Package ‘hedgehog’

November 3, 2025

Type Package

Title Property-Based Testing
Version 0.2

Date 2025-11-01

Description Hedgehog will eat all your bugs.
'Hedgehog' is a property-based testing package in the spirit
of 'QuickCheck'. With 'Hedgehog', one can test properties
of their programs against randomly generated input, providing
far superior test coverage compared to unit testing. One of the
key benefits of 'Hedgehog' is integrated shrinking of
counterexamples, which allows one to quickly find the cause of
bugs, given salient examples when incorrect behaviour occurs.

License MIT + file LICENSE
URL https://github.com/hedgehogga

BugReports https://github.com/hedgehogqa/r-hedgehog/issues
Imports rlang (>=0.1.6)

Depends testthat

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Huw Campbell [aut, cre]

Maintainer Huw Campbell <huw.campbell@gmail.com>
Repository CRAN

Date/Publication 2025-11-03 09:40:02 UTC

https://github.com/hedgehogqa
https://github.com/hedgehogqa/r-hedgehog/issues

2 command

Contents
command L e e e 2
discard L e 3
expect_sequential 4
forall e 4
gen-element 6
gen-monad L. e 7
GENLACHIONS o i e e e e e e e e e e e e 8
CeNDetA e e e e e 9
GOTLC & v v o v e e e e e e e e e e e e e e e e e e 9
gendate L L e e e e e 10
gen.example L L e e e e e 10
GEMLEAMIMA . . .« . v o v v v e 11
genLliSt. e e e 11
gen.no.shrink L L. e 12
GEMLTECUISIVE . . . v v v v e 12
LS5 415 1 o 13
gen.shrink L e e e 13
gen.Sized .. o. ... e e e e 14
GEMLSITUCTUTE . . o . v v v v v e e e e e e e e e e e e e e e e e e 14
genunif oL L e e e 15
GEMETALE . . . v v v vt e 15
hedgehog e e 16
shrink.halveso 17
shrink.dist Lo 17
shrink.removes e 18
shrink.towards oL 18
Symbolic e e e e e 19
TEE . . v e e e e e e e e 19
treereplicate e e e e e 20

Index 21

command State based testing commands
Description

This helper function assists one in creating commands for state machine testing in hedgehog.

Usage

command (
title,
generator,
execute,
require = function(state, ...) T,

discard

update = function(state, output, ...) state,
ensure = function(state, output, ...) NULL
)
Arguments

title the name of this command, to be shown when reporting any failing test cases.

generator A generator which provides random arguments for the command, given the cur-
rent (symbolic) state. If nothing can be done with the current state, one should
preclude the situation with a requires and return NULL. Otherwise, it should be
a list of arguments (the empty list is ok for functions which take no arguments).

execute A function from the concrete input, which executes the true function and returns
concrete output. Function takes the (possibly named) arguments given by the
generator.

require A function from the current (symbolic) state to a bool, indicating if action is
currently applicable. Function also takes the (possibly named) arguments given
by the generator (this is mostly used in shrinking, to ensure after a shrink its still
something which could have been generated by the function generator).

update A function from state to state, which is polymorphic over symbolic and concrete
inputs and outputs (as it is used in both action generation and command execu-
tion). It’s critical that one doesn’t "inspect” the output and input values when
writing this function.

ensure A post-condition for a command that must be verified for the command to be
considered a success. This should be a set of testthat expectations.

Value

a command structure.

discard

Discard a test case

Description

Discard a test case

Usage

discard()

4 forall

expect_sequential Execute a state machine model

Description

Executes the list of commands sequentially, ensuring that all postconditions hold.

Usage

expect_sequential(initial.state, actions)

Arguments

initial.state the starting state to build from which is appropriate for this state machine gen-

erator.
actions the list of actions which are to be run.
Value
an expectation.
forall Hedgehog property test

Description

Check a property holds for all generated values.

