
Package ‘ds4psy’
November 6, 2025

Type Package

Title Data Science for Psychologists

Version 1.2.0

Date 2025-11-05

Maintainer Hansjoerg Neth <h.neth@uni.kn>

Description All datasets and functions required for the examples and exer-
cises of the book ``Data Science for Psychologists'' (by Hansjoerg Neth, Konstanz Univer-
sity, 2025, <doi:10.5281/zenodo.7229812>), freely avail-
able at <https://bookdown.org/hneth/ds4psy/>. The book and corresponding courses intro-
duce principles and methods of data science to students of psychology and other biological or so-
cial sciences. The 'ds4psy' package primarily provides datasets, but also functions for data gener-
ation and manipulation (e.g., of text and time data) and graph-
ics that are used in the book and its exercises. All functions included in 'ds4psy' are de-
signed to be explicit and instructive, rather than efficient or elegant.

Depends R (>= 3.5.0)

Imports ggplot2, unikn

Suggests knitr, rmarkdown, spelling, testthat (>= 3.0.0)

Collate 'util_fun.R' 'num_util_fun.R' 'text_util_fun.R'
'time_util_fun.R' 'color_fun.R' 'data.R' 'data_fun.R'
'text_fun.R' 'time_fun.R' 'num_fun.R' 'theme_fun.R'
'plot_fun.R' 'start.R'

Encoding UTF-8

LazyData true

License CC BY-SA 4.0

URL https://bookdown.org/hneth/ds4psy/,

https://github.com/hneth/ds4psy/

BugReports https://github.com/hneth/ds4psy/issues

VignetteBuilder knitr

RoxygenNote 7.3.3

Language en-US

1

https://doi.org/10.5281/zenodo.7229812
https://bookdown.org/hneth/ds4psy/
https://bookdown.org/hneth/ds4psy/
https://github.com/hneth/ds4psy/
https://github.com/hneth/ds4psy/issues

2 Contents

NeedsCompilation no

Author Hansjoerg Neth [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5427-3141>)

Repository CRAN

Date/Publication 2025-11-05 23:20:13 UTC

Contents
base2dec . 4
base_digits . 6
Bushisms . 7
capitalize . 7
caseflip . 8
cclass . 9
change_time . 10
change_tz . 11
chars_to_text . 13
coin . 14
collapse_chars . 15
countries . 16
count_chars . 17
count_chars_words . 18
count_words . 19
cur_date . 20
cur_time . 21
data_1 . 22
data_2 . 23
data_t1 . 24
data_t1_de . 24
data_t1_tab . 25
data_t2 . 25
data_t3 . 26
data_t4 . 27
days_in_month . 27
dec2base . 28
dice . 30
dice_2 . 31
diff_dates . 32
diff_times . 35
diff_tz . 36
ds4psy.guide . 38
dt_10 . 38
exp_num_dt . 39
exp_wide . 40
falsePosPsy_all . 40
fame . 42
flowery . 43

https://orcid.org/0000-0001-5427-3141

Contents 3

fruits . 43
get_set . 44
i2ds_survey . 45
invert_rules . 53
is_equal . 54
is_leap_year . 55
is_vect . 56
is_wholenumber . 58
l33t_rul35 . 59
make_grid . 59
map_text_chars . 60
map_text_coord . 61
map_text_regex . 62
metachar . 65
num_as_char . 66
num_as_ordinal . 67
num_equal . 68
outliers . 70
pal_ds4psy . 70
pal_n_sq . 71
pi_100k . 72
plot_charmap . 72
plot_chars . 74
plot_circ_points . 78
plot_fn . 79
plot_fun . 80
plot_n . 82
plot_text . 84
plot_tiles . 86
posPsy_AHI_CESD . 88
posPsy_long . 90
posPsy_p_info . 91
posPsy_wide . 92
read_ascii . 93
sample_char . 94
sample_date . 95
sample_time . 96
t3 . 98
t4 . 98
table6 . 99
table7 . 100
table8 . 100
table9 . 101
tb . 102
text_to_chars . 103
text_to_sentences . 104
text_to_words . 105
theme_clean . 106

4 base2dec

theme_ds4psy . 108
theme_empty . 110
transl33t . 112
Trumpisms . 113
t_1 . 114
t_2 . 114
t_3 . 115
t_4 . 116
Umlaut . 116
what_date . 117
what_month . 119
what_time . 120
what_wday . 121
what_week . 122
what_year . 123
words_to_text . 124
zodiac . 125

Index 128

base2dec Convert a string of numeral digits from some base into decimal nota-
tion

Description

base2dec converts a sequence of numeral symbols (digits) from its notation as positional numerals
(with some base or radix) into standard decimal notation (using the base or radix of 10).

Usage

base2dec(x, base = 2)

Arguments

x A (required) sequence of numeric symbols (as a character sequence or vector of
digits).

base The base or radix of the symbols in seq. Default: base = 2 (binary).

Details

The individual digits provided in x (e.g., from "0" to "9", "A" to "F") must be defined in the specified
base (i.e., every digit value must be lower than the base or radix value). See base_digits for the
sequence of default digits.

base2dec is the complement of dec2base.

Value

An integer number (in decimal notation).

base2dec 5

See Also

dec2base converts decimal numbers into numerals in another base; as.roman converts integers into
Roman numerals.

Other numeric functions: base_digits, dec2base(), is_equal(), is_wholenumber(), num_as_char(),
num_as_ordinal(), num_equal()

Other utility functions: base_digits, dec2base(), is_equal(), is_vect(), is_wholenumber(),
num_as_char(), num_as_ordinal(), num_equal()

Examples

(a) single string input:
base2dec("11") # default base = 2
base2dec("0101")
base2dec("1010")

base2dec("11", base = 3)
base2dec("11", base = 5)
base2dec("11", base = 10)

base2dec("11", base = 12)
base2dec("11", base = 14)
base2dec("11", base = 16)

(b) numeric vectors as inputs:
base2dec(c(0, 1, 0))
base2dec(c(0, 1, 0), base = 3)

(c) character vector as inputs:
base2dec(c("0", "1", "0"))
base2dec(c("0", "1", "0"), base = 3)

(d) multi-digit vectors:
base2dec(c(1, 1))
base2dec(c(1, 1), base = 3)

Extreme values:
base2dec(rep("1", 32)) # 32 x "1"
base2dec(c("1", rep("0", 32))) # 2^32
base2dec(rep("1", 33)) # 33 x "1"
base2dec(c("1", rep("0", 33))) # 2^33

Non-standard inputs:
base2dec(" ", 2) # no non-spaces: NA
base2dec(" ?! ", 2) # no base digits: NA
base2dec(" 100 ", 2) # remove leading and trailing spaces
base2dec("- 100", 2) # handle negative inputs (value < 0)
base2dec("- -100", 2) # handle double negations
base2dec("---100", 2) # handle multiple negations

Special cases:
base2dec(NA)

6 base_digits

base2dec(0)
base2dec(c(3, 3), base = 3) # Note message!

Note:
base2dec(dec2base(012340, base = 9), base = 9)
dec2base(base2dec(043210, base = 11), base = 11)

base_digits Base digits: Sequence of numeric symbols (as named vector)

Description

base_digits provides numeral symbols (digits) for notational place-value systems with arbitrary
bases (as a named character vector).

Usage

base_digits

Format

An object of class character of length 62.

Details

Note that the elements (digits) are character symbols (i.e., numeral digits "0"-"9", "A"-"F", etc.),
whereas their names correspond to their numeric values (from 0 to length(base_digits) - 1).

Thus, the maximum base value in conversions by base2dec or dec2base is length(base_digits).

See Also

base2dec converts numerals in some base into decimal numbers; dec2base converts decimal num-
bers into numerals in another base; as.roman converts integers into Roman numerals.

Other numeric functions: base2dec(), dec2base(), is_equal(), is_wholenumber(), num_as_char(),
num_as_ordinal(), num_equal()

Other utility functions: base2dec(), dec2base(), is_equal(), is_vect(), is_wholenumber(),
num_as_char(), num_as_ordinal(), num_equal()

Examples

base_digits # named character vector, zero-indexed names
length(base_digits) # 62 (maximum base value)
base_digits[10] # 10. element ("9" with name "9")
base_digits["10"] # named element "10" ("A" with name "10")
base_digits[["10"]] # element named "10" ("A")

Bushisms 7

Bushisms Data: Bushisms

Description

Bushisms contains some phrases uttered by or attributed to U.S. president George W. Bush (the
43rd president of the United States of America, in office from January 2001 to January 2009).

Usage

Bushisms

Format

A vector of type character with length(Bushisms) = 22.

Source

Data based on https://en.wikipedia.org/wiki/Bushism.

See Also

Other datasets: Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

capitalize Capitalize initial characters in a string of text

Description

capitalize converts the first n initial characters of each element of a text string x (i.e., characters
or words) to upper- or lowercase.

Usage

capitalize(x, n = 1, upper = TRUE, as_text = FALSE)

Arguments

x A string of text (required).

n Number of initial characters to convert. Default: n = 1.

upper Convert to uppercase? Default: upper = TRUE.

as_text Treat and return x as a text (i.e., one character string)? Default: as_text =
FALSE.

https://en.wikipedia.org/wiki/Bushism

8 caseflip

Details

If as_text = TRUE, the input x is merged into one string of text and the arguments are applied to
each word.

Value

A character vector.

See Also

caseflip for converting the case of all letters; words_to_text and text_to_words for converting
character vectors and texts.

Other text objects and functions: Umlaut, caseflip(), cclass, chars_to_text(), collapse_chars(),
count_chars(), count_chars_words(), count_words(), invert_rules(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

Examples

x <- c("Hello world!", "this is a TEST sentence.", "the end.")
capitalize(x)
capitalize(tolower(x))

Options:
capitalize(x, n = 3) # leaves strings intact
capitalize(x, n = 3, as_text = TRUE) # treats strings as text
capitalize(x, n = 3, upper = FALSE) # first n in lowercase

caseflip Flip the case of characters in a string of text

Description

caseflip flips the case of all characters in a string of text x.

Usage

caseflip(x)

Arguments

x A string of text (required).

Details

Internally, caseflip uses the letters and LETTERS constants of base R and the chartr function
for replacing characters in strings of text.

cclass 9

Value

A character vector.

See Also

capitalize for converting the case of initial letters; chartr for replacing characters in strings of
text.

Other text objects and functions: Umlaut, capitalize(), cclass, chars_to_text(), collapse_chars(),
count_chars(), count_chars_words(), count_words(), invert_rules(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

Examples

x <- c("Hello world!", "This is a 1st sentence.", "This is the 2nd sentence.", "The end.")
caseflip(x)

cclass cclass provides character classes (as a named vector).

Description

cclass provides different character classes (as a named character vector).

Usage

cclass

Format

An object of class character of length 6.

Details

cclass allows illustrating matching character classes via regular expressions.

See ?base::regex for details on regular expressions and ?"'" for a list of character constants/quotes
in R.

See Also

metachar for a vector of metacharacters.

Other text objects and functions: Umlaut, capitalize(), caseflip(), chars_to_text(), collapse_chars(),
count_chars(), count_chars_words(), count_words(), invert_rules(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

10 change_time

Examples

cclass["hex"] # select by name
writeLines(cclass["pun"])
grep("[[:alpha:]]", cclass, value = TRUE)

change_time Change time and time zone (without changing time display)

Description

change_time changes the time and time zone without changing the time display.

Usage

change_time(time, tz = "")

Arguments

time Time (as a scalar or vector). If time is not a local time (of the "POSIXlt" class)
the function first tries coercing time into "POSIXlt" without changing the time
display.

tz Time zone (as character string). Default: tz = "" (i.e., current system time zone,
Sys.timezone()). See OlsonNames() for valid options.

Details

change_time expects inputs to time to be local time(s) (of the "POSIXlt" class) and a valid time
zone argument tz (as a string) and returns the same time display (but different actual times) as
calendar time(s) (of the "POSIXct" class).

Value

A calendar time of class "POSIXct".

See Also

change_tz function which preserves time but changes time display; Sys.time() function of base
R.

Other date and time functions: change_tz(), cur_date(), cur_time(), days_in_month(), diff_dates(),
diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(), what_wday(),
what_week(), what_year(), zodiac()

change_tz 11

Examples

change_time(as.POSIXlt(Sys.time()), tz = "UTC")

from "POSIXlt" time:
t1 <- as.POSIXlt("2020-01-01 10:20:30", tz = "Europe/Berlin")
change_time(t1, "Pacific/Auckland")
change_time(t1, "America/Los_Angeles")

from "POSIXct" time:
tc <- as.POSIXct("2020-07-01 12:00:00", tz = "UTC")
change_time(tc, "Pacific/Auckland")

from "Date":
dt <- as.Date("2020-12-31", tz = "Pacific/Honolulu")
change_time(dt, tz = "Pacific/Auckland")

from time "string":
ts <- "2020-12-31 20:30:45"
change_time(ts, tz = "America/Los_Angeles")

from other "string" times:
tx <- "7:30:45"
change_time(tx, tz = "Asia/Calcutta")
ty <- "1:30"
change_time(ty, tz = "Europe/London")

convert into local times:
(l1 <- as.POSIXlt("2020-06-01 10:11:12"))
change_tz(change_time(l1, "Pacific/Auckland"), tz = "UTC")
change_tz(change_time(l1, "Europe/Berlin"), tz = "UTC")
change_tz(change_time(l1, "America/New_York"), tz = "UTC")

with vector of "POSIXlt" times:
(l2 <- as.POSIXlt("2020-12-31 23:59:55", tz = "America/Los_Angeles"))
(tv <- c(l1, l2)) # uses tz of l1
change_time(tv, "America/Los_Angeles") # change time and tz

change_tz Change time zone (without changing represented time).

