoA. If FALSE,
dashed horizontal CI lines are drawn instead. Has no effect if CIs are not present.

Default TRUE.
shade_alpha Numeric in [@, 1]. Opacity of the CI shading rectangles when shade_ci =
TRUE. Passed to ggplot2: :annotate("rect”, alpha=...). Default 0.08.
smoother One of "none”, "loess"”, or "1m”. Adds an overlaid trend for differences vs

means when points are drawn, to visualise proportional bias. "1m" fits a straight
line with no SE ribbon; "loess" draws a locally-smoothed curve (span 0.9) with
no SE ribbon; "none"” draws no smoother. Ignored if show_points = FALSE or
if no point data are available.

symmetrize_y  Logical (two-method plot only). If TRUE, the y-axis is centred at the estimated
bias and expanded symmetrically to cover all elements used to compute the
range (bands, CIs, and points if shown). Default TRUE.

show_points Logical. If TRUE, per-pair points are drawn when present in the fitted object
(two-method path) or when they can be reconstructed from x$data_long and
x$mapping (pairwise path). If FALSE or if point data are unavailable, only the
bands (and optional CI indicators) are drawn. Default TRUE.

pairs (Faceted pairwise plot only.) Optional character vector of labels specifying
which method contrasts to display. Labels must match the "row - column"
convention used by print()/summary() (e.g., "B - A"). Defaults to all upper-
triangle pairs.

against (Faceted pairwise plot only.) Optional single method name. If supplied, facets
are restricted to contrasts of the chosen method against all others. Ignored when
pairs is provided.

facet_scales (Faceted pairwise plot only.) Either "free_y" (default) to allow each facet its
own y-axis limits, or "fixed” for a common scale across facets. Passed to
ggplot2::facet_wrap(scales=...).

Details

The function implements a repeated-measures Bland—Altman (BA) analysis for two or more meth-
ods using a linear mixed model fitted to subject—time matched paired differences. For any selected
pair of methods (a, b), let

dit = Yitb — Yitas mge = %(yitb + Yita),

where y;t,, denotes the observed value from method m € {a, b} on subject i at replicate/time ¢; d;
is the paired difference (method b minus method a); and m; is the corresponding pair mean. Here
1 =1,...,S5 indexes subjects and ¢ indexes replicates/time within subject. Only records with both
methods present at the same subject and time contribute to that pair.
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The fitted per-pair model is
dit = Bo + B1 Mt + wi + €it,

with random intercept u; ~ N'(0,02) and within-subject residual vector &; having covariance
Cov(g;) = 02 R,;. When use_ar1 =FALSE, R; = I,,, (i.i.d.). When use_ar1=TRUE, R; = C;*
and C; encodes an AR(1) precision structure over time (see below). Setting include_slope =
FALSE drops the regressor m;; (i.e., 81 = 0).

AR(1) within-subject correlation: For each subject, observations are first ordered by time.
Contiguous blocks satisfy ¢,4+1 = tx + 1; non-contiguous gaps and any negative/NA times are
treated as singletons (i.i.d.).

For a contiguous block of length L and AR(1) parameter p (clipped to (—0.999,0.999)), the
blockwise precision matrix C has entries

1 —p
-p 1+p* —p

1— 2 . .
’ —p 14+p° —p

—p 1
The full C; is block-diagonal over contiguous segments, with a small ridge added to the diagonal
for numerical stability. Residual covariance is 02R; = 02C; ",
If use_ar1 =TRUE and ar1_rho is NA, p is estimated in two passes (i) fit the i.i.d. model; (ii)
compute detrended residuals within each contiguous block (remove block-specific intercept and
linear time), form lag-1 correlations, apply a small-sample bias adjustment (1 — p?)/L, pool with
Fisher’s z (weights ~ L — 3), and refit with the pooled p.

Estimation by stabilised EM/GLS: Let X; be the fixed-effects design for subject ¢ (intercept,
and optionally the pair mean). Internally, the pair mean regressor is centred and scaled before
fitting to stabilise the slope; estimates are back-transformed to the original units afterwards.

Given current (02,02), the marginal precision of d; integrates u; via a Woodbury/Sherman-
Morrison identity:

—1
Vil = 022C; - 022Cs1 <U;2+0;21TC1-1) 17C,o2.

The GLS update is

B= (LxIvix) (LX),

K3

Writing r; = d; — X3, the E-step gives the BLUP of the random intercept and its conditional
second moment:

M; = 0,2 +0,°17Ci1, @ = M;'o;?1"Cyry,  E[ul|y] = @+ M "
The M-step updates the variance components by

1 1
~2 2 ~2 ~ \T ~ —14T
= — S E[u |y, = = {i—1ic”—1,» M.1ci1}.
o= m LBl ot = D30 {(s-10)TCn - 1) + M,
The algorithm employs positive-definite inverses with ridge fallback, trust-region damping of
variance updates (ratio-bounded), and clipping of parameters to prevent degeneracy.
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Point estimates reported: The reported BA bias is the subject-equal mean of the paired differ-

ences,
1 & - S

Mo = E;di’ diznfi;dm
1= =

which is robust to unbalanced replicate counts (n;) and coincides with the GLS intercept when
subjects contribute equally. If include_slope = TRUE, the proportional-bias slope is estimated
against the pair mean mj;; internally m;; is centred and scaled and the slope is returned on the
original scale.

Proportional bias slope (include_slope): When include_slope = TRUE, the model augments
the mean difference with the pair mean m;; = %(yitb + Yita):

dix = Bo + Bime + ui + €4

Internally m;, is centred and scaled for numerical stability; the reported beta_slope and intercept
are back-transformed to the original scale.

B1 # 0 indicates level-dependent (proportional) bias, where the difference between methods
changes with the overall measurement level. The Bland—Altman limits of agreement produced by
this function remain the conventional, horizontal bands centred at the subject-equal bias pg; they
are not regression-adjusted LoA.

On an appropriate scale and when the two methods have comparable within-subject variances,
the null expectation is 51 =~ 0. However, because m;; contains measurement error from both
methods, unequal precisions can produce a spurious slope even if there is no true proportional
bias. Under a simple no-bias data-generating model y;¢,, = 0;1 + ¢ + €411, With independent
errors of variances 02, o2, the expected OLS slope is approximately

E[Bﬂ ~ %(U}% - 03)
Var(0;;) + i(oﬁ +02)’

showing zero expectation when 02 = o7 and attenuation as the level variability Var(6;;) in-
creases.

Limits of Agreement (LoA): A single new paired measurement for a random subject has vari-
ance
Var(d*) = o2 + o2,

LoA = po £ two+/02 + 02

The argument two is the SD multiplier (default 2, _, /, implied by conf_level, e.g., 1.96 at 95%).

so the LoA are

Wald/Delta confidence intervals: ClIs for bias and each LoA use a delta method around the
EM estimates. The standard error of 1 is based on the dispersion of subject means Var(ug) ~
Var(d;)/m. For sdpoa = V'V with V = 02 4 02, we can define

Var(V)

Var(sd) =~ A

Var(V) ~ Var(62) + Var(62) + 2 Cov(62,62).

The per-subject contributions used to approximate these terms are: A; = E[u? | y] and B; =
{(r; —11;) " Cy(ry — 111;) + Mi_1 17 C;1}/n;. Empirical variances of A; and B; (with replicate-
size weighting for B;) and their covariance yield Var(52), Var(62) and Cov(62,62). For a LoA
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bound L = g £ two - sd, the working variance is
Var(L+) ~ Var(ug) + two? Var(sd),

and Wald CIs use the normal quantile at conf_level. These are large-sample approximations;
with very small m they may be conservative.

Three or more methods: When > 3 methods are supplied, the routine performs the above fit
for each unordered pair (j, k) and reassembles matrices. Specifically,
* Orientation is defined to be row minus column, i.e., bias[j, k] estimates E(y; — y;).
* biasis antisymmetric (b;, = —by;); sd_loa and width are symmetric; LoA obey loa_lower[j, k] =
—loa_upper[k, j].
* n[j, k] is the number of subject-time pairs used for that contrast (complete cases where both
methods are present).

Missingness, time irregularity, and safeguards: Pairs are formed only where both methods are
observed at the same subject and time; other records do not influence that pair. AR(1) structure
is applied only over contiguous time sequences within subject; gaps break contiguity and revert
those positions to i.i.d. Numerically, inverses use a positive-definite solver with adaptive ridge
and pseudo-inverse fallback; variance updates are clamped and ratio-damped; p is clipped to
(—0.999,0.999).

Value

Either a "ba_repeated” object (exactly two methods) or a "ba_repeated_matrix" object (pair-
wise results when >3 methods).

If "ba_repeated_matrix” (N>3 methods), outputs are:

* bias (m x m); estimated mean difference (row - column). Diagonal is NA.

* sd_loa (m x m); estimated SD of a single new paired difference for the (row, column) meth-
ods, accounting for the random subject intercept and (if enabled) AR(1) correlation.

* loa_lower, loa_upper (mxm); limits of agreement for a single measurement pair, computed
as bias = two x sd_loa. Signs follow the row - column convention (e.g., loa_lower[j,i] =
-loa_upperli,jl).

* width (m x m); LoA width, loa_upper - loa_lower (=2 * two * sd_loa).

* n (m x m); number of subject-time pairs used in each pairwise BA (complete cases where
both methods are present).

¢ CI matrices at nominal conf_level (delta method):

— mean_ci_low, mean_ci_high; CI for the bias.
— loa_lower_ci_low, loa_lower_ci_high; CI for the lower LoA.
— loa_upper_ci_low, loa_upper_ci_high; CI for the upper LoA.

* slope (mxm; optional); proportional-bias slope (difference vs pair mean) when include_slope

= TRUE.

» sigma2_subject (m x m); estimated variance of the subject-level random intercept (on dif-
ferences).
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sigma2_resid (m X m); estimated residual variance of a single difference after accounting
for the random intercept (and AR(1), if used).

use_ar1 (scalar logical); whether AR(1) modeling was requested.

ari1_rho (scalar numeric or NA); user-supplied p if a single common value was provided; NA
otherwise.

ar1_rho_pair (m x m; optional); p actually used per pair (may be estimated from data or
equal to the supplied value). AR(1) blocks require consecutive integer time indices for each
subject.

ar1_estimated (m x m; optional logical); for each pair, TRUE if p was estimated internally;
FALSE if supplied.

methods (character); method level names; matrix rows/columns follow this order.
two (scalar); LoA multiplier used (default 1.96).
conf_level (scalar); nominal confidence level used for CIs.

data_long (data.frame); the long data used for fitting (response, subject, method, time).
Included to facilitate plotting/reproducibility; not required for summary methods.

If "ba_repeated” (exactly two methods), outputs are:

mean.diffs (scalar), estimated bias (method 2 - method 1).

lower.limit, upper.limit (scalars); LoA p + two x SD for a single new pair.
critical.diff (scalar); two * SD; LoA half-width.

two, conf_level (scalars); as above.

CI.lines (named numeric); CI bounds for bias and both LoA (x.ci.lower, *.ci.upper) at
conf_level.

means, diffs (vectors); per-pair means and differences used by plotting helpers.
based. on (integer); number of subject-time pairs used.

include_slope, beta_slope; whether a proportional-bias slope was estimated and its value
(if requested).

sigma2_subject, sigma2_resid; variance components as above.

use_arl, arl_rho, ar1_estimated; AR(1) settings/results as above (scalars for the two-
method fit).

