
Package ‘fastmatrix’
October 15, 2025

Type Package

Title Fast Computation of some Matrices Useful in Statistics

Version 0.6-2

Date 2025-10-14

Maintainer Felipe Osorio <faosorios.stat@gmail.com>

Description Small set of functions to fast computation of some matrices and operations
useful in statistics and econometrics. Currently, there are functions for efficient
computation of duplication, commutation and symmetrizer matrices with minimal storage
requirements. Some commonly used matrix decompositions (LU and LDL), basic matrix
operations (for instance, Hadamard, Kronecker products and the Sherman-Morrison formula)
and iterative solvers for linear systems are also available. In addition, the package
includes a number of common statistical procedures such as the sweep operator, weighted
mean and covariance matrix using an online algorithm, linear regression (using Cholesky,
QR, SVD, sweep operator and conjugate gradients methods), ridge regression (with optimal
selection of the ridge parameter considering several procedures), omnibus tests for
univariate normality, functions to compute the multivariate skewness, kurtosis, the
Mahalanobis distance (checking the positive defineteness), and the Wilson-Hilferty
transformation of gamma variables. Furthermore, the package provides interfaces
to C code callable by another C code from other R packages.

Depends R(>= 3.5.0)

License GPL-3

URL https://github.com/faosorios/fastmatrix

NeedsCompilation yes

LazyLoad yes

Author Felipe Osorio [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4675-5201>),

Alonso Ogueda [aut]

Repository CRAN

Date/Publication 2025-10-15 05:10:02 UTC

1

https://github.com/faosorios/fastmatrix
https://orcid.org/0000-0002-4675-5201

2 Contents

Contents
array.mult . 3
asSymmetric . 4
bezier . 5
bracket.prod . 6
ccc . 7
cg . 9
cholupdate . 10
circulant . 11
comm.info . 12
comm.prod . 13
commutation . 14
corAR1 . 15
corCS . 16
cov.MSSD . 16
cov.weighted . 17
dupl.cross . 18
dupl.info . 19
dupl.prod . 20
duplication . 21
equilibrate . 23
floyd . 23
frank . 24
geomean . 25
hadamard . 26
hankel . 27
harris.test . 27
helmert . 28
is.lower.tri . 29
jacobi . 30
JarqueBera.test . 31
kronecker.prod . 32
krylov . 33
kurtosis . 34
ldl . 35
lu . 36
lu-methods . 37
lu2inv . 38
Mahalanobis . 39
matrix.fun . 40
matrix.inner . 41
matrix.norm . 42
matrix.polynomial . 43
matrix.sqrt . 44
mchol . 45
mediancenter . 46
minkowski . 47

array.mult 3

moments . 48
ols . 49
ols.fit . 50
ols.fit-methods . 51
power.method . 52
rball . 53
ridge . 54
rmnorm . 56
rsphere . 57
scaled.condition . 58
schur . 59
seidel . 60
sherman.morrison . 61
sweep.operator . 62
symm.info . 63
symm.prod . 64
symmetrizer . 65
vec . 66
vech . 67
WH.normal . 67
whitening . 68
wilson.hilferty . 69

Index 71

array.mult Array multiplication

Description

Multiplication of 3-dimensional arrays was first introduced by Bates and Watts (1980). More ex-
tensions and technical details can be found in Wei (1998).

Usage

array.mult(a, b, x)

Arguments

a a numeric matrix.

b a numeric matrix.

x a three-dimensional array.

4 asSymmetric

Details

Let X = (xtij) be a 3-dimensional n×p×q where indices t, i and j indicate face, row and column,
respectively. The product Y = AXB is an n × r × s array, with A and B are r × p and q × s
matrices respectively. The elements of Y are defined as:

ytkl =

p∑
i=1

q∑
j=1

akixtijbjl

Value

array.mult returns a 3-dimensional array of dimension n× r × s.

References

Bates, D.M., Watts, D.G. (1980). Relative curvature measures of nonlinearity. Journal of the Royal
Statistical Society, Series B 42, 1-25.

Wei, B.C. (1998). Exponential Family Nonlinear Models. Springer, New York.

See Also

array, matrix, bracket.prod.

Examples

x <- array(0, dim = c(2,3,3)) # 2 x 3 x 3 array
x[,,1] <- c(1,2,2,4,3,6)
x[,,2] <- c(2,4,4,8,6,12)
x[,,3] <- c(3,6,6,12,9,18)

a <- matrix(1, nrow = 2, ncol = 3)
b <- matrix(1, nrow = 3, ncol = 2)

y <- array.mult(a, b, x) # a 2 x 2 x 2 array
y

asSymmetric Force a matrix to be symmetric

Description

Force a square matrix x to be symmetric

Usage

asSymmetric(x, lower = TRUE)

bezier 5

Arguments

x a square matrix to be forced to be symmetric.

lower logical, should the upper (lower) triangle be replaced with the lower (upper)
triangle?

Value

a square symmetric matrix.

Examples

a <- matrix(1:16, ncol = 4)
isSymmetric(a) # FALSE
a <- asSymmetric(a) # copy lower triangle into upper triangle

bezier Computation of Bezier curve

Description

Computes the Bezier curve based on n+ 1 control points using the De Casteljau’s method.

Usage

bezier(x, y, ngrid = 200)

Arguments

x, y vector giving the coordinates of the control points. Missing values are deleted.

ngrid number of elements in the grid used to compute the smoother.

Details

Given p0,p1, . . . ,pn control points the Bezier curve is given by B(t) defined as

B(t) =

(
x(t)
y(t)

)
=

n∑
k=0

(
n

k

)
tk(1− t)kpk

where t ∈ [0, 1]. To evaluate the Bezier curve the De Casteljau’s method is used.

Value

A list containing xgrid and ygrid elements used to plot the Bezier curve.

6 bracket.prod

Examples

a tiny example
x <- c(1.0, 0.25, 1.25, 2.5, 4.00, 5.0)
y <- c(0.5, 2.00, 3.75, 4.0, 3.25, 1.0)
plot(x, y, type = "o")
z <- bezier(x, y, ngrid = 50)
lines(z$xgrid, z$ygrid, lwd = 2, lty = 2, col = "red")

other simple example
x <- c(4,6,4,5,6,7)
y <- 1:6
plot(x, y, type = "o")
z <- bezier(x, y, ngrid = 50)
lines(z$xgrid, z$ygrid, lwd = 2, lty = 2, col = "red")

bracket.prod Bracket product

Description

Bracket product of a matrix and a 3-dimensional array.

Usage

bracket.prod(a, x)

Arguments

a a numeric matrix.

x a three-dimensional array.

Details

Let X = (xtij) be a 3-dimensional n× p× q array and A an m× n matrix, then Y = [A][X] is
called the bracket product of A and X , that is an m× p× q with elements

ytij =

n∑
k=1

atkxkij

Value

bracket.prod returns a 3-dimensional array of dimension m× p× q.

References

Wei, B.C. (1998). Exponential Family Nonlinear Models. Springer, New York.

ccc 7

See Also

array, matrix, array.mult.

Examples

x <- array(0, dim = c(2,3,3)) # 2 x 3 x 3 array
x[,,1] <- c(1,2,2,4,3,6)
x[,,2] <- c(2,4,4,8,6,12)
x[,,3] <- c(3,6,6,12,9,18)

a <- matrix(1, nrow = 3, ncol = 2)

y <- bracket.prod(a, x) # a 3 x 3 x 3 array
y

ccc Lin’s concordance correlation coefficient

Description

Calculates Lin’s concordance correlation coefficient for evaluating the degree of agreement between
measurements generated by two different methods.

Usage

ccc(x, data, method = "z-transform", level = 0.95, equal.means = FALSE,
ustat = TRUE, subset, na.action)

Arguments

x a formula or a numeric matrix or an object that can be coerced to a numeric
matrix.

data an optional data frame (or similar: see model.frame), used only if x is a for-
mula. By default the variables are taken from environment(formula).

method a character string, indicating the method for the computation of the required con-
fidence interval. Options available are "z-transform" or "asymp" (see details
in Lin, 1989, 2000).

level the confidence level required, must be a single number between 0 and 1 (by
default 95%).

equal.means logical, should the means of the measuring devices be considered equal? In
which case the restricted estimation is carried out under this assumption.

ustat logical, should the concordance correlation coefficient be estimated using U-
statistics?

subset an optional expression indicating the subset of the rows of data that should be
used in the fitting process.

na.action a function that indicates what should happen when the data contain NAs.

8 ccc

Value

A list with class 'ccc' containing the following named components:

call a list containing an image of the ccc call that produced the object.

x data.frame used in the estimation process.

ccc estimate of the concordance correlation coefficient.

var.ccc asymptotic variance of the concordance correlation coefficient estimate.

accuracy estimate of the accuracy (or bias) coefficient that measures how far the best-fit
line deviates from a line at 45 degrees. No deviation from the 45 degree line
occurs when accuracy = 1.

precision estimate of the precision (or Pearson correlation) coefficient.

shifts list with the location and scale shifts.

z Z-transformation parameter estimate.

var.z asymptotic variance of the Z-transformation parameter estimate.

confint confidence interval for the Lin’s concordance correlation coefficient.

bland a data frame with two columns containing the average of each pair of measure-
ments, and difference between the measurements.

center the estimated mean vector.

cov the estimated covariance matrix.

ustat available only if ustat = TRUE, in which case this element corresponds to a list
containing the following elements rhoc, var.rhoc, ustat, and cov.

Restricted available only if equal.means = TRUE, in which case this element corresponds
to a list containing the following elements ccc, accuracy, precision, shifts,
center, and cov.

References

Bland, J., Altman, D. (1986). Statistical methods for assessing agreement between two methods of
clinical measurement. The Lancet 327, 307-310.

King, T.S., Chinchilli, V.M. (2001). A generalized concordance correlation coefficient for continu-
ous and categorical data. Statistics in Medicine 20, 2131-2147.

King, T.S., Chinchilli, V.M. (2001). Robust estimators of the concordance correlation coefficient.
Journal of Biopharmaceutical Statistics 11, 83-105.

Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45,
255-268.

Lin, L. (2000). A note on the concordance correlation coefficient. Biometrics 56, 324-325.