Description

change_tz changes the nominal time zone (i.e., the time display) without changing the actual time.

Usage

change_tz(time, tz = "")

12 change_tz

Arguments

time Time (as a scalar or vector). If time is not a calendar time (of the "POSIXct"
class) the function first tries coercing time into "POSIXct" without changing the
denoted time.

tz Time zone (as character string). Default: tz = "" (i.e., current system time zone,
Sys.timezone()). See OlsonNames() for valid options.

Details

change_tz expects inputs to time to be calendar time(s) (of the "POSIXct" class) and a valid time
zone argument tz (as a string) and returns the same time(s) as local time(s) (of the "POSIXlt" class).

Value

A local time of class "POSIXlt".

See Also

change_time function which preserves time display but changes time; Sys.time() function of
base R.

Other date and time functions: change_time(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(),
what_wday(), what_week(), what_year(), zodiac()

Examples

change_tz(Sys.time(), tz = "Pacific/Auckland")
change_tz(Sys.time(), tz = "Pacific/Honolulu")

from "POSIXct" time:
tc <- as.POSIXct("2020-07-01 12:00:00", tz = "UTC")
change_tz(tc, "Australia/Melbourne")
change_tz(tc, "Europe/Berlin")
change_tz(tc, "America/Los_Angeles")

from "POSIXlt" time:
tl <- as.POSIXlt("2020-07-01 12:00:00", tz = "UTC")
change_tz(tl, "Australia/Melbourne")
change_tz(tl, "Europe/Berlin")
change_tz(tl, "America/Los_Angeles")

from "Date":
dt <- as.Date("2020-12-31")
change_tz(dt, "Pacific/Auckland")
change_tz(dt, "Pacific/Honolulu") # Note different date!

with a vector of "POSIXct" times:
t2 <- as.POSIXct("2020-12-31 23:59:55", tz = "America/Los_Angeles")
tv <- c(tc, t2)
tv # Note: Both times in tz of tc

chars_to_text 13

change_tz(tv, "America/Los_Angeles")

chars_to_text Combine character inputs x into a single string of text.

Description

chars_to_text combines multi-element character inputs x into a single string of text (i.e., a char-
acter object of length 1), while preserving punctuation and spaces.

Usage

chars_to_text(x, sep = "")

Arguments

x A vector (required), typically a character vector.

sep Character to insert between the elements of a multi-element character vector as
input x? Default: sep = "" (i.e., add nothing).

Details

chars_to_text is an inverse function of text_to_chars.

Note that using paste(x, collapse = "") would remove spaces. See collapse_chars for a sim-
pler alternative.

Value

A character vector (of length 1).

See Also

collapse_chars for collapsing character vectors; text_to_chars for splitting text into a vector of
characters; text_to_words for splitting text into a vector of words; strsplit for splitting strings.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, collapse_chars(),
count_chars(), count_chars_words(), count_words(), invert_rules(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

14 coin

Examples

(a) One string (with spaces and punctuation):
t1 <- "Hello world! This is _A TEST_. Does this work?"
(cv <- unlist(strsplit(t1, split = "")))
(t2 <- chars_to_text(cv))
t1 == t2

(b) Multiple strings (nchar from 0 to >1):
s <- c("Hi", " ", "", "there!", " ", "", "Does THIS work?")
chars_to_text(s)

Note: Using sep argument:
chars_to_text(c("Hi there!", "How are you today?"), sep = " ")
chars_to_text(1:3, sep = " | ")

coin Flip a fair coin (with 2 sides "H" and "T") n times

Description

coin generates a sequence of events that represent the results of flipping a fair coin n times.

Usage

coin(n = 1, events = c("H", "T"))

Arguments

n Number of coin flips. Default: n = 1.

events Possible outcomes (as a vector). Default: events = c("H", "T").

Details

By default, the 2 possible events for each flip are "H" (for "heads") and "T" (for "tails").

See Also

Other sampling functions: dice(), dice_2(), sample_char(), sample_date(), sample_time()

Examples

Basics:
coin()
table(coin(n = 100))
table(coin(n = 100, events = LETTERS[1:3]))

Note an oddity:
coin(10, events = 8:9) # works as expected, but

collapse_chars 15

coin(10, events = 9:9) # odd: see sample() for an explanation.

Limits:
coin(2:3)
coin(NA)
coin(0)
coin(1/2)
coin(3, events = "X")
coin(3, events = NA)
coin(NULL, NULL)

collapse_chars Collapse character inputs x into a single string.

Description

collapse_chars converts multi-element character inputs x into a single string of text (i.e., a char-
acter object of length 1), separating its elements by sep.

Usage

collapse_chars(x, sep = " ")

Arguments

x A vector (required), typically a character vector.

sep A character inserted as separator/delimiter between elements when collapsing
multi-element strings of x. Default: sep = " " (i.e., insert 1 space between ele-
ments).

Details

As collapse_chars is a wrapper around paste(x, collapse = sep). It preserves spaces within
the elements of x.

The separator sep is only used when collapsing multi-element vectors and inserted between ele-
ments.

See chars_to_text for combining character vectors into text.

Value

A character vector (of length 1).

16 countries

See Also

chars_to_text for combining character vectors into text; text_to_chars for splitting text into a
vector of characters; text_to_words for splitting text into a vector of words; strsplit for splitting
strings.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
count_chars(), count_chars_words(), count_words(), invert_rules(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

Examples

collapse_chars(c("Hello", "world", "!"))
collapse_chars(c("_", " _ ", " _ "), sep = "|") # preserves spaces
writeLines(collapse_chars(c("Hello", "world", "!"), sep = "\n"))
collapse_chars(1:3, sep = "")

countries Data: Names of countries

Description

countries is a dataset containing the names of 197 countries (as a vector of text strings).

Usage

countries

Format

A vector of type character with length(countries) = 197.

Source

Data from https://www.gapminder.org: Original data at https://www.gapminder.org/data/
documentation/gd004/.

See Also

Other datasets: Bushisms, Trumpisms, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

https://www.gapminder.org
https://www.gapminder.org/data/documentation/gd004/
https://www.gapminder.org/data/documentation/gd004/

count_chars 17

count_chars Count the frequency of characters in a string of text

Description

count_chars provides frequency counts of the characters in a string of text x as a named numeric
vector.

Usage

count_chars(x, case_sense = TRUE, rm_specials = TRUE, sort_freq = TRUE)

Arguments

x A string of text (required).

case_sense Boolean: Distinguish lower- vs. uppercase characters? Default: case_sense =
TRUE.

rm_specials Boolean: Remove special characters? Default: rm_specials = TRUE.

sort_freq Boolean: Sort output by character frequency? Default: sort_freq = TRUE.

Details

If rm_specials = TRUE (as per default), most special (or non-word) characters are removed and not
counted. (Note that this currently works without using regular expressions.)

The quantification is case-sensitive and the resulting vector is sorted by name (alphabetically) or by
frequency (per default).

Value

A named numeric vector.

See Also

count_words for counting the frequency of words; count_chars_words for counting both charac-
ters and words; plot_chars for a corresponding plotting function.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars_words(), count_words(), invert_rules(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

18 count_chars_words

Examples

Default:
x <- c("Hello world!", "This is a 1st sentence.",

"This is the 2nd sentence.", "THE END.")
count_chars(x)

Options:
count_chars(x, case_sense = FALSE)
count_chars(x, rm_specials = FALSE)
count_chars(x, sort_freq = FALSE)

count_chars_words Count the frequency of characters and words in a string of text

Description

count_chars_words provides frequency counts of the characters and words of a string of text x on
a per character basis.

Usage

count_chars_words(x, case_sense = TRUE, sep = "|", rm_sep = TRUE)

Arguments

x A string of text (required).

case_sense Boolean: Distinguish lower- vs. uppercase characters? Default: case_sense =
TRUE.

sep Dummy character(s) to insert between elements/lines when parsing a multi-
element character vector x as input. This character is inserted to mark word
boundaries in multi-element inputs x (without punctuation at the boundary). It
should NOT occur anywhere in x, so that it can be removed again (by rm_sep =
TRUE). Default: sep = "|" (i.e., insert a vertical bar between lines).

rm_sep Should sep be removed from output? Default: rm_sep = TRUE.

Details

count_chars_words calls both count_chars and count_words and maps their results to a data
frame that contains a row for each character of x.

The quantifications are case-sensitive. Special characters (e.g., parentheses, punctuation, and spaces)
are counted as characters, but removed from word counts.

If input x consists of multiple text strings, they are collapsed with an added " " (space) between
them.

count_words 19

Value

A data frame with 4 variables (char, char_freq, word, word_freq).

See Also

count_chars for counting the frequency of characters; count_words for counting the frequency of
words; plot_chars for a character plotting function.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_words(), invert_rules(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

Examples

s1 <- ("This test is to test this function.")
head(count_chars_words(s1))
head(count_chars_words(s1, case_sense = FALSE))

s3 <- c("A 1st sentence.", "The 2nd sentence.",
"A 3rd --- and also THE FINAL --- SENTENCE.")

tail(count_chars_words(s3))
tail(count_chars_words(s3, case_sense = FALSE))

count_words Count the frequency of words in a string of text

Description

count_words provides frequency counts of the words in a string of text x as a named numeric
vector.

Usage

count_words(x, case_sense = TRUE, sort_freq = TRUE)

Arguments

x A string of text (required).
case_sense Boolean: Distinguish lower- vs. uppercase characters? Default: case_sense =

TRUE.
sort_freq Boolean: Sort output by word frequency? Default: sort_freq = TRUE.

Details

Special (or non-word) characters are removed and not counted.

The quantification is case-sensitive and the resulting vector is sorted by name (alphabetically) or by
frequency (per default).

20 cur_date

Value

A named numeric vector.

See Also

count_chars for counting the frequency of characters; count_chars_words for counting both
characters and words; plot_chars for a character plotting function.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), invert_rules(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

Examples

Default:
s3 <- c("A first sentence.", "The second sentence.",

"A third --- and also THE FINAL --- SENTENCE.")
count_words(s3) # case-sensitive, sorts by frequency

Options:
count_words(s3, case_sense = FALSE) # case insensitive
count_words(s3, sort_freq = FALSE) # sorts alphabetically

cur_date Get current date (in yyyy-mm-dd or dd-mm-yyyy format)

Description

cur_date provides a relaxed version of Sys.time() that is sufficient for most purposes.

Usage

cur_date(rev = FALSE, as_string = TRUE, sep = "-")

Arguments

rev Boolean: Reverse from "yyyy-mm-dd" to "dd-mm-yyyy" format? Default: rev
= FALSE.

as_string Boolean: Return as character string? Default: as_string = TRUE. If as_string
= FALSE, a "Date" object is returned.

sep Character: Separator to use. Default: sep = "-".

cur_time 21

Details

By default, cur_date returns Sys.Date as a character string (using current system settings and sep
for formatting). If as_string = FALSE, a "Date" object is returned.

Alternatively, consider using Sys.Date or Sys.time() to obtain the " format according to the ISO
8601 standard.

For more options, see the documentations of the date and Sys.Date functions of base R and the
formatting options for Sys.time().

Value

A character string or object of class "Date".

See Also

what_date() function to print dates with more options; date() and today() functions of the
lubridate package; date(), Sys.Date(), and Sys.time() functions of base R.

Other date and time functions: change_time(), change_tz(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(),
what_wday(), what_week(), what_year(), zodiac()

Examples

cur_date()
cur_date(sep = "/")
cur_date(rev = TRUE)
cur_date(rev = TRUE, sep = ".")

return a "Date" object:
from <- cur_date(as_string = FALSE)
class(from)

cur_time Get current time (in hh:mm or hh:mm:ss format)

Description

cur_time provides a satisficing version of Sys.time() that is sufficient for most purposes.

Usage

cur_time(seconds = FALSE, as_string = TRUE, sep = ":")

22 data_1

Arguments

seconds Boolean: Show time with seconds? Default: seconds = FALSE.

as_string Boolean: Return as character string? Default: as_string = TRUE. If as_string
= FALSE, a "POSIXct" object is returned.

sep Character: Separator to use. Default: sep = ":".

Details

By default, cur_time returns a Sys.time() as a character string (in " using current system settings.
If as_string = FALSE, a "POSIXct" (calendar time) object is returned.

For a time zone argument, see the what_time function, or the now() function of the lubridate
package.

Value

A character string or object of class "POSIXct".

See Also

what_time() function to print times with more options; now() function of the lubridate package;
Sys.time() function of base R.

Other date and time functions: change_time(), change_tz(), cur_date(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(),
what_wday(), what_week(), what_year(), zodiac()

Examples

cur_time()
cur_time(seconds = TRUE)
cur_time(sep = ".")

return a "POSIXct" object:
t <- cur_time(as_string = FALSE)
format(t, "%T %Z")

data_1 Data import data_1.

Description

data_1 is a fictitious dataset to practice importing data (from a DELIMITED file).