Author(s)

Thiago de Paula Oliveira

Examples

———————— Simulate repeated-measures data --------

set.seed(1)

# design (no AR)
# subjects

S

<- 30L

# replicates per subject
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Tm <- 15L
subj <- rep(seq_len(S), each = Tm)
time <- rep(seq_len(Tm), times = S)

# subject signal centered at @ so BA "bias” won't be driven by the mean level
mu_s <- rnorm(S, mean = @, sd = 8)

# constant within subject across replicates

true <- mu_s[subj]

# common noise (no AR, i.i.d.)
sd_e <- 2
ed <- rnorm(length(true), @, sd_e)

# --- Methods ---
# M1: signal + noise
y1 <- true + €@

# M2: same precision as M1; here identical so M3 can be
# almost perfectly the inverse of both M1 and M2
y2 <- y1 + rnorm(length(true), 0, 0.01)

# M3: perfect inverse of M1 and M2
y3 <- -yl # = -(true + e0)

# M4: unrelated to all others (pure noise, different scale)
y4 <- rnorm(length(true), 3, 6)

data <- rbind(
data.frame(y = y1, subject = subj, method "M1", time = time),
data.frame(y = y2, subject = subj, method = "M2", time = time),
data.frame(y = y3, subject = subj, method = "M3", time = time),
data.frame(y = y4, subject = subj, method = "M4", time = time)

)
data$method <- factor(data$method, levels = c("M1","M2","M3" 6 "M4"))

# quick sanity checks
with(data, {

Y <- split(y, method)

round(cor(cbind(M1 = Y$M1, M2 = Y$M2, M3 = Y$M3, M4 = Y$M4)), 3)
»

# Run BA (no AR)

ba4 <- bland_altman_repeated(
data = data,
response = "y", subject = "subject”, method = "method”, time = "time”,
two = 1.96, conf_level = 0.95,

include_slope = FALSE, use_ar1 = FALSE

)

summary (ba4)

plot(ba4)

# oo Simulate repeated-measures with AR(1) data ------—--

set.seed(123)
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S <- 4oL # subjects

Tm <- 50L # replicates per subject

methods <- c("A","B","C") # N = 3 methods

rho <- 0.4 # AR(1) within-subject across time

arl_sim <- function(n, rho, sd = 1) {
z <- rnorm(n)
e <- numeric(n)
e[1] <- z[1] * sd
if (n > 1) for (t in 2:n) e[t] <- rho * e[t-1] + sqrt(1 - rho*2) % z[t] * sd
e

}

# Subject baseline + time trend (latent "true"” signal)

subj <- rep(seqg_len(S), each = Tm)

time <- rep(seq_len(Tm), times = S)

# subject effects

mu_s <- rnorm(S, 50, 7)

trend <- rep(seq_len(Tm) - mean(seq_len(Tm)), times = S) * 0.8
true <- mu_s[subj] + trend

# Method-specific biases (B has +1.5 constant; C has slight proportional bias)
bias <- c(A =0, B=1.5, C=-0.5)

# proportional component on "true”

prop <- c(A =0.00, B =0.00, C =0.10)

# Build long data: for each method, add AR(1) noise within subject over time
make_method <- function(meth, sd = 3) {
e <- unlist(lapply(split(seq_along(time), subj),
function(ix) ari_sim(length(ix), rho, sd)))
y <- true * (1 + prop[meth]) + bias[meth] + e
data.frame(y = y, subject = subj, method = meth, time = time,
check.names = FALSE)

data <- do.call(rbind, lapply(methods, make_method))
data$method <- factor(data$method, levels = methods)

# o Repeated BA (pairwise matrix) -------------------—-

baN <- bland_altman_repeated(
response = data$y, subject = data$subject, method = data$method, time = data$time,
two = 1.96, conf_level = 0.95,

include_slope = FALSE, # estimate proportional bias per pair
use_ar1l = TRUE # model AR(1) within-subject

)

# Matrices (row - column orientation)

print(baN)

summary (baN)

# Faceted BA scatter by pair
plot(baN, smoother = "1m", facet_scales = "free_y")
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# - Two-method path (A vs B only) --------------———-----————mmoo -
data_AB <- subset(data, method %in% c("A","B"))
baAB <- bland_altman_repeated(
response = data_AB$y, subject = data_AB$subject,
method = droplevels(data_AB$method), time = data_AB$time,
include_slope = FALSE, use_ar1l = TRUE, arl_rho = 0.4
)
print(baAB)
plot(baAB)

ccc Pairwise Lin’s concordance correlation coefficient

Description

Computes all pairwise Lin’s Concordance Correlation Coefficients (CCC) from the numeric columns
of a matrix or data frame. CCC measures both precision (Pearson correlation) and accuracy (close-
ness to the 45-degree line). This function is backed by a high-performance *C++’ implementation.

Lin’s CCC quantifies the concordance between a new test/measurement and a gold-standard for
the same variable. Like a correlation, CCC ranges from -1 to 1 with perfect agreement at 1, and it
cannot exceed the absolute value of the Pearson correlation between variables. It can be legitimately
computed even with small samples (e.g., 10 observations), and results are often similar to intraclass
correlation coefficients. CCC provides a single summary of agreement, but it may not capture
systematic bias; a Bland—Altman plot (differences vs. means) is recommended to visualize bias,
proportional trends, and heteroscedasticity (see bland_altman).

Usage
ccc(data, ci = FALSE, conf_level = 0.95, verbose = FALSE)

## S3 method for class 'ccc'
print(x, digits = 4, ci_digits = 4, show_ci = c("auto”, "yes", "no"), ...)

## S3 method for class 'ccc'
summary (

object,

digits = 4,

ci_digits = 2,

show_ci = c("auto”, "yes"”, "no"),

## S3 method for class 'summary.ccc'
print(x, ...)

## S3 method for class 'ccc
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plot(
X y
title = "Lin's Concordance Correlation Heatmap”,
low_color = "indianred1”,
high_color = "steelbluel”,
mid_color = "white",
value_text_size = 4,
ci_text_size = 3,
)
Arguments
data A numeric matrix or data frame with at least two numeric columns. Non-
numeric columns will be ignored.
ci Logical; if TRUE, return lower and upper confidence bounds
conf_level Confidence level for CI, default = 0.95
verbose Logical; if TRUE, prints how many threads are used
X An object of class "ccc” (either a matrix or a list with CIs).
digits Integer; decimals for CCC estimates (default 4).
ci_digits Integer; decimals for CI bounds (default 2).
show_ci One of "auto”, "yes”, "no".
e "auto” (default): include CI columns only if the object has non-NA Cls.
* "yes": always include CI columns (may contain NA).
* "no": never include CI columns.
Passed to ggplot2: : theme().
object A "ccc” or "ccc_ci” object to summarize.
title Title for the plot.
low_color Color for low CCC values.
high_color Color for high CCC values.
mid_color Color for mid CCC values.

value_text_size

ci_text_size

Details

Text size for CCC values in the heatmap.

Text size for confidence intervals.

Lin’s CCC is defined as

2cov(X,Y)
o% + ot + (nx —py)?’

Pc =

where j1x, j1y are the means, 0%, 0% the variances, and cov(X,Y') the covariance. Equivalently,

pe = 1 X Cp, r=———"—=  (Cp, =

cov(X,Y) 20x0y

ok + oy + (ux —py)?*

OxX0Yy
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Hence |p.| < |r] <1, p. = riff ux = py and ox = oy, and p. = 1 iff, in addition, »r = 1. CCC
is symmetric in (X,Y") and penalises both location and scale differences; unlike Pearson’s r, it is
not invariant to affine transformations that change means or variances.

When ci = TRUE, large-sample confidence intervals for p. are returned for each pair (delta-method
approximation). For speed, CIs are omitted when ci = FALSE.

If either variable has zero variance, p. is undefined and NA is returned for that pair (including the
diagonal).

Missing values are not allowed; inputs must be numeric with at least two distinct non-missing values
per column.

Value
A symmetric numeric matrix with class "ccc” and attributes:

¢ method: The method used ("Lin’s concordance")

* description: Description string
If ci = FALSE, returns matrix of class "ccc”. If ci = TRUE, returns a list with elements: est, lwr.ci,
upr.ci.

For summary. ccc, a data frame with columns method1, method2, estimate and (optionally) 1wr,
upr.

Author(s)

Thiago de Paula Oliveira

References

Lin L (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:
255-268.

Lin L (2000). A note on the concordance correlation coefficient. Biometrics 56: 324-325.

Bland J, Altman D (1986). Statistical methods for assessing agreement between two methods of
clinical measurement. The Lancet 327: 307-310.

See Also

print.ccc, plot.ccc, bland_altman

For repeated measurements look at ccc_lmm_reml, ccc_pairwise_u_stat orbland_altman_repeated

Examples

# Example with multivariate normal data
Sigma <- matrix(c(1, 0.5, 0.3,

0.5, 1, 0.4,

0.3, 0.4, 1), nrow
mu <- c(0, 9, 0)
set.seed(123)
mat_mvn <- MASS::mvrnorm(n = 100, mu = mu, Sigma = Sigma)

3
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result_mvn <- ccc(mat_mvn)
print(result_mvn)

summary (result_mvn)
plot(result_mvn)

ccc_Imm reml

ccc_lmm_reml Concordance Correlation via REML (Linear Mixed-Effects Model)

Description

Compute Lin’s Concordance Correlation Coefficient (CCC) from a linear mixed-effects model fitted
by REML. The fixed-effects part can include method and/or time (optionally their interaction), with
a subject-specific random intercept to capture between-subject variation. Large n X n inversions
are avoided by solving small per-subject systems.

Assumption: time levels are treated as regular, equally spaced visits indexed by their order within
subject. The AR(1) residual model is in discrete time on the visit index (not calendar time). NA time
codes break the serial run. Gaps in the factor levels are ignored (adjacent observed visits are treated
as lag-1).

Usage

ccc_lmm_reml(

data,

response,

rind,

method = NULL,

time = NULL,
interaction = FALSE,
max_iter = 100,

tol = 1e-06,

Dmat = NULL,

Dmat_type = c("time-avg"”, "typical-visit”, "weighted-avg"”, "weighted-sq"),

Dmat_weights
Dmat_rescale
ci = FALSE,
conf_level = 0.95,

ci_mode = c("auto”, "raw”, "logit"),

verbose = FALSE,

digits = 4,

use_message = TRUE,

ar = c("none", "ar1"),

ar_rho = NA_real_,

slope = c("none”, "subject”, "method”, "custom"),
slope_var = NULL,

slope_Z = NULL,

drop_zero_cols = TRUE,

NULL,
TRUE,
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vc_select = c("auto”, "none"),
vc_alpha = 0.05,
vc_test_order = c("subj_time", "subj_method"),

include_subj_method = NULL,
include_subj_time = NULL,
sb_zero_tol = 1e-10

)
Arguments

data A data frame.

response Character. Response variable name.

rind Character. Subject ID variable name (random intercept).

method Character or NULL. Optional column name of method factor (added to fixed ef-
fects).

time Character or NULL. Optional column name of time factor (added to fixed effects).

interaction Logical. Include method: time interaction? (default FALSE).

max_iter Integer. Maximum iterations for variance-component updates (default 100).

tol Numeric. Convergence tolerance on parameter change (default 1e-6).

Dmat Optional n; X ny; numeric matrix to weight/aggregate time-specific fixed biases
in the Sp quadratic form. If supplied, it is used (after optional mass rescal-
ing; see Dmat_rescale) whenever at least two present time levels exist; other-
wise it is ignored. If Dmat is NULL, a canonical kernel D,, is constructed from
Dmat_type and Dmat_weights (see below). Dmat should be symmetric positive
semidefinite; small asymmetries are symmetrized internally.

Dmat_type Character, one of c("time-avg”, "typical-visit”, "weighted-avg"”, "weighted-sq").