Usage

forall(
generator,
property,
tests = getOption("hedgehog.tests"”, 100),
size.limit = getOption("hedgehog.size", 50),
shrink.limit = getOption("hedgehog.shrinks"”, 100),
discard.limit = getOption("hedgehog.discards”, 100),
curry = identical(class(generator), "list")

forall

Arguments

generator

property

tests
size.limit

shrink.limit

discard.limit

curry

Details

a generator or list of generators (potentially nested) to use for value testing.

a function which takes a value from the generator and tests some predicated
against it.

the number of tests to run
the max size used for the generators

the maximum number of shrinks to run when shrinking a value to find the small-
est counterexample.

the maximum number of discards to permit when running the property.

whether to curry the arguments passed to the property, and use do.call to use
the list generated as individual arguments. When curry is on, the function arity
should be the same as the length of the generated list. Defaults to T if the input
is a list.

The generator used can be defined flexibly, in that one can pass in a list of generators, or even nest
generators and constant values deeply into the gen argument and the whole construct will be treated

as a generator.

Examples

test_that("Reverse and concatenate symmetry”,
forall(list(as = gen.c(gen.element(1:100))
, bs = gen.c(gen.element(1:100)))
, function(as, bs)
expect_identical (rev(c(as, bs)), c(rev(bs), rev(as)))

)
)

False example showing minimum shrink:

Not run:

test_that("Reverse is identity”,

forall (gen.c(
)

End(Not run)

gen.element(1:100)), function(x) { expect_identical (rev(x), c(x)) })

Falsifiable after 1 tests, and 5 shrinks
Predicate is falsifiable

Counterexample:
#0111 2

gen-element

gen-element Random Sample Generation

Description

Generators which sample from a list or produce random integer samples. Both single sample, with

gen.element; and multi-sample, with gen.sample and gen.subsequence are supported; while
gen.choice is used to choose from generators instead of examples.
Usage
gen.element(x, prob = NULL)
gen.int(n, prob = NULL)
gen.choice(..., prob = NULL)
gen.subsequence(x)
gen.sample(x, size, replace = FALSE, prob = NULL)
gen.sample.int(n, size, replace = FALSE, prob = NULL)
Arguments
X a list or vector to sample an element from.
prob a vector of probability weights for obtaining the elements of the vector being
sampled.
n the number which is the maximum integer sampled from.
generators to sample from
size a non-negative integer or a generator of one, giving the number of items to
choose.
replace Should sampling be with replacement?
Details

These generators implement shrinking.

Value

gen.
gen.

element returns an item from the list or vector; gen.int, an integer up to the value n;
choice, a value from one of given selected generators; gen.subsequence an ordered sub-

sequence from the input sequence; and gen. sample a list or vector (depending on the input) of the
inputs.

For gen.element and gen.choice, shrinking will move towards the first item; gen. int will shrink

to 1;

gen.subsequence will shrink the list towards being empty; and gen.sample will shrink

towards the original list order.

gen-monad 7

Examples
gen.element(1:10) # a number
gen.element(c(TRUE,FALSE)) # a boolean
gen.int(10) # a number up to 10
gen.choice(gen.element(1:10), gen.element(letters))
gen.choice(NaN, Inf, gen.unif(-10, 10), prob = c(1,1,10))

gen.

subsequence(1:10)

gen-monad Generators

Description

A Hedgehog generator is a function, which, using R’s random seed, will build a lazy rose tree given
a size parameter, which represent a value to test, as well as possible shrinks to try in the event of
a failure. Usually, one should compose the provided generators instead of dealing with the gen
contructor itself.

Usage
gen(t)
gen.and_then(g, f)
gen.bind(f, g)
gen.pure(x)
gen.impure(fg)
gen.with(g, m)
gen.map(m, g)
Arguments
t a function producing a tree from a size parameter, usually an R function produc-
ing random values is used.
a generator to map or bind over
f a function from a value to new generator, used to build new generators monadi-
cally from a generator’s output
X a value to use as a generator
fg a function producing a single value from a size parameter
m a function to apply to values produced the generator

8 gen.actions

Details

Hedgehog generators are functors and monads, allowing one to map over them and use their results
to create more complex generators.

A generator can use R’s random seed when constructing its value, but all shrinks should be deter-
ministic.

In general, functions which accept a generator can also be provided with a list of generators nested
arbitrarily.

Generators which are created from impure values (i.e., have randomness), can be created with
gen.impure, which takes a function from size to a value. When using this the function will not
shrink, so it is best composed with gen. shrink.

