Version 0.5.0

Date 2025-10-15

Package ‘fastbeta’

October 15, 2025

Title Fast Approximation of Time-Varying Infectious Disease
Transmission Rates

Description A fast method for approximating time-varying infectious disease
transmission rates from disease incidence time series and other
data, based on a discrete time approximation of an SEIR model, as
analyzed in Jagan et al. (2020) <doi:10.1371/journal.pcbi.1008124>.

License GPL (>=2)

URL https://github.com/davidearn/fastbeta

BugReports https://github.com/davidearn/fastbeta/issues
Depends R (>=4.3)

Imports grDevices, graphics, stats

Suggests adaptivetau, deSolve, tools, utils

BuildResaveData no

NeedsCompilation yes

Author Mikael Jagan [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3542-2938>)

Maintainer Mikael Jagan <jaganmn@mcmaster.ca>
Repository CRAN
Date/Publication 2025-10-15 14:30:02 UTC

Contents

fastbeta-package

cbind.ts

deconvolve e e

fastbeta

fastbeta.bootstrap L
fastbeta.matrix L

https://doi.org/10.1371/journal.pcbi.1008124
https://github.com/davidearn/fastbeta
https://github.com/davidearn/fastbeta/issues
https://orcid.org/0000-0002-3542-2938

2 cbind.ts
PREUMONIA . .« . . v v v v ot e e e e e e e e e e e e e e e e e e 11
PIPI - o o o e 13
SCIT . v v v e e e e e e e e e e 15
seirauxiliary L. 18
seirlibrary e e e e e 20
SILAOL . . . v o i e e e 21
smallpoX e e 24

Index 26

fastbeta-package R Package fastbeta
Description

An R package for approximating time-varying infectious disease transmission rates from disease
incidence time series and other data.

Details

The “main” function is fastbeta.

To render a list of available help topics, use help(package = "fastbeta”).

To report a bug or request a change, use bug. report(package = "fastbeta”).

Author(s)

Mikael Jagan <jaganmn@mcmaster.ca>

cbind.ts Combine Time Series Objects

Description

A replacement for the S3 method registered by package stats for generic function cbind and class
ts. It sets column names following the rules employed by the internal default method for cbind.
It exists to allow users to work around PR#18583, which shows that the method in package stats
employs different and rather inconsistent rules. This function must be called directly, as it is not
registered as a method for cbind.

Usage

S3 method for class 'ts'
cbind(..., deparse.level = 1)

https://bugs.R-project.org/show_bug.cgi?id=18583

deconvolve 3

Arguments

vectors (including matrices), at least one inheriting from class ts.

deparse.level an integer (0, 1, or 2) controlling how column names are determined for un-
tagged arguments that are not matrices, following the internal default method
for cbind.

Value

A “multiple time series” object, inheriting from class mts.

Examples

n <- 3L
x <- matrix(@, n, n, dimnames = list(NULL, LETTERS[seq_len(n)]))
y <- seq_len(n)

tsx <- ts(x)
tsy <- ts(y)
T~ <- identity

for (k in oL:2L)

cat(sprintf("k = %d:\n\n\n", k))

withAutoprint({

try(colnames(cbind C x, y, deparse.level = k)))
try(colnames(cbind (tsx, tsy, deparse.level = k)))
try(colnames(cbind.ts(tsx, tsy, deparse.level = k)))
try(colnames(cbind (~ x, ~ vy, deparse.level = k)))
try(colnames(cbind (~tsx, ~tsy, deparse.level = k)))
try(colnames(cbind.ts(~tsx, ~tsy, deparse.level = k)))
»

cat("\n\n")

3

rm(™~")

deconvolve Richardson-Lucy Deconvolution

Description

Performs a modified Richardson-Lucy iteration for the purpose of estimating incidence from re-
ported incidence or mortality, conditional on a reporting probability and on a distribution of the
time to reporting.

Usage

deconvolve(x, prob = 1, delay =1,
start, x.pad = @, tol = 1, iter.max = 32L, complete = FALSE)

4 deconvolve

Arguments
X a numeric vector of length n giving the number of infections or deaths reported
during n successive time intervals of equal duration.
prob a numeric vector of length d+n, d=length(delay)-1, such that prob[d+i] is
the probability that an infection during interval i is eventually reported. prob of
length 1 is recycled.
delay a numeric vector of positive length such that delay[j] is the probability that
an infection during interval i is reported during interval i+j-1, given that it
is eventually reported. Hence delay[j] is the probability of a delay by j-1
intervals and d=length(delay)-1 is the maximum delay. delay need not sum
to 1 but must not sum to 0.
start a numeric vector of length d+n, d=length(delay)-1, giving a starting value for
the iteration. start[d+i] estimates the expected number of infections during
interval i that are eventually reported. If missing, then a starting value is gen-
erated by padding x on the left and right with d-d@ and d@ elements equal to
x.pad, choosing de=which.max(delay)-1. Note that O is invariant under the
iteration, hence it can be desirable to set x.pad to a small (relative to max(x))
positive number.
X.pad a non-negative number, used only when start is unset; see above.
tol a tolerance indicating a stopping condition; see the reference. Set to 0 if you
want to perform no fewer than iter.max iterations.
iter.max the maximum number of iterations.
complete alogical flag indicating if the result should preserve successive updates to start.
Details
Do note that temporal alignment of x (length n) and y=deconvolve(x, ...)$value (length or
number of rows d+n) requires padding x on the left, as in cbind(x=c(rep(NA, d), x), y); see the
examples.
Value

A list with elements:

value the result of updating start iter times then dividing by prob. If complete
= TRUE, then value is a (d+n)-by-(1+iter) matrix containing start and the
iter successive updates, each divided by prob.

chisq the chi-squared statistics corresponding to value.

iter the number of iterations performed.