Only used when Dmat = NULL. It selects the aggregation target for time-specific
fixed biases in Sp. Options are:

 "time-avg”: square of the time-averaged bias, D,,, = (1/n;) 117.

* "typical-visit": average of squared per-time biases, D,,, = I,,.

* "weighted-avg": square of a weighted average, D,, = n;ww' with
Sw=1.

* "weighted-sq"”: weighted average of squared biases, D,, = n;diag(w)
with > w = 1.

Pick "time-avg" for CCC targeting the time-averaged measurement; pick "typical-visit”
for CCC targeting a randomly sampled visit (typical occasion). Default "time-avg".

n o n

Dmat_weights Optional numeric weights w used when Dmat_type %in% c("weighted-avg"”, "weighted-sq").
Must be nonnegative and finite. If names(w) are provided, they should match
the full time levels in data; they are aligned to the present time subset per fit. If
unnamed, the length must equal the number of present time levels. In all cases
w is internally normalized to sum to 1.

Dmat_rescale  Logical. When TRUE (default), the supplied/built D,, is rescaled to satisfy the
simple mass rule 1" D,,1 = n;. This keeps the Sp denominator invariant and
harmonizes with the «-shrinkage used for variance terms.
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ci

conf_level

ci_mode

verbose

digits

use_message

ar

ar_rho

slope

slope_var

slope_Z

drop_zero_cols

vc_select
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Logical. If TRUE, return a CI container; limits are computed by a large-sample
delta method for CCC (see CIs note below).

Numeric in (0, 1). Confidence level when ci = TRUE (default 9. 95).

Character scalar; one of c("auto”,"raw","logit"). Controls how confidence
intervals are computed when ci = TRUE. If "raw”, a Wald CI is formed on the
CCC scale and truncated to [0,1]. If "logit"”, a Wald CI is computed on the
logit(CCC) scale and back-transformed to the original scale (often more stable
near 0 or 1). If "auto” (default), the method is chosen per estimate based on
simple diagnostics (e.g., proximity to the [@, 1] boundary / numerical stability),
typically preferring "logit"” near the boundaries and "raw” otherwise.

Logical. If TRUE, prints a structured summary of the fitted variance components
and Sp for each fit. Default FALSE.

Integer (> 0). Number of decimal places to use in the printed summary when
verbose = TRUE. Default 4.

Logical. When verbose = TRUE, choose the printing mechanism, where TRUE
uses message () (respects sink(), easily suppressible via suppressMessages()),
whereas FALSE uses cat () to stdout. Default TRUE.

Character. Residual correlation structure: "none” (iid) or "ar1” for subject-
level AR(1) correlation within contiguous time runs. Default c("none”).

Numeric in (—0.999, 0.999) or NA. If ar = "ar1" and ar_rho is finite, it is
treated as fixed. If ar ="ar1"” and ar_rho = NA, p is estimated by profiling a
1-D objective (REML when available; an approximation otherwise). Default
NA_real_.

Character. Optional extra random-effect design Z. With "subject” a single
random slope is added (one column in Z); with "method” one column per
method level is added; with "custom” you provide slope_Z directly. Default

non

c("none”, "subject”, "method”, "custom”).

For slope %in% c("subject”, "method"), a character string giving the name
of a column in data used as the slope regressor (e.g., centered time). It is looked
up inside data; do not pass the vector itself. NAs are treated as zeros in Z.

For slope = "custom”, a numeric matrix with n rows (same order as data) pro-
viding the full extra random-effect design Z. Each column of slope_Z has its
own variance component 0227 ;> columns are treated as uncorrelated (diagonal
block in G). Ignored otherwise.

Logical. When slope = "method”, drop all-zero columns of Z after subsetting
(useful in pairwise fits). Default TRUE.

n on

Character scalar; one of c("auto”, "none"). Controls how the subject by method
02 s ("subj_method") and subject by time %, ;- ("subj_time") variance com-
ponents are included. If "auto” (default), the function performs boundary-
aware REML likelihood-ratio tests (LRTs; null on the boundary at zero with
a half-y? reference) to decide whether to retain each component, in the order
given by vc_test_order. If "none”, no testing is done and inclusion is taken
from include_subj_method/include_subj_time (or, if NULL, from the mere
presence of the corresponding factor in the design). In pairwise fits, the decision
is made independently for each method pair.
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vc_alpha Numeric scalar in (0, 1); default @.05. Per-component significance level for the
boundary-aware REML LRTs used when vc_select = "auto”. The tests are
one-sided for variance components on the boundary and are nor multiplicity-
adjusted.

vc_test_order  Character vector (length 2) with a permutation of c("subj_time"”, "subj_method");
default c("subj_time”,"subj_method"). Specifies the order in which the two
variance components are tested when vc_select = "auto”. The component
tested first may be dropped before testing the second. If a factor is absent in the
design (e.g., no time factor so "subj_time" is undefined), the corresponding test
is skipped.

include_subj_method, include_subj_time
Logical scalars or NULL. When vc_select = "none”, these control whether the
0% s ("subj_method") and o2, - ("subj_time") random effects are included
(TRUE) or excluded (FALSE) in the model. If NULL (default), inclusion defaults to
the presence of the corresponding factor in the data (i.e., at least two method/time
levels). When vc_select = "auto”, these arguments are ignored (automatic se-
lection is used instead).

sb_zero_tol Non-negative numeric scalar; default 1e-10. Numerical threshold for the fixed-
effect dispersion term Sp. After computing 5/'; and its delta-method variance, if
6/’\13 < sb_zero_tol or non-finite, the procedure treats Sp as fixed at zero in the
delta step. It sets ds,, = 0 and Var(S/'];) = 0, preventing numerical blow-ups of

SE(CCC) when Sp — 0 and the fixed-effects variance is ill-conditioned for the
contrast. This stabilises inference in rare boundary cases; it has no effect when

S/'; is comfortably above the threshold.

Details

For measurement y;; on subject ¢ under fixed levels (method, time), we fit
y=XB+ Zu+e, u~ N(0,G), e ~N(0, R).

Notation: m subjects, n = Zi n; total rows; nm method levels; nt time levels; gz extra random-
slope columns (if any); » = 1+ nm + nt (or 1 +nm + nt + qz with slopes). Here Z is the subject-
structured random-effects design and G is block-diagonal at the subject level with the following
per-subject parameterisation. Specifically,

« one random intercept with variance 0'%;

« optionally, method deviations (one column per method level) with a common variance 02, ,,
and zero covariances across levels (i.e., multiple of an identity);

* optionally, fime deviations (one column per time level) with a common variance o2, and
Zero covariances across levels;

* optionally, an extra random effect aligned with Z (random slope), where each column has its

own variance 0% ; and columns are uncorrelated.

The fixed-effects design is ~ 1 + method + time and, if interaction=TRUE, + method: time.

Residual correlation R (regular, equally spaced time). Write R; = 0% C;(p). With ar="none",
C; = I. With ar="ar1", within-subject residuals follow a discrete AR(1) process along the visit
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index after sorting by increasing time level. Ties retain input order, and any NA time code breaks
the series so each contiguous block of non-NA times forms a run. The correlation between adjacent
observed visits in arun is p; we do not use calendar-time gaps. Internally we work with the precision
of the AR(1) correlation: for a run of length L > 2, the tridiagonal inverse has

(€= (€N = 1=z (€7

1 2
_ It w<i< o1

T2 T , (O Y1 = (C g =

The working inverse is R; ' = 0% Ci(p)~".

Per-subject Woodbury system. For subject ¢ with n,; rows, define the per-subject random-effects
design U; (columns: intercept, method indicators, time indicators; dimension r = 1 + nm + nt).
The core never forms V; = R; + U;GU," explicitly. Instead,

M; = Gt + UR U,
and accumulates GLS blocks via rank-r corrections using V,”' = R; ' — R; 'U;M; 'U, R :

XTvox =Y [XjRi—lXi - (XiTRi‘lUi)Mi‘l(UiTRi‘lXi)},

K2

XTv oty = SOIXTR Yy — (XTR70) M7 (U R ).
i
Because G~ ! is diagonal with positive entries, each M; is symmetric positive definite; solves/inversions
use symmetric-PD routines with a small diagonal ridge and a pseudo-inverse if needed.

Random-slope Z. Besides U,, the function can include an extra design Z;.
* slope="subject"”: Z has one column (the regressor in slope_var); Z; is the subject-: block,
with its own variance 0% .

* slope="method": Z has one column per method level; row ¢ uses the slope regressor if its
method equals level ¢, otherwise 0; all-zero columns can be dropped via drop_zero_cols=TRUE
after subsetting. Each column has its own variance 0% ,.

* slope="custom": Z is provided fully via slope_Z. Each column is an independent random
effect with its own variance 0% I cross-covariances among columns are set to 0.

Computations simply augment U; = [U; Z;] and the corresponding inverse-variance block. The
EM updates then include, for each column 5 = 1,...,qz,

2 (new 1 - — .
UZ,(j ) = m Z (b?,extra,j + (M; 1)extra,jj) (if gz > 0).
i=1

Interpretation: the o% ; represent additional within-subject variability explained by the slope re-
gressor(s) in column j and are not part of the CCC denominator (agreement across methods/time).

EM-style variance-component updates. With current B, form residuals r; = y; — Xiﬁ. The
BLUPs and conditional covariances are

bi = M; (U R 'r),  Var(b; |y) = M; .

7 K2

Let e; = r; — U;b;. Expected squares then yield closed-form updates:

Ui‘(new) _ %Z (bio + (Mi—l)oo)’

1

—p
,p2'
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2 (new 1 — — .
A = p— Zl:;(b?e + (M; 1)@4) (if nm > 0),

nt
2 (new) 1 _1 .
oar = mnt 21: ; (bit + (M )tt) (if nt > 0),

new 1 - - -

together with the per-column update for 02 ; given above. Iterate until the {1 change across com-
ponents is <tol or max_iter is reached.

Fixed-effect dispersion Sz: choosing the time-kernel D,,.

Letd = L7 j stack the within-time, pairwise method differences, grouped by time asd = (d , ..., dIt)T
with d; € R and P = N (N, — 1). The symmetric positive semidefinite kernel D,,, = 0 selects
which functional of the bias profile ¢ — d; is targeted by Sp. Internally, the code rescales any

supplied/built D,, to satisfy 17 D,,,1 = n, for stability and comparability.

* Dmat_type = "time-avg" (square of the time-averaged bias). Let
1

w = —1,, Dy x Ip® (ww'),
iy

P 1 ng 2
d'Dpd < Y <nt2dt’p> .
t=1

p=1

so that

Methods have equal time-averaged means within subject, i.e. > ;" d;p/n, = 0 for all p.
Appropriate when decisions depend on an average over time and opposite-signed biases are
allowed to cancel.

* Dmat_type = "typical-visit" (average of squared per-time biases). With equal visit prob-
ability, take

7’ﬂt

D,, « Ip®diag(n%,... L ),
yielding
1 ne P
d"Dpd < — "> "d?,.
" t=1p=1
Methods agree on a typical occasion drawn uniformly from the visit set. Use when each visit
matters on its own; alternating signs d; , do not cancel.

* Dmat_type = "weighted-avg” (square of a weighted time average). For user weights a =
(ai,...,an,)" witha; >0, set

W= e Dy o Ip® (ww'),

2?21 a;’
so that
P ng 2
d"Dpd o< Y (Z w; dt,p> :
p=1 \t=1

Methods have equal weighted time-averaged means, i.e. Y, wydy, = 0 for all p. Use
when some visits (e.g., baseline/harvest) are a priori more influential; opposite-signed biases
may cancel according to w.
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* Dmat_type = "weighted-sq” (weighted average of squared per-time biases). With the same
weights w, take
D,, x Ip®diag(wy,..., wy,),
giving
Nt

P
d"Dpd o< Y wy Y d7E,

t=1 p=1

Methods agree at visits sampled with probabilities {w; }, counting each visit’s discrepancy on
its own. Use when per-visit agreement is required but some visits should be emphasised more
than others.