See Also

generate for way an alternative, but equally expressive way to compose generators using R’s "for"
loop.

Examples

Create a generator which produces a number between
1 and 30
one_to_30 <- gen.element(1:30)

Use this to create a simple vector of 6 numbers
between 1 and 30.
vector_one_to_30 <- gen.c(of = 6, one_to_30)

Create a matrix 2 by 3 matrix using said vector
gen.map(function(x) matrix(x, ncol=3), vector_one_to_30)

To create a generator from a normal R random function
use gen.impure (this generator does not shrink).

g <- gen.impure(function(size) sample(1:10))
gen.example(g)

#[11 5 6 3 4 810 2 7 9 1

Composing generators with “gen.bind™ and “gen.with™ is

easy. Here we make a generator which first build a length,

then, elements of that length.

g <- gen.bind(function(x) gen.c(of = x, gen.element(1:10)), gen.element(2:100))
gen.example (g)

#[1186275422464663678546

gen.actions Generate a list of possible actions.

Description

Generate a list of possible actions.

gen.beta 9

Usage

gen.actions(initial.state, commands)

Arguments

initial.state the starting state to build from which is appropriate for this state machine gen-
erator.

commands the list of commands which we can select choose from. Only commands appro-
priate for the state will actually be selected.

Value

a list of actions to run during testing

gen.beta Generate a float with a gamma distribution

Description

Shrinks towards the median value.

Usage

gen.beta(shapel, shape2, ncp = 0)

Arguments
shape1 same as shapel in rbeta
shape2 same as shape2 in rbeta
ncp same as ncp in rbeta
gen.c Generate a vector of values from a generator
Description

Generate a vector of values from a generator

Usage

gen.c(generator, from = 1, to = NULL, of = NULL)

10 gen.example

Arguments
generator a generator used for vector elements
from minimum length of the list of elements
to maximum length of the list of elements (defaults to size if NULL)
of the exact length of the list of elements (exclusive to ‘from‘ and ‘to®).
gen.date Generate a date between the from and to dates specified.
Description

Shrinks towards the from value.

Usage

gen.date(from = as.Date("1900-01-01"), to = as.Date("3000-01-01"))

Arguments
from a Date value
to a Date value
Examples
gen.date()

gen.date(from = as.Date("”1939-09-01"), to = as.Date("1945-09-02"))

gen.example Sample from a generator.

Description

Sample from a generator.

Usage

gen.example(g, size = 5)

Arguments

g A generator

size The sized example to view

gen.gamma 11

gen.gamma Generate a float with a gamma distribution

Description

Shrinks towards the median value.

Usage

gen.gamma(shape, rate = 1, scale = 1/rate)

Arguments
shape same as shape in rgamma
rate same as rate in rgamma
scale same as scale in rgamma
gen.list Generate a list of values, with length bounded by the size parameter:
Description

Generate a list of values, with length bounded by the size parameter.

Usage

gen.list(generator, from = 1, to = NULL, of = NULL)

Arguments
generator a generator used for list elements
from minimum length of the list of elements
to maximum length of the list of elements (defaults to size if NULL)

of the exact length of the list of elements (exclusive to ‘from* and ‘to°).

12 gen.recursive

gen.no.shrink Stop a generator from shrinking

Description

Stop a generator from shrinking

Usage
gen.no.shrink(g)

Arguments
g a generator we wish to remove shrinking from
gen.recursive Build recursive structures in a way that guarantees termination.
Description

This will choose between the recursive and non-recursive terms, while shrinking the size of the
recursive calls.

Usage

gen.recursive(tails, heads)

Arguments
tails a list of generators which should not contain recursive terms.
heads a list of generator which may contain recursive terms.
Examples

Generating a tree with integer leaves
treeGen <-
gen.recursive(
The non-recursive cases
list(
gen.int(100)
)
, # The recursive cases
list(
gen.list(treeGen)
)
)

gen.run 13

gen.run Run a generator

Description

Samples from a generator or list of generators producing a (single) lazy rose tree.