Vallejos, R., Osorio, F., Ferrer, C. (2025+). A new coefficient to measure agreement between two
continuous variables. Working paper.

cg 9

Examples

data in Fig.1 from Bland and Altman (1986).
x <- list(Large = c(494,395,516,434,476,557,413,442,650,433,

417,656,267,478,178,423,427),
Mini = c(512,430,520,428,500,600,364,380,658,445,
432,626,260,477,259,350,451))

x <- as.data.frame(x)

plot(Mini ~ Large, data = x, xlim = c(100,800), ylim = c(100,800),
xlab = "PERF by Large meter", ylab = "PERF by Mini meter")

abline(c(0,1), col = "gray", lwd = 2)

estimating CCC
z <- ccc(~ Mini + Large, data = x, method = "asymp")
z
output:
Call:
ccc(x = ~ Mini + Large, data = x, method = "asymp")
#
Coefficients:
estimate variance accuracy precision
0.9427 0.0008 0.9994 0.9433
#
Asymptotic 95% confidence interval:
CCC SE lower upper
0.9427 0.0286 0.8867 0.9988

cg Solve linear systems using the conjugate gradients method

Description

Conjugate gradients (CG) method is an iterative algorithm for solving linear systems with positive
definite coefficient matrices.

Usage

cg(a, b, maxiter = 200, tol = 1e-7)

Arguments

a a symmetric positive definite matrix containing the coefficients of the linear sys-
tem.

b a vector of right-hand sides of the linear system.

maxiter the maximum number of iterations. Defaults to 200

tol tolerance level for stopping iterations.

10 cholupdate

Value

a vector with the approximate solution, the iterations performed are returned as the attribute ’itera-
tions’.

Warning

The underlying C code does not check for symmetry nor positive definitiveness.

References

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

Hestenes, M.R., Stiefel, E. (1952). Methods of conjugate gradients for solving linear equations.
Journal of Research of the National Bureau of Standards 49, 409-436.

See Also

jacobi, seidel, solve

Examples

a <- matrix(c(4,3,0,3,4,-1,0,-1,4), ncol = 3)
b <- c(24,30,-24)
z <- cg(a, b)
z # converged in 3 iterations

cholupdate Rank 1 update to Cholesky factorization

Description

function cholupdate, where R = chol(A) is the original Cholesky factorization of A, returns the
upper triangular Cholesky factor of A+ xxT , with x a column vector of appropriate dimension.

Usage

cholupdate(r, x)

Arguments

r a upper triangular matrix, the Cholesky factor of matrix a.

x vector defining the rank one update.

References

Golub, G.H., Van Loan, C.F. (2013). Matrix Computations, 4th Edition. John Hopkins University
Press.

circulant 11

See Also

chol

Examples

a <- matrix(c(1,1,1,1,2,3,1,3,6), ncol = 3)
r <- chol(a)
x <- c(0,0,1)
b <- a + outer(x,x)
r1 <- cholupdate(r, x)
r1
all(r1 == chol(b)) # TRUE

circulant Form a symmetric circulant matrix

Description

Forms a symmetric circulant matrix using a backwards shift of its first column

Usage

circulant(x)

Arguments

x the first column to form the circulant matrix.

Value

A symmetric circulant matrix.

Examples

x <- c(2,3,5,7,11,13)
circulant(x)

12 comm.info

comm.info Compact information to construct the commutation matrix

Description

This function provides the minimum information required to create the commutation matrix.

The commutation matrix is a square matrix of order mn that, for an m × n matrix A, transform
vec(A) to vec(AT).

Usage

comm.info(m = 1, n = m, condensed = TRUE)

Arguments

m a positive integer row dimension.

n a positive integer column dimension.

condensed logical. Information should be returned in compact form?

Details

This function returns a list containing two vectors that represent an element of the commutation
matrix and is accesed by the indexes in vectors row and col. This information is used by func-
tion comm.prod to do some operations involving the commutation matrix without forming it. This
information also can be obtained using function commutation.

Value

A list containing the following elements:

row vector of indexes, each entry represents the row index of the commutation ma-
trix.

col vector of indexes, each entry represents the column index of the commutation
matrix. Only present if condensed = FALSE.

m positive integer, row dimension.

n positive integer, column dimension.

References

Magnus, J.R., Neudecker, H. (1979). The commutation matrix: some properties and applications.
The Annals of Statistics 7, 381-394.

See Also

commutation, comm.prod

comm.prod 13

Examples

z <- comm.info(m = 3, n = 2, condensed = FALSE)
z # where are the ones in commutation matrix of order '3,2'?

K32 <- commutation(m = 3, n = 2, matrix = TRUE)
K32 # only recommended if m and n are very small

comm.prod Matrix multiplication envolving the commutation matrix

Description

Given the row and column dimensions of a commutation matrix K of order mn and a conformable
matrix x, performs one of the matrix-matrix operations:

• Y = KX , if side = "left" and transposed = FALSE, or

• Y = KTX , if side = "left" and transposed = TRUE, or

• Y = XK, if side = "right" and transposed = FALSE, or

• Y = XKT , if side = "right" and transposed = TRUE.

The main aim of comm.prod is to do this matrix multiplication without forming the commutation
matrix.

Usage

comm.prod(m = 1, n = m, x = NULL, transposed = FALSE, side = "left")

Arguments

m a positive integer row dimension.

n a positive integer column dimension.

x numeric matrix (or vector).

transposed logical. Commutation matrix should be transposed?

side a string selecting if commutation matrix is pre-multiplying x, that is side =
"left" or post-multiplying x, by using side = "right".

Details

Underlying Fortran code only uses information provided by comm.info to performs the matrix
multiplication. The commutation matrix is never created.

See Also

commutation

14 commutation

Examples

K42 <- commutation(m = 4, n = 2, matrix = TRUE)
x <- matrix(1:24, ncol = 3)
y <- K42 %*% x

z <- comm.prod(m = 4, n = 2, x) # K42 is not stored
all(z == y) # matrices y and z are equal!

commutation Commutation matrix

Description

This function returns the commutation matrix of order mn which transforms, for an m× n matrix
A, vec(A) to vec(AT).

Usage

commutation(m = 1, n = m, matrix = FALSE, condensed = FALSE)

Arguments

m a positive integer row dimension.

n a positive integer column dimension.

matrix a logical indicating whether the commutation matrix will be returned.

condensed logical. Information should be returned in compact form?

Details

This function is a wrapper function for the function comm.info. This function provides the mini-
mum information required to create the commutation matrix. If option matrix = FALSE the commu-
tation matrix is stored in two vectors containing the coordinate list of indexes for rows and columns.
Option condensed = TRUE only returns vector of indexes for the rows of commutation matrix.

Warning: matrix = TRUE is not recommended, unless the order m and n be small. This matrix can
require a huge amount of storage.

Value

Returns an mn by mn matrix (if requested).

References

Magnus, J.R., Neudecker, H. (1979). The commutation matrix: some properties and applications.
The Annals of Statistics 7, 381-394.

Magnus, J.R., Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics, 3rd Edition. Wiley, New York.

corAR1 15

See Also

comm.info

Examples

z <- commutation(m = 100, condensed = TRUE)
object.size(z) # 40.6 Kb of storage

z <- commutation(m = 100, condensed = FALSE)
object.size(z) # 80.7 Kb of storage

K100 <- commutation(m = 100, matrix = TRUE) # time: < 2 secs
object.size(K100) # 400 Mb of storage, do not request this matrix!

a small example
K32 <- commutation(m = 3, n = 2, matrix = TRUE)
a <- matrix(1:6, ncol = 2)
v <- K32 %*% vec(a)
all(vec(t(a)) == as.vector(v)) # vectors are equal!

corAR1 AR(1) correlation structure

Description

This function is a constructor for the corAR1 correlation matrix representing an autocorrelation
structure of order 1.

Usage

corAR1(rho, p = 2)

Arguments

rho the value of the lag 1 autocorrelation, which must be between -1 and 1.

p dimension of the requested correlation matrix.

Value

Returns a p by p matrix.

Examples

R <- corAR1(rho = 0.8, p = 5)

16 cov.MSSD

corCS Compound symmetry correlation structure

Description

This function is a constructor for the corCS correlation matrix representing a compound symmetry
structure corresponding to uniform correlation.

Usage

corCS(rho, p = 2)

Arguments

rho the value of the correlation between any two correlated observations, which must
be between -1 and 1.

p dimension of the requested correlation matrix.

Value

Returns a p by p matrix.

Examples

R <- corCS(rho = 0.8, p = 5)

cov.MSSD Mean Square Successive Difference (MSSD) estimator of the covari-
ance matrix

Description

Returns a list containing the mean and covariance matrix of the data.

Usage

cov.MSSD(x)

Arguments

x a matrix or data frame. As usual, rows are observations and columns are vari-
ables.

cov.weighted 17

Details

This procedure uses the Holmes-Mergen method using the difference between each successive pairs
of observations also known as Mean Square Successive Method (MSSD) to estimate the covariance
matrix, which is given by

SHD =
1

2(n− 1)

n∑
i=2

(xi − xi−1)(xi − xi−1)
T .

Value

A list containing the following named components:

mean an estimate for the center (mean) of the data.
cov the estimated covariance matrix.

References

Holmes, D.S., Mergen, A.E. (1993). Improving the performance of the T 2 control chart. Quality
Engineering 5, 619-625.

See Also

cov and var.

Examples

x <- cbind(1:10, c(1:3, 8:5, 8:10))
z0 <- cov(x)
z0
z1 <- cov.MSSD(x)
z1

cov.weighted Weighted covariance matrices

Description

Returns a list containing estimates of the weighted mean and covariance matrix of the data.

Usage

cov.weighted(x, weights = rep(1, nrow(x)))

Arguments

x a matrix or data frame. As usual, rows are observations and columns are vari-
ables.

weights a non-negative and non-zero vector of weights for each observation. Its length
must equal the number of rows of x.

18 dupl.cross

Details

The covariance matrix is divided by the number of observations, which arise for instance, when we
use the class of elliptical contoured distributions. Thus,

Wn =

n∑
i=1

wi, xn =
1

Wn

n∑
i=1

wixi Sn =
1

n

n∑
i=1

wi(xi − xn)(xi − xn)
T .

This differs from the behaviour of function cov.wt.

Value

A list containing the following named components:

mean an estimate for the center (mean) of the data.

cov the estimated (weighted) covariance matrix.

References

Clarke, M.R.B. (1971). Algorithm AS 41: Updating the sample mean and dispersion matrix. Ap-
plied Statistics 20, 206-209.

See Also

cov.wt, cov and var.

Examples

x <- cbind(1:10, c(1:3, 8:5, 8:10))
z0 <- cov.weighted(x) # all weights are 1
D2 <- Mahalanobis(x, center = z0$mean, cov = z0$cov)
p <- ncol(x)
wts <- (p + 1) / (1 + D2) # nice weights!
z1 <- cov.weighted(x, weights = wts)
z1

dupl.cross Matrix crossproduct envolving the duplication matrix

Description

Given the order of two duplication matrices and a conformable matrix X , this function performs
the operation: Y = DT

nXDk, where Dn and Dk are duplication matrices of order n and k,
respectively.