Usage

data_1

data_2 23

Format

A table with 100 cases (rows) and 4 variables (columns).

Source

See DELIMITED data at http://rpository.com/ds4psy/data/data_1.dat.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

data_2 Data import data_2.

Description

data_2 is a fictitious dataset to practice importing data (from a FWF file).

Usage

data_2

Format

A table with 100 cases (rows) and 4 variables (columns).

Source

See FWF data at http://rpository.com/ds4psy/data/data_2.dat.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

http://rpository.com/ds4psy/data/data_1.dat
http://rpository.com/ds4psy/data/data_2.dat

24 data_t1_de

data_t1 Data table data_t1.

Description

data_t1 is a fictitious dataset to practice importing and joining data (from a CSV file).

Usage

data_t1

Format

A table with 20 cases (rows) and 4 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/data_t1.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

data_t1_de Data import data_t1_de.

Description

data_t1_de is a fictitious dataset to practice importing data (from a CSV file, de/European style).

Usage

data_t1_de

Format

A table with 20 cases (rows) and 4 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/data_t1_de.csv.

http://rpository.com/ds4psy/data/data_t1.csv
http://rpository.com/ds4psy/data/data_t1_de.csv

data_t1_tab 25

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_tab, data_t2,
data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery, fruits,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

data_t1_tab Data import data_t1_tab.

Description

data_t1_tab is a fictitious dataset to practice importing data (from a TAB file).

Usage

data_t1_tab

Format

A table with 20 cases (rows) and 4 variables (columns).

Source

See TAB-delimited data at http://rpository.com/ds4psy/data/data_t1_tab.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t2,
data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery, fruits,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

data_t2 Data table data_t2.

Description

data_t2 is a fictitious dataset to practice importing and joining data (from a CSV file).

Usage

data_t2

Format

A table with 20 cases (rows) and 4 variables (columns).

http://rpository.com/ds4psy/data/data_t1_tab.csv

26 data_t3

Source

See CSV data at http://rpository.com/ds4psy/data/data_t2.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery, fruits,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

data_t3 Data table data_t3.

Description

data_t3 is a fictitious dataset to practice importing and joining data (from a CSV file).

Usage

data_t3

Format

A table with 20 cases (rows) and 4 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/data_t3.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery, fruits,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

http://rpository.com/ds4psy/data/data_t2.csv
http://rpository.com/ds4psy/data/data_t3.csv

data_t4 27

data_t4 Data table data_t4.

Description

data_t4 is a fictitious dataset to practice importing and joining data (from a CSV file).

Usage

data_t4

Format

A table with 20 cases (rows) and 4 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/data_t4.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery, fruits,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

days_in_month How many days are in a month (of given date)?

Description

days_in_month computes the number of days in the months of given dates (provided as a date or
time dt, or number/string denoting a 4-digit year).

Usage

days_in_month(dt = Sys.Date(), ...)

Arguments

dt Date or time (scalar or vector). Default: dt = Sys.Date(). Numbers or strings
with dates are parsed into 4-digit numbers denoting the year.

... Other parameters (passed to as.Date()).

http://rpository.com/ds4psy/data/data_t4.csv

28 dec2base

Details

The function requires dt as "Dates", rather than month names or numbers, to check for leap years
(in which February has 29 days).

Value

A named (numeric) vector.

See Also

is_leap_year to check for leap years; diff_tz for time zone-based time differences; days_in_month
function of the lubridate package.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), diff_dates(),
diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(), what_wday(),
what_week(), what_year(), zodiac()

Examples

days_in_month()

Robustness:
days_in_month(Sys.Date()) # Date
days_in_month(Sys.time()) # POSIXct
days_in_month("2020-07-01") # string
days_in_month(20200901) # number
days_in_month(c("2020-02-10 01:02:03", "2021-02-11", "2024-02-12")) # vectors of strings

For leap years:
ds <- as.Date("2020-02-20") + (365 * 0:4)
days_in_month(ds) # (2020/2024 are leap years)

dec2base Convert an integer from decimal notation into a string of numeric dig-
its in some base

Description

dec2base converts an integer from its standard decimal notation (i.e., using positional numerals
with a base or radix of 10) into a sequence of numeric symbols (digits) in some other base. See
base_digits for the sequence of default digits.

Usage

dec2base(x, base = 2)

dec2base 29

Arguments

x A (required) integer in decimal (base 10) notation or corresponding string of
digits (i.e., digits 0-9).

base The base or radix of the digits in the output. Default: base = 2 (binary).

Details

To prevent erroneous interpretations of numeric outputs, dec2base returns a sequence of digits (as
a character string).

dec2base is the complement of base2dec.

Value

A character string of digits (in base notation).

See Also

base2dec converts numerals in some base into decimal numbers; as.roman converts integers into
Roman numerals.

Other numeric functions: base2dec(), base_digits, is_equal(), is_wholenumber(), num_as_char(),
num_as_ordinal(), num_equal()

Other utility functions: base2dec(), base_digits, is_equal(), is_vect(), is_wholenumber(),
num_as_char(), num_as_ordinal(), num_equal()

Examples

(a) single numeric input:
dec2base(3) # base = 2

dec2base(8, base = 2)
dec2base(8, base = 3)
dec2base(8, base = 7)

dec2base(100, base = 5)
dec2base(100, base = 10)
dec2base(100, base = 15)

dec2base(14, base = 14)
dec2base(15, base = 15)
dec2base(16, base = 16)

dec2base(15, base = 16)
dec2base(31, base = 16)
dec2base(47, base = 16)

(b) single string input:
dec2base("7", base = 2)
dec2base("8", base = 3)

Extreme values:

30 dice

dec2base(base2dec(rep("1", 32))) # 32 x "1"
dec2base(base2dec(c("1", rep("0", 32)))) # 2^32
dec2base(base2dec(rep("1", 33))) # 33 x "1"
dec2base(base2dec(c("1", rep("0", 33)))) # 2^33

Non-standard inputs:
dec2base(" ") # only spaces: NA
dec2base("?") # no decimal digits: NA
dec2base(" 10 ", 2) # remove leading and trailing spaces
dec2base("-10", 2) # handle negative inputs (in character strings)
dec2base(" -- 10", 2) # handle multiple negations
dec2base("xy -10 ", 2) # ignore non-decimal digit prefixes

Note:
base2dec(dec2base(012340, base = 9), base = 9)
dec2base(base2dec(043210, base = 11), base = 11)

dice Throw a fair dice (with a given number of sides) n times

Description

dice generates a sequence of events that represent the results of throwing a fair dice (with a given
number of events or number of sides) n times.

Usage

dice(n = 1, events = 1:6)

Arguments

n Number of dice throws. Default: n = 1.

events Events to draw from (or number of sides). Default: events = 1:6.

Details

By default, the 6 possible events for each throw of the dice are the numbers from 1 to 6.

See Also

Other sampling functions: coin(), dice_2(), sample_char(), sample_date(), sample_time()

dice_2 31

Examples

Basics:
dice()
table(dice(10^4))

5-sided dice:
dice(events = 1:5)
table(dice(100, events = 5))

Strange dice:
dice(5, events = 8:9)
table(dice(100, LETTERS[1:3]))

Note:
dice(10, 1)
table(dice(100, 2))

Note an oddity:
dice(10, events = 8:9) # works as expected, but
dice(10, events = 9:9) # odd: see sample() for an explanation.

Limits:
dice(NA)
dice(0)
dice(1/2)
dice(2:3)
dice(5, events = NA)
dice(5, events = 1/2)
dice(NULL, NULL)

dice_2 Throw a questionable dice (with a given number of sides) n times

Description

dice_2 is a variant of dice that generates a sequence of events that represent the results of throwing
a dice (with a given number of sides) n times.

Usage

dice_2(n = 1, sides = 6)

Arguments

n Number of dice throws. Default: n = 1.

sides Number of sides. Default: sides = 6.

32 diff_dates

Details

Something is wrong with this dice. Can you examine it and measure its problems in a quantitative
fashion?

See Also

Other sampling functions: coin(), dice(), sample_char(), sample_date(), sample_time()

Examples

Basics:
dice_2()
table(dice_2(100))

10-sided dice:
dice_2(sides = 10)
table(dice_2(100, sides = 10))

Note:
dice_2(10, 1)
table(dice_2(5000, sides = 5))

Note an oddity:
dice_2(n = 10, sides = 8:9) # works, but
dice_2(n = 10, sides = 9:9) # odd: see sample() for an explanation.

diff_dates Get the difference between two dates (in human units).

Description

diff_dates computes the difference between two dates (i.e., from some from_date to some
to_date) in human measurement units (periods).

Usage

diff_dates(
from_date,
to_date = Sys.Date(),
unit = "years",
as_character = TRUE

)

diff_dates 33

Arguments

from_date From date (required, scalar or vector, as "Date"). Date of birth (DOB), assumed
to be of class "Date", and coerced into "Date" when of class "POSIXt".

to_date To date (optional, scalar or vector, as "Date"). Default: to_date = Sys.Date().
Maximum date/date of death (DOD), assumed to be of class "Date", and coerced
into "Date" when of class "POSIXt".

unit Largest measurement unit for representing results. Units represent human time
periods, rather than chronological time differences. Default: unit = "years"
for completed years, months, and days. Options available:

1. unit = "years": completed years, months, and days (default)

2. unit = "months": completed months, and days

3. unit = "days": completed days

Units may be abbreviated.

as_character Boolean: Return output as character? Default: as_character = TRUE. If as_character
= FALSE, results are returned as columns of a data frame and include from_date
and to_date.

Details

diff_dates answers questions like "How much time has elapsed between two dates?" or "How old
are you?" in human time periods of (full) years, months, and days.

Key characteristics:

• If to_date or from_date are not "Date" objects, diff_dates aims to coerce them into "Date"
objects.

• If to_date is missing (i.e., NA), to_date is set to today’s date (i.e., Sys.Date()).

• If to_date is specified, any intermittent missing values (i.e., NA) are set to today’s date (i.e.,
Sys.Date()). Thus, dead people (with both birth dates and death dates specified) do not age
any further, but people still alive (with is.na(to_date), are measured to today’s date (i.e.,
Sys.Date()).

• If to_date precedes from_date (i.e., from_date > to_date) computations are performed on
swapped days and the result is marked as negative (by a character "-") in the output.

• If the lengths of from_date and to_date differ, the shorter vector is recycled to the length of
the longer one.

By default, diff_dates provides output as (signed) character strings. For numeric outputs, use
as_character = FALSE.

Value

A character vector or data frame (with dates, sign, and numeric columns for units).

34 diff_dates

See Also

Time spans (interval as.period) in the lubridate package.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(), what_wday(),
what_week(), what_year(), zodiac()

Examples

y_100 <- Sys.Date() - (100 * 365.25) + -1:1
diff_dates(y_100)

with "to_date" argument:
y_050 <- Sys.Date() - (50 * 365.25) + -1:1
diff_dates(y_100, y_050)
diff_dates(y_100, y_050, unit = "d") # days (with decimals)

Time unit and output format:
ds_from <- as.Date("2010-01-01") + 0:2
ds_to <- as.Date("2020-03-01") # (2020 is leap year)
diff_dates(ds_from, ds_to, unit = "y", as_character = FALSE) # years
diff_dates(ds_from, ds_to, unit = "m", as_character = FALSE) # months
diff_dates(ds_from, ds_to, unit = "d", as_character = FALSE) # days

Robustness:
days_cur_year <- 365 + is_leap_year(Sys.Date())
diff_dates(Sys.time() - (1 * (60 * 60 * 24) * days_cur_year)) # for POSIXt times
diff_dates("10-08-11", "20-08-10") # for strings
diff_dates(20200228, 20200301) # for numbers (2020 is leap year)

Recycling "to_date" to length of "from_date":
y_050_2 <- Sys.Date() - (50 * 365.25)
diff_dates(y_100, y_050_2)

Note maxima and minima:
diff_dates("0000-01-01", "9999-12-31") # max. d + m + y
diff_dates("1000-06-01", "1000-06-01") # min. d + m + y

If from_date == to_date:
diff_dates("2000-01-01", "2000-01-01")

If from_date > to_date:
diff_dates("2000-01-02", "2000-01-01") # Note negation "-"
diff_dates("2000-02-01", "2000-01-01", as_character = TRUE)
diff_dates("2001-02-02", "2000-02-02", as_character = FALSE)

Test random date samples:
f_d <- sample_date(size = 10)
t_d <- sample_date(size = 10)
diff_dates(f_d, t_d, as_character = TRUE)

Using 'fame' data:

diff_times 35

dob <- as.Date(fame$DOB, format = "%B %d, %Y")
dod <- as.Date(fame$DOD, format = "%B %d, %Y")
head(diff_dates(dob, dod)) # Note: Deceased people do not age further.
head(diff_dates(dob, dod, as_character = FALSE)) # numeric outputs

diff_times Get the difference between two times (in human units).

Description

diff_times computes the difference between two times (i.e., from some from_time to some
to_time) in human measurement units (periods).

