
Package ‘import’
October 19, 2025

Type Package

Title An Import Mechanism for R

Version 1.3.4

Description Alternative mechanism for importing objects from packages
and R modules. The syntax allows for importing multiple objects with a single
command in an expressive way. The import package bridges some of the gap
between using library (or require) and direct (single-object) imports.
Furthermore the imported objects are not placed in the current environment.

License MIT + file LICENSE

ByteCompile TRUE

URL https://rticulate.github.io/import/,

https://github.com/rticulate/import

BugReports https://github.com/rticulate/import/issues

Suggests knitr, rmarkdown, magrittr, testthat

Language en-US

VignetteBuilder knitr

RoxygenNote 7.3.3

Encoding UTF-8

NeedsCompilation no

Author Stefan Milton Bache [aut],
Magnus Thor Torfason [aut, cre]

Maintainer Magnus Thor Torfason <m@zulutime.net>

Repository CRAN

Date/Publication 2025-10-19 12:30:02 UTC

Contents
from . 2
import . 5

Index 6

1

https://rticulate.github.io/import/
https://github.com/rticulate/import
https://github.com/rticulate/import/issues

2 from

from Import Objects From a Package.

Description

The import::from(), import::into(), and import::here() functions provide an alternative
way to import objects (e.g. functions) from packages or modules (see below). It is sometimes
preferred over using library (or require) which will import all objects exported by the package.
The benefit over obj <- pkg::obj is that the imported objects will (by default) be placed in a
separate entry in the search path (which can be specified), rather in the global/current environment.
Also, it is a more succinct way of importing several objects.

import::from() and import::into() are symmetric, and usage is a matter of preference and
whether specifying the .into argument is desired. import::here() is a shorthand that always
imports into the current environment, and import::what() provides a way to quickly list all objects
in a package or module that are available for import by the other functions.

Usage

from(
.from,
...,
.into = "imports",
.library = .libPaths(),
.directory = ".",
.all = (length(.except) > 0),
.except = character(),
.chdir = TRUE,
.character_only = FALSE,
.S3 = FALSE

)

here(
.from,
...,
.library = .libPaths()[1L],
.directory = ".",
.all = (length(.except) > 0),
.except = character(),
.chdir = TRUE,
.character_only = FALSE,
.S3 = FALSE

)

into(
.into,
...,

from 3

.from,

.library = .libPaths()[1L],

.directory = ".",

.all = (length(.except) > 0),

.except = character(),

.chdir = TRUE,

.character_only = FALSE,

.S3 = FALSE
)

what(
.from,
...,
.library = .libPaths()[1L],
.directory = ".",
.chdir = TRUE,
.character_only = FALSE,
.S3 = FALSE

)

Arguments

.from The package from which to import.

... Names or name-value pairs specifying objects to import. If arguments are named,
then the imported object will have this new name.

.into The environment into which the imported objects should be assigned. If the
value is of mode character, it is treated as referring to a named environment on
the search path. If it is of mode environment, the objects are assigned directly
to that environment. Using .into=environment() causes imports to be made
into the current environment; .into="" is an equivalent shorthand value.

.library character specifying the library to use when importing from packages. Defaults
to the current set of library paths (note that the default value was different in
versions up to and including 1.3.0).

.directory character specifying the directory to use when importing from modules. De-
faults to the current working directory. If .from is a module specified using an
absolute path (i.e. starting with /), this parameter is ignored.

.all logical specifying whether all available objects in a package or module should be
imported. It defaults to FALSE unless .exclude is being used to omit particular
functions.

.except character vector specifying any objects that should not be imported. Any values
specified here override both values provided in ... and objects included because
of the .all parameter

.chdir logical specifying whether to change directories before sourcing a module (this
parameter is ignored for libraries)

.character_only

A logical indicating whether .from and ... can be assumed to be character

4 from

strings. (Note that this parameter does not apply to how the .into parameter is
handled).

.S3 [Experimental] A logical indicating whether an automatic detection and regis-
tration of S3 methods should be performed. The S3 methods are assumed to be
in the standard form generic.class. Methods can also be registered manually
instead using be registered manually instead using the .S3method(generic,
class, method) call. This is an experimental feature. We think it should work
well and you are encouraged to use it and report back – but the syntax and
semantics may change in the future to improve the feature.

Details

The function arguments can be quoted or unquoted as with e.g. library. In any case, the character
representation is used when unquoted arguments are provided (and not the value of objects with
matching names). The period in the argument names .into and .from are there to avoid name clash
with package objects. However, while importing of hidden objects (those with names prefixed by
a period) is supported, care should be taken not to conflict with the argument names. The double-
colon syntax import::from allows for imports of exported objects (and lazy data) only. To import
objects that are not exported, use triple-colon syntax, e.g. import:::from. The two ways of calling
the import functions analogue the :: and ::: operators themselves.

Note that the import functions usually have the (intended) side-effect of altering the search path,
as they (by default) import objects into the "imports" search path entry rather than the global envi-
ronment.

The import package is not meant to be loaded with library (and will output a message about this
if attached), but rather it is named to make the function calls expressive without the need to loading
before use, i.e. it is designed to be used explicitly with the :: syntax, e.g. import::from(pkg, x,
y).

Value

a reference to the environment containing the imported objects.

Packages vs. modules

import can either be used to import objects either from R packages or from R source files. If the
.from parameter ends with ’.R’ or ’.r’, import will look for a source file to import from. A source
file in this context is referred to as a module in the documentation.

Package Versions

With import you can specify package version requirements. To do this add a requirement in paren-
theses to the package name (which then needs to be quoted), e.g import::from("parallel (>=
3.2.0)", ...). You can use the operators <, >, <=, >=, ==, !=. Whitespace in the specification is
irrelevant.

See Also

Helpful links:

import 5

• https://rticulate.github.io/import/

• https://github.com/rticulate/import/

• https://github.com/rticulate/import/issues/

Examples

import::from(parallel, makeCluster, parLapply)
import::into("imports:parallel", makeCluster, parLapply, .from = parallel)
import::here(parallel, detectCores)
import::what(parallel)

import An Import Mechanism for R

Description

This is an alternative mechanism for importing objects from packages. The syntax allows for im-
porting multiple objects from a package with a single command in an expressive way. The import
package bridges some of the gap between using library (or require) and direct (single-object)
imports. Furthermore the imported objects are not placed in the current environment (although
possible), but in a named entry in the search path.

Details

This package is not intended for use with library. It is named to make calls like import::from(pkg,
fun1, fun2) expressive. Using the import functions complements the standard use of library(pkg)(when
most objects are needed, and context is clear) and obj <- pkg::obj (when only a single object is
needed).

Author(s)

Stefan Milton Bache

See Also

For usage instructions and examples, see from, into, or here.

Helpful links:

• https://rticulate.github.io/import/

• https://github.com/rticulate/import/

• https://github.com/rticulate/import/issues/

https://rticulate.github.io/import/
https://github.com/rticulate/import/
https://github.com/rticulate/import/issues/
https://rticulate.github.io/import/
https://github.com/rticulate/import/
https://github.com/rticulate/import/issues/

Index

from, 2, 5

here, 5
here (from), 2

import, 5
import-package (import), 5
into, 5
into (from), 2

what (from), 2

6

	from
	import
	Index