Usage

dupl.cross(n = 1, k = n, x = NULL)

dupl.info 19

Arguments

n order of the duplication matrix used pre-multiplying x.

k order of the duplication matrix used post-multiplying x. By default k = n is used.

x numeric matrix, this argument is required.

Details

This function calls dupl.prod to performs the matrix multiplications required but without forming
any duplication matrices.

See Also

dupl.prod

Examples

D2 <- duplication(n = 2, matrix = TRUE)
D3 <- duplication(n = 3, matrix = TRUE)
x <- matrix(1, nrow = 9, ncol = 4)
y <- t(D3) %*% x %*% D2

z <- dupl.cross(n = 3, k = 2, x) # D2 and D3 are not stored
all(z == y) # matrices y and z are equal!

x <- matrix(1, nrow = 9, ncol = 9)
z <- dupl.cross(n = 3, x = x) # same matrix is used to pre- and post-multiplying x
z # print result

dupl.info Compact information to construct the duplication matrix

Description

This function provides the minimum information required to create the duplication matrix.

Usage

dupl.info(n = 1, condensed = TRUE)

Arguments

n order of the duplication matrix.

condensed logical. Information should be returned in compact form?

20 dupl.prod

Details

This function returns a list containing two vectors that represent an element of the duplication ma-
trix and is accesed by the indexes in vectors row and col. This information is used by function
dupl.prod to do some operations involving the duplication matrix without forming it. This infor-
mation also can be obtained using function duplication

Value

A list containing the following elements:

row vector of indexes, each entry represents the row index of the duplication matrix.
Only present if condensed = FALSE.

col vector of indexes, each entry represents the column index of the duplication
matrix.

order order of the duplication matrix.

See Also

duplication, dupl.prod

Examples

z <- dupl.info(n = 3, condensed = FALSE)
z # where are the ones in duplication of order 3?

D3 <- duplication(n = 3, matrix = TRUE)
D3 # only recommended if n is very small

dupl.prod Matrix multiplication envolving the duplication matrix

Description

Given the order of a duplication and a conformable matrix X , performs one of the matrix-matrix
operations:

• Y = DX , if side = "left" and transposed = FALSE, or

• Y = DTX , if side = "left" and transposed = TRUE, or

• Y = XD, if side = "right" and transposed = FALSE, or

• Y = XDT , if side = "right" and transposed = TRUE,

where D is the duplication matrix of order n. The main aim of dupl.prod is to do this matrix
multiplication without forming the duplication matrix.

Usage

dupl.prod(n = 1, x, transposed = FALSE, side = "left")

duplication 21

Arguments

n order of the duplication matrix.

x numeric matrix (or vector).

transposed logical. Duplication matrix should be transposed?

side a string selecting if duplication matrix is pre-multiplying x, that is side = "left"
or post-multiplying x, by using side = "right".

Details

Underlying C code only uses information provided by dupl.info to performs the matrix multipli-
cation. The duplication matrix is never created.

See Also

duplication

Examples

D4 <- duplication(n = 4, matrix = TRUE)
x <- matrix(1, nrow = 16, ncol = 2)
y <- crossprod(D4, x)

z <- dupl.prod(n = 4, x, transposed = TRUE) # D4 is not stored
all(z == y) # matrices y and z are equal!

duplication Duplication matrix

Description

This function returns the duplication matrix of order n which transforms, for a symmetric matrix
A, vech(A) into vec(A).

Usage

duplication(n = 1, matrix = FALSE, condensed = FALSE)

Arguments

n order of the duplication matrix.

matrix a logical indicating whether the duplication matrix will be returned.

condensed logical. Information should be returned in compact form?.

22 duplication

Details

This function is a wrapper function for the function dupl.info. This function provides the mini-
mum information required to create the duplication matrix. If option matrix = FALSE the duplica-
tion matrix is stored in two vectors containing the coordinate list of indexes for rows and columns.
Option condensed = TRUE only returns vector of indexes for the columns of duplication matrix.

Warning: matrix = TRUE is not recommended, unless the order n be small. This matrix can require
a huge amount of storage.

Value

Returns an n2 by n(n+ 1)/2 matrix (if requested).

References

Magnus, J.R., Neudecker, H. (1980). The elimination matrix, some lemmas and applications. SIAM
Journal on Algebraic Discrete Methods 1, 422-449.

Magnus, J.R., Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics, 3rd Edition. Wiley, New York.

See Also

dupl.info

Examples

z <- duplication(n = 100, condensed = TRUE)
object.size(z) # 40.5 Kb of storage

z <- duplication(n = 100, condensed = FALSE)
object.size(z) # 80.6 Kb of storage

D100 <- duplication(n = 100, matrix = TRUE)
object.size(D100) # 202 Mb of storage, do not request this matrix!

a small example
D3 <- duplication(n = 3, matrix = TRUE)
a <- matrix(c(1, 2, 3,

2, 3, 4,
3, 4, 5), nrow = 3)

upper <- vech(a)
v <- D3 %*% upper
all(vec(a) == as.vector(v)) # vectors are equal!

equilibrate 23

equilibrate Equilibration of a rectangular or symmetric matrix

Description

Equilibrate a rectangular or symmetric matrix using 2-norm.

Usage

equilibrate(x, scale = TRUE)

Arguments

x a numeric matrix.

scale a logical value, x must be scaled to norm unity?

Value

For scale = TRUE, the equilibrated matrix. The scalings and an approximation of the condition
number, are returned as attributes "scales" and "condition". If x is a rectangular matrix, only
the columns are equilibrated.

Examples

x <- matrix(c(1, 1, 1,
1, 2, 1,
1, 3, 1,
1, 1,-1,
1, 2,-1,
1, 3,-1), ncol = 3, byrow = TRUE)

z <- equilibrate(x)
apply(z, 2, function(x) sum(x^2)) # all 1

xx <- crossprod(x)
equilibrate(xx)

floyd Find the shortest paths in a directed graph

Description

The Floyd-Warshall algorithm finds all shortest paths (if exist) in a directed graph.

Usage

floyd(x)

24 frank

Arguments

x adjacency matrix of a directed graph. (i, j)-entry represents the weight (cost) of
the edge from i to j if one exists and ∞ otherwise.

Value

Returns a list with final costs and the shortest path between two nodes.

References

Floyd, R.W. (1962). Algorithm 97: Shortest Path. Communications of the ACM 5 (6), 345.

Examples

x <- matrix(c(0,3,Inf,5,2,0,Inf,4,Inf,1,0,Inf,Inf,Inf,2,0), nrow = 4,
ncol = 4, byrow = TRUE)

z <- floyd(x)
z

frank Frank matrix

Description

This function returns the Frank matrix of order n.

Usage

frank(n = 1)

Arguments

n order of the Frank matrix.

Details

A Frank matrix of order n is a square matrix Fn = (fij) defined as

fij =

 n− j + 1, i ≤ j,
n− j, i = j + 1,
0, i ≥ j + 2

Value

Returns an n by n matrix.

geomean 25

References

Frank, W.L. (1958). Computing eigenvalues of complex matrices by determinant evaluation and by
methods of Danilewski and Wielandt. Journal of the Society for Industrial and Applied Mathematics
6, 378-392.

Examples

F5 <- frank(n = 5)
det(F5) # equals 1

geomean Geometric mean

Description

It calculates the geometric mean using a Fused-Multiply-and-Add (FMA) compensated scheme for
accurate computation of floating-point product.

Usage

geomean(x)

Arguments

x a numeric vector containing the sample observations.

Details

If x contains any non-positive values, geomean returns NA and a warning message is displayed.

The geometric mean is a measure of central tendency, which is defined as

G = n
√
x1x2 . . . xn =

(n∏
i=1

xi

)1/n

.

This procedure calculates the product required in the geometric mean safely using a compensated
scheme as proposed by Graillat (2009).

Value

The geometric mean of the sample, a non-negative number.

References

Graillat, S. (2009). Accurate floating-point product and exponentiation. IEEE Transactions on
Computers 58, 994-1000.

Oguita, T., Rump, S.M., Oishi, S. (2005). Accurate sum and dot product. SIAM Journal on Scientific
Computing 26, 1955-1988.

26 hadamard

See Also

mean, median.

Examples

set.seed(149)
x <- rlnorm(1000)
mean(x) # 1.68169
median(x) # 0.99663
geomean(x) # 1.01688

hadamard Hadamard product of two matrices

Description

This function returns the Hadamard or element-wise product of two matrices x and y, that have the
same dimensions.

Usage

hadamard(x, y = x)

Arguments

x a numeric matrix or vector.

y a numeric matrix or vector.

Value

A matrix with the same dimension of x (and y) which corresponds to the element-by-element prod-
uct of the two matrices.

References

Styan, G.P.H. (1973). Hadamard products and multivariate statistical analysis, Linear Algebra and
Its Applications 6, 217-240.

Examples

x <- matrix(rep(1:10, times = 5), ncol = 5)
y <- matrix(rep(1:5, each = 10), ncol = 5)
z <- hadamard(x, y)
z

hankel 27

hankel Form a symmetric Hankel matrix

Description

Forms a symmetric Hankel matrix of order n from the values in vector x and optionally the vector
y.

Usage

hankel(x, y = NULL)

Arguments

x the first column to form the Hankel matrix.

y the last column of the Hankel matrix. If y is not provided only its first n skew
diagonals are formed and the remaining elements are zeros. Otherwise, it is
assumed that xn = y1, and the first entry of vector y is discarded.

Value

A symmetric Hankel matrix of order n.

Examples

x <- 1:4
y <- c(4,6,8,10)

H4
hankel(x)

H({1,2,3,4},{4,6,8,10})
hankel(x, y)

harris.test Test for variance homogeneity of correlated variables

Description

Performs large-sample methods for testing equality of p ≥ 2 correlated variables.

Usage

harris.test(x, test = "Wald")

28 helmert

Arguments

x a matrix or data frame. As usual, rows are observations and columns are vari-
ables.

test test statistic to be used. One of "Wald" (default), "log", "robust" or "log-robust".

Value

A list of class ’harris.test’ with the following elements:

statistic value of the statistic, i.e. the value of either Wald test, using the log-transformation,
or distribution-robust versions of the test (robust and log-robust).

parameter the degrees of freedom for the test statistic, which is chi-square distributed.

p.value the p-value for the test.

estimate the estimated covariance matrix.

method a character string indicating what type of test was performed.

References

Harris, P. (1985). Testing the variance homogeneity of correlated variables. Biometrika 72, 103-
107.

Examples

x <- iris[,1:4]
z <- harris.test(x, test = "robust")
z

helmert Helmert matrix

Description

This function returns the Helmert matrix of order n.