Usage

diff_times(from_time, to_time = Sys.time(), unit = "days", as_character = TRUE)

Arguments

from_time From time (required, scalar or vector, as "POSIXct"). Origin time, assumed to
be of class "POSIXct", and coerced into "POSIXct" when of class "Date" or
"POSIXlt.

to_time To time (optional, scalar or vector, as "POSIXct"). Default: to_time = Sys.time().
Maximum time, assumed to be of class "POSIXct", and coerced into "POSIXct"
when of class "Date" or "POSIXlt".

unit Largest measurement unit for representing results. Units represent human time
periods, rather than chronological time differences. Default: unit = "days" for
completed days, hours, minutes, and seconds. Options available:

1. unit = "years": completed years, months, and days (default)

2. unit = "months": completed months, and days

3. unit = "days": completed days

4. unit = "hours": completed hours

5. unit = "minutes": completed minutes

6. unit = "seconds": completed seconds

Units may be abbreviated.

as_character Boolean: Return output as character? Default: as_character = TRUE. If as_character
= FALSE, results are returned as columns of a data frame and include from_date
and to_date.

36 diff_tz

Details

diff_times answers questions like "How much time has elapsed between two dates?" or "How old
are you?" in human time periods of (full) years, months, and days.

Key characteristics:

• If to_time or from_time are not "POSIXct" objects, diff_times aims to coerce them into
"POSIXct" objects.

• If to_time is missing (i.e., NA), to_time is set to the current time (i.e., Sys.time()).

• If to_time is specified, any intermittent missing values (i.e., NA) are set to the current time
(i.e., Sys.time()).

• If to_time precedes from_time (i.e., from_time > to_time) computations are performed on
swapped times and the result is marked as negative (by a character "-") in the output.

• If the lengths of from_time and to_time differ, the shorter vector is recycled to the length of
the longer one.

By default, diff_times provides output as (signed) character strings. For numeric outputs, use
as_character = FALSE.

Value

A character vector or data frame (with times, sign, and numeric columns for units).

See Also

diff_dates for date differences; time spans (an interval as.period) in the lubridate package.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(), what_wday(),
what_week(), what_year(), zodiac()

Examples

t1 <- as.POSIXct("1969-07-13 13:53 CET") # (before UNIX epoch)
diff_times(t1, unit = "years", as_character = TRUE)
diff_times(t1, unit = "secs", as_character = TRUE)

diff_tz Get the time zone difference between two times.

Description

diff_tz computes the time difference between two times t1 and t2 that is exclusively due to both
times being in different time zones.

Usage

diff_tz(t1, t2, in_min = FALSE)

diff_tz 37

Arguments

t1 First time (required, as "POSIXt" time point/moment).

t2 Second time (required, as "POSIXt" time point/moment).

in_min Return time-zone based time difference in minutes (Boolean)? Default: in_min
= FALSE.

Details

diff_tz ignores all differences in nominal times, but allows adjusting time-based computations
for time shifts that are due to time zone differences (e.g., different locations, or changes to/from
daylight saving time, DST), rather than differences in actual times.

Internally, diff_tz determines and contrasts the POSIX conversion specifications " (in numeric
form).

If the lengths of t1 and t2 differ, the shorter vector is recycled to the length of the longer one.

Value

A character (in "HH:MM" format) or numeric vector (number of minutes).

See Also

days_in_month for the number of days in given months; is_leap_year to check for leap years.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), is_leap_year(), what_date(), what_month(), what_time(),
what_wday(), what_week(), what_year(), zodiac()

Examples

Time zones differences:
tm <- "2020-01-01 01:00:00" # nominal time
t1 <- as.POSIXct(tm, tz = "Pacific/Auckland")
t2 <- as.POSIXct(tm, tz = "Europe/Berlin")
t3 <- as.POSIXct(tm, tz = "Pacific/Honolulu")

as character (in "HH:MM"):
diff_tz(t1, t2)
diff_tz(t2, t3)
diff_tz(t1, t3)

as numeric (in minutes):
diff_tz(t1, t3, in_min = TRUE)

Compare local times (POSIXlt):
t4 <- as.POSIXlt(Sys.time(), tz = "Pacific/Auckland")
t5 <- as.POSIXlt(Sys.time(), tz = "Europe/Berlin")
diff_tz(t4, t5)
diff_tz(t4, t5, in_min = TRUE)

DSL shift: Spring ahead (on 2020-03-29: 02:00:00 > 03:00:00):

38 dt_10

s6 <- "2020-03-29 01:00:00 CET" # before DSL switch
s7 <- "2020-03-29 03:00:00 CEST" # after DSL switch
t6 <- as.POSIXct(s6, tz = "Europe/Berlin") # CET
t7 <- as.POSIXct(s7, tz = "Europe/Berlin") # CEST

diff_tz(t6, t7) # 1 hour forward
diff_tz(t6, t7, in_min = TRUE)

ds4psy.guide Open the ds4psy package’s user guide.

Description

The ds4psy package currently only contains a default vignette that provides general information
and links.

Usage

ds4psy.guide()

dt_10 Data from 10 Danish people

Description

dt_10 contains precise DOB information of 10 non-existent, but definitely Danish people.

Usage

dt_10

Format

A table with 10 cases (rows) and 7 variables (columns).

Source

See CSV data file at http://rpository.com/ds4psy/data/dt_10.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery, fruits,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

http://rpository.com/ds4psy/data/dt_10.csv

exp_num_dt 39

exp_num_dt Data from an experiment with numeracy and date-time variables

Description

exp_num_dt is a fictitious set of data describing 1000 non-existing, but surprisingly friendly people.

Usage

exp_num_dt

Format

A table with 1000 cases (rows) and 15 variables (columns).

Details

Codebook The data characterize 1000 individuals (rows) in 15 variables (columns):

• 1. name: Participant initials.

• 2. gender: Self-identified gender (as a binary variable).

• 3. bday: Day (within month) of DOB.

• 4. bmonth: Month (within year) of DOB.

• 5. byear: Year of DOB.

• 6. height: Height (in cm).

• 7. blood_type: Blood type.

• 8. bnt_1 to 11. bnt_4: Correct response to corresponding BNT question? (1: correct, 0:
incorrect).

• 12. g_iq and 13. s_iq: Scores from two IQ tests (general vs. social).

• 14. t_1 and 15. t_2: Study start and end time.

exp_num_dt was generated for practice purposes. It allows (1) converting data tables from wider
into longer format, (2) dealing with date- and time-related variables, and (3) computing, analyzing,
and visualizing test scores (e.g., numeracy, IQ).

The gender variable was converted into a binary variable (i.e., using 2 categories "female" and "not
female").

Source

See CSV data files at http://rpository.com/ds4psy/data/numeracy.csv and http://rpository.
com/ds4psy/data/dt.csv.

http://rpository.com/ds4psy/data/numeracy.csv
http://rpository.com/ds4psy/data/dt.csv
http://rpository.com/ds4psy/data/dt.csv

40 falsePosPsy_all

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_wide, falsePosPsy_all, fame, flowery, fruits, i2ds_survey,
outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide, t3, t4,
t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

exp_wide Data exp_wide.

Description

exp_wide is a fictitious dataset to practice tidying data (here: converting from wide to long format).

Usage

exp_wide

Format

A table with 10 cases (rows) and 7 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/exp_wide.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, falsePosPsy_all, fame, flowery, fruits,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

falsePosPsy_all Data: False Positive Psychology

Description

falsePosPsy_all is a dataset containing the data from 2 studies designed to highlight problematic
research practices within psychology.

Usage

falsePosPsy_all

http://rpository.com/ds4psy/data/exp_wide.csv

falsePosPsy_all 41

Format

A table with 78 cases (rows) and 19 variables (columns):

Details

Simmons, Nelson and Simonsohn (2011) published a controversial article with a necessarily false
finding. By conducting simulations and 2 simple behavioral experiments, the authors show that
flexibility in data collection, analysis, and reporting dramatically increases the rate of false-positive
findings.

study Study ID.

id Participant ID.

aged Days since participant was born (based on their self-reported birthday).

aged365 Age in years.

female Is participant a woman? 1: yes, 2: no.

dad Father’s age (in years).

mom Mother’s age (in years).

potato Did the participant hear the song ’Hot Potato’ by The Wiggles? 1: yes, 2: no.

when64 Did the participant hear the song ’When I am 64’ by The Beatles? 1: yes, 2: no.

kalimba Did the participant hear the song ’Kalimba’ by Mr. Scrub? 1: yes, 2: no.

cond In which condition was the participant? control: Subject heard the song ’Kalimba’ by Mr.
Scrub; potato: Subject heard the song ’Hot Potato’ by The Wiggles; 64: Subject heard the
song ’When I am 64’ by The Beatles.

root Could participant report the square root of 100? 1: yes, 2: no.

bird Imagine a restaurant you really like offered a 30 percent discount for dining between 4pm and
6pm. How likely would you be to take advantage of that offer? Scale from 1: very unlikely,
7: very likely.

political In the political spectrum, where would you place yourself? Scale: 1: very liberal, 2:
liberal, 3: centrist, 4: conservative, 5: very conservative.

quarterback If you had to guess who was chosen the quarterback of the year in Canada last year,
which of the following four options would you choose? 1: Dalton Bell, 2: Daryll Clark, 3:
Jarious Jackson, 4: Frank Wilczynski.

olddays How often have you referred to some past part of your life as “the good old days”? Scale:
11: never, 12: almost never, 13: sometimes, 14: often, 15: very often.

feelold How old do you feel? Scale: 1: very young, 2: young, 3: neither young nor old, 4: old, 5:
very old.

computer Computers are complicated machines. Scale from 1: strongly disagree, to 5: strongly
agree.

diner Imagine you were going to a diner for dinner tonight, how much do you think you would
like the food? Scale from 1: dislike extremely, to 9: like extremely.

See https://bookdown.org/hneth/ds4psy/B.2-datasets-false.html for codebook and more
information.

https://bookdown.org/hneth/ds4psy/B.2-datasets-false.html

42 fame

Source

Articles

• Simmons, J.P., Nelson, L.D., & Simonsohn, U. (2011). False-positive psychology: Undis-
closed flexibility in data collection and analysis allows presenting anything as significant.
Psychological Science, 22(11), 1359–1366. doi: 10.1177/0956797611417632

• Simmons, J.P., Nelson, L.D., & Simonsohn, U. (2014). Data from paper "False-Positive Psy-
chology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything
as Significant". Journal of Open Psychology Data, 2(1), e1. doi: 10.5334/jopd.aa

See files at https://openpsychologydata.metajnl.com/articles/10.5334/jopd.aa/ and the
archive at https://zenodo.org/record/7664 for original dataset.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, fame, flowery, fruits, i2ds_survey,
outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide, t3, t4,
t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

fame Data: fame

Description

fame is a dataset to practice working with dates.

fame contains the names, areas, dates of birth (DOB), and — if applicable — the dates of death
(DOD) of famous people.

Usage

fame

Format

A table with 67 cases (rows) and 4 variables (columns).

Source

Student solutions to exercises, dates mostly from https://www.wikipedia.org/.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, flowery, fruits,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

https://openpsychologydata.metajnl.com/articles/10.5334/jopd.aa/
https://zenodo.org/record/7664
https://www.wikipedia.org/

flowery 43

flowery Data: Flowery phrases

Description

flowery contains versions and variations of Gertrude Stein’s popular phrase "A rose is a rose is a
rose".

Usage

flowery

Format

A vector of type character with length(flowery) = 60.

Details

The phrase stems from Gertrude Stein’s poem "Sacred Emily" (written in 1913 and published in
1922, in "Geography and Plays"). The verbatim line in the poem actually reads "Rose is a rose is a
rose is a rose".

See https://en.wikipedia.org/wiki/Rose_is_a_rose_is_a_rose_is_a_rose for additional
variations and sources.

Source

Data based on https://en.wikipedia.org/wiki/Rose_is_a_rose_is_a_rose_is_a_rose.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, fruits,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

fruits Data: Names of fruits

Description

fruits is a dataset containing the names of 122 fruits (as a vector of text strings).

Usage

fruits

https://en.wikipedia.org/wiki/Rose_is_a_rose_is_a_rose_is_a_rose
https://en.wikipedia.org/wiki/Rose_is_a_rose_is_a_rose_is_a_rose

44 get_set

Format

A vector of type character with length(fruits) = 122.

Details

Botanically, "fruits" are the seed-bearing structures of flowering plants (angiosperms) formed from
the ovary after flowering.

In common usage, "fruits" refer to the fleshy seed-associated structures of a plant that taste sweet
or sour, and are edible in their raw state.

Source

Data based on https://simple.wikipedia.org/wiki/List_of_fruits.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

get_set Get a set of x-y coordinates (from Anscombe’s Quartet)

Description

get_set obtains a set of x/y coordinates and returns it (as a data frame).

Usage

get_set(n = 1)

Arguments

n Number of set (as an integer from 1 to 4)). Default: n = 1.

Details

Each set stems from Anscombe’s Quartet (see datasets::anscombe, hence 1 <= n <= 4) and is
returned as an 11 x 2 data frame.

Source

See ?datasets:anscombe for details and references.

See Also

Other data functions: make_grid()

https://simple.wikipedia.org/wiki/List_of_fruits

i2ds_survey 45

Examples

get_set(1)
plot(get_set(2), col = "red")

i2ds_survey Data from the i2ds online survey

Description

i2ds_survey contains pre-processed data from the i2ds online survey.

Usage

i2ds_survey

Format

On 2025-11-02, this data contains 60 participants (rows) and 116 variables (columns).