Time-averaging for CCC (regular visits). The reported CCC targets agreement of the fime-
averaged measurements per method within subject by default (Dmat_type="time-avg"). Aver-
aging over 7T non-NA visits shrinks time-varying components by

T-1
R = 1T R = AT 2 (T = k)T
k=1

with /{5? ) =1 /T when residuals are i.i.d. With unbalanced T, the implementation averages the per-

(subject,method) « values across the pairs contributing to CCC and then clamps /s(Te ) to [10712, 1]
for numerical stability. Choosing Dmat_type="typical-visit” makes Sp match the interpreta-
tion of a randomly sampled occasion instead.

Concordance correlation coefficient. The CCC used is

afl—kaixM+H§g)o?4xT+SB+mgf)G%.

Special cases: with no method factor, Sp = Uix a = 0; with a single time level, U,quT =0 (no
k-shrinkage). When T" = 1 or p = 0, both s-factors equal 1. The extra random-effect variances
{a%, ;1 (if used) are not included.

CIs / SEs (delta method for CCC). Let
2 2 2 2 T
0 = (0A7 OAxM> OAxT> O SB) )

and write CCC(¢) = N/D with N = 0% +n§9)aixT and D = 0% + 0%\, +/€é‘?)0124xT +Sp+

/fgf )o%. The gradient components are

0CCC 0%y + Sp+ KoY

do% D2 ’
9CCC N 9CCC K (0%t Sp + Y 0})
oo%,.y D% o0 r D2 ’
dCCC KN 8CCC N

o2 D2 S ~ D?
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Estimating Var(6). The EM updates write each variance component as an average of per-subject
quantities. For subject 4,

1 nm
ta; = b2 M1 tyi = — (b? ML )
A, 7o+ (M; " )oo, M, nm; e+ (M e )
nt T -1 —177T -1
1 2 . el Ci(p)~ei + (MU, Ci(p) ' U;)
tri = aj:l ( i+ (M )jj)» si = . :

where b; = Mi_l(UiTRi_lri) and M; = G~ + UZ-TRi_lU,-. With m subjects, form the empirical
covariance of the stacked subject vectors and scale by m to approximate the covariance of the

| ta. ta

Cov th,. ~ — Cov; th,i
m

tr. lr

(Drop rows/columns as needed when nm==0 or nt==0.)

The residual variance estimator is a weighted mean &% = ZZ w;s; with w; = n; /n. Its variance is
approximated by the variance of a weighted mean of independent terms,

Var(oh) = (D w?) Var(s,).

K3

where \//a\r(sz) is the sample variance across subjects. The method-dispersion term uses the quadratic-
form delta already computed for Sp:

Var(Sg) = [nm (nm — 1) max(nt, 1)]2

with Ay = LD,y L7,

Putting it together. Assemble Var(0) by combining the (62, 0%, ,;, 0%, 1) covariance block from

the subject-level empirical covariance, add the @(&%) and \//aE(S ) terms on the diagonal, and
ignore cross-covariances across these blocks (a standard large-sample simplification). Then

S{CCC} = 1/ vOCC(@)T Var(d) vecc().
A two-sided (1 — «) normal CI is

C/C\C + Zl_a/g S%{CTC\C},

truncated to [0, 1] in the output for convenience. When Sp is truncated at O or samples are very
small/imbalanced, the normal CI can be mildly anti-conservative near the boundary; a logit trans-
form for CCC or a subject-level (cluster) bootstrap can be used for sensitivity analysis.

Choosing p for AR(1). When ar="ar1" and ar_rho =NA, p is estimated by profiling the REML
log-likelihood at (3, G, 6%,). With very few visits per subject, p can be weakly identified; consider
sensitivity checks over a plausible range.
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Notes on stability and performance

All per-subject solves are rxr withr = 14+nm-+nt+qz, so cost scales with the number of subjects
and the fixed-effects dimension rather than the total number of observations. Solvers use symmetric-
PD paths with a small diagonal ridge and pseudo-inverse, which helps for very small/unbalanced
subsets and near-boundary estimates. For AR(1), observations are ordered by time within subject;
NA time codes break the run, and gaps between factor levels are treated as regular steps (elapsed
time is not used).

Heteroscedastic slopes across Z columns are supported. Each Z column has its own variance
component 0% ;» but cross-covariances among Z columns are set to zero (diagonal block). Column
rescaling changes the implied prior on b; exira but does not introduce correlations.

Threading and BLAS guards

The C++ backend uses OpenMP loops while also forcing vendor BLAS libraries to run single-
threaded so that overall CPU usage stays predictable. On OpenBLAS and Apple’s Accelerate this
is handled automatically. On Intel MKL builds the guard is disabled by default, but you can also opt
out manually by setting MATRIXCORR_DISABLE_BLAS_GUARD=1 in the environment before loading
matrixCorr.

Model overview

Internally, the call is routed to ccc_lmm_reml_pairwise(), which fits one repeated-measures
mixed model per pair of methods. Each model includes:
* subject random intercepts (always)

* optional subject-by-method (sigma*2_{A \times M}) and subject-by-time (sigma*2_{A \times T})
variance components

* optional random slopes specified via slope/slope_var/slope_Z
e residual structure ar = "none” (iid) or ar = "ar1”

D-matrix options (Dmat_type, Dmat, Dmat_weights) control how time averaging operates when
translating variance components into CCC summaries.

Author(s)

Thiago de Paula Oliveira

References

Lin L (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45:
255-268.

Lin L (2000). A note on the concordance correlation coefficient. Biometrics, 56: 324-325.
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See Also
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build_L_Dm_Z_cpp for constructing L/D,,/Z; ccc_pairwise_u_stat for a U-statistic alternative;

and ccerm for a reference approach via nlme.

Examples
#
# 1) Subject x METHOD variance present, no time
# y_{i,m} =mu + b_m + u_i + w_{i,m} + e_{i,m}
# with u_i ~ N(@, s_A*2), w_{i,m} ~ N(@, s_{AxM}*2)
#
set.seed(102)
n_subj <- 60

n_time <- 8

id <- factor(rep(seq_len(n_subj), each = 2 * n_time))
time <- factor(rep(rep(seqg_len(n_time), times = 2), times = n_subj))
method <- factor(rep(rep(c("A","B"), each = n_time), times = n_subj))

sigh <- 0.6 # subject

sighM <- 0.3  # subject x method
SigAT <- 0.5 # subject x time

sigE <- 0.4 # residual

# Expected estimate S_B = 0.2"2 = 0.04
biasB <- 9.2 # fixed method bias

# random effects
u_i <= rnorm(n_subj, @, sqrt(sigA))
u <- u_ilas.integer(id)]

sm <- interaction(id, method, drop = TRUE)
w_im_lv <- rnorm(nlevels(sm), @, sqrt(sigAM))
w_im <- w_im_lv[as.integer(sm)]

st <- interaction(id, time, drop = TRUE)

g_it_lv <- rnorm(nlevels(st), 0, sqrt(sigAT))
g_it <- g_it_lv[as.integer(st)]

# residuals & response
e <- rnorm(length(id), @, sqrt(sigE))
y <- (method == "B") * biasB + u + w_im + g_it + e

dat_both <- data.frame(y, id, method, time)

# Both sigma2_subject_method and sigma2_subject_time are identifiable here

fit_both <- ccc_lmm_reml(dat_both, "y"”, "id", method = "method”, time = "time",

vc_select = "auto”, verbose = TRUE)
summary (fit_both)

#
# 2) Subject x TIME variance present (sag > @) with two methods
# y_{i,m,t} = mu + b_m + u_i + g_{i,t} + e_{i,m,t}
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# where g_{i,t} ~ N(@, s_{AxT}*2) shared across methods at time t
#
set.seed(202)

n_subj <- 60; n_time <- 14

id <- factor(rep(seqg_len(n_subj), each = 2 * n_time))

method <- factor(rep(rep(c("A","B"), each = n_time), times = n_subj))
time  <- factor(rep(rep(seqg_len(n_time), times = 2), times = n_subj))

sigh <- 0.7
SigAT <- 0.5
sig <- 0.5
biasB <- 0.25

u <= rnorm(n_subj, 0, sqrt(sigA))[as.integer(id)]

gIT <- rnorm(n_subj * n_time, @, sqrt(sigAT))

g <- gIT[ (as.integer(id) - 1L) * n_time + as.integer(time) ]

y <- (method == "B") * biasB + u + g + rnorm(length(id), 0, sqrt(sigk))
dat_sag <- data.frame(y, id, method, time)

# sigma_AT should be retained; sigma_AM may be dropped (since w_{i,m}=0)
fit_sag <- ccc_lmm_reml(dat_sag, "y", "id"”, method = "method”, time = "time",
vc_select = "auto”, verbose = TRUE)

summary (fit_sag)

#

# 3) BOTH components present: sab > @ and sag > @ (2 methods x T times)
# y_{i,m,t} =mu + b_m + u_i + w_{i,m} + g_{i,t} + e_{i,m,t}

#

set.seed(303)

n_subj <- 60; n_time <- 4

id <- factor(rep(seq_len(n_subj), each = 2 * n_time))

method <- factor(rep(rep(c("A","B"), each = n_time), times = n_subj))
time <- factor(rep(rep(seqg_len(n_time), times = 2), times = n_subj))

sigh <- 0.8
sighM <- 0.3
SigAT <- 0.4
sig <- 0.5
biasB <- 0.2

u <= rnorm(n_subj, @, sqrt(sigA))[as.integer(id)]

# (subject, method) random deviations: repeat per (i,m) across its times

wIM <- rnorm(n_subj * 2, 0, sqrt(sigAM))

w  <- wWIM[ (as.integer(id) - 1L) * 2 + as.integer(method) ]

# (subject, time) random deviations: shared across methods at time t

gIT <- rnorm(n_subj * n_time, @, sqrt(sigAT))

g <- gIT[ (as.integer(id) - 1L) * n_time + as.integer(time) ]

y <= (method == "B") % biasB + u + w + g + rnorm(length(id), @, sqrt(sigkE))
dat_both <- data.frame(y, id, method, time)

fit_both <- ccc_lmm_reml(dat_both, "y", "id", method = "method”, time = "time",
vc_select = "auto”, verbose = TRUE, ci = TRUE)

summary (fit_both)
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# If you want to force-include both VCs (skip testing):
fit_both_forced <-
ccc_lmm_reml(dat_both, "y", "id", method = "method”, time = "time",
vc_select = "none", include_subj_method = TRUE,
include_subj_time = TRUE, verbose = TRUE)
summary (fit_both_forced)

#

# 4) D_m choices: time-averaged (default) vs typical visit

#

# Time-average

ccc_lmm_reml(dat_both, "y", "id", method = "method”, time = "time",
vc_select = "none”, include_subj_method = TRUE,
include_subj_time = TRUE, Dmat_type = "time-avg")

# Typical visit

ccc_lmm_reml(dat_both, "y"”, "id", method = "method”, time = "time",
vc_select = "none”, include_subj_method = TRUE,
include_subj_time = TRUE, Dmat_type = "typical-visit")