Usage

helmert(n = 1)

Arguments

n order of the Helmert matrix.

is.lower.tri 29

Details

A Helmert matrix of order n is a square matrix defined as

Hn =



1/
√
n 1/

√
n 1/

√
n . . . 1/

√
n

1/
√
2 −1/

√
2 0 . . . 0

1/
√
6 1/

√
6 −2/

√
6 . . . 0

...
...

...
. . .

...
1√

n(n−1)

1√
n(n−1)

1√
n(n−1)

. . . − (n−1)√
n(n−1)

 .

Helmert matrix is orthogonal and is frequently used in the analysis of variance (ANOVA).

Value

Returns an n by n matrix.

References

Lancaster, H.O. (1965). The Helmert matrices. The American Mathematical Monthly 72, 4-12.

Gentle, J.E. (2007). Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer,
New York.

Examples

n <- 1000
set.seed(149)
x <- rnorm(n)

H <- helmert(n)
object.size(H) # 7.63 Mb of storage
K <- H[2:n,]
z <- c(K %*% x)
sum(z^2) # 933.1736

same that
(n - 1) * var(x)

is.lower.tri Check if a matrix is lower or upper triangular

Description

Returns TRUE if the given matrix is lower or upper triangular matrix.

Usage

is.lower.tri(x, diag = FALSE)
is.upper.tri(x, diag = FALSE)

30 jacobi

Arguments

x a matrix of other R object with length(dim(x)) = 2.

diag logical. Should the diagonal be included?

Value

Check if a matrix is lower or upper triangular. You can also include diagonal to the check.

See Also

lower.tri, upper.tri

Examples

x <- matrix(rnorm(10 * 3), ncol = 3)
R <- chol(crossprod(x))

is.lower.tri(R)
is.upper.tri(R)

jacobi Solve linear systems using the Jacobi method

Description

Jacobi method is an iterative algorithm for solving a system of linear equations.

Usage

jacobi(a, b, start, maxiter = 200, tol = 1e-7)

Arguments

a a square numeric matrix containing the coefficients of the linear system.

b a vector of right-hand sides of the linear system.

start a vector for initial starting point.

maxiter the maximum number of iterations. Defaults to 200

tol tolerance level for stopping iterations.

Details

Let D, L, and U denote the diagonal, lower triangular and upper triangular parts of a matrix A.
Jacobi’s method solve the equation Ax = b, iteratively by rewriting Dx + (L + U)x = b.
Assuming that D is nonsingular leads to the iteration formula

x(k+1) = −D−1(L+U)x(k) +D−1b

JarqueBera.test 31

Value

a vector with the approximate solution, the iterations performed are returned as the attribute ’itera-
tions’.

References

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

See Also

seidel

Examples

a <- matrix(c(5,-3,2,-2,9,-1,3,1,-7), ncol = 3)
b <- c(-1,2,3)
start <- c(1,1,1)
z <- jacobi(a, b, start)
z # converged in 15 iterations

JarqueBera.test Jarque-Bera test for univariate normality

Description

Performs an omnibus test for univariate normality.

Usage

JarqueBera.test(x, test = "DH")

Arguments

x a numeric vector containing the sample observations.

test test statistic to be used. One of "DH" (Doornik-Hansen, the default), "JB"
(Jarque-Bera), "robust" (robust modification by Gel and Gastwirth), "ALM"
(Adjusted Lagrange multiplier).

Value

A list of class ’JarqueBera.test’ with the following elements:

statistic value of the statistic, i.e. the value of either Doornik-Hansen, Jarque-Bera, or
Adjusted Lagrange multiplier test.

parameter the degrees of freedom for the test statistic, which is chi-square distributed.

p.value the p-value for the test.

32 kronecker.prod

skewness the estimated skewness coefficient.

kurtosis the estimated kurtosis coefficient.

method a character string indicating what type of test was performed.

References

Doornik, J.A., Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Ox-
ford Bulletin of Economics and Statistics 70, 927-939.

Gel, Y.R., Gastwirth, J.L. (2008). A robust modification of the Jarque-Bera test of normality. Eco-
nomics Letters 99, 30-32.

Jarque, C.M., Bera, A.K. (1980). Efficient tests for normality, homoscedasticity and serial indepen-
dence of regression residuals. Economics Letters 6, 255-259.

Urzua, C.M. (1996). On the correct use of omnibus tests for normality. Economics Letters 53,
247-251.

Examples

set.seed(149)
x <- rnorm(100)
z <- JarqueBera.test(x, test = "DH")
z

set.seed(173)
x <- runif(100)
z <- JarqueBera.test(x, test = "DH")
z

kronecker.prod Kronecker product on matrices

Description

Computes the kronecker product of two matrices, x and y.

Usage

kronecker.prod(x, y = x)

Arguments

x a numeric matrix or vector.

y a numeric matrix or vector.

krylov 33

Details

Let X be an m× n and Y a p× q matrix. The mp× nq matrix defined by x11Y . . . x1nY
...

...
xm1Y . . . xmnY

 ,

is called the Kronecker product of X and Y .

Value

An array with dimensions dim(x) * dim(y).

References

Magnus, J.R., Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics, 3rd Edition. Wiley, New York.

See Also

kronecker function from base package is based on outer. Our C version is slightly faster.

Examples

block diagonal matrix:
a <- diag(1:3)
b <- matrix(1:4, ncol = 2)
kronecker.prod(a, b)

examples with vectors
ones <- rep(1, 4)
y <- 1:3
kronecker.prod(ones, y) # 12-dimensional vector
kronecker.prod(ones, t(y)) # 3 x 3 matrix

krylov Computes a Krylov matrix

Description

Given A an n by n real matrix and an n-vector b, this function constructs the Krylov matrix K,
where

K = [b,Ab, . . . ,Am−1b].

Usage

krylov(a, b, m = ncol(a))

34 kurtosis

Arguments

a a numeric square matrix of order n by n for which the Krylov matrix is to be
computed.

b a numeric vector of length n.

m length of the Krylov sequence.

Value

Returns an n by m matrix.

Examples

a <- matrix(c(1, 3, 2, -5, 1, 7, 1, 5, -4), ncol = 3, byrow = TRUE)
b <- c(1, 1, 1)
k <- krylov(a, b, m = 4)
k

kurtosis Mardia’s multivariate skewness and kurtosis coefficients

Description

Functions to compute measures of multivariate skewness (b1p) and kurtosis (b2p) proposed by Mar-
dia (1970),

b1p =
1

n2

n∑
i=1

n∑
j=1

((xi − x)TS−1(xj − x))3,

and

b2p =
1

n

n∑
i=1

((xi − x)TS−1(xj − x))2.

Usage

kurtosis(x)

skewness(x)

Arguments

x matrix of data with, say, p columns.

References

Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika
57, 519-530.

Mardia, K.V., Zemroch, P.J. (1975). Algorithm AS 84: Measures of multivariate skewness and
kurtosis. Applied Statistics 24, 262-265.

ldl 35

Examples

setosa <- iris[1:50,1:4]
kurtosis(setosa)
skewness(setosa)

ldl The LDL decomposition

Description

Compute the LDL decomposition of a real symmetric matrix.

Usage

ldl(x)

Arguments

x a symmetric numeric matrix whose LDL decomposition is to be computed.

Value

The factorization has the form X = LDLT , where D is a diagonal matrix and L is unitary lower
triangular.

The LDL decomposition of x is returned as a list with components:

lower the unitary lower triangular factor L.

d a vector containing the diagonal elements of D.

References

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

See Also

chol

Examples

a <- matrix(c(2,-1,0,-1,2,-1,0,-1,1), ncol = 3)
z <- ldl(a)
z # information of LDL factorization

computing det(a)
prod(z$d) # product of diagonal elements of D

a non-positive-definite matrix

36 lu

m <- matrix(c(5,-5,-5,3), ncol = 2)
try(chol(m)) # fails
ldl(m)

lu The LU factorization of a square matrix

Description

lu computes the LU factorization of a matrix.

Usage

lu(x)
Default S3 method:
lu(x)

S3 method for class 'lu'
solve(a, b, ...)

is.lu(x)

Arguments

x a square numeric matrix whose LU factorization is to be computed.

a an LU factorization of a square matrix.

b a vector or matrix of right-hand sides of equations.

... further arguments passed to or from other methods

Details

The LU factorization plays an important role in many numerical procedures. In particular it is the
basic method to solve the equation Ax = b for given matrix A, and vector b.

solve.lu is the method for solve for lu objects.

is.lu returns TRUE if x is a list and inherits from "lu".

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the Fortran code.

Value

The LU factorization of the matrix as computed by LAPACK. The components in the returned value
correspond directly to the values returned by DGETRF.

lu a matrix with the same dimensions as x. The upper triangle contains the U of
the decomposition and the strict lower triangle contains information on the L of
the factorization.

pivot information on the pivoting strategy used during the factorization.

lu-methods 37

Note

To compute the determinant of a matrix (do you really need it?), the LU factorization is much more
efficient than using eigenvalues (eigen). See det.

LAPACK uses column pivoting and does not attempt to detect rank-deficient matrices.

References

Anderson. E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A. Sorensen, D. (1999). LAPACK Users’ Guide, 3rd Edi-
tion. SIAM.

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

See Also

extractL, extractU, constructX for reconstruction of the matrices, lu2inv

Examples

a <- matrix(c(3,2,6,17,4,18,10,-2,-12), ncol = 3)
z <- lu(a)
z # information of LU factorization

computing det(a)
prod(diag(z$lu)) # product of diagonal elements of U

solve linear equations
b <- matrix(1:6, ncol = 2)
solve(z, b)

lu-methods Reconstruct the L, U, or X matrices from an LU object

Description

Returns the original matrix from which the object was constructed or the components of the factor-
ization.

Usage

constructX(x)
extractL(x)
extractU(x)

Arguments

x object representing an LU factorization. This will typically have come from a
previous call to lu.

38 lu2inv

Value

constructX returns X , the original matrix from which the lu object was constructed (because of
the pivoting the X matrix is not exactly the product between L and U).

extractL returns L. This may be pivoted.

extractU returns U .

See Also

lu.

Examples

a <- matrix(c(10,-3,5,-7,2,-1,0,6,5), ncol = 3)
z <- lu(a)
L <- extractL(z)
L
U <- extractU(z)
U
X <- constructX(z)
all(a == X)

lu2inv Inverse from LU factorization

Description

Invert a square matrix from its LU factorization.

Usage

lu2inv(x)

Arguments

x object representing an LU factorization. This will typically have come from a
previous call to lu.

Value

The inverse of the matrix whose LU factorization was given.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the Fortran code.