subset(value, start ==0) is zero because zero is invariant under the iteration. If delay has 1
leading zeros and t trailing zeros, then head(value, t) and tail(value, 1) are NaN due to divide-

by-zero in the iteration. (Conceptually, x and delay provide no information about incidence during
those intervals.)

deconvolve 5

References

Goldstein, E., Dushoff, J., Ma, J., Plotkin, J. B., Earn, D. J. D., & Lipsitch, M. (2009). Recon-
structing influenza incidence by deconvolution of daily mortality time series. Proceedings of the
National Academy of Sciences U. S. A., 106(51), 21825-21829. doi:10.1073/pnas.0902958106

Examples

##
Example 1: simulation
#i

set.seed(2L)

n <- 200L

d <- 50L

p <- 0.1

prob <- plogis(rlogis(d + n, location = glogis(p), scale = 0.1))
delay <- c(0, diff(pgamma(@L:d, 12, 0.4)))

h <- function (x, a=1, b=1, c =0) a*x exp(-b * (x - c)*2)
ans <- floor(h(seq(-60, 60, length.out = d + n), a = 1000, b = 0.001))

X0 <- rbinom(d + n, ans, prob)

x <- tabulate(rep(1L:(d + n), x@) +
sample(@L:d, size = sum(x@), replace = TRUE, prob = delay),
d+ n)[-(1L:d)]

str(D@ <- deconvolve(x, prob, delay, complete = FALSE))
str(D1 <- deconvolve(x, prob, delay, complete TRUE))

matplot(-(d - 1L):n,
cbind(x@, c(rep(NA, d), x), prob x DO[["value"]]l, p * ans),
type = c("p", "p", "p", "1"),
col = c(1L, 1L, 2L, 4L), pch = c(16L, 1L, 16L, NA),
1ty = c(oL, oL, oL, 1L), lwd = c(NA, NA, NA, 3),
xlab = "Time"”, ylab = "Count")
legend("topleft”, NULL,
c("actual”, "actual+delay”, "actual+delay+deconvolution”, "p*h"),
col = c(1L, 1L, 2L, 4L), pch = c(16L, 1L, 16L, NA),
1ty = c(oL, oL, oL, 1L), lwd = c(NA, NA, NA, 3),
bty = "n")

plot(oL:D1[["iter"]], D1[["chisq"]1],
xlab = "Iterations”, ylab = quote(chi*2))
ablineth = 1, 1ty = 2L)

#H#

Example 2: application to pneumonia and influenza
#H#

data(pneumonia, package = "fastbeta”)

x <- pneumonial[["series”]][["deaths"]]

https://doi.org/10.1073/pnas.0902958106

6 fastbeta

delay <- pneumonial[["delay”]I1[["gpg"]1]

n <- length(x)
d <- length(delay) - 1L
r <- 30L

D2 <- deconvolve(x = x, delay = delay, tol = @, iter.max = r,
complete = TRUE)
stopifnot(D2[["iter"]] == r,
identical (dim(D2[["value”]1]), c(d + n, 1L + r)),
length(D2[["chisq"]]1) == 1L + r,
min(D2[["chisq”]1]) < 1)

Subscript for the first, critical, and last values:
j2 <= c(1L, which.max(D2[["chisq”]1] < 1), 1L + r)

matplot(x = seq(from = pneumonial["series”]][1L, "date"] - d,
by = 1, length.out = d + n),

y = cbind(c(rep(NA, d), x), D2[["value"11[, j21),
type = "o",
col = c(1L, 4L, 2L, 3L), pch =1L, 1ty = 1L, 1lwd =1,
xlab = "1918", ylab = "deaths")

legend("topleft”, NULL,
c("observed”, sprintf("after %d iterations”, j2 - 1L)),
col = c(1L, 4L, 2L, 3L), pch =1L, 1ty = 1L, 1lwd = 1,
bty = "n")

fastbeta Estimate a Time-Varying Infectious Disease Transmission Rate

Description

Generates a discrete approximation of a time-varying infectious disease transmission rate from an
equally spaced disease incidence time series and other data.

Usage
fastbeta(series, sigma = 1, gamma = 1, delta = 0,
m=1L, n = 1L, init, ...)
Arguments
series a “multiple time series” object, inheriting from class mts, with three columns

storing (“parallel”, equally spaced) time series of incidence, births, and the per
capita natural mortality rate, in that order.

sigma, gamma, delta
non-negative numbers. mxsigma, nxgamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.

fastbeta 7

n a positive integer indicating a number of infectious stages.

init a numeric vector of length 1+m+n+1 giving an initial state with compartments
ordered as (S, E, I, R).

optional arguments passed to deconvolve, if the first column of series repre-
sents observed incidence rather than actual or estimated incidence.

Details
The algorithm implemented by fastbeta is based on an SEIR model with

* m latent stages (E%,i = 1,...,m);
* n infectious stages (I7, j = 1,...,n);
* time-varying rates 3, v, and p of transmission, birth, and natural death; and

* constant rates mo, ny, and § of removal from each latent, infectious, and recovered com-
partment, where removal from the recovered compartment implies return to the susceptible
compartment (loss of immunity).