#
# 5) AR(1) residual correlation with fixed rho (larger example)
#

set.seed(10)

n_subj <- 40

n_time <- 10

methods <- c("A", "B", "C", "D")

nm <- length(methods)

id <- factor(rep(seg_len(n_subj), each = n_time * nm))

method <- factor(rep(rep(methods, each = n_time), times = n_subj),
levels = methods)

time <~ factor(rep(rep(seq_len(n_time), times = nm), times = n_subj))

betad
beta_t
bias_met
sigA
rho_true
sigE

<- 0
<-0
<- c(A =10.00, B=20.30, C=-0.15, D = 0.05)
<-1
<-0
<- 0

~No o >N

t_num <- as.integer(time)
t_c <= t_num - mean(seq_len(n_time))
mu <- beta@ + beta_t * t_c + bias_met[as.character(method)]

u_subj <- rnorm(n_subj, @, sqrt(sigA))
u <- u_subj[as.integer(id)]

e <- numeric(length(id))
for (s in seqg_len(n_subj)) {
for (m in methods) {
idx <- which(id == levels(id)[s] & method == m)
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e[idx] <- stats::arima.sim(list(ar = rho_true), n = n_time, sd = sigE)
}
3

y<-mu+u+e
dat_ar4 <- data.frame(y =y, id = id, method = method, time = time)

ccc_lmm_reml(dat_ar4,

response = "y", rind = "id", method = "method”, time = "time",
ar = "ar1", ar_rho = 0.6, verbose = TRUE)

#

# 6) Random slope variants (subject, method, custom Z)

#

## By SUBJECT
set.seed(2)
n_subj <- 60; n_time <- 4
id <- factor(rep(seq_len(n_subj), each = 2 * n_time))
tim <- factor(rep(rep(seq_len(n_time), times = 2), times = n_subj))
method <- factor(rep(rep(c(”"A","B"), each = n_time), times = n_subj))
subj <- as.integer(id)
slope_i <- rnorm(n_subj, @, 0.15)
slope_vec <- slope_i[subj]
base <- rnorm(n_subj, @, 1.0)[subj]
tnum <- as.integer(tim)
y <- base + 0.3x(method=="B") + slope_vec*(tnum - mean(seqg_len(n_time))) +
rnorm(length(id), 0, 0.5)
dat_s <- data.frame(y, id, method, time = tim)
dat_s$t_num <- as.integer(dat_s$time)
dat_s$t_c <- ave(dat_s$t_num, dat_s$id, FUN = function(v) v - mean(v))
ccc_lmm_reml(dat_s, "y", "id", method = "method”, time = "time",
slope = "subject”, slope_var = "t_c", verbose = TRUE)

## By METHOD
set.seed(3)
n_subj <- 60; n_time <- 4
id <- factor(rep(seq_len(n_subj), each = 2 * n_time))
tim <- factor(rep(rep(seq_len(n_time), times = 2), times = n_subj))
method <- factor(rep(rep(c(”"A","B"), each = n_time), times = n_subj))
slope_m <- ifelse(method=="B", 0.25, 0.00)
base <- rnorm(n_subj, @, 1.0)[as.integer(id)]
tnum <- as.integer(tim)
y <- base + 0.3x(method=="B") + slope_mx(tnum - mean(seq_len(n_time))) +
rnorm(length(id), @, 0.5)
dat_m <- data.frame(y, id, method, time = tim)
dat_m$t_num <- as.integer(dat_m$time)
dat_m$t_c  <- ave(dat_m$t_num, dat_m$id, FUN = function(v) v - mean(v))
ccc_lmm_reml(dat_m, "y", "id", method = "method”, time = "time",
slope = "method”, slope_var = "t_c", verbose = TRUE)

## SUBJECT + METHOD random slopes (custom Z)
set.seed(4)
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n_subj <- 50; n_time <- 4
id <- factor(rep(seq_len(n_subj), each = 2 * n_time))
tim <- factor(rep(rep(seq_len(n_time), times = 2), times = n_subj))
method <- factor(rep(rep(c(”"A","B"), each = n_time), times = n_subj))
subj <- as.integer(id)
slope_subj <- rnorm(n_subj, @, 0.12)[subj]
slope_B <- ifelse(method=="B", 0.18, 0.00)
tnum <- as.integer(tim)
base <- rnorm(n_subj, @, 1.0)[subj]
y <- base + 0.3x(method=="B") +
(slope_subj + slope_B) * (tnum - mean(seg_len(n_time))) +
rnorm(length(id), @, 0.5)
dat_bothRS <- data.frame(y, id, method, time = tim)
dat_bothRS$t_num <- as.integer(dat_bothRS$time)
dat_bothRS$t_c  <- ave(dat_bothRS$t_num, dat_bothRS$id, FUN = function(v) v - mean(v))
MM <- model.matrix(~ @ + method, data = dat_bothRS)
Z_custom <- cbhind(
subj_slope = dat_bothRS$t_c,
MM * dat_bothRS$t_c
)
ccc_lmm_reml(dat_bothRS, "y", "id", method = "method”, time = "time",
slope = "custom”, slope_Z = Z_custom, verbose = TRUE)

ccc_pairwise_u_stat Repeated-Measures Lin’s Concordance Correlation Coefficient (CCC)

Description

Computes all pairwise Lin’s Concordance Correlation Coefficients (CCC) across multiple methods
(L > 2) for repeated-measures data. Each subject must be measured by all methods across the same
set of time points or replicates.

CCC measures both accuracy (how close measurements are to the line of equality) and precision
(Pearson correlation). Confidence intervals are optionally computed using a U-statistics-based esti-
mator with Fisher’s Z transformation

Usage

ccc_pairwise_u_stat(
data,
response,
method,
time = NULL,
Dmat = NULL,
delta =1,
ci = FALSE,
conf_level = 0.95,
n_threads = getOption("matrixCorr.threads"”, 1L),
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verbose = FALSE

Arguments

data
response
method

time

Dmat
delta

ci
conf_level

n_threads

verbose

Details

A data frame containing the repeated-measures dataset.
Character. Name of the numeric outcome column.
Character. Name of the method column (factor with L > 2 levels).

Character or NULL. Name of the time/repetition column. If NULL, one time
point is assumed.

Optional numeric weight matrix (T x T) for timepoints. Defaults to identity.

Numeric. Power exponent used in the distance computations between method
trajectories across time points. This controls the contribution of differences be-
tween measurements:
e delta =1 (default) uses absolute differences.
* delta = 2 uses squared differences, more sensitive to larger deviations.
* delta = @reduces to a binary distance (presence/absence of disagreement),
analogous to a repeated-measures version of the kappa statistic.

The choice of delta should reflect the penalty you want to assign to measure-
ment disagreement.

Logical. If TRUE, returns confidence intervals (default FALSE).
Confidence level for CI (default 0.95).

Integer (> 1). Number of OpenMP threads to use for computation. Defaults to
getOption("matrixCorr.threads”, 1L).

Logical. If TRUE, prints diagnostic output (default FALSE).

This function computes pairwise Lin’s Concordance Correlation Coefficient (CCC) between meth-
ods in a repeated-measures design using a U-statistics-based nonparametric estimator proposed by
Carrasco et al. (2013). It is computationally efficient and robust, particularly for large-scale or
balanced longitudinal designs.

Lin’s CCC is defined as

where:

2-cov(X,Y)
ok + 0% + (nx — py)?

Pc =

* X and Y are paired measurements from two methods.

2

* ux, py are means, and a§(, oy are variances.

U-statistics Estimation:

For repeated measures across 7' time points and n subjects we assume

* all n(n — 1) pairs of subjects are considered to compute a U-statistic estimator for within-
method and cross-method distances.
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 if delta > 9, pairwise distances are raised to a power before applying a time-weighted kernel
matrix D.

* if delta = @, the method reduces to a version similar to a repeated-measures kappa.

Confidence Intervals:
Confidence intervals are constructed using a Fisher Z-transformation of the CCC. Specifically,

 The CCC is transformed using Z = 0.5log((1 + p.)/(1 — pc))-
 Standard errors are computed from the asymptotic variance of the U-statistic.
* Normal-based intervals are computed on the Z-scale and then back-transformed to the CCC

scale.
Assumptions:

e The design must be balanced, where all subjects must have complete observations for all
methods and time points.

¢ The method is nonparametric and does not require assumptions of normality or linear mixed
effects.

* Weights (Dmat) allow differential importance of time points.

For unbalanced or complex hierarchical data (e.g., missing timepoints, covariate adjustments),
consider using ccc_lmm_reml, which uses a variance components approach via linear mixed mod-
els.

Value

If ci = FALSE, a symmetric matrix of class "ccc” (estimates only). If ci = TRUE, a list of class

n non

ccc”, "cce_ci” with elements:

e est: CCC estimate matrix
e lwr.ci: Lower bound matrix

e upr.ci: Upper bound matrix

Author(s)

Thiago de Paula Oliveira

References

Lin L (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45:
255-268.

Lin L (2000). A note on the concordance correlation coefficient. Biometrics, 56: 324-325.

Carrasco JL, Jover L (2003). Estimating the concordance correlation coefficient: a new approach.
Computational Statistics & Data Analysis, 47(4): 519-539.

See Also

cce, ccc_lmm_reml, plot.ccc, print.ccc
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Examples

set.seed(123)
df <- expand.grid(subject = 1:10,
time = 1:2,
method = c("A", "B", "C"))
df$y <- rnorm(nrow(df), mean = match(df$method, c("A", "B", "C")), sd = 1)

# CCC matrix (no CIs)

cccl <- ccc_pairwise_u_stat(df, response = "y", method = "method”, time = "time")
print(cccl)

summary (cccl1)

plot(cccl)

# With confidence intervals
ccc2 <- ccc_pairwise_u_stat(df, response = "y", method = "method”, time = "time", ci = TRUE)

print(ccc2)
summary (ccc2)
plot(ccc2)
# ________________________________________________________________________
# Choosing delta based on distance sensitivity
# ________________________________________________________________________
# Absolute distance (L1 norm) - robust
ccc_pairwise_u_stat(df, response = "y", method = "method”, time = "time"”, delta = 1)
# Squared distance (L2 norm) - amplifies large deviations
ccc_pairwise_u_stat(df, response = "y", method = "method”, time = "time"”, delta = 2)
# Presence/absence of disagreement (like kappa)
ccc_pairwise_u_stat(df, response = "y", method = "method”, time = "time"”, delta = @)
distance_corr Pairwise Distance Correlation (dCor)
Description

Computes all pairwise distance correlations using the unbiased U-statistic estimator for the numeric
columns of a matrix or data frame, via a high-performance ’C++’ backend (’OpenMP’-parallelised).
Distance correlation detects general (including non-linear and non-monotonic) dependence between
variables; unlike Pearson or Spearman, it is zero (in population) if and only if the variables are
independent.

Prints a summary of the distance correlation matrix with optional truncation for large objects.

Generates a ggplot2 heatmap of the distance correlation matrix. Distance correlation is non-negative;
the fill scale spans [0, 1].
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distance_corr(data, check_na = TRUE)

## S3 method for class 'distance_corr'

print(x, digits

= 4, max_rows = NULL, max_cols = NULL, ...)

## S3 method for class 'distance_corr'

plot(
X,
title = "Distance correlation heatmap”,
low_color = "white",

high_color = "steelbluel”,
value_text_size = 4,

Arguments

data
check_na
X

digits
max_rows

max_cols

title
low_color

high_color
value_text_size

Details

Let z € R" and D®) be the pairwise distance matrix with zero diagonal: Dz(f ) = 0, D

A numeric matrix or a data frame with at least two numeric columns. All non-
numeric columns are dropped. Columns must be numeric.

Logical (default TRUE). When TRUE, inputs must be free of NA/NaN/Inf. Set to
FALSE only if you have already handled missingness upstream.

An object of class distance_corr.
Integer; number of decimal places to print.