Source

This is an interface to the LAPACK routine DGETRI. LAPACK is from https://netlib.org/
lapack/ and its guide is listed in the references.

https://netlib.org/lapack/
https://netlib.org/lapack/

Mahalanobis 39

References

Anderson. E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A. Sorensen, D. (1999). LAPACK Users’ Guide, 3rd Edi-
tion. SIAM.

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

See Also

lu, solve.

Examples

a <- matrix(c(3,2,6,17,4,18,10,-2,-12), ncol = 3)
z <- lu(a)
a %*% lu2inv(z)

Mahalanobis Mahalanobis distance

Description

Returns the squared Mahalanobis distance of all rows in x and the vector µ = center with respect
to Σ = cov. This is (for vector x) defined as

D2 = (x− µ)TΣ−1(x− µ)

Usage

Mahalanobis(x, center, cov, inverted = FALSE)

Arguments

x vector or matrix of data. As usual, rows are observations and columns are vari-
ables.

center mean vector of the distribution.

cov covariance matrix (p× p) of the distribution, must be positive definite.

inverted logical. If TRUE, cov is supposed to contain the inverse of the covariance matrix.

Details

Unlike function mahalanobis, the covariance matrix is factorized using the Cholesky decomposi-
tion, which allows to assess if cov is positive definite. Unsuccessful results from the underlying
LAPACK code will result in an error message.

See Also

cov, mahalanobis

40 matrix.fun

Examples

x <- cbind(1:6, 1:3)
xbar <- colMeans(x)
S <- matrix(c(1,4,4,1), ncol = 2) # is negative definite
D2 <- mahalanobis(x, center = xbar, S)
all(D2 >= 0) # several distances are negative

next command produces the following error:
Covariance matrix is possibly not positive-definite
Not run: D2 <- Mahalanobis(x, center = xbar, S)

matrix.fun Evaluate a matrix function

Description

This function computes the matrix function F = f(A) where A is upper triangular by applying a
Parlett recurrence.

Usage

matrix.fun(a, FUN = "log")

Arguments

a an upper triangular matrix.

FUN the function to be applied, by default "log".

Details

The used-defined function FUN is evaluated at the triangular matrix argument. This function can be
used in conjunction with Schur decomposition to evaluate the function of a matrix.

References

Higham, N.J. (1986). Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, Philadelphia.

Examples

a <- matrix(c(1,2,3,0,3,4,0,0,5), ncol = 3, byrow = TRUE)
fnc <- function(x) (1 + x) / x
f <- matrix.fun(a, FUN = fnc)
f

a <- matrix(c(-49,24,-64,31), ncol = 2, byrow = TRUE)
z <- schur(a)
m <- z$m

matrix.inner 41

u <- z$vectors
m <- matrix.fun(m, FUN = exp)
u %*% m %*% t(u) # exp(a)

matrix.inner Compute the inner product between two rectangular matrices

Description

Computes the inner product between two rectangular matrices calling BLAS.

Usage

matrix.inner(x, y = x)

Arguments

x a numeric matrix.

y a numeric matrix.

Value

a real value, indicating the inner product between two matrices.

Examples

x <- matrix(c(1, 1, 1,
1, 2, 1,
1, 3, 1,
1, 1,-1,
1, 2,-1,
1, 3,-1), ncol = 3, byrow = TRUE)

y <- matrix(1, nrow = 6, ncol = 3)
matrix.inner(x, y)

must be equal
matrix.norm(x, type = "Frobenius")^2
matrix.inner(x)

42 matrix.norm

matrix.norm Compute the norm of a rectangular matrix

Description

Computes a matrix norm of x using LAPACK. The norm can be the one ("1") norm, the infin-
ity ("inf") norm, the Frobenius norm, the maximum modulus ("maximum") among elements of a
matrix, as determined by the value of type.

Usage

matrix.norm(x, type = "Frobenius")

Arguments

x a numeric matrix.

type character string, specifying the type of matrix norm to be computed. A character
indicating the type of norm desired.

"1" specifies the one norm, (maximum absolute column sum);
"Inf" specifies the infinity norm (maximum absolute row sum);
"Frobenius" specifies the Frobenius norm (the Euclidean norm of x treated

as if it were a vector);
"maximum" specifies the maximum modulus of all the elements in x.

Details

As function norm in package base, method of matrix.norm calls the LAPACK function DLANGE.

Note that the 1-, Inf- and maximum norm is faster to calculate than the Frobenius one.

Value

The matrix norm, a non-negative number.

Examples

a tiny example
x <- matrix(c(1, 1, 1,

1, 2, 1,
1, 3, 1,
1, 1,-1,
1, 2,-1,
1, 3,-1), ncol = 3, byrow = TRUE)

matrix.norm(x, type = "Frobenius")
matrix.norm(x, type = "1")
matrix.norm(x, type = "Inf")

an example not that small

matrix.polynomial 43

n <- 1000
x <- .5 * diag(n) + 0.5 * matrix(1, nrow = n, ncol = n)
matrix.norm(x, type = "Frobenius")
matrix.norm(x, type = "1")
matrix.norm(x, type = "Inf")
matrix.norm(x, type = "maximum") # equal to 1

matrix.polynomial Evaluates a real general matrix polynomial

Description

Given c0, c1, . . . , cn coefficients of the polynomial and A an n by n matrix. This function computes
the matrix polynomial

B =

n∑
k=0

ckA
k,

using Horner’s scheme, where A0 = I is the n by n identity matrix.

Usage

matrix.polynomial(a, coef = rep(1, power + 1), power = length(coef))

Arguments

a a numeric square matrix of order n by n for which the polinomial is to be com-
puted.

coef numeric vector containing the coefficients of the polinomial in order of increas-
ing power.

power a numeric exponent (which is forced to be an integer). If provided, coef is a
vector of all ones. If the exponent is zero, the identity matrix is returned.

Value

Returns an n by n matrix.

Examples

a <- matrix(c(1, 3, 2, -5, 1, 7, 1, 5, -4), ncol = 3, byrow = TRUE)
cf <- c(3, 1, 2)
b <- matrix.polynomial(a, cf)
b # 3 * diag(3) + a + 2 * a %*% a
b <- matrix.polynomial(a, power = 2)
b # diag(3) + a + a %*% a

44 matrix.sqrt

matrix.sqrt Matrix square root

Description

This function computes a square root of an n× n matrix A.

Usage

matrix.sqrt(a, method = "DB", maxiter = 50, tol = 1e-8)

Arguments

a a square matrix.

method the procedure used to obtain the square root. If method = "DB" (the default) the
matrix square root is obtained using a Newton’s method. If method = "schur"
the Schur decomposition is considered.

maxiter the maximum number of iterations. Defaults to 50

tol a numeric tolerance.

Details

A square root of a square matrix A is obtained by solving the equation X2 = A, considering the
Newton iteration proposed by Denman and Beavers (1976), or alternatively is based on the Schur
decomposition.

References

Denman, E.D., Beavers, A.N. (1976). The matrix sign function and computations in systems. Ap-
plied Mathematics and Computation 2, 63-94.

Higham, N.J. (1986). Newton’s method for the matrix square root. Mathematics of Computation
46, 537-549.

Higham, N.J. (1986). Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, Philadelphia.

Examples

a <- matrix(c(35,17,3,17,46,11,3,11,12), ncol = 3)
root <- matrix.sqrt(a) # 8 iterations

just checking
root %*% root

root <- matrix.sqrt(a, method = "schur")

mchol 45

mchol The modified Cholesky factorization

Description

Compute the Cholesky factorization of a real symmetric but not necessarily positive definite matrix.

Usage

mchol(x)

Arguments

x a symmetric but not necessarily positive definite matrix to be factored.

Value

The lower triangular factor of modified Cholesky decomposition, i.e., the matrix L such that X +
E = LLT , where E is a nonnegative diagonal matrix that is zero if X es sufficiently positive
definite.

References

Gill, P.E., Murray, W., Wright, M.H. (1981). Practical Optimization. Academic Press, London.

Nocedal, J., Wright, S.J. (1999). Numerical Optimization. Springer, New York.

See Also

chol, ldl

Examples

a non-positive-definite matrix
a <- matrix(c(4,2,1,2,6,3,1,3,-.004), ncol = 3)
try(chol(a)) # fails
z <- mchol(a)
z # triangular factor

modified 'a' matrix
tcrossprod(z)

46 mediancenter

mediancenter Mediancenter

Description

It calculates the mediancenter (or geometric median) of multivariate data.

Usage

mediancenter(x)

Arguments

x a matrix or data frame. As usual, rows are observations and columns are vari-
ables.

Details

The mediancenter for a sample of multivariate observations is computed using a steepest descend
method combined with bisection. The mediancenter invariant to rotations of axes and is useful as a
multivariate generalization of the median of univariate sample.

Value

A list containing the following named components:

median an estimate for the mediancenter of the data.

iter the number of iterations performed, it is negative if a degenerate solution is
found.

References

Gower, J.C. (1974). Algorithm AS 78: The mediancentre. Applied Statistics 23, 466-470.

See Also

cov.wt, median.

Examples

x <- cbind(1:10, c(1:3, 8:5, 8:10))
z <- mediancenter(x)$median # degenerate solution
xbar <- colMeans(x)
plot(x, xlab = "", ylab = "")
points(x = xbar[1], y = xbar[2], pch = 16, col = "red")
points(x = z[1], y = z[2], pch = 3, col = "blue", lwd = 2)

minkowski 47

minkowski Computes the p-norm of a vector

Description

Computes a p-norm of vector x. The norm can be the one (p = 1) norm, Euclidean (p = 2) norm,
the infinity (p = Inf) norm. The underlying C or Fortran code is inspired on ideas of BLAS Level
1.

Usage

minkowski(x, p = 2)

Arguments

x a numeric vector.

p a number, specifying the type of norm desired. Possible values include real
number greater or equal to 1, or Inf, Default value is p = 2.

Details

Method of minkowski for p = Inf calls idamax BLAS function. For other values, C or Fortran
subroutines using unrolled cycles are called.

Value

The vector p-norm, a non-negative number.

Examples

a tiny example
x <- rnorm(1000)
minkowski(x, p = 1)
minkowski(x, p = 1.5)
minkowski(x, p = 2)
minkowski(x, p = Inf)

x <- x / minkowski(x)
minkowski(x, p = 2) # equal to 1

48 moments

moments Central moments

Description

It calculates up to fourth central moments (or moments about the mean), and the skewness and
kurtosis coefficients using an online algorithm.

Usage

moments(x)

Arguments

x a numeric vector containing the sample observations.

Details

The k-th central moment is defined as

mk =
1

n

n∑
i=1

(xi − x)k.