Details

Prefix codes
Many variable names have prefixes that indicate a particular type of variable:

• rv: A random variable

• c(#): A choice variable (with # alternatives)

• t: A text variable (with any input)

• tn: A text variable (with numeric input)

• crs: A course-related variable

• combined: A composite variable created by averaging either 4 or 5 individual Likert-scale
items. Depending on the item set, the resulting score was normalized (i.e., divided by 4 or 5),
and stored as a new variable.

List of variables
After pre-processing the raw data and re-arranging its variables (columns), the variable names and
their contents in the i2ds_survey tibble are as follows:

1. Key person-related variables: c4_gender A categorical (character) variable indicating the
participant’s gender identity, with possible values including "female", "male", "non-binary" or
"do not wish to respond". This variable is used for demographic analysis.

2. tn_year A numeric (double) variable indicating the year of birth (e.g., 1999, 2000, 2001,
etc.).

3. tn_month A numeric (double) variable indicating the participant’s birth month (1–12). This
variable also supports demographic profiling.

46 i2ds_survey

4. tn_day A numeric (double) variable indicating the day of birth provided by the participant
(1–31). Used for demographic purposes and potential exploratory analyses. DOB-related
variables can be used to calculate age and analyze age-related trends.

5. t_height A character variable indicating a participant’s self-described height, using various
formats and units (e.g., "1.80", "180 cm", "1,80m", or "5’11"). This variable requires pre-
processing for analysis.

6. t_pid An optional character variable capturing a participant ID, pseudonym, or other identi-
fying entry. This variable allows participants to recognize their own data without disclosing
their identity.

7. Variables indicating informed consent and willingness to share data: c2_informed_consent
A logical variable indicating whether the participant provided informed consent before starting
the study (TRUE = consent provided, FALSE = no consent provided). This variable is a pre-
requisite for ethical compliance (i.e., should be TRUE for all participants).

8. c2_use_data_2 A logical variable indicating whether a participant still agrees to allow their
data to be shared after having finished the survey (TRUE = consent provided, FALSE = no
consent provided). This variable is a pre-requisite for data re-usability in research (and should
be TRUE for all cases included here).

9. Variables indicating course membership: crs_i2ds_1 A logical variable indicating whether a
participant is currently enrolled in the course Introduction to Data Science 1: Basics (i2ds 1:
TRUE = enrolled).

10. crs_i2ds_2 A logical variable indicating whether a participant is enrolled in the course In-
troduction to Data Science 2: Applications (i2ds 2: TRUE = enrolled).

11. crs_ds4psy A logical variable indicating whether a participant is enrolled in the course Data
Science for Psychology (ds4psy: TRUE = enrolled).

12. crs_diff_kn A logical variable indicating whether a participant is enrolled in a different
course at the University of Konstanz (TRUE = yes).

13. crs_diff_else A logical variable indicating whether a participant is enrolled in a course not
at the University of Konstanz (TRUE = yes). This variable helps identifying external learners.

14. crs_self_study A logical variable indicating whether a participant is engaging with course
materials without formal enrollment (TRUE = yes). This variable reflects informal learning
engagement.

15. crs_only_study A logical variable indicating whether a participant is taking the survey only,
without engaging with course materials (TRUE = yes). This variable identifies participants not
studying R or data science.

16. t_crs_other A character variable capturing free-text input describing any other course a
participant is taking.

17. v_crs_other_dept A character variable indicating the department of the other course(s) men-
tioned in t_crs_other. This variable may facilitate grouping participants by academic disci-
pline.

18. Variables indicating (randomized) survey conditions: rv_anchor_high_low A randomized
(character) variable that indicates whether a person is to keep a relatively large or small number
in memory (i.e., assignment to either 242 or 42, respectively). This manipulation is used to
examine anchoring effects on later responses.

i2ds_survey 47

19. rv_scale_randomization A randomized (character) variable that indicates whether a person
was asked to rate their personality (from "serious" to "humorous") on a 4-point or on a 5-point
Likert scale. The variable controls for the influence of scale granularity on ratings.

20. rv_barnum_pos_neg A randomized (character) variable that indicates whether the participant
is to receive a positive or negative Barnum statement ("positive" vs. "negative"). This is used
to measure sensitivity to vague or generic personality feedback.

21. rv_sc_false_dicho_3 A randomized (character) variable indicating which version of the
scale is to be shown: a dichotomous comparison between admiration vs. respect, fear vs. love,
admiration vs. love and fear, or a single undivided scale (values: "admir_resp" "fear_love",
"admir_love" fear_resp", "single_scale"). Used to examine how scale format affects evaluative
judgments.

22. rv_wait_time A randomized (character) variable that indicates whether the participant waited
10 seconds ("short") or 30 seconds ("long") before continuing. This manipulation aims to
examine whether a longer waiting period increases the perceived credibility or value of a
following personality feedback, in line with mechanisms underlying the Barnum effect.

23. rv_political_orientation A randomized (character) variable indicating the order in which
the two political orientation scales ("left–right" and "liberal–conservative") were presented.
Possible values include "left_right, lib_cons", "left_cons, lib_right", etc. This variable is used
to control for potential order effects in political self-placement tasks.

24. rv_thinkingstyle A randomized (character) variable that indicates the order in which pairs
of thinking styles are to be presented ("deliberative vs. intuitive"; "reflective vs. sponta-
neous";" deliberative vs. spontaneous";"reflective vs. Intuitive"). The order is counterbal-
anced to reduce presentation bias in self-assessment tasks.

25. Binary choices on art preference: c2_img_sel_1 A numeric (double) variable that represents
the participant’s preferred choice between 2 images in choice Set 1. The binary variable
indicates the participant’s image preference:

• 1 corresponds to the cubist painting Les Baigneurs (the bathers), by Roger de La Fres-
naye, 1912

• 2 corresponds to the expressionist painting Badende Mädchen (bathing girls), by August
Macke, 1913

26. c2_img_sel_2 A numeric (double) variable that represents the participant’s preferred choice
between 2 images in choice Set 2. The binary variable indicates the participant’s image pref-
erence:

• 1 corresponds to the cubist painting Le Gouter (the taster, aka. tea time), by Jean Met-
zinger, 1911

• 2 corresponds to the expressionist painting La petite Jeanne, by Amedeo Modigliani, 1909
27. c2_img_sel_3 A numeric (double) variable that represents the participant’s preferred choice

between 2 images in choice Set 3. The binary variable indicates the participant’s image pref-
erence:

• 1 corresponds to the cubist painting Edtaonisl Ecclesiastic (the 1st word being an acronym
made by alternating the French words for ’star’ and ’dance’), by Francis Picabia, 1913

• 2 corresponds to the impressionist painting Femme avec parasol dans un jardin (woman
with parasol in a garden), by Pierre-Auguste Renoir, 1875

28. c2_img_sel_4 A numeric (double) variable that represents the participant’s preferred choice
between 2 images in choice Set 4. The binary variable indicates the participant’s image pref-
erence:

48 i2ds_survey

• 1 corresponds to the expressionist painting Solitude, by Alexej von Jawlensky, 1912
• 2 corresponds to the impressionist painting Pont dans le Jardin de Monet (bridge in

Monet’s garden), by Claude Monet, 1895–96

29. Variables describing habits and preferences: c7_eating_habits A categorical (character)
variable that indicates which dietary lifestyle an individual assigns to itself (1 = "vegetarian";
2 = "omnivore"; 3 = "vegan"; 4 = "pescetarian"; 5 = "flexitarian"; 6 = "carnivore"; 7 = "other").

30. t_eating_habits_other A character variable intended to capture free-text input for other
dietary descriptions; usually NA unless "other" was selected. May appear as logical if no
responses were entered.

31. c7_apple A numeric (double) variable indicating how much a participant likes apples on a
1-7 ranking scale (1 = highest preference, 7 = lowest preference, 0 if not ranked).

32. c7_cherry A numeric (double) variable indicating how much a participant likes cherries on a
1-7 ranking scale (1 = highest preference, 7 = lowest preference, 0 if not ranked).

33. c7_broccoli A numeric (double) variable indicating how much a participant likes broccoli
on a 1-7 ranking scale (1 = highest preference, 7 = lowest preference, 0 if not ranked).

34. c7_asparagus A numeric (double) variable indicating how much a participant likes asparagus
on a 1-7 ranking scale (1 = highest preference, 7 = lowest preference, 0 if not ranked).

35. c7_spinach A numeric (double) variable indicating how much a participant likes spinach on
a 1-7 ranking scale (1 = highest preference, 7 = lowest preference, 0 if not ranked).

36. c7_mud A numeric (double) variable indicating how much a participant likes mud on a 1-7
ranking scale (1 = highest preference, 7 = lowest preference, 0 if not ranked).

37. c7_banana A numeric (double) variable indicating how much a participant likes bananas on a
1-7 ranking scale (1 = highest preference, 7 = lowest preference, 0 if not ranked).
Note: Variables c7_apple to c7_banana were derived from a sorting/ranking task in which
each participant sorted/ranked food items by preference. Each item was subsequently coded
as a numeric value between 1 and 7 (0 if not ranked).

38. Responses to binary choice items: c2_decsleep_instant A categorical (character) variable
indicating whether a participant prefers to sleep before making important decisions ("sleep")
or to make them instantly ("instant").

39. c2_shopperson_online A categorical (character) variable indicating whether a participant
prefers shopping in person ("person") or online ("online").

40. c2_town_city A categorical (character) variable indicating whether a participant prefers liv-
ing in a town ("town") or in a city ("city").

41. c2_club_house A categorical (character) variable indicating whether a participant prefers to
party in a club ("club") or to attend an house party ("house").

42. c2_hotel_camping A categorical (character) variable capturing a participant’s preference for
staying in a hotel ("hotel") versus going camping ("camping").

43. c2_photo_being A categorical (character) variable indicating whether a participant prefers
photographing ("photo") or being in a moment ("being").

44. c2_spring_fall A categorical (character) variable indicating whether a participant prefers
the spring season ("spring") or the fall/autumn season ("fall").

45. c2_beach_mount A categorical (character) variable reflecting whether a participant prefers
the beach ("beach") or the mountains ("mount").

i2ds_survey 49

46. c2_cats_dogs A categorical (character) variable indicating preference for cats ("cats") versus
dogs ("dogs").

47. c2_indiv_team A categorical (character) variable indicating whether a participant prefers
individual ("indiv") or team sports ("team").

48. c2_movies_books A categorical (character) variable indicating a participant’s preference for
movies ("movies") or books ("books").

49. c2_board_video A categorical (character) variable indicating whether a participant prefers
board games ("board") or video games ("video").

50. c2_ios_android A categorical (character) variable indicating whether a participant prefers
iOS ("ios") or Android ("android") as a mobile operating system.

51. c2_text_voice A categorical (character) variable indicating whether a participant prefers
texting ("text") or sending voice messages ("voice").

52. c2_cook_bake A categorical (character) variable indicating whether a participant prefers cook-
ing ("cook") or baking ("bake").

53. c2_pinapple_no A categorical (character) variable that records whether a participant likes
pineapple on pizza ("yes") or not ("no").

54. c2_ketchup_mayo A categorical (character) variable indicating whether a participant prefers
ketchup ("ketchup") or mayonnaise ("mayo").

55. c2_coffee_tea A categorical (character) variable indicating whether a participant prefers
coffee ("coffee") or tea ("tea").

56. c2_math_lang A categorical (character) variable indicating whether a participant prefers math-
ematics ("math") or language-related subjects ("lang").

57. c2_odd_even A categorical (character) variable indicating whether a participant prefers odd
numbers ("odd") or even numbers ("even").

58. c3_diff_bin A categorical (character) variable indicating how difficult it was for a participant
to make their previous preference decisions (items 22–41) . Response options include "yes",
"a little", and "no". This item captures perceived decisional difficulty and may serve as an
indicator of response certainty, thinking style, or task engagement.

59. Variables on political opinions: politics_left A numeric (double) variable representing the
participant’s self-placement on a left–right political spectrum. Values range from 1 (left) to 6
(right).

60. politics_liberal A numeric (double) variable representing self-placement on a liberal to
conservative scale, ranging from 1 (liberal) to 6 (conservative).

61. Miscellaneous estimates, choices, opinions, and preferences: tn_estimate_sun A numeric
(double) variable capturing the participant’s estimate of how many times larger the sun’s di-
ameter is compared to that of the earth. This item serves as a manipulation check for the
anchoring effect, based on previously presented numeric anchors (e.g., 42 or 242).

62. t_att_check_1 A character variable containing the participant’s open-text response to an
attention check prompt ("Please type: ’I read the instructions’"). This attention check allows
detecting inattentive or automated responses.

63. c2_fly_invisible A categorical (character) variable indicating whether the participant would
prefer the superpower of flying ("fly") or becoming invisible ("invisible").

50 i2ds_survey

64. t_fly_invisible_explain A character variable where participants explain their choice be-
tween flying and invisibility. This free text answer allows for qualitative analysis of a partici-
pant’s justifications and motivations.

65. combined_c_ser_hum_self A numeric (double) variable reflecting a participant’s self-assessment
on a "serious vs. humorous" scale. The score is based on a 4-point or 5-point Likert scale, de-
pending on random assignment. This variable is used to test how perspective (self vs. others)
and scale format (presence vs. absence of a middle option) influences self-ratings.