It is derived by linearizing of the system of ordinary differential equations

dS Jdt= O6R —(A®)+p@®)S +v()

dE' /dt = \(t)S (mo + p(t)E*

dE™ Jdt = moE" — (mo + u(t))E! B ;
di* /At = moE™ — (ny+ p(t)I* M) = 5(0) ;I
At jdt = nyl? — (ny + p(t) T

dR Jdt= nyI" —(6+ u())R

and substituting actual or estimated incidence and births for definite integrals of AS and v. This
procedure yields a system of linear difference equations from which one recovers a discrete approx-
imation of 3:

By = [(1 = §(mo +) By + Zis /11 + 2(mo +)]
EjfL =1 = Y(mo + p) BT + mo(+ B /[+ L(mo + 1))
I;tri — %(i + 1 o b Vi %(e Mtﬂ)}ﬂt = (Z4+Zi41)/
0 =10 =gy +p)) ™ + 5 m (] + 1) /1L + 3(ny + pesa)]
Ripr=[1—3(6+p)Re +5ny(I]" +17) VIL+3(04 pes)]
Sier =[(1— %(m))Se + % O(Rt + Riy1) — Ziya + Bea] /1 + %(fev1)]

where we use the notation

) = /t A©S(s)ds

Xt NX(t) X = S,Ei,Ij7R,Z,B,H,B
B(t):/ v(s)ds
t—1

and it is understood that the independent variable ¢ is a unitless measure of time relative to the
spacing of the substituted time series of incidence and births.

(25:)

8 fastbeta.bootstrap

Value

A “multiple time series” object, inheriting from class mts, with 1+m+n+1+1 columns (named S, E,
I, R, and beta) storing the result of the iteration described in ‘Details’. It is completely parallel to
argument series, having the same tsp attribute.

References

Jagan, M., deJonge, M. S., Krylova, O., & Earn, D. J. D. (2020). Fast estimation of time-varying
infectious disease transmission rates. PLOS Computational Biology, 16(9), Article e1008124, 1-39.
doi:10.1371/journal.pcbi.1008124

Examples

if (requireNamespace("adaptivetau”)) withAutoprint({

data(seir.ts@2, package = "fastbeta”)
a <- attributes(seir.ts02)
str(seir.ts02)

plot(seir.ts02)

We suppose that we have perfect knowledge of incidence,
births, and the data-generating parameters
series <- cbind.ts(seir.ts@2[, c("zZ", "B")]1, mu = a[["mu"1](0))

args <- c(list(series = series),
alc("sigma”, "gamma”, "delta”, "m", "n", "init")1)
str(args)
X <- do.call(fastbeta, args)
str(X)
plot(X)

plot(X[, "beta”], ylab = "Transmission rate")
lines(al["beta”]](time(X)), col = "red") # the "truth”

b

fastbeta.bootstrap Parametric Bootstrapping

Description

A simple wrapper around fastbeta using it to generate a “primary” estimate of a time-varying
transmission rate and r bootstrap estimates. Bootstrap estimates are computed for incidence time
series simulated using seir, with transmission rate defined as the linear interpolant of the primary
estimate.

https://doi.org/10.1371/journal.pcbi.1008124

fastbeta.bootstrap 9

Usage

fastbeta.bootstrap(r,
series, sigma = 1, gamma = 1, delta = 0,

m=1L, n = 1L, init, ...)
Arguments
r a non-negative integer indicating a number of replications.
series a “multiple time series” object, inheriting from class mts, with three columns

storing (“parallel”, equally spaced) time series of incidence, births, and the per
capita natural mortality rate, in that order.

sigma, gamma, delta
non-negative numbers. mxsigma, nxgamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.
n a positive integer indicating a number of infectious stages.
init a numeric vector of length 1+m+n+1 giving an initial state with compartments

ordered as (S, E, I, R).

optional arguments passed to seir and/or deconvolve. Both take optional ar-
guments prob and delay. When prob is supplied but not delay, seir and
deconvolve receive prob as is. When both are supplied, seir receives prob
as is, whereas deconvolve receives prob augmented with length(delay)-1
ones.

Value

A “multiple time series” object, inheriting from class mts, with 1+r columns storing the one primary
and r bootstrap estimates. It is completely parallel to argument series, having the same tsp
attribute.

Examples

if (requireNamespace("adaptivetau”)) withAutoprint({

data(seir.ts@2, package = "fastbeta”)
a <- attributes(seir.ts@2)
str(seir.ts02)

plot(seir.ts@2)

We suppose that we have perfect knowledge of incidence,
births, and the data-generating parameters
series <- cbind.ts(seir.ts@2[, c("Z", "B")], mu = a[["mu"]1](0))

args <- c(list(r = 100L, series = series),
alc(”sigma”, "gamma”, "delta”, "m”, "n", "init")1)

str(args)

R <- do.call(fastbeta.bootstrap, args)

10 fastbeta.matrix

str(R)
plot(R)
plot(R, level = 0.95)

»

fastbeta.matrix Calculate Coefficient Matrix for Iteration Step

Description

Calculates the coefficient matrix corresponding to one step of the iteration carried out by fastbeta:

y <-c(1, E, I, R, S)

for (pos in seq_len(nrow(series) - 1L)) {
L <- fastbeta.matrix(pos, series, ...)
y <=L %%y

Usage

fastbeta.matrix(pos,
series, sigma = 1, gamma = 1, delta = 0,
m= 1L, n = 1L)

Arguments
pos an integer indexing a row (but not the last row) of series.
series a “multiple time series” object, inheriting from class mts, with three columns

storing (“parallel”, equally spaced) time series of incidence, births, and the per
capita natural mortality rate, in that order.

sigma, gamma, delta

non-negative numbers. mxsigma, n*gamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.
n a positive integer indicating a number of infectious stages.
Value

A lower triangular matrix of size T+m+n+1+1.

pneumonia 11

Examples

if (requireNamespace("adaptivetau")) withAutoprint({

data(seir.ts@2, package = "fastbeta")

a <- attributes(seir.ts02); p <- length(a[["init"]1])
str(seir.ts02)

plot(seir.ts02)

We suppose that we have perfect knowledge of incidence,
births, and the data-generating parameters
series <- cbind.ts(seir.ts@2[, c("Z", "B")], mu = a[["mu"]1(Q))

args <- c(list(series = series),
a[c(llsigmall’ Ilgammall’ "delta”, “init“, Mmll’ Hnll)])
str(args)