In particular, the second central moment is the variance of the sample. The sample skewness and
kurtosis are defined, respectively, as

b1 =
m3

m
3/2
2

, b2 =
m4

m2
2

.

Value

A list containing second, third and fourth central moments, and skewness and kurtosis coef-
ficients.

References

Spicer, C.C. (1972). Algorithm AS 52: Calculation of power sums of deviations about the mean.
Applied Statistics 21, 226-227.

See Also

var.

Examples

set.seed(149)
x <- rnorm(1000)
z <- moments(x)
z

ols 49

ols Fit linear regression model

Description

Returns an object of class "ols" that represents a linear model fit.

Usage

ols(formula, data, subset, na.action, method = "qr", tol = 1e-7, maxiter = 100,
x = FALSE, y = FALSE, contrasts = NULL, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which ols is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset.

method the least squares fitting method to be used; the options are "cg" (conjugate gra-
dients), "chol", "qr" (the default), "svd" and "sweep".

tol tolerance for the conjugate gradients (gc) method. Default is tol = 1e-7.

maxiter The maximum number of iterations for the conjugate gradients (gc) method.
Defaults to 100.

x, y logicals. If TRUE the corresponding components of the fit (the model matrix, the
response) are returned.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

... additional arguments (currently disregarded).

Value

ols returns an object of class "ols".

The function summary is used to obtain and print a summary of the results. The generic accessor
functions coefficients, fitted.values and residuals extract various useful features of the
value returned by ols.

An object of class "ols" is a list containing at least the following components:

coefficients a named vector of coefficients

50 ols.fit

residuals the residuals, that is response minus fitted values.

fitted.values the fitted mean values.

RSS the residual sum of squares.

cov.unscaled a p× p matrix of (unscaled) covariances of the β̂j , j = 1, . . . , p.

call the matched call.

terms the terms object used.

contrasts (only where relevant) the contrasts used.

y if requested, the response used.

x if requested, the model matrix used.

model if requested (the default), the model frame used.

See Also

ols.fit, lm, lsfit

Examples

tiny example of regression
y <- c(1, 3, 3, 2, 2, 1)
x <- matrix(c(1, 1,

2, 1,
3, 1,
1,-1,
2,-1,
3,-1), ncol = 2, byrow = TRUE)

f0 <- ols(y ~ x) # intercept is included by default
f0 # printing results (QR method was used)

f1 <- ols(y ~ x, method = "svd") # using SVD method instead
f1

ols.fit Fitter functions for linear models

Description

This function is a switcher among various numerical fitting functions (ols.fit.cg, ols.fit.chol,
ols.fit.qr, ols.fit.svd and ols.fit.sweep). The argument method does the switching: "qr"
for ols.fit.qr, etc. This should usually not be used directly unless by experienced users.

Usage

ols.fit(x, y, method = "qr", tol = 1e-7, maxiter = 100)

ols.fit-methods 51

Arguments

x design matrix of dimension n× q.

y vector of observations of length n.

method currently, methods "cg", "chol", "qr" (default), "svd" and "sweep" are sup-
ported.

tol tolerance for the conjugate gradients (gc) method. Default is tol = 1e-7.

maxiter The maximum number of iterations for the conjugate gradients (gc) method.
Defaults to 100.

Value

a list with components:

coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted values.

fitted.values the fitted mean values.

RSS the residual sum of squares.

cov.unscaled a p× p matrix of (unscaled) covariances of the β̂j , j = 1, . . . , p.

See Also

ols.fit.cg, ols.fit.chol, ols.fit.qr, ols.fit.svd, ols.fit.sweep.

Examples

set.seed(151)
n <- 100
p <- 2
x <- matrix(rnorm(n * p), n, p) # no intercept!
y <- rnorm(n)
fm <- ols.fit(x = x, y = y, method = "chol")
fm

ols.fit-methods Fit a linear model

Description

Fits a linear model, returning the bare minimum computations.

Usage

ols.fit.cg(x, y, tol = 1e-7, maxiter = 100)
ols.fit.chol(x, y)
ols.fit.qr(x, y)
ols.fit.svd(x, y)
ols.fit.sweep(x, y)

52 power.method

Arguments

x, y numeric vectors or matrices for the predictors and the response in a linear model.
Typically, but not necessarily, x will be constructed by one of the fitting func-
tions.

tol tolerance for the conjugate gradients (gc) method. Default is tol = 1e-7.

maxiter The maximum number of iterations for the conjugate gradients (gc) method.
Defaults to 100.

Value

The bare bones of an ols object: the coefficients, residuals, fitted values, and some information
used by summary.ols.

See Also

ols, ols.fit, lm

Examples

set.seed(151)
n <- 100
p <- 2
x <- matrix(rnorm(n * p), n, p) # no intercept!
y <- rnorm(n)
z <- ols.fit.chol(x, y)
z

power.method Power method to approximate dominant eigenvalue and eigenvector

Description

The power method seeks to determine the eigenvalue of maximum modulus, and a corresponding
eigenvector.

Usage

power.method(x, only.value = FALSE, maxiter = 100, tol = 1e-8)

Arguments

x a symmetric matrix.

only.value if TRUE, only the dominant eigenvalue is returned, otherwise both dominant
eigenvalue and eigenvector are returned.

maxiter the maximum number of iterations. Defaults to 100

tol a numeric tolerance.

rball 53

Value

When only.value is not true, as by default, the result is a list with components "value" and
"vector". Otherwise only the dominan eigenvalue is returned. The performed number of iterations
to reach convergence is returned as attribute "iterations".

See Also

eigen for eigenvalues and eigenvectors computation.

Examples

n <- 1000
x <- .5 * diag(n) + 0.5 * matrix(1, nrow = n, ncol = n)

dominant eigenvalue must be (n + 1) / 2
z <- power.method(x, only.value = TRUE)

rball Generation of deviates uniformly distributed in a unitary ball

Description

Random vector generation uniformly in the unitary ball.

Usage

rball(n = 1, p = 2)

Arguments

n the number of samples requested

p dimension of the unitary sphere

Details

The function rball is an interface to C routines, which make calls to subroutines from BLAS.

Value

If n = 1 a p-dimensional vector, otherwise a matrix of n rows of random vectors.

References

Hormann, W., Leydold, J., Derflinger, G. (2004). Automatic Nonuniform Random Variate Genera-
tion. Springer, New York.

See Also

runif

54 ridge

Examples

generate the sample
z <- rball(n = 500)

scatterplot of a random sample of 500 points uniformly distributed
in the unitary ball
par(pty = "s")
plot(z, xlab = "x", ylab = "y")
title("500 points in the ball", font.main = 1)

ridge Ridge regression

Description

Fit a linear model by ridge regression, returning an object of class "ridge".

Usage

ridge(formula, data, subset, lambda = 1.0, method = "GCV", ngrid = 200, tol = 1e-07,
maxiter = 50, na.action, x = FALSE, y = FALSE, contrasts = NULL, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which ridge is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset.

lambda a scalar or vector of ridge constants. A value of 0 corresponds to ordinary least
squares.

method the method for choosing the ridge parameter lambda. If method = "none", then
lambda is ’fixed’. If method = "GCV" (the default) then the ridge parameter is
chosen automatically using the generalized cross validation (GCV) criterion.
For method = "grid", optimal value of lambda is selected computing the GCV
criterion over a grid. If method = "MSE" the optimal ridge parameter is selected
minimizing the mean squared estimation error criterion, this is the ORPS1 sub-
routine by Lee (1987).

ngrid number of elements in the grid used to compute the GCV criterion. Only re-
quired if method = "grid" and lambda is a scalar.

ridge 55

tol tolerance for the optimization of the GCV criterion. Default is 1e-7.

maxiter maximum number of iterations. The default is 50.

x, y logicals. If TRUE the corresponding components of the fit (the model matrix, the
response) are returned.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

... additional arguments to be passed to the low level regression fitting functions
(not implemented).

Details

ridge function fits in linear ridge regression without scaling or centering the regressors and the
response. In addition, If an intercept is present in the model, its coefficient is penalized.

Value

A list with the following components:

dims dimensions of model matrix.

coefficients a named vector of coefficients.

scale a named vector of coefficients.

fitted.values the fitted mean values.

residuals the residuals, that is response minus fitted values.

RSS the residual sum of squares.

edf the effective number of parameters.

GCV vector (if method = "grid") of GCV values.

HKB HKB estimate of the ridge constant.

LW LW estimate of the ridge constant.

lambda vector (if method = "grid") of lambda values; otherwise, for methods method
= "none", "GCV" or "MSE", the value of ridge parameter used by the algorithm.

optimal value of lambda with the minimum GCV (only relevant if method = "grid").

iterations number of iterations performed by the algorithm (only relevant if method =
"MSE").

call the matched call.

terms the terms object used.

contrasts (only where relevant) the contrasts used.

y if requested, the response used.

x if requested, the model matrix used.

model if requested, the model frame used.

56 rmnorm

References

Golub, G.H., Heath, M., Wahba, G. (1979). Generalized cross-validation as a method for choosing
a good ridge parameter. Technometrics 21, 215-223.

Hoerl, A.E., Kennard, R.W., Baldwin, K.F. (1975). Ridge regression: Some simulations. Commu-
nication in Statistics 4, 105-123.

Hoerl, A.E., Kennard, R.W. (1970). Ridge regression: Biased estimation of nonorthogonal prob-
lems. Technometrics 12, 55-67.

Lawless, J.F., Wang, P. (1976). A simulation study of ridge and other regression estimators. Com-
munications in Statistics 5, 307-323.

Lee, T.S (1987). Algorithm AS 223: Optimum ridge parameter selection. Applied Statistics 36,
112-118.

See Also

lm, ols

Examples

z <- ridge(GNP.deflator ~ ., data = longley, lambda = 4, method = "grid")
z # ridge regression on a grid over seq(0, 4, length = 200)

z <- ridge(GNP.deflator ~ ., data = longley)
z # ridge parameter selected using GCV (default)

rmnorm Multivariate normal random deviates

Description

Random number generation from the multivariate normal (Gaussian) distribution.

Usage

rmnorm(n = 1, mean = rep(0, nrow(Sigma)), Sigma = diag(length(mean)))

Arguments

n the number of samples requested

mean a vector giving the means of each variable

Sigma a positive-definite covariance matrix

Details

The function rmnorm is an interface to C routines, which make calls to subroutines from LAPACK.
The matrix decomposition is internally done using the Cholesky decomposition. If Sigma is not
non-negative definite then there will be a warning message.

rsphere 57

Value

If n = 1 a vector of the same length as mean, otherwise a matrix of n rows of random vectors.

References

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag, New York.