66. combined_c_ser_hum_others A combined numeric (double) variable reflecting how humor-
ous or serious participants believe others to perceive them. This score is derived from either
a 4-point or 5-point scale and is used to examine the effect of perspective and scale design on
perceived external ratings.

67. c4_chronotype A categorical (character) variable indicating whether the participant identifies
as a morning person ("morning"), evening person ("evening") mid-day person ("mid-day") or
a never person ("never").

68. tn_sleep A numeric (double) variable indicating the typical number of hours the participant
typically sleeps per night.

69. tn_bedtime A character variable representing the participant’s usual bedtime, to be entered
in 24-hour format (e.g., "22:30", "00:00").

70. tn_anchor_recall_1 A numeric (double) variable recording the number (either 42 or 242)
that the participant was previously asked to memorize and later recall. It is used to test memory
for the anchor manipulation.

71. combined_admired A combined numeric (double) variable reflecting how much a participant
wants to be admired by others, rated on a 1–6 Likert scale (1 = not at all, 6 = very much).

72. combined_feared A combined numeric (double) variable reflecting how much a participant
wants to be feared by others, rated on a 1–6 Likert scale (1 = not at all, 6 = very much).

73. combined_loved A combined numeric (double) variable reflecting how much a participant
wants to be loved by others, rated on a 1–6 Likert scale (1 = not at all, 6 = very much).

74. combined_respected A combined numeric (double) variable reflecting how much a partic-
ipant wants to be respected by others, rated on a 1–6 Likert scale (1 = not at all, 6 = very
much).

75. c7_pess_opti A numeric (double) variable capturing a participant’s self-rated tendency to-
ward pessimism versus optimism, on a 7-point scale (1 = very pessimistic, 7 = very optimistic).

76. c7_story_list A numeric (double) variable indicating how much a participant enjoys listen-
ing to or reading stories, rated from 1 (not at all) to 7 (very much).

77. c7_stab_adv A numeric (double) variable indicating a participant’s self-assessed position on
a stability versus adventurousness spectrum, rated on a scale from 1 (very stable) to 7 (very
adventurous). This variable may indicate personality traits related to risk-taking.

78. think_reflect A numeric (double) variable representing a participant’s placement on a bipo-
lar scale ranging from 1 ("reflective") to 6 (either "spontaneous" or " intuitive"). The specific
version of the 2nd scale anchor is randomly assigned.

79. think_delib A numeric (double) variable representing a participant’s placement on a bipolar
scale ranging from 1 ("deliberative") to 6 (either "intuitive" or " spontaneous". The specific
version of the 2nd scale anchor is randomly assigned.

i2ds_survey 51

80. c4_intro_extrovert A categorical (character) variable indicating a participant’s self-rated
social orientation: "introverted", "extroverted", or mixed variants such as "extro-intro" or
"intro-extro".

81. tn_favorit_number A numeric (double) variable capturing a participant’s favorite number,
in free answer format.

82. c3_cutlery A categorical (character) variable indicating which piece of cutlery a participant
most identifies with. The 3 possible values include "knife", "fork", and "spoon".

83. c3_rock_paper_scissors A categorical (character) variable capturing a participant’s selec-
tion in a rock–paper–scissors scenario. The 3 possible values are "rock", "paper", or "scissors".

84. c5_att_check_2 A numeric (double) variable used as an attention check. Participants were
asked to select the number that most resembles the shape of a circle. The correct response is
0, which corresponds to scale option 5. Responses deviating from this may indicate inatten-
tiveness.

85. c6_barnum_accuracy A numeric (double) variable indicating how accurately a participant
rated a generic personality description (i.e., a Barnum statement), on a scale from 1 (poor) to
6 (perfect). This variable is used to assess susceptibility to the so-called Barnum effect (i.e.,
the tendency to perceive vague and general statements as highly accurate).

86. t_anchor_recall_2 A numeric (double) variable recording whether a participant correctly
remembered a previously presented number (either 42 or 242). This assesses memory and
anchoring manipulation success (for a 2nd time).

87. Other person-related variables: c9_occupation A categorical (character) variable indicating
a participant’s current occupational status (e.g., "student", "employed", "other"). This variable
may be used for demographic segmentation.

88. t_occupation_other A logical variable for free-text input if a participant selected "other"
for occupation. This variable captures detailed occupational descriptions not covered by the
pre-defined options.

89. c7_education A categorical (character) variable indicating a participant’s highest completed
education level (e.g., "high school", "bachelor", "master"). This variable may be used for
demographic segmentation.

90. t_education_other A logical variable to allow participants to enter their education level
in free text (if "other" was selected). This variable enables open-format responses for less
common education paths.

91. c3_current_degree A categorical (character) variable indicating the type of academic de-
gree a participant is currently pursuing (e.g, "bachelor", "master"). This variable provides
educational context for other academic measures.

92. tn_semester A numeric (double) variable indicating the current semester of study reported by
a participant (e.g., 1, 6, 10). This variable helps contextualize course experience and academic
progress.

93. c14_studyfield A categorical (character) variable indicating the participant’s field of study
(e.g., "psychology", "data science"). This variable is used to examine field-specific attitudes
and skills.

94. t_studyfield_other A character variable capturing free-text responses if the participant
selected "other" as their study field. This variable allows classification of less common disci-
plines.

52 i2ds_survey

95. Preferences for course contents: c5_pref_stats A numeric (double) variable indicating a
participant’s interest in preparing data for statistical analysis, rated on a scale from 1 (no
interest) to 5 (absolutely essential).

96. c5_pref_visualize A numeric (double) variable indicating a participant’s interest in data
visualization in R, rated on a scale from 1 (no interest) to 5 (absolutely essential).

97. c5_pref_sims A numeric (double) variable indicating a participant’s interest in using R for
simulations and modeling, rated on a scale from 1 (no interest) to 5 (absolutely essential).

98. c5_pref_shiny A numeric (double) variable capturing how essential a participant considers
learning to build interactive web applications using R Shiny. Responses range from 1 (no
interest) to 5 (absolutely essential).

99. c5_pref_scrape A numeric (double) variable capturing how essential a participant considers
learning web scraping with R. Responses range from 1 (no interest) to 5 (absolutely essential).

100. c5_pref_arts A numeric (double) variable capturing how essential a participant considers
exploring artistic or creative aspects of data science (e.g., generative art in R). Responses
range from 1 (no interest) to 5 (absolutely essential).

101. Course-related expectations and worries: t_crs_expect_i2ds_1 A character variable con-
taining free-text input describing a participant’s expectations and hopes for the course Intro-
duction to Data Science 1: Basics (i2ds 1).

102. t_crs_worry_i2ds_1 A character variable capturing free-text responses describing a partic-
ipant’s worries and reservations related to the course Introduction to Data Science 1: Basics
(i2ds 1).

103. t_crs_expect_i2ds_2 A character variable containing free-text input describing a partici-
pant’s expectations and hopes for the course Introduction to Data Science 2: Applications
(i2ds 2).

104. t_crs_worry_i2ds_2 A character variable capturing free-text input describing a participant’s
worries and reservations concerns related to the course Introduction to Data Science 2: Appli-
cations (i2ds 2).

105. t_crs_expect_ds4psy A logical variable containing free-text input describing a participant’s
expectations and hopes for the course Data Science for Psychology (ds4psy).

106. t_crs_worry_ds4psy A logical variable describing a participant’s worries and reservations
regarding the course Data Science for Psychology (ds4psy), in free text format.

107. Variables on prior experience: c6_exp_math A numeric (double) variable indicating a partic-
ipant’s self-assessed experience with mathematics, rated on a scale from 1 (no experience) to
6 (extremely experienced).

108. c6_exp_statistics A numeric (double) variable measuring a participant’s self-assessed ex-
perience with statistics, rated on a scale from 1 (no experience) to 6 (extremely experienced).

109. c6_exp_program A numeric (double) variable indicating a participant’s experience with pro-
gramming (any programming language), rated on a scale from 1 (no experience) to 6 (ex-
tremely experienced).

110. c6_exp_r A numeric (double) variable indicating a participant’s experience with R program-
ming, rated on a scale from 1 (no experience) to 6 (extremely experienced).

111. c6_exp_datavisual A numeric (double) variable capturing a participant’s prior experience
with data visualization, rated on a scale from 1 (no experience) to 6 (extremely experienced).

invert_rules 53

112. Survey feedback: t_feedback An optional character variable containing general feedback
provided by the participant regarding the survey or course. This is an open-ended text field for
final comments, impressions, or suggestions.

113. Session info: referer URL of referring page.

114. datetime Date and time of initial survey access.

115. duration Session duration (in seconds).

116. date_of_last_access Date and time of final survey access.

See the codebook and print version for additional coding details.

Missing values are represented as NA values in the data. These can be due to a participant not
providing a response to an item or to an item not being applicable to this participant.

Source

See online survey at https://ww3.unipark.de/uc/i2ds_survey/.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

invert_rules invert_rules inverts a set of encoding rules.

Description

invert_rules allows decoding messages that were encoded by a set of rules x.

Usage

invert_rules(x)

Arguments

x The rules used for encoding a message (as a named vector).

Details

x is assumed to be a named vector.

invert_rules replaces the elements of x by the names of x, and vice versa.

A message is issued if the elements of x are repeated (i.e., decoding is non-unique).

Value

A character vector.

https://ww3.unipark.de/uc/i2ds_survey/

54 is_equal

See Also

transl33t for encoding text (e.g., into leet slang); l33t_rul35 for default rules used.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

Examples

invert_rules(l33t_rul35) # Note repeated elements

Encoding and decoding a message:
(txt_0 <- "Hello world! How are you doing today?") # message
(txt_1 <- transl33t(txt_0, rules = l33t_rul35)) # encoding
(txt_2 <- transl33t(txt_1, rules = invert_rules(l33t_rul35))) # decoding

is_equal Test two vectors for pairwise (near) equality

Description

is_equal tests if two vectors x and y are pairwise equal.

Usage

is_equal(x, y, ...)

Arguments

x 1st vector to compare (required).
y 2nd vector to compare (required).
... Other parameters (passed to num_equal()).

Details

If both x and y are numeric, is_equal calls num_equal(x, y, ...) (allowing for a tolerance thresh-
old tol). Otherwise, x and y are compared by x == y.

is_equal provides a wrapper around num_equal (for numeric objects x and y) and == (otherwise).

See Also

num_equal function for comparing numeric vectors; all.equal function of the R base package;
near of the dplyr package.

Other numeric functions: base2dec(), base_digits, dec2base(), is_wholenumber(), num_as_char(),
num_as_ordinal(), num_equal()

Other utility functions: base2dec(), base_digits, dec2base(), is_vect(), is_wholenumber(),
num_as_char(), num_as_ordinal(), num_equal()

is_leap_year 55

Examples

numeric data:
is_equal(2, sqrt(2)^2)
is_equal(2, sqrt(2)^2, tol = 0)
is_equal(c(2, 3), c(sqrt(2)^2, sqrt(3)^2, 4/2, 9/3))

other data types:
is_equal((1:3 > 1), (1:3 > 2)) # logical
is_equal(c("A", "B", "c"), toupper(c("a", "b", "c"))) # character
is_equal(as.Date("2023-10-30"), Sys.Date()) # dates

factors:
is_equal((1:3 > 1), as.factor((1:3 > 2)))
is_equal(c(1, 2, 3), as.factor(c(1, 2, 3)))
is_equal(c("A", "B", "C"), as.factor(c("A", "B", "C")))

is_leap_year Is some year a so-called leap year?

Description

is_leap_year checks whether a given year (provided as a date or time dt, or number/string denot-
ing a 4-digit year) lies in a so-called leap year (i.e., a year containing a date of Feb-29).

Usage

is_leap_year(dt)

Arguments

dt Date or time (scalar or vector). Numbers or strings with dates are parsed into
4-digit numbers denoting the year.

Details

When dt is not recognized as "Date" or "POSIXt" object(s), is_leap_year aims to parse a string
dt as describing year(s) in a "dddd" (4-digit year) format, as a valid "Date" string (to retrieve the
4-digit year "%Y"), or a numeric dt as 4-digit integer(s).

is_leap_year then solves the task by verifying the numeric definition of a "leap year" (see https:
//en.wikipedia.org/wiki/Leap_year).

An alternative solution that tried using as.Date() for defining a "Date" of Feb-29 in the corre-
sponding year(s) was removed, as it evaluated NA values as FALSE.

Value

Boolean vector.

https://en.wikipedia.org/wiki/Leap_year
https://en.wikipedia.org/wiki/Leap_year

56 is_vect

Source

See https://en.wikipedia.org/wiki/Leap_year for definition.

See Also

days_in_month for the number of days in given months; diff_tz for time zone-based time differ-
ences; leap_year function of the lubridate package.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), what_date(), what_month(), what_time(), what_wday(),
what_week(), what_year(), zodiac()

Examples

is_leap_year(2020)
(days_this_year <- 365 + is_leap_year(Sys.Date()))

from dates:
is_leap_year(Sys.Date())
is_leap_year(as.Date("2022-02-28"))

from times:
is_leap_year(Sys.time())
is_leap_year(as.POSIXct("2022-10-11 10:11:12"))
is_leap_year(as.POSIXlt("2022-10-11 10:11:12"))

from non-integers:
is_leap_year(2019.5)

For vectors:
is_leap_year(2020:2028)

with dt as strings:
is_leap_year(c("2020", "2021"))
is_leap_year(c("2020-02-29 01:02:03", "2021-02-28 01:02"))

Note: Invalid date string yields error:
is_leap_year("2021-02-29")

is_vect Test for a vector (i.e., atomic vector or list).