Usage

gen.run(generator, size)

Arguments

generator A generator

size The size parameter passed to the generation functions
Details

This is different to calling generarator$unGen(size) in that it also works on (nested) lists of genera-
tors and pure values.

gen.shrink Helper to create a generator with a shrink function.

Description

shrinker takes an ’a and returns a vector of ’a.

Usage

gen.shrink(shrinker, g)

Arguments

shrinker a function takes an ’a and returning a vector of ’a.

g a generator we wish to add shrinking to

14 gen.structure

gen.sized Sized generator creation

Description

Helper for making a gen with a size parameter. Pass a function which takes an int and returns a gen.

Usage

gen.sized(f)

Arguments

f the function, taking a size and returning a generator

Examples

gen.sized (function(e) gen.element(1:e))

gen.structure Generate a structure

Description

If you can create an object with structure, you should be able to generate an object with this
function from a generator or list of generators.

Usage
gen.structure(x, ...)
Arguments
X an object generator which will have various attributes attached to it.
attributes, specified in ’tag = value’ form, which will be attached to generated
data.
Details

gen.structure accepts the same forms of data as forall, and is flexible, in that any list of generators
is considered to be a generator.

gen.unif 15

Examples

To create a matrix
gen.structure(gen.c(of = 6, gen.element(1:30)), dim = 3:2)

To create a data frame for testing.
gen.structure (
list (gen.c(of = 4, gen.element(2:10))
, gen.c(of = 4, gen.element(2:10))
, c(Ca', 'b', 'c¢', 'd")

)
, hames = c('a','b', 'constant')
, class = 'data.frame'
, row.names = c('1', '2', '3', '4'))
gen.unif Generate a float between the from and to the values specified.
Description

Shrinks towards the from value, or if shrink.median is on, the middle.

Usage

gen.unif(from, to, shrink.median = T)

Arguments
from same as from in runif
to same as to in runif

shrink.median whether to shrink to the middle of the distribution instead of the low end.

Examples

gen.unif (@, 1) # a float between @ and 1

generate Compose generators

Description

Use ‘generator with a for loop over the output of another generator to create a new, more interesting
generator.

Usage

generate(loop)

16 hedgehog

Arguments
loop A ‘for* loop expression, where the value iterated over is another Hedgehog gen-
erator.
See Also

[gen-monad()] for FP style ways of sequencing generators. This function is syntactic sugar over
‘gen.and_then* to make it palatable for R users.

Examples

gen_squares <- generate(for (i in gen.int(10)) i*2)

gen_sqg_digits <- generate(for (i in gen_squares) {
gen.c(of = i, gen.element(1:9))

»

hedgehog Property based testing in R

Description

Hedgehog is a modern property based testing system in the spirit of QuickCheck, originally written
in Haskell, but now also available in R.

Details
Software testing is critical when we want to distribute our work, but unit testing only covers exam-
ples we have thought of.

With hedgehog (integrated into testthat), we can instead test properties which our programs and
functions should have, and allow automatic generation of tests, which cover more that we could
imagine.

One of the key benefits of Hedgehog is integrated shrinking of counterexamples, which allows one
to quickly find the cause of bugs, given salient examples when incorrect behaviour occurs.

Options
- ‘hedgehog.tests‘: Number of tests to run in each property (Default: ‘100°).
- ‘hedgehog.size‘: Maximum size parameter to pass to generators (Default: ‘50°).
- ‘hedgehog.shrinks‘: Maximum number of shrinks to search for (Default: ‘100°).

- ‘hedgehog.discards ‘: Maximum number of discards permitted within a property test before failure
(Default: ‘100°).

References

Campbell, H (2017). hedgehog: Property based testing in R The R Journal under submission.
https://github.com/hedgehogqga/r-hedgehog

https://github.com/hedgehogqa/r-hedgehog

shrink.halves 17

Examples

library(hedgehog)
test_that("Reverse and concatenate symmetry"”,
forall(list(as = gen.c(gen.element(1:100))
, bs = gen.c(gen.element(1:100)))
, function(as, bs)
expect_identical (rev(c(as, bs)), c(rev(bs), rev(as)))

shrink.halves Shrink a number by dividing it into halves.

Description

Shrink a number by dividing it into halves.