See Also

rnorm

Examples

covariance parameters
Sigma <- matrix(c(10,3,3,2), ncol = 2)
Sigma

generate the sample
y <- rmnorm(n = 1000, Sigma = Sigma)
var(y)

scatterplot of a random bivariate normal sample with mean
vector zero and covariance matrix 'Sigma'
par(pty = "s")
plot(y, xlab = "", ylab = "")
title("bivariate normal sample", font.main = 1)

QQ-plot of transformed distances
z <- WH.normal(y)
par(pty = "s")
qqnorm(z, main = "Transformed distances QQ-plot")
abline(c(0,1), col = "red", lwd = 2, lty = 2)

rsphere Generation of deviates uniformly located on a spherical surface

Description

Random vector generation uniformly on the sphere.

Usage

rsphere(n = 1, p = 2)

Arguments

n the number of samples requested

p dimension of the unitary sphere

58 scaled.condition

Details

The function rsphere is an interface to C routines, which make calls to subroutines from BLAS.

Value

If n = 1 a p-dimensional vector, otherwise a matrix of n rows of random vectors.

References

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag, New York.

See Also

runif

Examples

generate the sample
z <- rsphere(n = 200)

scatterplot of a random sample of 200 points uniformly distributed
on the unit circle
par(pty = "s")
plot(z, xlab = "x", ylab = "y")
title("200 points on the circle", font.main = 1)

scaled.condition Scaled condition number

Description

Compute the scaled condition number of a rectangular matrix.

Usage

scaled.condition(x, scales = FALSE)

Arguments

x a numeric rectangular matrix.

scales a logical value indicating whether the scaling factors that allow balancing the
columns of x should be returned by the function.

Value

The columns of a rectangular matrix x are equilibrated (but not centered), then the scaled condition
number is computed following the guidelines of Belsley (1990). If requested, the column scalings
are returned as the attribute 'scales'.

schur 59

References

Belsley, D.A. (1990). Conditioning Diagnostics: Collinearity and Weak Data in Regression. Wiley,
New York.

Examples

x <- matrix(c(1, 1, 1,
1, 2, 1,
1, 3, 1,
1, 1,-1,
1, 2,-1,
1, 3,-1), ncol = 3, byrow = TRUE)

scaled.condition(x)

schur The Schur decomposition of a square matrix

Description

schur computes the Schur decomposition of an n× n real matrix A.

Usage

schur(x, vectors = TRUE)

Arguments

x a square numeric matrix to be decomposed.

vectors logical, if TRUE (the default), then Schur vectors are returned.

Details

For an n× n real matrix A, the Schur decomposition is given by,

A = V MV T

where V is an orthogonal matrix and M is an upper triangular matrix. The column vectors V (if
requested) are the Schur vectors of A, and M is the Schur form of A.

Unsuccessful results from the underlying LAPACK code will result in an error giving a error code:
these can only be interpreted by detailed study of the Fortran code.

60 seidel

Value

The Schur decomposition of the matrix as computed by LAPACK. The components in the returned
value correspond directly to the values returned by DGEES.

m a matrix with the same dimensions as x. The upper triangle contains the M
matrix of the decomposition.

values a vector containing the n eigenvalues of x, these values are not ordered.

vectors an n× n matrix whose columns contain the eigenvectors of x, only available if
it is requested.

References

Anderson. E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A. Sorensen, D. (1999). LAPACK Users’ Guide, 3rd Edi-
tion. SIAM.

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

Examples

a <- matrix(c(7,12,-2,-3), ncol = 2)
z <- schur(a)
z # information of Schur decomposition

x <- matrix(c(0,0,1,2,1,0,2,2,1), ncol = 3)
z <- schur(x)
z # complex eigenvalues

seidel Solve linear systems using the Gauss-Seidel method

Description

Gauss-Seidel method is an iterative algorithm for solving a system of linear equations.

Usage

seidel(a, b, start, maxiter = 200, tol = 1e-7)

Arguments

a a square numeric matrix containing the coefficients of the linear system.

b a vector of right-hand sides of the linear system.

start a vector for initial starting point.

maxiter the maximum number of iterations. Defaults to 200

tol tolerance level for stopping iterations.

sherman.morrison 61

Details

Let D, L, and U denote the diagonal, lower triangular and upper triangular parts of a matrix A.
Gauss-Seidel method solve the equation Ax = b, iteratively by rewriting (L +D)x + Ux = b.
Assuming that L+D is nonsingular leads to the iteration formula

x(k+1) = −(L+D)−1Ux(k) + (L+D)−1b

Value

a vector with the approximate solution, the iterations performed are returned as the attribute ’itera-
tions’.

References

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

See Also

jacobi

Examples

a <- matrix(c(5,-3,2,-2,9,-1,3,1,-7), ncol = 3)
b <- c(-1,2,3)
start <- c(1,1,1)
z <- seidel(a, b, start)
z # converged in 10 iterations

sherman.morrison Sherman-Morrison formula

Description

The Sherman-Morrison formula gives a convenient expression for the inverse of the rank 1 update
(A+ bdT) where A is a n× n matrix and b, d are n-dimensional vectors. Thus

(A+ bdT)−1 = A−1 − A−1bdTA−1

1 + dTA−1b
.

Usage

sherman.morrison(a, b, d = b, inverted = FALSE)

Arguments

a a numeric matrix.
b a numeric vector.
d a numeric vector.
inverted logical. If TRUE, a is supposed to contain its inverse.

62 sweep.operator

Details

Method of sherman.morrison calls BLAS level 2 subroutines DGEMV and DGER for computational
efficiency.

Value

a square matrix of the same order as a.

Examples

n <- 10
ones <- rep(1, n)
a <- 0.5 * diag(n)
z <- sherman.morrison(a, ones, 0.5 * ones)
z

sweep.operator Gauss-Jordan sweep operator for symmetric matrices

Description

Perform the sweep operation (or reverse sweep) on the diagonal elements of a symmetric matrix.

Usage

sweep.operator(x, k = 1, reverse = FALSE)

Arguments

x a symmetric matrix.

k elements (if k is vector) of the diagonal which will be sweeped.

reverse logical. If reverse = TRUE the reverse sweep is performed.

Details

The symmetric sweep operator is a powerful tool in computational statistics with uses in stepwise
regression, conditional multivariate normal distributions, MANOVA, and more.

Value

a square matrix of the same order as x.

References

Goodnight, J.H. (1979). A tutorial on the SWEEP operator. The American Statistician 33, 149-158.

symm.info 63

Examples

tiny example of regression, last column contains 'y'
xy <- matrix(c(1, 1, 1, 1,

1, 2, 1, 3,
1, 3, 1, 3,
1, 1,-1, 2,
1, 2,-1, 2,
1, 3,-1, 1), ncol = 4, byrow = TRUE)

z <- crossprod(xy)
z <- sweep.operator(z, k = 1:3)
cf <- z[1:3,4] # regression coefficients
RSS <- z[4,4] # residual sum of squares

an example not that small
x <- matrix(rnorm(1000 * 100), ncol = 100)
xx <- crossprod(x)
z <- sweep.operator(xx, k = 1)

symm.info Compact information to construct the symmetrizer matrix

Description

This function provides the information required to create the symmetrizer matrix.

Usage

symm.info(n = 1)

Arguments

n order of the symmetrizer matrix.

Details

This function returns a list containing vectors that represent an element of the symmetrizer matrix
and is accesed by the indexes in vectors row, col and values contained in val. This information
is used by function symm.prod to do some operations involving the symmetrizer matrix without
forming it. This information also can be obtained using function symmetrizer.

Value

A list containing the following elements:

row vector of indexes, each entry represents the row index of the symmetrizer matrix.
col vector of indexes, each entry represents the column index of the symmetrizer

matrix.
val vector of values, each entry represents the value of the symmetrizer matrix at

element given by row and col indexes.
order order of the symmetrizer matrix.

64 symm.prod

See Also

symmetrizer, symm.prod

Examples

z <- symm.info(n = 3)
z # elements in symmetrizer matrix of order 3

N3 <- symmetrizer(n = 3, matrix = TRUE)
N3 # only recommended if n is very small

symm.prod Matrix multiplication envolving the symmetrizer matrix

Description

Given the order of a symmetrizer matrix N of order n and a conformable matrix X , performs one
of the matrix-matrix operations:

• Y = NX , if side = "left", or

• Y = XN , if side = "right",

The main aim of symm.prod is to do this matrix multiplication without forming the symmetrizer
matrix.

Usage

symm.prod(n = 1, x = NULL, side = "left")

Arguments

n order of the symmetrizer matrix.

x numeric matrix (or vector).

side a string selecting if symmetrizer matrix is pre-multiplying X , that is side =
"left" or post-multiplying X , by using side = "right".

Details

Underlying C code only uses information provided by symm.info to performs the matrix multipli-
cation. The symmetrizer matrix is never created.

See Also

symmetrizer

symmetrizer 65

Examples

N4 <- symmetrizer(n = 4, matrix = TRUE)
x <- matrix(1:32, ncol = 2)
y <- N4 %*% x

z <- symm.prod(n = 4, x) # N4 is not stored
all(z == y) # matrices y and z are equal!

symmetrizer Symmetrizer matrix

Description

This function returns the symmetrizer matrix of order n which transforms, for every n × n matrix
A, vec(A) into vec((A+AT)/2).

Usage

symmetrizer(n = 1, matrix = FALSE)

Arguments

n order of the symmetrizer matrix.

matrix a logical indicating whether the symmetrizer matrix will be returned.

Details

This function is a wrapper function for the function symm.info. This function provides the infor-
mation required to create the symmetrizer matrix. If option matrix = FALSE the symmetrizer matrix
is stored in three vectors containing the coordinate list of indexes for rows, columns and the values.

Warning: matrix = TRUE is not recommended, unless the order n be small. This matrix can require
a huge amount of storage.

Value

Returns an n2 by n2 matrix (if requested).

References

Abadir, K.M., Magnus, J.R. (2005). Matrix Algebra. Cambridge University Press.

Magnus, J.R., Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics, 3rd Edition. Wiley, New York.

See Also

symm.info

66 vec

Examples

z <- symmetrizer(n = 100)
object.size(z) # 319 Kb of storage

N100 <- symmetrizer(n = 100, matrix = TRUE) # time: < 2 secs
object.size(N100) # 800 Mb of storage, do not request this matrix!

a small example
N3 <- symmetrizer(n = 3, matrix = TRUE)
a <- matrix(rep(c(2,4,6), each = 3), ncol = 3)
a
b <- 0.5 * (a + t(a))
b
v <- N3 %*% vec(a)
all(vec(b) == as.vector(v)) # vectors are equal!

vec Vectorization of a matrix

Description

This function returns a vector obtained by stacking the columns of X .