X <- unclass(do.call(fastbeta, args))[, seq_len(p)]
colnames(X)

Y <= Y. <= cbind(1, X[, c(2L:p, 1L)], deparse.level = 2L)
colnames(Y)

args <- c(list(pos = 1L, series = series),
a[C("Sigma", Ilgammall’ ”delta”, Ilmll, llnll)])
str(args)

L <- do.call(fastbeta.matrix, args)
str(lL)
symnum(L != 0)

for (pos in seq_len(nrow(series) - 1L)) {
args[["pos"”"]1] <- pos
L. <- do.call(fastbeta.matrix, args)
Y.[pos + 1L, 1 <= L. %*% Y.[pos, 1]

}
stopifnot(all.equal(yY, Y.))
D
pneumonia Pneumonia and Influenza Mortality in Philadelphia, PA, 1918
Description

Time series of deaths due to pneumonia and influenza in Philadelphia, PA from September 1, 1918
to December 31, 1918, as recorded in the “Special Tables of Mortality” of the U.S. Census Bureau.

Usage

data(pneumonia, package = "fastbeta")

12 pneumonia

Format

A named list with 2 components, series and delay. series is a data frame with 122 rows and 2
variables:

date date of the record.

deaths count of deaths due to influenza and pneumonia.
delay is a data frame with 64 rows and 3 variables:

nday number of days from infection to death.

goldstein, gpg probabilities, not summing to 1 due to rounding and truncation; see ‘Source’.

Source

A script generating the pneumonia object is available as system.file("scripts”, "pneumonia.R",
package = "fastbeta").

series is obtained from Table 2 in the first reference.

delay is obtained from the remaining references. Component goldstein is obtained from Figure
1 in the Supporting Information of Goldstein et al. (2009). Component gpg is obtained from the
convolution of two gamma distributions, one for the time from infection to symptom onset fitted to
Figure 1 in Moser et al. (1979) and another for the time from symptom onset to death fitted to Chart
2 in Keeton & Cushman (1918).

References

U.S. Census Bureau (1920). Special Tables of Mortality from Influenza and Pneumonia: Indi-
ana, Kansas, and Philadelphia, PA. U.S. Department of Commerce. https://www.census.gov/
library/publications/1920/demo/1918-mortality-special-tables.html

Goldstein, E., Dushoff, J., Ma, J., Plotkin, J. B., Earn, D. J. D., & Lipsitch, M. (2009). Recon-
structing influenza incidence by deconvolution of daily mortality time series. Proceedings of the
National Academy of Sciences U. S. A., 106(51), 21825-21829. doi:10.1073/pnas.0902958106

Moser, M. R., Bender, T. R., Margolis, H. S., Noble, G. R., Kendal, A. P., & Ritter, D. G. (1979).
An outbreak of influenza aboard a commercial airliner. Americal Journal of Epidemiology, 110(1),
1-6. doi:10.1093/oxfordjournals.aje.al 12781

Keeton, R. W. & Cushman, A. B. (1918). The influenza epidemic in Chicago: the disease as a type
of toxemic shock. Journal of the Americal Medical Association. 71(24), 1962-1967.

Examples

data(pneumonia, package = "fastbeta”)
str(pneumonia)

plot(deaths ~ date, pneumonia$series, xlab = "1918")

n.n

plot(goldstein/sum(goldstein) ~ nday, pneumonia$delay, type = "o",
1ty = 2, pch = 1, xlab = "days"”, ylab = "probability")

lines(gpg/sum(gpg) ~ nday, pneumonia$delay, type = "o",
1ty = 1, pch = 16)

https://www.census.gov/library/publications/1920/demo/1918-mortality-special-tables.html
https://www.census.gov/library/publications/1920/demo/1918-mortality-special-tables.html
https://doi.org/10.1073/pnas.0902958106
https://doi.org/10.1093/oxfordjournals.aje.a112781

ptpi

13

ptpi

Peak to Peak Iteration

Description

Approximates the state of an SEIR model at a reference time from an equally spaced, T'-periodic
incidence time series and other data. The algorithm relies on a strong assumption: that the incidence
time series was generated by the asymptotic dynamics of an SEIR model admitting a locally stable,
T-periodic attractor. Hence do interpret with care.

Usage

ptpi(series, sigma = 1, gamma = 1, delta = 0,

m =

1L, n = 1L, init,

start = tsp(series)[1L], end = tsp(series)[2L],
tol = 1e-03, iter.max = 32L,

backcalc

Arguments

series

FALSE, complete = FALSE, ...)

a “multiple time series” object, inheriting from class mts, with three columns
storing (“parallel”, equally spaced) time series of incidence, births, and the per
capita natural mortality rate, in that order.

sigma, gamma, delta

m

n

init
start, end
tol
iter.max
backcalc
complete

non-negative numbers. mxsigma, n*gamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

a non-negative integer indicating a number of latent stages.
a positive integer indicating a number of infectious stages.

a numeric vector of length T+m+n+1 giving an initial guess for the state at time
start.

start and end times for the iteration, whose difference should be approximately
equal to an integer number of periods. One often chooses the time of the first
peak in the incidence time series and the time of the last peak in phase with the
first.

a tolerance indicating a stopping condition; see ‘Details’.
the maximum number of iterations.

alogical indicating if the state at time tsp(series)[1] should be back-calculated
from the state at time start if that is later.

a logical indicating if intermediate states should be recorded in an array. Useful
mainly for didactic or diagnostic purposes.

optional arguments passed to deconvolve, if the first column of series repre-
sents observed incidence rather than actual or estimated incidence.