Optional integer; maximum number of rows to display. If NULL, all rows are
shown.

Optional integer; maximum number of columns to display. If NULL, all columns
are shown.

Additional arguments passed to ggplot2: : theme () or other ggplot2 layers.
Plot title. Default is "Distance correlation heatmap”.
Colour for zero correlation. Default is "white".

Colour for strong correlation. Default is "steelbluel”.

Font size for displaying values. Default is 4.

(@) _
ij

|; — ;| for i # j. Define row sums (") = Dk D' and grand sum ) = itk D). The

U-centred matrix is

(z) (z)
> 4 S(@)
o | pe om oy
A =P T T ey T
0, i=7.
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For two variables x, y, the unbiased distance covariance and variances are

—2
dCov,,(z,y ZA(T)A(ZI) _ ZA(T)A(y)

1
Z<] z;éj
/\2
with dVar,, () defined analogously from A(*). The unbiased distance correlation is

dCovu(az y)
\/dVaru () AVara(y)

dCOI‘u(I Y) € [0,1].

Computation. All heavy lifting (distance matrices, U-centering, and unbiased scaling) is imple-
mented in C++ (ustat_dcor_matrix_cpp), so the R wrapper only validates/coerces the input.
OpenMP parallelises the upper-triangular loops.

Value

A symmetric numeric matrix where the (i, j) entry is the unbiased distance correlation between
the i-th and j-th numeric columns. The object has class distance_corr with attributes method =
"distance_correlation”, description, and package = "matrixCorr”.

Invisibly returns x.

A ggplot object representing the heatmap.

Note

Requires n > 4. Columns with (near) zero unbiased distance variance yield NA in their row/column.
Computation is O(n?) per pair.

Author(s)

Thiago de paula Oliveira

References

Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by
correlation of distances. Annals of Statistics, 35(6), 2769-2794.

Székely, G. J., & Rizzo, M. L. (2013). The distance correlation t-test of independence. Journal of
Multivariate Analysis, 117, 193-213.

Examples

##Independent variables -> dCor ~ 0
set.seed(1)

X <- cbind(a = rnorm(200), b = rnorm(200))
D <- distance_corr(X)

print(D, digits = 3)

## Non-linear dependence: Pearson ~ @, but unbiased dCor > @
set.seed(42)



kendall tau

n <- 200

X <= rnorm(n)

y <= x*2 + rnorm(n, sd = 0.2)

XY <- cbind(x = x, y = y)

D2 <- distance_corr(XY)

# Compare Pearson vs unbiased distance correlation
round(c(pearson = cor(XY)[1, 2], dcor = D2["x", "y"1), 3)

plot(D2, title = "Unbiased distance correlation (non-linear example)")

## Small AR(1) multivariate normal example
set.seed(7)

p <= 5; n<-150; rho <- 0.6

Sigma <- rho*abs(outer(seqg_len(p), seq_len(p), "-"))
X3 <- MASS::mvrnorm(n, mu = rep(@, p), Sigma = Sigma)
colnames(X3) <- paste@("V"”, seq_len(p))

D3 <- distance_corr(X3)

print(D3[1:3, 1

:3], digits = 2)
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Pairwise (or Two-Vector) Kendall’s Tau Rank Correlation

Description

Computes Kendall’s tau rank correlation either for all pairs of numeric columns in a matrix/data
frame, or for two numeric vectors directly (scalar path).

This function uses a scalable algorithm implemented in *C++’ to compute Kendall’s tau-b (tie-
robust). When there are no ties, tau-b reduces to tau-a. The implementation follows the Knight
(1966) O(nlogn) scheme, where a single sort on one variable, in-block sorting of the paired vari-
able within tie groups, and a global merge-sort—based inversion count with closed-form tie correc-

tions.

Prints a summary of the Kendall’s tau correlation matrix, including description and method meta-

data.

Generates a ggplot2-based heatmap of the Kendall’s tau correlation matrix.

Usage

kendall_tau(data, y = NULL, check_na = TRUE)

## S3 method for class 'kendall_matrix'
print(x, digits = 4, max_rows = NULL, max_cols = NULL, ...)

## S3 method for class 'kendall_matrix'

plot(
X)

title = "Kendall's Tau correlation heatmap”,

low_color =

"indianred1”,
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high_color = "steelbluel”,
mid_color = "white"”,
value_text_size = 4,

)
Arguments

data For matrix/data frame, it is expected a numeric matrix or a data frame with at
least two numeric columns. All non-numeric columns will be excluded. For
two-vector mode, a numeric vector x.

y Optional numeric vector y of the same length as data when data is a vector.
If supplied, the function computes the Kendall correlation between data and y
using a low-overhead scalar path and returns a single number.

check_na Logical (default TRUE). If TRUE, inputs must be free of missing/undefined values.
Use FALSE only when you have already filtered or imputed them.

X An object of class kendall_matrix.

digits Integer; number of decimal places to print

max_rows Optional integer; maximum number of rows to display. If NULL, all rows are
shown.

max_cols Optional integer; maximum number of columns to display. If NULL, all columns
are shown.

Additional arguments passed to ggplot2: : theme() or other ggplot?2 layers.
title Plot title. Default is "Kendall's Tau Correlation Heatmap".

low_color Color for the minimum tau value. Default is "indianred1”.

high_color Color for the maximum tau value. Default is "steelbluel”.

mid_color Color for zero correlation. Default is "white".

value_text_size
Font size for displaying correlation values. Default is 4.

Details

Kendall’s tau is a rank-based measure of association between two variables. For a dataset with n
observations on variables X and Y, let ny = n(n — 1)/2 be the number of unordered pairs, C' the
number of concordant pairs, and D the number of discordant pairs. Let T, = 3 t4(t, —1)/2 and
Ty = >, un(up — 1)/2 be the numbers of tied pairs within X and within Y, respectively, where
t4 and uy, are tie-group sizes in X and Y.

The tie-robust Kendall’s tau-b is:
C-D
V(o —Ty) (no — T)

When there are no ties (1, = T, = 0), this reduces to tau-a:

Ty =

C-D
n(n—1)/2

Ta =
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The function automatically handles ties. In degenerate cases where a variable is constant (ng = T
or ng = T},), the tau-b denominator is zero and the correlation is undefined (returned as NA).

Performance:
¢ In the two-vector mode (y supplied), the C++ backend uses a raw-double path (no intermedi-
ate 2x?2 matrix, no discretisation).

* In the matrix/data-frame mode, columns are discretised once and all pairwise correlations
are computed via the Knight O(nlogn) procedure; where available, pairs are evaluated in
parallel.

Value

e If y is NULL and data is a matrix/data frame: a symmetric numeric matrix where entry (i, j)
is the Kendall’s tau correlation between the i-th and j-th numeric columns.

o If y is provided (two-vector mode): a single numeric scalar, the Kendall’s tau correlation
between data and y.

Invisibly returns the kendall_matrix object.

A ggplot object representing the heatmap.

Note

Missing values are not allowed when check_na = TRUE. Columns with fewer than two observations
are excluded.

Author(s)

Thiago de Paula Oliveira

References

Kendall, M. G. (1938). A New Measure of Rank Correlation. Biometrika, 30(1/2), 81-93.

Knight, W. R. (1966). A Computer Method for Calculating Kendall’s Tau with Ungrouped Data.
Journal of the American Statistical Association, 61(314), 436—439.

See Also

print.kendall_matrix, plot.kendall_matrix

Examples

# Basic usage with a matrix

mat <- cbind(a = rnorm(100), b = rnorm(100), ¢ = rnorm(100))
kt <- kendall_tau(mat)

print(kt)

plot(kt)

# Two-vector mode (scalar path)
X <= rnorm(1000); y <- 0.5 x x + rnorm(1000)
kendall_tau(x, y)
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# With a large data frame
df <- data.frame(x = rnorm(le4), y = rnorm(le4), z = rnorm(le4))
kendall_tau(df)

# Including ties
tied_df <- data.frame(
vl = rep(1:5, each = 20),

v2 = rep(5:1, each = 20),
v3 = rnorm(100)
)
kt <- kendall_tau(tied_df)
print(kt)
plot(kt)

partial_correlation Partial correlation matrix (sample / ridge / OAS)

Description

Computes the Gaussian partial correlation matrix from a numeric data frame or matrix. The covari-
ance matrix can be estimated using:
» Unbiased sample covariance: the standard empirical covariance estimator.

* Ridge-regularised covariance: adds a positive ridge penalty to improve stability when the
covariance matrix is near-singular.

* OAS shrinkage to a scaled identity: recommended when p >> n, as it reduces estimation
error by shrinking towards a scaled identity matrix.
The method uses a high-performance *C++’ backend.

Prints only the partial correlation matrix (no attribute spam), with an optional one-line header stating
the estimator used.

Produces a ggplot2-based heatmap of the partial correlation matrix stored in x$pcor. Optionally
masks the diagonal and/or reorders variables via hierarchical clustering of 1 — |pcor|.

Usage
partial_correlation(
data,
method = c("oas"”, "ridge", "sample"),
lambda = 0.001,
return_cov_precision = FALSE

## S3 method for class 'partial_correlation'
print(x, digits = 3, show_method = TRUE, max_rows = NULL, max_cols = NULL, ...)
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## S3 method for class 'partial_corr
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plot(
X,
title = NULL,
low_color = "indianred1”,
high_color "steelbluel”,
mid_color = "white",

value_text_size = 4,
mask_diag = TRUE,

reorder =

Arguments

data

method
lambda

FALSE,

A numeric matrix or data frame with at least two numeric columns. Non-
numeric columns are ignored.

n o n n o n

Character; one of "oas"”, "ridge"”, "sample”. Default "oas".

Numeric > 0; ridge penalty added to the covariance diagonal when method =
"ridge”. Ignored otherwise. Default 1e-3.

return_cov_precision

X
digits

show_method

Logical; if TRUE, also return the covariance (cov) and precision (precision)
matrices used to form the partial correlations. Default to FALSE

An object of class partial_corr.
Integer; number of decimal places for display (default 3).

Logical; print a one-line header with method (and 1lambda/rho if available). De-
fault TRUE.

max_rows, max_cols

title
low_color
high_color

mid_color

value_text_size

mask_diag

reorder

Optional integer limits for display; if provided, the printed matrix is truncated
with a note about omitted rows/cols.

Additional arguments passed to ggplot2: : theme() or other ggplot2 layers.
Plot title. By default, constructed from the estimator in x$method.

Colour for low (negative) values. Default "indianred1”.

Colour for high (positive) values. Default "steelbluel”.

Colour for zero. Default "white".

Font size for cell labels. Default 4.

Logical; if TRUE, the diagonal is masked (set to NA) and not labelled. Default
TRUE.

Logical; if TRUE, variables are reordered by hierarchical clustering of 1 — |pcor|.
Default FALSE.
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Details

Statistical overview. Given an n x p data matrix X (rows are observations, columns are variables),
the routine estimates a partial correlation matrix via the precision (inverse covariance) matrix. Let
1 be the vector of column means and

S=(X 1) (X —1p)

be the centred cross-product matrix computed without forming a centred copy of X. Two conven-
tional covariance scalings are formed:

2MLE:S/7L7 iunsz/(n—l).
e Sample: Y = f]unb.
* Ridge: ¥ = Sunb + I, with user-supplied A > 0 (diagonal inflation).
* OAS (Oracle Approximating Shrinkage): shrink SMLe towards a scaled identity target py1,,
where pi; = tr(XyLg)/p. The data-driven weight p € [0, 1] is
(1 - 2) () + tr(Snee)?

- (S 2 ’
(n+1-2) [tr(SRy ) — HEamnl

p =ming 1, max| O,

and
Y =(1-p) Sy +pprl,.