Usage

vec(x)

Arguments

x a numeric matrix.

Value

Let X be a n by m matrix, then vec(X) is a nm-dimensional vector.

Examples

x <- matrix(rep(1:10, each = 10), ncol = 10)
x
y <- vec(x)
y

vech 67

vech Vectorization the lower triangular part of a square matrix

Description

This function returns a vector obtained by stacking the lower triangular part of a square matrix.

Usage

vech(x)

Arguments

x a square matrix.

Value

Let X be a n by n matrix, then vech(X) is a n(n+ 1)/2-dimensional vector.

Examples

x <- matrix(rep(1:10, each = 10), ncol = 10)
x
y <- vech(x)
y

WH.normal Wilson-Hilferty transformation for chi-squared variates

Description

Returns the Wilson-Hilferty transformation of random variables with chi-squared distribution.

Usage

WH.normal(x)

Arguments

x vector or matrix of data with, say, p columns.

68 whitening

Details

Let T = D2/p be a random variable, where D2 denotes the squared Mahalanobis distance defined
as

D2 = (x− µ)TΣ−1(x− µ)

Thus the Wilson-Hilferty transformation is given by

z =
T 1/3 − (1− 2

9p)

(2
9p)

1/2

and z is approximately distributed as a standard normal distribution. This is useful, for instance, in
the construction of QQ-plots.

References

Wilson, E.B., and Hilferty, M.M. (1931). The distribution of chi-square. Proceedings of the Na-
tional Academy of Sciences of the United States of America 17, 684-688.

See Also

Mahalanobis

Examples

x <- iris[,1:4]
z <- WH.normal(x)
par(pty = "s")
qqnorm(z, main = "Transformed distances QQ-plot")
abline(c(0,1), col = "red", lwd = 2, lty = 2)

whitening Whitening transformation

Description

Applies the whitening transformation to a data matrix based on the Cholesky decomposition of the
empirical covariance matrix.

Usage

whitening(x, Scatter = NULL)

Arguments

x vector or matrix of data with, say, p columns.

Scatter covariance (or scatter) matrix (p×p) of the distribution, must be positive definite.
If NULL, the covariance matrix is estimated from the data.

wilson.hilferty 69

Value

Returns the whitened data matrix Z = XW T , where

W TW = S−1,

with S the empirical covariance matrix.

References

Kessy, A., Lewin, A., Strimmer, K. (2018). Optimal whitening and decorrelation. The American
Statistician 72, 309-314.

Examples

x <- iris[,1:4]
species <- iris[,5]
pairs(x, col = species) # plot of Iris

whitened data
z <- whitening(x)
pairs(z, col = species) # plot of

wilson.hilferty Wilson-Hilferty transformation

Description

Returns the Wilson-Hilferty transformation of random variables with Gamma distribution.

Usage

wilson.hilferty(x, shape, rate = 1)

Arguments

x a numeric vector containing Gamma distributed deviates.
shape, rate shape and rate parameters. Must be positive.

Details

Let X be a random variable following a Gamma distribution with parameters a = shape and b =
rate with density

f(x) =
ba

Γ(a)
xa−1 exp(−bx),

where x ≥ 0, a > 0, b > 0 and consider the random variable T = X/(a/b). Thus, the Wilson-
Hilferty transformation

z =
T 1/3 − (1− 1

9a)

(1
9a)

1/2

is approximately distributed as a standard normal distribution. This is useful, for instance, in the
construction of QQ-plots.

70 wilson.hilferty

References

Terrell, G.R. (2003). The Wilson-Hilferty transformation is locally saddlepoint. Biometrika 90,
445-453.

Wilson, E.B., and Hilferty, M.M. (1931). The distribution of chi-square. Proceedings of the Na-
tional Academy of Sciences of the United States of America 17, 684-688.

See Also

WH.normal

Examples

x <- rgamma(n = 300, shape = 2, rate = 1)
z <- wilson.hilferty(x, shape = 2, rate = 1)
par(pty = "s")
qqnorm(z, main = "Transformed Gamma QQ-plot")
abline(c(0,1), col = "red", lwd = 2, lty = 2)

Index

∗ algebra
array.mult, 3
bracket.prod, 6
cg, 9
cholupdate, 10
circulant, 11
comm.prod, 13
commutation, 14
dupl.cross, 18
dupl.prod, 20
duplication, 21
equilibrate, 23
frank, 24
hadamard, 26
hankel, 27
helmert, 28
jacobi, 30
ldl, 35
lu, 36
lu-methods, 37
lu2inv, 38
matrix.fun, 40
matrix.sqrt, 44
mchol, 45
power.method, 52
scaled.condition, 58
schur, 59
seidel, 60
sherman.morrison, 61
sweep.operator, 62
symm.prod, 64
symmetrizer, 65

∗ array
array.mult, 3
asSymmetric, 4
bracket.prod, 6
cg, 9
cholupdate, 10
circulant, 11

comm.info, 12
comm.prod, 13
commutation, 14
corAR1, 15
corCS, 16
dupl.cross, 18
dupl.info, 19
dupl.prod, 20
duplication, 21
equilibrate, 23
floyd, 23
frank, 24
hadamard, 26
hankel, 27
helmert, 28
is.lower.tri, 29
jacobi, 30
kronecker.prod, 32
krylov, 33
ldl, 35
lu, 36
lu-methods, 37
lu2inv, 38
matrix.fun, 40
matrix.inner, 41
matrix.norm, 42
matrix.polynomial, 43
matrix.sqrt, 44
mchol, 45
ols.fit, 50
ols.fit-methods, 51
power.method, 52
scaled.condition, 58
schur, 59
seidel, 60
sherman.morrison, 61
sweep.operator, 62
symm.info, 63
symm.prod, 64

71

72 INDEX

symmetrizer, 65
vec, 66
vech, 67

∗ distribution
rball, 53
rmnorm, 56
rsphere, 57

∗ htest
harris.test, 27
JarqueBera.test, 31

∗ math
matrix.inner, 41
matrix.norm, 42
minkowski, 47

∗ models
ridge, 54

∗ multivariate
cov.MSSD, 16
cov.weighted, 17
kurtosis, 34
Mahalanobis, 39
mediancenter, 46
rball, 53
rmnorm, 56
rsphere, 57
WH.normal, 67
whitening, 68

∗ regression
ols, 49
ols.fit, 50
ols.fit-methods, 51

∗ smooth
bezier, 5

∗ univar
ccc, 7
geomean, 25
moments, 48
wilson.hilferty, 69

array, 4, 7
array.mult, 3, 7
as.data.frame, 49, 54
asSymmetric, 4

bezier, 5
bracket.prod, 4, 6

ccc, 7
cg, 9

chol, 11, 35, 45
cholupdate, 10
circulant, 11
class, 49
comm.info, 12, 13, 15
comm.prod, 12, 13
commutation, 12, 13, 14
constructX, 37
constructX (lu-methods), 37
corAR1, 15
corCS, 16
cov, 17, 18, 39
cov.MSSD, 16
cov.weighted, 17
cov.wt, 18, 46

det, 37
dupl.cross, 18
dupl.info, 19, 21, 22
dupl.prod, 19, 20, 20
duplication, 20, 21, 21

eigen, 37, 53
equilibrate, 23
extractL, 37
extractL (lu-methods), 37
extractU, 37
extractU (lu-methods), 37

floyd, 23
formula, 49, 54
frank, 24

geomean, 25

hadamard, 26
hankel, 27
harris.test, 27
helmert, 28

inherits, 36
is.lower.tri, 29
is.lu (lu), 36
is.upper.tri (is.lower.tri), 29

jacobi, 10, 30, 61
JarqueBera.test, 31

kronecker, 33
kronecker.prod, 32

INDEX 73

krylov, 33
kurtosis, 34

ldl, 35, 45
list, 36, 51
lm, 50, 52, 56
lower.tri, 30
lsfit, 50
lu, 36, 37–39
lu-methods, 37
lu2inv, 37, 38

Mahalanobis, 39, 68
mahalanobis, 39
matrix, 4, 7
matrix.fun, 40
matrix.inner, 41
matrix.norm, 42
matrix.polynomial, 43
matrix.sqrt, 44
mchol, 45
mean, 26
median, 26, 46
mediancenter, 46
minkowski, 47
model.frame, 7
model.matrix.default, 49, 55
moments, 48

na.fail, 49, 54

ols, 49, 52, 56
ols.fit, 50, 50, 52
ols.fit-methods, 51
ols.fit.cg, 50, 51
ols.fit.cg (ols.fit-methods), 51
ols.fit.chol, 50, 51
ols.fit.chol (ols.fit-methods), 51
ols.fit.qr, 50, 51
ols.fit.qr (ols.fit-methods), 51
ols.fit.svd, 50, 51
ols.fit.svd (ols.fit-methods), 51
ols.fit.sweep, 50, 51
ols.fit.sweep (ols.fit-methods), 51
options, 49, 54
outer, 33

power.method, 52

rball, 53

ridge, 54
rmnorm, 56
rnorm, 57
rsphere, 57
runif, 53, 58

scaled.condition, 58
schur, 59
seidel, 10, 31, 60
sherman.morrison, 61
skewness (kurtosis), 34
solve, 10, 36, 39
solve.lu (lu), 36
sweep.operator, 62
symm.info, 63, 64, 65
symm.prod, 63, 64, 64
symmetrizer, 63, 64, 65

terms, 50, 55

upper.tri, 30

var, 17, 18, 48
vec, 66
vech, 67

WH.normal, 67, 70
whitening, 68
wilson.hilferty, 69

	array.mult
	asSymmetric
	bezier
	bracket.prod
	ccc
	cg
	cholupdate
	circulant
	comm.info
	comm.prod
	commutation
	corAR1
	corCS
	cov.MSSD
	cov.weighted
	dupl.cross
	dupl.info
	dupl.prod
	duplication
	equilibrate
	floyd
	frank
	geomean
	hadamard
	hankel
	harris.test
	helmert
	is.lower.tri
	jacobi
	JarqueBera.test
	kronecker.prod
	krylov
	kurtosis
	ldl
	lu
	lu-methods
	lu2inv
	Mahalanobis
	matrix.fun
	matrix.inner
	matrix.norm
	matrix.polynomial
	matrix.sqrt
	mchol
	mediancenter
	minkowski
	moments
	ols
	ols.fit
	ols.fit-methods
	power.method
	rball
	ridge
	rmnorm
	rsphere
	scaled.condition
	schur
	seidel
	sherman.morrison
	sweep.operator
	symm.info
	symm.prod
	symmetrizer
	vec
	vech
	WH.normal
	whitening
	wilson.hilferty
	Index