14 ptpi

Details

ptpi can be understood as an iterative application of fastbeta to a subset of series. The basic
algorithm can be expressed in R code as:

w <- window(series, start, end); i <- nrow(s); j <- seqg_along(init)
diff <- Inf; iter <- oL
while (diff > tol && iter < iter.max) {
init. <- init
init <- fastbeta(w, sigma, gamma, delta, m, n, init)[i, j]
diff <- sgrt(sum((init - init.)*2) / sum(init.*2))
iter <- iter + 1L
3

value <- init

Back-calculation involves solving a linear system of equations; the back-calculated result can mis-
lead if the system is ill-conditioned.

Value

A list with elements:

value an approximation of the state at time start or at time tsp(series)[1L], de-
pending on backcalc.

diff the relative difference between the last two approximations.

iter the number of iterations performed.

X if complete = TRUE, then a “multiple time series” object, inheriting from class

mts, with dimensions c(nrow(w), length(value), iter), where w =window(series,
start, end). x[, , k] contains the state at each time (w) in iteration k.

References

Jagan, M., deJonge, M. S., Krylova, O., & Earn, D. J. D. (2020). Fast estimation of time-varying
infectious disease transmission rates. PLOS Computational Biology, 16(9), Article e1008124, 1-39.
doi:10.1371/journal.pcbi. 1008124

Examples

if (requireNamespace("deSolve”)) withAutoprint({

data(seir.ts@1, package = "fastbeta")

a <- attributes(seir.ts01); p <- length(a[["init"]1])
str(seir.ts01)

plot(seir.tso1)

We suppose that we have perfect knowledge of incidence,

births, and the data-generating parameters, except for

the initial state, which we "guess”

series <- cbind.ts(seir.ts@1[, c("Z", "B")], mu = a[["mu"]11(Q))

https://doi.org/10.1371/journal.pcbi.1008124

seir 15

plot(series[, "Z"])
start <- 23; end <- 231
abline(v = c(start, end), 1lty = 2)

set.seed(0L)
args <- c(list(series = series),
alc("sigma”, "gamma", "delta”, "m", "n", "init")],
list(start = start, end = end, complete = TRUE))
init <- seir.ts@1[which.min(abs(time(seir.ts@1) - start)), seq_len(p)]
args[["init"]] <- init * rlnorm(p, @, 0.1)
str(args)

L <- do.call(ptpi, args)
str(lL)

S <- LL["x"11C, "s”, 1

plot(S, plot.type = "single")

lines(seir.ts@1[, "S"]1, col = "red”, lwd = 4) # the "truth”

abline(h = L[["value"]]["S"], v = start, col = "blue”, 1lwd = 4, 1ty = 2)

Relative error
L[["value"]1] / init - 1

b

seir Simulate Infectious Disease Time Series

Description

Simulates incidence time series based on an SEIR model with user-defined forcing and a simple
model for observation error.

Note that simulation code depends on availability of suggested packages adaptivetau and deSolve.
If the dependency cannot be loaded then an error is signaled.

Usage

seir(length.out = 1L,
beta, nu = function (t) @, mu = function (t) 0,
sigma = 1, gamma = 1, delta = 0,
m =1L, n = 1L, init,
stochastic = TRUE, prob = 1, delay = 1,
aggregate = FALSE, useCompiled = TRUE, ...)

A basic wrapper for the m=0L case:
sir(length.out = 1L,

beta, nu = function (t) @, mu = function (t) 0,
gamma = 1, delta = 0,

16

seir

n =1L, init,
stochastic = TRUE, prob = 1, delay = 1,

aggregate

Arguments

length.out

beta, nu, mu

= FALSE, useCompiled = TRUE, ...)

a non-negative integer indicating the time series length.

functions of one or more arguments returning transmission, birth, and natural
death rates at the time point indicated by the first argument. Arguments after the
first must be strictly optional. The functions need not be vectorized.

sigma, gamma, delta

m
n

init

stochastic

prob

delay

aggregate

useCompiled

Details

non-negative numbers. mxsigma, n*gamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

a non-negative integer indicating a number of latent stages.
a positive integer indicating a number of infectious stages.

a numeric vector of length 1+m+n+1 giving an initial state with compartments
ordered as (S, E, I, R).

a logical indicating if the simulation should be stochastic; see ‘Details’.

a numeric vector of length n such that prob[i] is the probability that an infec-
tion during interval i is eventually observed. prob of length 1 is recycled.

a numeric vector of positive length such that delay[i] is the probability that
an infection during interval j is observed during interval j+i-1, given that it is
eventually observed. delay need not sum to 1 but must not sum to 0.

a logical indicating if latent and infectious compartments should be aggregated.

a logical indicating if derivatives should be computed by compiled C functions
rather than by R functions (which may be byte-compiled). Set to FALSE only if
TRUE seems to cause problems, and in that case please report the problems with
bug.report(package = "fastbeta").

optional arguments passed to 1soda (directly) or ssa.adaptivetau (via its list
argument t1.params), depending on stochastic.

Simulations are based on an SEIR model with

» m latent stages (B, =1,...,m);

« n infectious stages (I7, j = 1,...,n);

* time-varying rates 3, v, and p of transmission, birth, and natural death; and

* constant rates mo, ny, and § of removal from each latent, infectious, and recovered com-
partment, where removal from the recovered compartment implies return to the susceptible
compartment (loss of immunity).

seir 17

seir(stochastic = FALSE) works by numerically integrating the system of ordinary differential

equations
dS Jdt= O0R —(A\t)+p®)S +u(t)
dE' Jdt = A(t)S — (mo + u(t))E?
dE /At = moE' — (mo + p(t)) B B ;
dr' Jdt = moE™ — (ny+ p()I* M) _ﬁ(t)Zj:I
A Jdt = nyl? — (ny + p() P!
drR /At = n~yI" —(S+ u(t))R

where it is understood that the independent variable ¢ is a unitless measure of time relative to an
observation interval. To get time series of incidence and births, the system is augmented with two
equations describing cumulative incidence and births

dz/dt = \(t)S

dB/dt = v(¢)
and the augmented system is numerically integrated. Observed incidence is simulated from inci-
dence by scaling the latter by prob and convolving the result with delay.

seir(stochastic = TRUE) works by simulating a Markov process corresponding to the augmented
system, as described in the reference. Observed incidence is simulated from incidence by binning
binomial samples taken with probabilities prob over future observation intervals according to multi-
nomial samples taken with probabilities delay.