The method then ensures positive definiteness of 3 (adding a very small diagonal jitter only if
necessary) and computes the precision matrix © = X 7!, Partial correlations are obtained by stan-
dardising the off-diagonals of ©:

peor;; = —

Interpretation. For Gaussian data, pcor;; equals the correlation between residuals from regress-
ing variable ¢ and variable j on all the remaining variables; equivalently, it encodes conditional
dependence in a Gaussian graphical model, where pcor,; = 0 if variables ¢ and j are conditionally
independent given the others. Partial correlations are invariant to separate rescalings of each vari-
able; in particular, multiplying 3 by any positive scalar leaves the partial correlations unchanged.

Why shrinkage/regularisation? When p > n, the sample covariance is singular and inversion is
ill-posed. Ridge and OAS both yield well-conditioned 3. Ridge adds a fixed A on the diagonal,
whereas OAS shrinks adaptively towards j71;, with a weight chosen to minimise (approximately)
the Frobenius risk under a Gaussian model, often improving mean—square accuracy in high dimen-
sion.

Computational notes. The implementation forms .S using ’BLAS’ syrk when available and con-
structs partial correlations by traversing only the upper triangle with ’OpenMP’ parallelism. Posi-
tive definiteness is verified via a Cholesky factorisation; if it fails, a tiny diagonal jitter is increased
geometrically up to a small cap, at which point the routine signals an error.
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Value

An object of class "partial_corr” (a list) with elements:

* pcor: p X p partial correlation matrix.
* cov (if requested): covariance matrix used.

* precision (if requested): precision matrix ©.

non

¢ method: the estimator used ("oas"”, "ridge”, or "sample").
* lambda: ridge penalty (or NA_real_).
* rho: OAS shrinkage weight in [0, 1] (or NA_real_).

* jitter: diagonal jitter added (if any) to ensure positive definiteness.

Invisibly returns x.

A ggplot object.

References

Chen, Y., Wiesel, A., & Hero, A. O. III (2011). Robust Shrinkage Estimation of High-dimensional
Covariance Matrices. IEEE Transactions on Signal Processing.

Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance
matrices. Journal of Multivariate Analysis, 88(2), 365—411.

Schafer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estima-
tion and implications for functional genomics. Statistical Applications in Genetics and Molecular
Biology, 4(1), Article 32.

Examples

## Structured MVN with known partial correlations
set.seed(42)
p <- 12; n <- 1000

## Build a tri-diagonal precision (Omega) so the true partial correlations
## are sparse
phi <- 0.35
Omega <- diag(p)
for (7 in1:(p - 1)) {
Omegalj, j + 1] <- Omegal[j + 1, jl <- -phi
3
## Strict diagonal dominance
diag(Omega) <- 1 + 2 % abs(phi) + 0.05
Sigma <- solve(Omega)

## Upper Cholesky

L <- chol(Sigma)

Z <- matrix(rnorm(n * p), n, p)

X <= Z %% L

colnames(X) <- sprintf("Vv%02d", seq_len(p))

pc <- partial_correlation(X, method = "oas")
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## True partial correlation from Omega
pcor_true <- -Omega / sqrt(diag(Omega) %0% diag(Omega))
diag(pcor_true) <- 1

## Quick visual check (first 5x5 block)
round(pc$pcor[1:5, 1:5], 2)
round(pcor_true[1:5, 1:5], 2)

## Plot method
plot(pc)

## High-dimensional case p >> n
set.seed(7)
h <- 60; p <- 120

ar_block <- function(m, rho = 0.6) rho*abs(outer(seq_len(m), seq_len(m), "-"))

## Two AR(1) blocks on the diagonal
if (requireNamespace("Matrix”, quietly = TRUE)) {
Sigma_hd <- as.matrix(Matrix::bdiag(ar_block(60, 0.6), ar_block(60, 0.6)))
} else {
Sigma_hd <- rbind(
cbind(ar_block(60, 0.6), matrix(@, 60, 60)),
cbind(matrix(@, 60, 60), ar_block(60, 0.6))
)
3

L <- chol(Sigma_hd)
X_hd <- matrix(rnorm(n * p), n, p) %*% L
colnames(X_hd) <- paste@("G", seq_len(p))

pc_oas  <-

partial_correlation(X_hd, method = "oas"”, return_cov_precision = TRUE)

pc_ridge <-

partial_correlation(X_hd, method = "ridge"”, lambda = le-2,
return_cov_precision = TRUE)

pc_samp <-

partial_correlation(X_hd, method = "sample”, return_cov_precision = TRUE)

## Show how much diagonal regularisation was used
c(oas_jitter = pc_oas$jitter,

ridge_lambda = pc_ridge$lambda,

sample_jitter = pc_samp$jitter)

## Compare conditioning of the estimated covariance matrices
c(kappa_oas = kappa(pc_oas$cov),

kappa_ridge = kappa(pc_ridge$cov),

kappa_sample = kappa(pc_samp$cov))

## Simple conditional-dependence graph from partial correlations
pcor <- pc_oas$pcor
vals <- abs(pcor[upper.tri(pcor, diag = FALSE)])
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thresh <- quantile(vals, ©0.98) # top 2%
edges <- which(abs(pcor) > thresh & upper.tri(pcor), arr.ind = TRUE)
head(data.frame(i = colnames(pcor)[edges[,1]1],

j = colnames(pcor)[edges[,2]],

pcor = round(pcor[edges], 2)))

pearson_corr Pairwise Pearson correlation

Description

Computes all pairwise Pearson correlation coefficients for the numeric columns of a matrix or data
frame using a high-performance *C++’ backend.

This function uses a direct Pearson formula implementation in *C++’ to achieve fast and scalable
correlation computations, especially for large datasets.

Prints a summary of the Pearson correlation matrix, including description and method metadata.

Generates a ggplot2-based heatmap of the Pearson correlation matrix.

Usage

pearson_corr(data, check_na = TRUE)

## S3 method for class 'pearson_corr'
print(x, digits = 4, max_rows = NULL, max_cols = NULL, ...)

## S3 method for class 'pearson_corr'

plot(
X,
title = "Pearson correlation heatmap”,
low_color = "indianred1”,
high_color = "steelbluel”,
mid_color = "white",

value_text_size = 4,

Arguments

data A numeric matrix or a data frame with at least two numeric columns. All non-
numeric columns will be excluded. Each column must have at least two non-
missing values.

check_na Logical (default TRUE). If TRUE, inputs must be free of NA/NaN/Inf. Set to FALSE
only when the caller already handled missingness.

X An object of class pearson_corr.

digits Integer; number of decimal places to print in the concordance
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max_rows Optional integer; maximum number of rows to display. If NULL, all rows are
shown.

max_cols Optional integer; maximum number of columns to display. If NULL, all columns
are shown.

Additional arguments passed to ggplot2: : theme() or other ggplot2 layers.

title Plot title. Default is "Pearson correlation heatmap”.
low_color Color for the minimum correlation. Default is "indianred1”.
high_color Color for the maximum correlation. Default is "steelbluel”.
mid_color Color for zero correlation. Default is "white"”.

value_text_size
Font size for displaying correlation values. Default is 4.

Details

Let X € R™*P be a numeric matrix with rows as observations and columns as variables, and let
1 € R™ denote the all-ones vector. Define the column means p = (1/n) 17X and the centred
cross-product matrix

S = (X —1p) (X — 1p) = XT(Inf%HT)X = XTX —nuu’.

The (unbiased) sample covariance is R
y = 1 S,

and the sample standard deviations are s; = f]n The Pearson correlation matrix is obtained by
standardising 5, and it is given by

~

R =D '2ED7'2 D = diag(Si1, ..., Spp),

equivalently, entrywise R;; = f]ij/(sisj) fori # jand R;; = 1. With 1/(n — 1) scaling, 3 is
unbiased for the covariance; the induced correlations are biased in finite samples.

The implementation forms X " X via a BLAS symmetric rank-% update (SYRK) on the upper trian-
gle, then applies the rank-1 correction — 7z p1 " to obtain S without explicitly materialising X — 1.
After scaling by 1/(n — 1), triangular normalisation by D~'/2 yields R, which is then symmetrised
to remove round-off asymmetry. Tiny negative values on the covariance diagonal due to floating-
point rounding are truncated to zero before taking square roots.

If a variable has zero variance (s; = 0), the corresponding row and column of R are set to NA. No
missing values are permitted in X'; columns must have at least two distinct, non-missing values.

Computational complexity. The dominant cost is O(np?) flops with O(p?) memory.

Value

A symmetric numeric matrix where the (i, j)-th element is the Pearson correlation between the
i-th and j-th numeric columns of the input.

Invisibly returns the pearson_corr object.

A ggplot object representing the heatmap.
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Note

Missing values are not allowed when check_na = TRUE. Columns with fewer than two observations
are excluded.

Author(s)
Thiago de Paula Oliveira

References

Pearson, K. (1895). "Notes on regression and inheritance in the case of two parents". Proceedings
of the Royal Society of London, 58, 240-242.

See Also

print.pearson_corr, plot.pearson_corr

Examples

## MVYN with AR(1) correlation

set.seed(123)

p <- 6; n <- 300; rho <- 0.5

# true correlation

Sigma <- rho*abs(outer(seq_len(p), seq_len(p), "-"))
L <- chol(Sigma)

# MVYN(n, @, Sigma)

X <= matrix(rnorm(n * p), n, p) %*% L

colnames(X) <- paste@("V", seg_len(p))

pr <- pearson_corr(X)
print(pr, digits = 2)
plot(pr)

## Compare the sample estimate to the truth
Rhat <- cor(X)

# estimated

round(Rhat[1:4, 1:4]1, 2)

# true

round(Sigmal[1:4, 1:4], 2)

off <- upper.tri(Sigma, diag = FALSE)

# MAE on off-diagonals

mean(abs(Rhat[off] - Sigmal[off]))

## Larger n reduces sampling error

n2 <- 2000

X2 <= matrix(rnorm(n2 * p), n2, p) %*% L

Rhat2 <- cor(X2)

off <- upper.tri(Sigma, diag = FALSE)

## mean absolute error (MAE) of the off-diagonal correlations
mean(abs(Rhat2[off] - Sigma[off]))



52 print.matrixCorr._ccc

print.ccc_ci S3 print for legacy class ccc_ci

Description

For compatibility with objects that still carry class "ccc_ci”.

Usage
## S3 method for class 'ccc_ci'
print(x, ...)
Arguments
X A matrixCorr_ccc or matrixCorr_ccc_ci object.

Passed to underlying printers.

print.matrixCorr_ccc  Print method for matrixCorr CCC objects

Description

Print method for matrixCorr CCC objects

Usage

## S3 method for class 'matrixCorr_ccc'

print(x, digits = 4, ci_digits = 4, show_ci = c("auto”, "yes", "no"), ...)
Arguments

X A matrixCorr_ccc or matrixCorr_ccc_ci object.

digits Number of digits for CCC estimates.

ci_digits Number of digits for CI bounds.

show_ci One of "auto”, "yes", "no".

Passed to underlying printers.
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print.matrixCorr_ccc_ci
Print method for matrixCorr CCC objects with Cls

Description

Print method for matrixCorr CCC objects with Cls

Usage

## S3 method for class 'matrixCorr_ccc_ci'

print(x, ...)
Arguments

X A matrixCorr_ccc or matrixCorr_ccc_ci object.

Passed to underlying printers.
schafer_corr Schafer-Strimmer shrinkage correlation

Description

Computes a shrinkage correlation matrix using the Schafer-Strimmer approach with an analytic,
data-driven intensity A. The off-diagonals of the sample Pearson correlation R are shrunk towards
zero, yielding Rgny = (1 — A)R + AI with diag(Rgp,) = 1, stabilising estimates when p > n.