Description

is_vect tests if x is a vector.

Usage

is_vect(x)

https://en.wikipedia.org/wiki/Leap_year

is_vect 57

Arguments

x Vector(s) to test (required).

Details

is_vect does what the base R function is.vector is not designed to do:

• is_vect() returns TRUE if x is an atomic vector or a list (irrespective of its attributes).
• is.vector() returns TRUE if x is a vector of the specified mode having no attributes other

than names, otherwise FALSE.

Internally, the function is a wrapper for is.atomic(x) | is.list(x).

Note that data frames are also vectors.

See the is_vector function of the purrr package and the base R functions is.atomic, is.list,
and is.vector, for details.

See Also

is_vect function of the purrr package; is.atomic function of the R base package; is.list
function of the R base package; is.vector function of the R base package.

Other utility functions: base2dec(), base_digits, dec2base(), is_equal(), is_wholenumber(),
num_as_char(), num_as_ordinal(), num_equal()

Examples

Define 3 types of vectors:
v1 <- 1:3 # (a) atomic vector
names(v1) <- LETTERS[v1] # with names

v2 <- v1 # (b) copy vector
attr(v2, "my_attr") <- "foo" # add an attribute
ls <- list(1, 2, "C") # (c) list

Compare:
is.vector(v1)
is.list(v1)
is_vect(v1)

is.vector(v2) # FALSE
is.list(v2)
is_vect(v2) # TRUE

is.vector(ls)
is.list(ls)
is_vect(ls)

Data frames are also vectors:
df <- as.data.frame(1:3)
is_vect(df) # is TRUE

58 is_wholenumber

is_wholenumber Test for whole numbers (i.e., integers)

Description

is_wholenumber tests if x contains only integer numbers.

Usage

is_wholenumber(x, tol = .Machine$double.eps^0.5)

Arguments

x Number(s) to test (required, accepts numeric vectors).

tol Numeric tolerance value. Default: tol = .Machine$double.eps^0.5 (see ?.Machine
for details).

Details

is_wholenumber does what the base R function is.integer is not designed to do:

• is_wholenumber() returns TRUE or FALSE depending on whether its numeric argument x
is an integer value (i.e., a "whole" number).

• is.integer() returns TRUE or FALSE depending on whether its argument is of integer type,
and FALSE if its argument is a factor.

See the documentation of is.integer for definition and details.

See Also

is.integer function of the R base package.

Other numeric functions: base2dec(), base_digits, dec2base(), is_equal(), num_as_char(),
num_as_ordinal(), num_equal()

Other utility functions: base2dec(), base_digits, dec2base(), is_equal(), is_vect(), num_as_char(),
num_as_ordinal(), num_equal()

Examples

is_wholenumber(1) # is TRUE
is_wholenumber(1/2) # is FALSE
x <- seq(1, 2, by = 0.5)
is_wholenumber(x)

Compare:
is.integer(1+2)
is_wholenumber(1+2)

l33t_rul35 59

l33t_rul35 Rules for translating text into leet/l33t slang

Description

l33t_rul35 specifies rules for translating characters into other characters (typically symbols) to
mimic leet/l33t slang (as a named character vector).

Usage

l33t_rul35

Format

An object of class character of length 13.

Details

Old (i.e., to be replaced) characters are paste(names(l33t_rul35), collapse = "").

New (i.e., replaced) characters are paste(l33t_rul35, collapse = "").

See https://en.wikipedia.org/wiki/Leet for details.

See Also

transl33t for a corresponding function.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
map_text_chars(), map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(),
text_to_sentences(), text_to_words(), transl33t(), words_to_text()

make_grid Generate a grid of x-y coordinates.

Description

make_grid generates a grid of x/y coordinates and returns it (as a data frame).

Usage

make_grid(x_min = 0, x_max = 2, y_min = 0, y_max = 1)

https://en.wikipedia.org/wiki/Leet

60 map_text_chars

Arguments

x_min Minimum x coordinate. Default: x_min = 0.

x_max Maximum x coordinate. Default: x_max = 2.

y_min Minimum y coordinate. Default: y_min = 0.

y_max Maximum y coordinate. Default: y_max = 1.

See Also

Other data functions: get_set()

Examples

make_grid()
make_grid(x_min = -3, x_max = 3, y_min = -2, y_max = 2)

map_text_chars map_text_chars maps the characters of a text string into a table (with
x/y coordinates).

Description

map_text_chars parses text (from a text string x) into a table that contains a row for each character
and x/y-coordinates corresponding to the character positions in x.

Usage

map_text_chars(x, flip_y = FALSE)

Arguments

x The text string(s) to map (required). If length(x) > 1, elements are mapped to
different lines (i.e., y-coordinates).

flip_y Boolean: Should y-coordinates be flipped, so that the lowest line in the text file
becomes y = 1, and the top line in the text file becomes y = n_lines? Default:
flip_y = FALSE.

Details

map_text_chars creates a data frame with 3 variables: Each character’s x- and y-coordinates (from
top to bottom) and a variable char for the character at these coordinates.

Note that map_text_chars was originally a part of read_ascii, but has been separated to enable
independent access to separate functionalities.

Note that map_text_chars is replaced by the simpler map_text_coord function.

map_text_coord 61

Value

A data frame with 3 variables: Each character’s x- and y-coordinates (from top to bottom) and a
variable char for the character at this coordinate.

See Also

read_ascii for parsing text from file or user input; plot_chars for a character plotting function.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(),
text_to_sentences(), text_to_words(), transl33t(), words_to_text()

map_text_coord map_text_coord maps the characters of a text string into a table (with
x/y-coordinates).

Description

map_text_coord parses text (from a text string x) into a table that contains a row for each character
and x/y-coordinates corresponding to the character positions in x.

Usage

map_text_coord(x, flip_y = FALSE, sep = "")

Arguments

x The text string(s) to map (required). If length(x) > 1, elements are mapped to
different lines (i.e., y-coordinates).

flip_y Boolean: Should y-coordinates be flipped, so that the lowest line in the text file
becomes y = 1, and the top line in the text file becomes y = n_lines? Default:
flip_y = FALSE.

sep Character to insert between the elements of a multi-element character vector as
input x? Default: sep = "" (i.e., add nothing).

Details

map_text_coord creates a data frame with 3 variables: Each character’s x- and y-coordinates (from
top to bottom) and a variable char for the character at these coordinates.

Note that map_text_coord was originally a part of read_ascii, but has been separated to enable
independent access to separate functionalities.

Value

A data frame with 3 variables: Each character’s x- and y-coordinates (from top to bottom) and a
variable char for the character at this coordinate.

62 map_text_regex

See Also

map_text_regex for mapping text to a character table and matching patterns; plot_charmap for
plotting character maps; plot_chars for creating and plotting character maps; read_ascii for
parsing text from file or user input.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_chars(), map_text_regex(), metachar, read_ascii(), text_to_chars(),
text_to_sentences(), text_to_words(), transl33t(), words_to_text()

Examples

map_text_coord("Hello world!") # 1 line of text
map_text_coord(c("Hello", "world!")) # 2 lines of text
map_text_coord(c("Hello", " ", "world!")) # 3 lines of text

Read text from file:

Create a temporary file "test.txt":
cat("Hello world!", "This is a test.",
"Can you see this text?", "Good! Please carry on...",
file = "test.txt", sep = "\n")

txt <- read_ascii("test.txt")
map_text_coord(txt)

unlink("test.txt") # clean up (by deleting file).

map_text_regex Map text to character table (allowing for matching patterns)

Description

map_text_regex parses text (from a file or user input) into a data frame that contains a row for
each character of x.

Usage

map_text_regex(
x = NA,
file = "",
lbl_hi = NA,
lbl_lo = NA,
bg_hi = NA,
bg_lo = "[[:space:]]",
lbl_rotate = NA,

map_text_regex 63

case_sense = TRUE,
lbl_tiles = TRUE,
col_lbl = "black",
col_lbl_hi = pal_ds4psy[[1]],
col_lbl_lo = pal_ds4psy[[9]],
col_bg = pal_ds4psy[[7]],
col_bg_hi = pal_ds4psy[[4]],
col_bg_lo = "white",
col_sample = FALSE,
rseed = NA,
angle_fg = c(-90, 90),
angle_bg = 0

)

Arguments

x The text to map or plot (as a character vector). Different elements denote differ-
ent lines of text. If x = NA (as per default), the file argument is used to read a
text file or user input from the Console.

file A text file to read (or its path). If file = "" (as per default), scan is used to read
user input from the Console. If a text file is stored in a sub-directory, enter its
path and name here (without any leading or trailing "." or "/").

lbl_hi Labels to highlight (as regex). Default: lbl_hi = NA.
lbl_lo Labels to de-emphasize (as regex). Default: lbl_lo = NA.
bg_hi Background tiles to highlight (as regex). Default: bg_hi = NA.
bg_lo Background tiles to de-emphasize (as regex). Default: bg_lo = "[[:space:]]".
lbl_rotate Labels to rotate (as regex). Default: lbl_rotate = NA.
case_sense Boolean: Distinguish lower- vs. uppercase characters in pattern matches? De-

fault: case_sense = TRUE.
lbl_tiles Are character labels shown? This enables pattern matching for (fg) color and

angle aesthetics. Default: lbl_tiles = TRUE (i.e., show labels).
col_lbl Default color of text labels. Default: col_lbl = "black".
col_lbl_hi Highlighting color of text labels. Default: col_lbl_hi = pal_ds4psy[[1]].
col_lbl_lo De-emphasizing color of text labels. Default: col_lbl_lo = pal_ds4psy[[9]].
col_bg Default color to fill background tiles. Default: col_bg = pal_ds4psy[[7]].
col_bg_hi Highlighting color to fill background tiles. Default: col_bg_hi = pal_ds4psy[[4]].
col_bg_lo De-emphasizing color to fill background tiles. Default: col_bg_lo = "white".
col_sample Boolean: Sample color vectors (within category)? Default: col_sample = FALSE.
rseed Random seed (number). Default: rseed = NA (using random seed).
angle_fg Angle(s) for rotating character labels matching the pattern of the lbl_rotate

expression. Default: angle_fg = c(-90, 90). If length(angle_fg) > 1, a ran-
dom value in uniform range(angle_fg) is used for every character.

angle_bg Angle(s) of rotating character labels not matching the pattern of the lbl_rotate
expression. Default: angle_bg = 0 (i.e., no rotation). If length(angle_bg) >
1, a random value in uniform range(angle_bg) is used for every character.

64 map_text_regex

Details

map_text_regex allows for regular expression (regex) to match text patterns and create correspond-
ing variables (e.g., for color or orientation).

Five regular expressions and corresponding color and angle arguments allow identifying, marking
(highlighting or de-emphasizing), and rotating those sets of characters (i.e, their text labels or fill
colors). that match the provided patterns.

The plot generated by plot_chars is character-based: Individual characters are plotted at equidis-
tant x-y-positions and the aesthetic settings provided for text labels and tile fill colors.

map_text_regex returns a plot description (as a data frame). Using this output as an input to
plot_charmap plots text in a character-based fashion (i.e., individual characters are plotted at
equidistant x-y-positions). Together, both functions replace the over-specialized plot_chars and
plot_text functions.

Value

A data frame describing a plot.

See Also

map_text_coord for mapping text to a table of character coordinates; plot_charmap for plotting
character maps; plot_chars for creating and plotting character maps; plot_text for plotting char-
acters and color tiles by frequency; read_ascii for reading text inputs into a character string.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_chars(), map_text_coord(), metachar, read_ascii(), text_to_chars(),
text_to_sentences(), text_to_words(), transl33t(), words_to_text()

Examples

(1) From text string(s):
ts <- c("Hello world!", "This is a test to test this splendid function",

"Does this work?", "That's good.", "Please carry on.")
sum(nchar(ts))

(a) simple use:
map_text_regex(ts)

(b) matching patterns (regex):
map_text_regex(ts, lbl_hi = "\\b\\w{4}\\b", bg_hi = "[good|test]",

lbl_rotate = "[^aeiou]", angle_fg = c(-45, +45))

(2) From user input:
map_text_regex() # (enter text in Console)

(3) From text file:
cat("Hello world!", "This is a test file.",
"Can you see this text?",
"Good! Please carry on...",
file = "test.txt", sep = "\n")

metachar 65

#
map_text_regex(file = "test.txt") # default
map_text_regex(file = "test.txt", lbl_hi = "[[:upper:]]", lbl_lo = "[[:punct:]]",
col_lbl_hi = "red", col_lbl_lo = "blue")
#
map_text_regex(file = "test.txt", lbl_hi = "[aeiou]", col_lbl_hi = "red",
col_bg = "white", bg_hi = "see") # mark vowels and "see" (in bg)
map_text_regex(file = "test.txt", bg_hi = "[aeiou]", col_bg_hi = "gold") # mark (bg of) vowels
#
Label options:
map_text_regex(file = "test.txt", bg_hi = "see", lbl_tiles = FALSE)
map_text_regex(file = "test.txt", angle_bg = c(-20, 20))
#
unlink("test.txt") # clean up (by deleting file).

metachar metachar provides metacharacters (as a character vector).