Usage

shrink.halves(x)

Arguments

X number to produce halves of

Examples

shrink. towards(45)
#2211 5 2 1

shrink.list Shrink a list by edging towards the empty list.

Description

Shrink a list by edging towards the empty list.

Usage

shrink.list(xs)

Arguments

XS the list to shrink

18 shrink.towards

shrink.removes Produce permutations of removing num elements from a list.

Description

Produce permutations of removing num elements from a list.

Usage

shrink.removes(num, xs)

Arguments
num the number of values to drop
XS the list to shrink
shrink. towards Shrink an integral number by edging towards a destination.
Description

Note we always try the destination first, as that is the optimal shrink.

Usage

shrink.towards(destination)

Arguments

destination the value we want to shrink towards.

Examples

shrink.towards (@) (100)
[0,50,75,88,94,97,99]

shrink. towards(500) (1000)
[500,750,875,938,969,985,993,997,999]

shrink.towards (-50) (-26)
[-50,-38,-32,-29,-27]

symbolic 19

symbolic A symbolic value.

Description
These values are the outputs of a computation during the calculations’ construction, and allow a
value to use the results of a previous function.

Usage

symbolic(var)

Arguments

var the integer output indicator.

Details

Really, this is just an integer, which we use as a name for a value which will exist later in the
computation.

tree Lazy rose trees

Description

A rose tree is a type of multibranch tree. This is hedgehog’s internal implementation of a lazy rose
tree.

Usage

tree(root, children_ = list())
tree.map(f, x)

tree.bind(f, x)

tree.liftA2(f, x, y)
tree.expand(shrink, x)
tree.unfold(shrink, a)
tree.unfoldForest(shrink, a)

tree.sequence(trees)

20 tree.replicate

Arguments
root the root of the rose tree
children_ a list of children for the tree.
f a function for mapping, binding, or applying
X a tree to map or bind over
y a tree to map or bind over
shrink a shrinking function
a a value to unfold from
trees a tree, or list or structure potentially containing trees to turn into a tree of said
structure.
Details

In general, one should not be required to use any of the functions from this module as the combina-
tors in the gen module should be expressive enough (if they’re not raise an issue).

tree.replicate Creating trees of lists

Description

Build a tree of a list, potentially keeping hold of an internal state.

Usage

tree.replicate(num, ma)

tree.replicateS(num, ma, s, ...)
Arguments
num the length of the list in the tree
ma a function which (randomly) creates new tree to add to the list
S a state used when replicating to keep track of.

extra arguments to pass to the tree generating function

Index

command, 2

discard, 3

expect_sequential, 4

forall, 4

gen (gen-monad), 7

gen-
gen-
gen.
.and_then (gen-monad), 7

gen

gen.
gen.
gen.
gen.
gen.
gen.
gen.
gen.
gen.
gen.
gen.
gen.
.map (gen-monad), 7
gen.
gen.
gen.
gen.
gen.
gen.
gen.
gen.
gen.
gen.
gen.

gen

element, 6
monad, 7
actions, 8

beta, 9

bind (gen-monad), 7

c,9

choice (gen-element), 6
date, 10

element (gen-element), 6
example, 10

gamma, 11

impure, 8

impure (gen-monad), 7
int (gen-element), 6
list, 11

no.shrink, 12

pure (gen-monad), 7
recursive, 12

run, 13

sample (gen-element), 6
shrink, 8, 13

sized, 14
structure, 14
subsequence (gen-element), 6
unif, 15

with (gen-monad), 7

generate, 8, 15

hedgehog, 16

21

shrink.halves, 17
shrink.list, 17
shrink.removes, 18
shrink. towards, 18
symbolic, 19

tree, 19
tree.replicate, 20
tree.replicateS (tree.replicate), 20

	command
	discard
	expect_sequential
	forall
	gen-element
	gen-monad
	gen.actions
	gen.beta
	gen.c
	gen.date
	gen.example
	gen.gamma
	gen.list
	gen.no.shrink
	gen.recursive
	gen.run
	gen.shrink
	gen.sized
	gen.structure
	gen.unif
	generate
	hedgehog
	shrink.halves
	shrink.list
	shrink.removes
	shrink.towards
	symbolic
	tree
	tree.replicate
	Index