This function uses a high-performance *C++ backend that forms X T X via "BLAS’ "SYRK’, ap-
plies centring via a rank-1 gpdate,Aconverts to Pearson correlation, estimates A, and shrinks the
off-diagonals: Rgp, = (1 — A)R + A1

Prints a summary of the shrinkage correlation matrix with optional truncation for large objects.

Heatmap of the shrinkage correlation matrix with optional hierarchical clustering and triangular
display. Uses ggplot2 and geom_raster () for speed on larger matrices.

Usage

schafer_corr(data)

## S3 method for class 'schafer_corr'
print(x, digits = 4, max_rows = NULL, max_cols = NULL, ...)

## S3 method for class 'schafer_corr'
plot(
X,
title = "Schafer-Strimmer shrinkage correlation”,



54 schafer_corr

cluster = TRUE,
hclust_method = "complete”,
triangle = "upper”,
show_values = FALSE,
value_text_limit = 60,
value_text_size = 3,

palette = c("diverging”, "viridis"),
)
Arguments

data A numeric matrix or a data frame with at least two numeric columns. All non-
numeric columns will be excluded. Columns must be numeric and contain no
NAs.

X An object of class schafer_corr.

digits Integer; number of decimal places to print.

max_rows Optional integer; maximum number of rows to display. If NULL, all rows are
shown.

max_cols Optional integer; maximum number of columns to display. If NULL, all columns
are shown.
Additional arguments passed to ggplot2:: theme().

title Plot title.

cluster Logical; if TRUE, reorder rows/cols by hierarchical clustering on distance 1 —17.

hclust_method Linkage method for hclust; default “complete”.
triangle One of "full”, "upper”, "lower". Default to upper.

show_values Logical; print correlation values inside tiles (only if matrix dimension < value_text_limit).
value_text_limit

Integer threshold controlling when values are drawn.
value_text_size

Font size for values if shown.

palette Character; "diverging” (default) or "viridis”.
Details
Let R be the sample Pearson correlation matrix. The Schafer-Strimmer shrinkage estimator targets
the identity in correlation space and uses A = w (clamped to [0, 1]), where \//zﬁ(ri i)~
i<j'ij
_p232 . N
% The returned estimator is Ry = (1 — A)R + AL
Value

A symmetric numeric matrix of class schafer_corr where entry (i, j) is the shrunk correlation
between the i-th and j-th numeric columns. Attributes:

* method = "schafer_shrinkage”
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e description = "Schafer-Strimmer shrinkage correlationmatrix”

* package = "matrixCorr”
Columns with zero variance are set to NA across row/column (including the diagonal), matching
pearson_corr () behaviour.
Invisibly returns x.

A ggplot object.

Note

No missing values are permitted. Columns with fewer than two observations or zero variance are
flagged as NA (row/column).

Author(s)
Thiago de Paula Oliveira

References

Schafer, J. & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estima-
tion and implications for functional genomics. Statistical Applications in Genetics and Molecular
Biology, 4(1).

See Also

print.schafer_corr, plot.schafer_corr, pearson_corr

Examples

## Multivariate normal with AR(1) dependence (Toeplitz correlation)
set.seed(1)

n <- 80; p <- 40; rho <- 0.6

d <- abs(outer(seqg_len(p), seq_len(p), "-"))

Sigma <- rho*d

X <= MASS::mvrnorm(n, mu = rep(@, p), Sigma = Sigma)
colnames(X) <- paste@("V", seq_len(p))

Rshr <- schafer_corr(X)
print(Rshr, digits = 2, max_rows = 6, max_cols = 6)
plot(Rshr)

## Shrinkage typically moves the sample correlation closer to the truth
Rraw <- stats::cor(X)

off <- upper.tri(Sigma, diag = FALSE)

mae_raw <- mean(abs(Rraw[off] Sigmaloff]))

mae_shr <- mean(abs(Rshr[off] Sigmaloff]))

print(c(MAE_raw = mae_raw, MAE_shrunk = mae_shr))

plot(Rshr, title = "Schafer-Strimmer shrinkage correlation”)
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spearman_rho Pairwise Spearman’s rank correlation

Description

Computes all pairwise Spearman’s rank correlation coefficients for the numeric columns of a matrix
or data frame using a high-performance *C++’ backend.

This function ranks the data and computes Pearson correlation on ranks, which is equivalent to
Spearman’s rho. It supports large datasets and is optimized in *’C++’ for performance.

Prints a summary of the Spearman’s correlation matrix, including description and method metadata.

Generates a ggplot2-based heatmap of the Spearman’s rank correlation matrix.

Usage

spearman_rho(data, check_na = TRUE)

## S3 method for class 'spearman_rho'
print(x, digits = 4, max_rows = NULL, max_cols = NULL, ...)

## S3 method for class 'spearman_rho'

plot(
X,
title = "Spearman's rank correlation heatmap”,
low_color = "indianred1”,
high_color = "steelbluel”,
mid_color = "white",

value_text_size = 4,

Arguments

data A numeric matrix or a data frame with at least two numeric columns. All non-
numeric columns will be excluded. Each column must have at least two non-
missing values.

check_na Logical (default TRUE). If TRUE, the input is required to be free of NA/NaN/Inf.
Set to FALSE only when the caller already handled missingness.

X An object of class spearman_rho.

digits Integer; number of decimal places to print.

max_rows Optional integer; maximum number of rows to display. If NULL, all rows are
shown.

max_cols Optional integer; maximum number of columns to display. If NULL, all columns
are shown.

Additional arguments passed to ggplot2: : theme() or other ggplot2 layers.
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title Plot title. Default is "Spearman's rank correlation heatmap”.
low_color Color for the minimum rho value. Default is "indianred1”.
high_color Color for the maximum rho value. Default is "steelbluel”.
mid_color Color for zero correlation. Default is "white".

value_text_size
Font size for displaying correlation values. Default is 4.

Details

For each column j = 1,...,p, let R.; € {1,...,n}" denote the (mid-)ranks of X;, assigning
average ranks to ties. The mean rank is R; = (n + 1)/2 regardless of ties. Define the centred rank
vectors R. j=R;— Rj 1, where 1 € R" is the all-ones vector. The Spearman correlation between
columns 7 and j is the Pearson correlation of their rank vectors:

. Dkt (Bri — Ri)(Ry; — Ry)
ps(i,j) = = —
Vi (Bei — B2 /S0 (B — By)?

In matrix form, with R = [R.1,...,R,], p = (n +1)1,/2 for 1, € RP, and Sp = (R —

l,uT)T (R—1p")/(n — 1), the Spearman correlation matrix is

ps = D7Y2SxD™Y?2 D = diag(diag(Sg)).

When there are no ties, the familiar rank-difference formula obtains
) Tl(TL2 - 1) — ks 7 R

but this expression does not hold under ties; computing Pearson on mid-ranks (as above) is the
standard tie-robust approach. Without ties, Var(R.;) = (n? — 1)/12; with ties, the variance is
smaller.

ps(i,j) € [—1,1] and pg is symmetric positive semi-definite by construction (up to floating-point
error). The implementation symmetrises the result to remove round-off asymmetry. Spearman’s
correlation is invariant to strictly monotone transformations applied separately to each variable.

Computation. Each column is ranked (mid-ranks) to form R. The product R R is computed via a
"BLAS’ symmetric rank update "SYRK’), and centred using

(R=1u")"(R=1u") = RTR — nup",

avoiding an explicit centred copy. Division by n — 1 yields the sample covariance of ranks; stan-
dardising by D~'/? gives pg. Columns with zero rank variance (all values equal) are returned as
NA along their row/column; the corresponding diagonal entry is also NA.

Ranking costs O(pnlog n); forming and normalising R" R costs O(an) with O(p?) additional
memory. ’OpenMP’ parallelism is used across columns for ranking, and a " BLAS’ *SYRK” kernel
is used for the matrix product when available.
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Value

A symmetric numeric matrix where the (i, j)-th element is the Spearman correlation between the
i-th and j-th numeric columns of the input.

Invisibly returns the spearman_rho object.

A ggplot object representing the heatmap.

Note

Missing values are not allowed when check_na = TRUE. Columns with fewer than two observations
are excluded.

Author(s)

Thiago de Paula Oliveira

References

Spearman, C. (1904). The proof and measurement of association between two things. International
Journal of Epidemiology, 39(5), 1137-1150.

See Also

print.spearman_rho, plot.spearman_rho

Examples

## Monotone transformation invariance (Spearman is rank-based)
set.seed(123)

n <- 400; p <- 6; rho <- 0.6

# AR(1) correlation

Sigma <- rho*abs(outer(seg_len(p), seq_len(p), "-"))

L <- chol(Sigma)

X <= matrix(rnorm(n * p), n, p) %*% L

colnames(X) <- paste@("V", seqg_len(p))

# Monotone transforms to some columns
X_mono <- X

# exponential

X_mono[, 1] <- exp(X_mono[, 11)

# softplus

X_mono[, 2] <- loglp(exp(X_mono[, 21))
# odd monotone polynomial

X_mono[, 3] <- X_mono[, 3]*3

sp_X <- spearman_rho(X)
sp_m <- spearman_rho(X_mono)

# Spearman should be (nearly) unchanged under monotone transformations
round(max(abs(sp_X - sp_m)), 3)
# heatmap of Spearman correlations
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plot(sp_X)

## Ties handled via mid-ranks
tied <- cbind(
# many ties
= rep(1:5, each = 20),
noisy reverse order
= rep(5:1, each = 20) + rnorm(100, sd = 0.1),
ordinal with ties
= as.numeric(gl(1e, 10))

0O = T # o

)
sp_tied <- spearman_rho(tied)
print(sp_tied, digits = 2)

## Bivariate normal, theoretical Spearman's rho
## For BVN with Pearson correlation r, rho_S = (6/pi) * asin(r/2).
r_target <- c(-0.8, -0.4, 0, 0.4, 0.8)
n2 <- 200
est <- true_corr <- numeric(length(r_target))
for (i in seqg_along(r_target)) {
R2 <- matrix(c(1, r_target[i], r_target[il, 1), 2, 2)
Z <- matrix(rnorm(n2 * 2), n2, 2) %*% chol(R2)
s <- spearman_rho(Z)
est[i] <- s[1, 2]
true_corr[i] <- (6 / pi) * asin(r_target[i] / 2)
3

cbind(r_target, est = round(est, 3), theory = round(true_corr, 3))

summary.ccc_lmm_reml  Summary Method for ccc_lmm_reml Objects

Description

Produces a detailed summary of a "ccc_lmm_reml” object, including Lin’s CCC estimates and
associated variance component estimates per method pair.

Usage

## S3 method for class 'ccc_lmm_reml'
summary (

object,

digits = 4,

ci_digits = 2,

show_ci = c("auto”, "yes"”, "no"),
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Arguments
object An object of class "ccc_lmm_reml”, as returned by ccc_lmm_reml1().
digits Integer; number of decimal places to round CCC estimates and components.
ci_digits Integer; decimal places for confidence interval bounds.
show_ci Character string indicating whether to show confidence intervals: "auto” (de-
fault) shows only if non-NA CIs exist, "yes"” always shows CIs, "no"” never
shows them.
Additional arguments (ignored).
Value

A data frame of class "summary.ccc_lmm_reml” with columns: method1, method2, estimate, and
optionally 1wr, upr, as well as variance component estimates: sigma2_subject, sigma2_subject_method,
sigma2_subject_time, sigma2_error, sigma2_extra, SB, se_ccc.
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