Value

A “multiple time series” object, inheriting from class mts. Beneath the class, it is a length.out-
by-(1+m+n+1+2) numeric matrix with columns S, E, I, R, Z, and B, where Z and B specify incidence
and births as the number of infections and births since the previous time point.

If prob or delay is not missing, then there is an additional column Z. obs specifying observed inci-
dence as the number of infections observed since the previous time point. The first length(delay)
elements of this column contain partial counts.

References

Cao, Y., Gillespie, D. T., & Petzold, L. R. (2007). Adaptive explicit-implicit tau-leaping method
with automatic tau selection. Journal of Chemical Physics, 126(22), Article 224101, 1-9. doi:10.1063/
1.2745299

See Also

seir.auxiliary, seir.library.

Examples

if (requireNamespace("adaptivetau”)) withAutoprint({

beta <- function (t, a = 1e-01, b = 1e-05) b * (1 + a * sinpi(t / 26))

https://doi.org/10.1063/1.2745299
https://doi.org/10.1063/1.2745299

18 seir.auxiliary

nu <- function (t) 1e+@3
mu <- function (t) 1e-03

sigma <- 0.5
gamma <- 0.5
delta <- @

init <- c(S = 50200, E = 1895, I = 1892, R = 946011)

length.out <- 250L
prob <- 0.1
delay <- diff(pgamma(0:8, 2.5))

set.seed(0L)

X <- seir(length.out, beta, nu, mu, sigma, gamma, delta, init = init,
prob = prob, delay = delay, epsilon = 0.002)

i AAAAA

default epsilon = 0.05 allows too big leaps => spurious noise

##

str(X)

plot(X)

r <- 1oL

Y <- do.call(cbind.ts, replicate(r, simplify = FALSE,

seir(length.out, beta, nu, mu, sigma, gamma, delta, init = init,
prob = prob, delay = delay, epsilon = 0.002)[, "Z.obs"]))

str(Y)

plot(window(Y, start = tsp(Y)[1L] + length(delay) / tsp(Y)[3L1),
AAAAA
discards points showing edge effects due to 'delay'
##

plot.type = "single", col = seq_len(r), ylab = "Case reports”)

b

seir.auxiliary Auxiliary Functions for the SEIR Model without Forcing

Description

Calculate the basic reproduction number, endemic equilibrium, and Jacobian matrix of the SEIR
model without forcing.

Usage
seir.RO (beta, nu =0, mu = @, sigma = 1, gamma = 1, delta = 0,
m=1L, n=1L, N =1)
seir.ee (beta, nu =0, mu =0, sigma =1, gamma = 1, delta = 0,
m=1L, n=1L, N = 1)
seir.jacobian(beta, nu = @, mu = @, sigma = 1, gamma = 1, delta = 0,

m=1L, n = 1L)

seir.auxiliary 19

Arguments

beta, nu, mu, sigma, gamma, delta
non-negative numbers. beta, nu, and mu are the rates of transmission, birth, and
natural death. mxsigma, nxgamma, and delta are the rates of removal from each
latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.
a positive integer indicating a number of infectious stages.

N a non-negative number indicating a population size for the (nu == @ && mu == @)
case.

Details

If u, v = 0, then the basic reproduction number is computed as

Ro = Np/vy
and the endemic equilibrium is computed as
S v/B
E'| |wd/(mo)
I wd/(ny)
R w

where w is chosen so that the sum is V.

If o, v > 0, then the basic reproduction number is computed as
RO _ Vﬁa_m(l _ b_n)///f2

and the endemic equilibrium is computed as

S pa™/(B(1—b7"))
EYL_ fwa™ b (6 4 i)/ (mo)
I wb™ (8 + p) / (ny)
R w

where w is chosen so that the sum is v/, the population size at equilibrium, and a = 1 + p/(mo)
andb =1+ p/(ny).

Currently, none of the functions documented here are vectorized. Arguments must have length 1.

Value

seir.R@ returns a numeric vector of length 1. seir.ee returns a numeric vector of length 1+m+n+1.
seir. jacobian returns a function of one argument x (which must be a numeric vector of length
1+m+n+1) whose return value is a square numeric matrix of size length(x).

See Also

seir, for the system of ordinary differential equations on which these computations are predicated.

20 seir.library

seir.library Often Used Simulations

Description

Infectious disease time series simulated using seir, for use primarily in examples, tests, and vi-
gnettes. Users should not rely on simulation details, which may change between package versions.

Note that simulation code depends on availability of suggested packages adaptivetau and deSolve.
If the dependency cannot be loaded then the value of the data set is NULL.
Usage

if (requireNamespace("deSolve"))
data(seir.ts@1, package = "fastbeta")
else ...

if (requireNamespace("adaptivetau”))
data(seir.ts02, package = "fastbeta")
else ...
Format
A “multiple time series” object, inheriting from class mts, always a subset of the result of a call to
seir, discarding transient behaviour. Simulation parameters may be preserved as attributes.

Source

Scripts sourced by data to reproduce the simulations are located in subdirectory ‘data’ of the
fastbeta installation; see, e.g. system.file("data”, "seir.ts@1.R", package = "fastbeta"”).

See Also

seir.

Examples

if (requireNamespace("deSolve”)) withAutoprint({
data(seir.ts@1, package = "fastbeta")

str(seir.ts@1)
plot(seir.ts@1)

»
if (requireNamespace("adaptivetau”)) withAutoprint({

data(seir.ts@2, package = "fastbeta”)
str(seir.ts@2)

sir.aoi

21

plot(seir.ts@2)

b

sir.aoi

Solve the SIR Equations Structured by Age of Infection

Description

Numerically integrates the SIR equations with rates of transmission and recovery structured by age
of infection.

Usage

sir.aoi(from = @, to = from + 1, by =1,

RO, ell =1, eps = 0, n = max(length(R@), length(ell)),
init = ¢(1 - init.infected, init.infected),
init.infected = .Machine[["double.neg.eps”"]1],

weights = rep(c(1, @), c(1L, n - 1L)),

F = function (x) 1, Fargs = list(),

H = identity, Hargs = list(),

root = NULL, root.max = 1L, root.break = TRUE,
aggregate = FALSE, skip.Y = FALSE, ...)

S3 method for class 'sir.aoi'
summary(object, name = "Y", tol = 1e-6, ...)

Arguments

from, to, by passed to seq.int in order to generate an increasing, equally spaced vector of

RO

ell

eps

init

time points in units of the mean time spent infectious.

a numeric vector of length n such that sum(R@) is the basic reproduction number
and RO[j] is the contribution of infected compartment j. Otherwise, a numeric
vector of length 1, handled as equivalent to rep(R@/n, n).

a numeric vector of length n such that el1[j] is the ratio of the mean time
spent in infected compartment j and the mean time spent infectious; internally,
ell/sum(ell[R@ > @1]) is used, hence ell is determined only up to a positive
factor. Otherwise (and by default), a numeric vector of length 1, handled as
equivalent to rep(1, n).

a non-negative number giving the the ratio of the mean time spent infectious
and the mean life expectancy; eps = @ implies that life expectancy is infinite
(that there are no deaths).

a positive integer giving the number of infected compartments. Setting n and
thus overriding the default expression is necessary only if the lengths of R@ and
ell are both 1.

a numeric vector of length 2 giving initial susceptible and infected proportions.

22

init.infected

weights

F,H

Fargs, Hargs

root

root.max

root.break

aggregate
skip.Y

object

name

tol

Details

sir.aoi

a number in (0, 1] used only to define the default expression for init; see ‘Us-

5

age’.

a numeric vector of length n containing non-negative weights, defining the ini-
tial distribution of infected individuals among the infected compartments. By
default, all infected individuals occupy the first compartment.

functions returning a numeric vector of length 1 or of length equal that of the first
formal argument. The body must be symbolically differentiable with respect to
the first formal argument; see D.

lists of arguments passed to F or H. In typical usage, F and H define parametric
families of functions of one variable, and Fargs and Hargs supply parameter
values. For example: H = function(x, h) x*h, Hargs = list(h =0.996).

a function returning a numeric vector of length 1, with formal arguments (tau,
S, I,Y,dS,dI, dY, Ro, ell) (or a subset); otherwise, NULL. Roots of this

function in the interval from from to to are sought alongside the numerical
solution.

a positive integer giving a stopping condition for the root finder. Root finding
continues until the count of roots found is root . max.

a logical indicating if the solver should stop once root.max roots are found. If
TRUE, then the numerical solution ends at the last time point less than or equal
to the last root.

a logical indicating if infected compartments should be aggregated.

a logical indicating if solution of the equation for Y should not be attempted,
e.g., because that equation seems stiffer than the rest.

optional arguments passed to the solver, function 1soda in package deSolve.
an R object inheriting from class sir.aoi, typically the value of a call to sir.aoi.

a character string in colnames (object). Tail exponents of V' are approximated,
where, for example, V =Y if name = "Y" and V' = Zj I; (prevalence) if name
= n I n .

a positive number giving an upper bound on the relative change (from one time
point to the next) in the slope of log(V), defining time windows in which growth
or decay of V' is considered to be exponential.

The SIR equations with rates of transmission and recovery structured by age of infection are

ds Jdt =p(1 = S) = (32, B;FI;)H(S)
dfy /dt = (32; B FL;)H(S) — (v + p) Dy

dljp1/dt = vl — (Vi1 +)L
drR /dt =~,1I, — pR

where S, I;,R > 0,5+ ; I;+R =1, Fis aforcing function, and H is a susceptible heterogeneity
function. In general, F' and H are nonlinear. In the standard SIR equations, F' is 1 and H is the

identity function.

sir.aoi 23

Nondimensionalization using parameters Ro; = 3;/(v; + 1), ¢; = (1/(v; + n))/t+, and € =
t+/(1/p) and independent variable 7 = ¢/t , where t4. =3, >0 1/(7; + p) designates as a
natural time unit the mean time spent infectious, gives '

ds Jdr =e(1 = 5) = (32;(Ro,;/4;) FI;)H(S)
dfy /fdr = (32;(Ro/6)F1;)H(S) — (1/6 +)y
dljpa/dr = (1/6;)1; — (1)1 + €) L

dR /dr = (1/¢,)I, —€R

sir.aoi works with the nondimensional equations, dropping the last equation (which is redundant
given R=1—-5-5" ;1) and augments the resulting system of 1 4 n equations with a new
equation

dY/dr = (3_;(Ro,;/4;)F1;)(H(S) — 1/(32; Ro ;)

due to the usefulness of the solution Y in applications.

Value

A “multiple time series” object, inheriting from class sir.aoi and transitively from class mts,
storing the numerical solution. Beneath the class, it is a T-by-(1+n+1) numeric matrix of the form
cbind(S, I, Y), T<=1length(seq(from, to, by)).

If root is a function, then an attribute root.info of the form list(tau, state =cbind(S, I,
Y)) stores the first K roots of that function and the state of the system at each root, K <= root.max.

If aggregate = TRUE, then infected compartments are aggregated so that the number of columns
named I is 1 rather than n. This column stores prevalence, the proportion of the population that
is infected. For convenience, there are 5 additional columns named I.E, I.I, foi, inc, and crv.
These store the non-infectious and infectious components of prevalence (so that I.E + I.I = I), the
force of infection, incidence (so that foi * S = inc), and the curvature of Y.

The method for summary returns a numeric vector of length 2 containing the left and right “tail
exponents” of the variable V' indicated by name, defined as the asymptotic values of the slope of
log (V). NaN elements indicate that a tail exponent cannot be approximated because the time window
represented by object does not cover enough of the tail, where the meaning of “enough” is set by
tol.

Note

sir.aoi is not a special case of sir nor a generalization. The two functions were developed
independently and for different purposes: sir.aoi to validate analytical results concerning the SIR
equations as formulated here, sir to simulate incidence time series suitable for testing fastbeta.

Examples
if (requireNamespace("deSolve”)) withAutoprint({
to <- 100; by <- 0.01; RO <- c(0, 16); ell <- c(0.5, 1)

soln.peak <- sir.aoi(to = to, by = by, R0 = RO, ell = ell,
root = function (S, RQ) sum(RQ) * S - 1,
aggregate = TRUE)

24

smallpox

str(soln.peak)

info.peak <- attr(soln.peak, "root.info")
to <- 4 x info.peak[["tau"]] # a more principled endpoint

soln <- sir.aoi(to = to, by = by, R0 = RO, ell = ell,
aggregate = TRUE, atol = 0, rtol = 1e-12)

AAAA AAAA

'atol', 'rtol', ... are passed to deSolve::lsoda
head(soln)

tail(soln)

plot(soln) # dispatching stats:::plot.ts
plot(soln, log = "y")

(lamb <- summary(soln)) # left and right tail exponents

xoff <- function (x, k) x - x[k]
k <= c(16L, nrow(soln)) # c(1L, nrow(soln)) worse due to transient

plot(soln[, "Y"], log = "y", ylab = "Y")

abline(v = info.peak[["tau"]], h = info.peak[["state"11[, "Y"1,
1ty = 2, 1lwd = 2, col = "red")

for (i in 1:2)

lines(soln[k[i], "Y"]1 * exp(lamb[i] * xoff(time(soln), k[il)),
1ty = 2, 1lwd = 2, col = "red")

wrap <-
function (root, ...)
attr(sir.aoi(to = to, by = by, R0 = Ro, ell = ell,

root = root, aggregate = TRUE, ...),
"root.info")[["tau"]]
Ymax <- info.peak[["state”11[, "Y"]

NB: want *simplex roots, not *multiple* roots
L <- list(function (Y) (Y - Ymax *x 0.5) ,
function (Y) (Y - Ymax * 0.5)"2,
function (Y) (Y - Ymax),
function (Y) (Y - Ymax)*2)
lapply(L, wrap)

NB: critical values can be attained more than once

L <- list(function (Y, dY) Y - Ymax * 0.5,
function (Y, dY) if (dY > @) Y - Ymax * 0.5 else 1,
function (Y, dY) if (dY < @) Y - Ymax * 0.5 else 1)

lapply(L, wrap, root.max = 2L)

»

smallpox Smallpox Mortality in London, England, 1661-1930

smallpox 25

Description

Time series of deaths due to smallpox, deaths due to all causes, and births in London, England,
from 1661 to 1930, as recorded in the London Bills of Mortality and the Registrar General’s Weekly
Returns.

Usage

data(smallpox, package = "fastbeta")

Format
A data frame with 13923 observations of 5 variables:

from start date of the record.

nday length of the record, which is the number of days (typically 7) over which deaths and births
were counted.

smallpox count of deaths due to smallpox.
allcauses count of deaths due to all causes.
births count of births.

Source
A script generating the smallpox object from a CSV file accompanying the reference is available
as system.file("scripts”, "smallpox.R", package = "fastbeta").

A precise description of the data set and its correspondence to the original source documents is
provided in the reference.

References

Krylova, O. & Earn, D. J. D. (2020). Patterns of smallpox mortality in London, England, over three
centuries. PLOS Biology, 18(12), Article e3000506, 1-27. doi:10.1371/journal.pbio.3000506

Examples

data(smallpox, package = "fastbeta”)

str(smallpox)

table(smallpox[["nday"]]) # not all 7 days, hence:

plot(7 * smallpox / as.double(nday) ~ from, smallpox, type = "1")

https://doi.org/10.1371/journal.pbio.3000506

Index

bug.report, 2, 16

cbind, 2, 3
cbind.ts, 2

D, 22
data, 20
deconvolve, 3,7, 9, 13

fastbeta, 2,6, 8, 10, 14, 23
fastbeta-package, 2
fastbeta.bootstrap, 8
fastbeta.matrix, 10

help, 2
1soda, 16
mts, 3, 6, 8—10, 13, 14, 17, 20, 23

pneumonia, 11
ptpi, 13

seir, 8, 9,15, 19, 20
seir.auxiliary, 17, 18
seir.ee (seir.auxiliary), 18
seir.jacobian (seir.auxiliary), 18
seir.library, 17,20

seir.Ro (seir.auxiliary), 18
seir.ts@1 (seir.library), 20
seir.ts@2 (seir.library), 20
seq.int, 2/

sir, 23

sir (seir), 15

sir.aoi, 21

smallpox, 24
ssa.adaptivetau, 16
summary, 23

summary.sir.aoi (sir.aoi), 21
system.file, 12, 20, 25

ts, 2, 3
tsp, 8, 9

26

	fastbeta-package
	cbind.ts
	deconvolve
	fastbeta
	fastbeta.bootstrap
	fastbeta.matrix
	pneumonia
	ptpi
	seir
	seir.auxiliary
	seir.library
	sir.aoi
	smallpox
	Index