Description

metachar provides the metacharacters of extended regular expressions (as a character vector).

Usage

metachar

Format

An object of class character of length 12.

Details

metachar allows illustrating the notion of meta-characters in regular expressions (and provides
corresponding exemplars).

See ?base::regex for details on regular expressions and ?"'" for a list of character constants/quotes
in R.

See Also

cclass for a vector of character classes.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_chars(), map_text_coord(), map_text_regex(), read_ascii(), text_to_chars(),
text_to_sentences(), text_to_words(), transl33t(), words_to_text()

66 num_as_char

Examples

metachar
length(metachar) # 12
nchar(paste0(metachar, collapse = "")) # 12

num_as_char Convert a number into a character sequence

Description

num_as_char converts a number into a character sequence (of a specific length).

Usage

num_as_char(x, n_pre_dec = 2, n_dec = 2, sym = "0", sep = ".")

Arguments

x Number(s) to convert (required, accepts numeric vectors).

n_pre_dec Number of digits before the decimal separator. Default: n_pre_dec = 2. This
value is used to add zeros to the front of numbers. If the number of meaningful
digits prior to decimal separator is greater than n_pre_dec, this value is ignored.

n_dec Number of digits after the decimal separator. Default: n_dec = 2.

sym Symbol to add to front or back. Default: sym = 0. Using sym = " " or sym = "_"
can make sense, digits other than "0" do not.

sep Decimal separator to use. Default: sep = ".".

Details

The arguments n_pre_dec and n_dec set a number of desired digits before and after the decimal
separator sep. num_as_char tries to meet these digit numbers by adding zeros to the front and
end of x. However, when n_pre_dec is lower than the number of relevant (pre-decimal) digits, all
relevant digits are shown.

n_pre_dec also works for negative numbers, but the minus symbol is not counted as a (pre-decimal)
digit.

Caveat: Note that this function illustrates how numbers, characters, for loops, and paste() can
be combined when writing functions. It is not written efficiently or well.

See Also

Other numeric functions: base2dec(), base_digits, dec2base(), is_equal(), is_wholenumber(),
num_as_ordinal(), num_equal()

Other utility functions: base2dec(), base_digits, dec2base(), is_equal(), is_vect(), is_wholenumber(),
num_as_ordinal(), num_equal()

num_as_ordinal 67

Examples

num_as_char(1)
num_as_char(10/3)
num_as_char(1000/6)

rounding down:
num_as_char((1.3333), n_pre_dec = 0, n_dec = 0)
num_as_char((1.3333), n_pre_dec = 2, n_dec = 0)
num_as_char((1.3333), n_pre_dec = 2, n_dec = 1)

rounding up:
num_as_char(1.6666, n_pre_dec = 1, n_dec = 0)
num_as_char(1.6666, n_pre_dec = 1, n_dec = 1)
num_as_char(1.6666, n_pre_dec = 2, n_dec = 2)
num_as_char(1.6666, n_pre_dec = 2, n_dec = 3)

Note: If n_pre_dec is too small, actual number is kept:
num_as_char(11.33, n_pre_dec = 0, n_dec = 1)
num_as_char(11.66, n_pre_dec = 1, n_dec = 1)

Note:
num_as_char(1, sep = ",")
num_as_char(2, sym = " ")
num_as_char(3, sym = " ", n_dec = 0)

for vectors:
num_as_char(1:10/1, n_pre_dec = 1, n_dec = 1)
num_as_char(1:10/3, n_pre_dec = 2, n_dec = 2)

for negative numbers (adding relevant pre-decimals):
mix <- c(10.33, -10.33, 10.66, -10.66)
num_as_char(mix, n_pre_dec = 1, n_dec = 1)
num_as_char(mix, n_pre_dec = 1, n_dec = 0)

Beware of bad inputs:
num_as_char(4, sym = "8")
num_as_char(5, sym = "99")

num_as_ordinal Convert a number into an ordinal character sequence

Description

num_as_ordinal converts a given (cardinal) number into an ordinal character sequence.

Usage

num_as_ordinal(x, sep = "")

68 num_equal

Arguments

x Number(s) to convert (required, scalar or vector).

sep Decimal separator to use. Default: sep = "" (i.e., no separator).

Details

The function currently only works for the English language and does not accepts inputs that are
characters, dates, or times.

Note that the toOrdinal() function of the toOrdinal package works for multiple languages and
provides a toOrdinalDate() function.

Caveat: Note that this function illustrates how numbers, characters, for loops, and paste() can
be combined when writing functions. It is instructive, but not written efficiently or well (see the
function definition for an alternative solution using vector indexing).

See Also

toOrdinal() function of the toOrdinal package.

Other numeric functions: base2dec(), base_digits, dec2base(), is_equal(), is_wholenumber(),
num_as_char(), num_equal()

Other utility functions: base2dec(), base_digits, dec2base(), is_equal(), is_vect(), is_wholenumber(),
num_as_char(), num_equal()

Examples

num_as_ordinal(1:4)
num_as_ordinal(10:14) # all with "th"
num_as_ordinal(110:114) # all with "th"
num_as_ordinal(120:124) # 4 different suffixes
num_as_ordinal(1:15, sep = "-") # using sep

Note special cases:
num_as_ordinal(NA)
num_as_ordinal("1")
num_as_ordinal(Sys.Date())
num_as_ordinal(Sys.time())
num_as_ordinal(seq(1.99, 2.14, by = .01))

num_equal Test two numeric vectors for pairwise (near) equality

Description

num_equal tests if two numeric vectors x and y are pairwise equal (within a tolerance value ‘tol‘).

num_equal 69

Usage

num_equal(x, y, tol = .Machine$double.eps^0.5)

Arguments

x 1st numeric vector to compare (required, assumes a numeric vector).

y 2nd numeric vector to compare (required, assumes a numeric vector).

tol Numeric tolerance value. Default: tol = .Machine$double.eps^0.5 (see ?.Machine
for details).

Details

num_equal verifies that x and y are numeric and then evaluates abs(x - y) < tol. Thus, num_equal
provides a safer way to verify the (near) equality of numeric vectors than == (due to possible floating
point effects).

See Also

is_equal function for generic vectors; all.equal function of the R base package; near function
of the dplyr package.

Other numeric functions: base2dec(), base_digits, dec2base(), is_equal(), is_wholenumber(),
num_as_char(), num_as_ordinal()

Other utility functions: base2dec(), base_digits, dec2base(), is_equal(), is_vect(), is_wholenumber(),
num_as_char(), num_as_ordinal()

Examples

num_equal(2, sqrt(2)^2)

Recycling:
num_equal(c(2, 3), c(sqrt(2)^2, sqrt(3)^2, 4/2, 9/3))

Contrast:
.1 == .3/3
num_equal(.1, .3/3)

Contrast:
v <- c(.9 - .8, .8 - .7, .7 - .6, .6 - .5,

.5 - .4, .4 - .3, .3 - .2, .2 -.1, .1)
unique(v)
.1 == v
num_equal(.1, v)

70 pal_ds4psy

outliers Outlier data.

Description

outliers is a fictitious dataset containing the id, sex, and height of 1000 non-existing, but otherwise
normal people.

Usage

outliers

Format

A table with 100 cases (rows) and 3 variables (columns).

Details

Codebook

id Participant ID (as character code)

sex Gender (female vs. male)

height Height (in cm)

Source

See CSV data at http://rpository.com/ds4psy/data/out.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

pal_ds4psy ds4psy default color palette.

Description

pal_ds4psy provides a dedicated color palette.

Usage

pal_ds4psy

http://rpository.com/ds4psy/data/out.csv

pal_n_sq 71

Format

An object of class data.frame with 1 rows and 11 columns.

Details

By default, pal_ds4psy is based on pal_unikn of the unikn package.

See Also

Other color objects and functions: pal_n_sq()

pal_n_sq Get n-by-n dedicated colors of a color palette

Description

pal_n_sq returns n^2 dedicated colors of a color palette pal (up to a maximum of n = "all" col-
ors).

Usage

pal_n_sq(n = "all", pal = pal_ds4psy)

Arguments

n The desired number colors of pal (as a number) or the character string "all" (to
get all colors of pal). Default: n = "all".

pal A color palette (as a data frame). Default: pal = pal_ds4psy.

Details

Use the more specialized function unikn::usecol for choosing n dedicated colors of a known color
palette.

See Also

plot_tiles to plot tile plots.

Other color objects and functions: pal_ds4psy

Examples

pal_n_sq(1) # 1 color: seeblau3
pal_n_sq(2) # 4 colors
pal_n_sq(3) # 9 colors (5: white)
pal_n_sq(4) # 11 colors (6: white)

72 plot_charmap

pi_100k Data: 100k digits of pi.

Description

pi_100k is a dataset containing the first 100k digits of pi.

Usage

pi_100k

Format

A character of nchar(pi_100k) = 100001.

Source

See TXT data at http://rpository.com/ds4psy/data/pi_100k.txt.

Original data at http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, posPsy_AHI_CESD, posPsy_long, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

plot_charmap Plot a character map as a tile plot with text labels

Description

plot_charmap plots a character map and some aesthetics as a tile plot with text labels (using gg-
plot2).

Usage

plot_charmap(
x = NA,
file = "",
lbl_tiles = TRUE,
col_lbl = "black",
angle = 0,
cex = 3,
fontface = 1,

http://rpository.com/ds4psy/data/pi_100k.txt
http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

plot_charmap 73

family = "sans",
col_bg = "grey80",
borders = FALSE,
border_col = "white",
border_size = 0.5

)

Arguments

x A character map, as generated by map_text_coord or map_text_regex (as df).
Alternatively, some text to map or plot (as a character vector). Different ele-
ments denote different lines of text. If x = NA (as per default), the file argument
is used to read a text file or user input from the Console.

file A text file to read (or its path). If file = "" (as per default), scan is used to read
user input from the Console. If a text file is stored in a sub-directory, enter its
path and name here (without any leading or trailing "." or "/").

lbl_tiles Add character labels to tiles? Default: lbl_tiles = TRUE (i.e., show labels).

col_lbl Default color of text labels (unless specified as a column col_fg of x). Default:
col_lbl = "black".

angle Default angle of text labels (unless specified as a column of x). Default: angle
= 0.

cex Character size (numeric). Default: cex = 3.

fontface Font face of text labels (numeric). Default: fontface = 1, (from 1 to 4).

family Font family of text labels (name). Default: family = "sans". Alternative op-
tions: "sans", "serif", or "mono".

col_bg Default color to fill background tiles (unless specified as a column col_bg of x).
Default: col_bg = "grey80".

borders Boolean: Add borders to tiles? Default: borders = FALSE (i.e., no borders).

border_col Color of tile borders. Default: border_col = "white".

border_size Size of tile borders. Default: border_size = 0.5.

Details

plot_charmap is based on plot_chars. As it only contains the plotting-related parts, it assumes a
character map generated by map_text_regex as input.

The plot generated by plot_charmap is character-based: Individual characters are plotted at equidis-
tant x-y-positions and aesthetic variables are used for text labels and tile fill colors.

Value

A plot generated by ggplot2.

74 plot_chars

See Also

plot_chars for creating and plotting character maps; plot_text for plotting characters and color
tiles by frequency; map_text_regex for mapping text to a character table and matching patterns;
map_text_coord for mapping text to a table of character coordinates; read_ascii for reading text
inputs into a character string; pal_ds4psy for default color palette.

Other plot functions: plot_chars(), plot_circ_points(), plot_fn(), plot_fun(), plot_n(),
plot_text(), plot_tiles(), theme_clean(), theme_ds4psy(), theme_empty()

Examples

(0) Prepare:
ts <- c("Hello world!", "This is a test to test this splendid function",

"Does this work?", "That's good.", "Please carry on.")
sum(nchar(ts))

(1) From character map:
(a) simple:
cm_1 <- map_text_coord(x = ts, flip_y = TRUE)
plot_charmap(cm_1)

(b) pattern matching (regex):
cm_2 <- map_text_regex(ts, lbl_hi = "\\b\\w{4}\\b", bg_hi = "[good|test]",

lbl_rotate = "[^aeiou]", angle_fg = c(-45, +45))
plot_charmap(cm_2)

(2) Alternative inputs:
(a) From text string(s):
plot_charmap(ts)

(b) From user input:
plot_charmap() # (enter text in Console)

(c) From text file:
cat("Hello world!", "This is a test file.",
"Can you see this text?",
"Good! Please carry on...",
file = "test.txt", sep = "\n")

plot_charmap(file = "test.txt")

unlink("test.txt") # clean up (by deleting file).

plot_chars Plot text characters (from file or user input) and match patterns

Description

plot_chars parses text (from a file or user input) into a table and then plots its individual characters
as a tile plot (using ggplot2).

plot_chars 75

Usage

plot_chars(
x = NA,
file = "",
lbl_hi = NA,
lbl_lo = NA,
bg_hi = NA,
bg_lo = "[[:space:]]",
lbl_rotate = NA,
case_sense = TRUE,
lbl_tiles = TRUE,
angle_fg = c(-90, 90),
angle_bg = 0,
col_lbl = "black",
col_lbl_hi = pal_ds4psy[[1]],
col_lbl_lo = pal_ds4psy[[9]],
col_bg = pal_ds4psy[[7]],
col_bg_hi = pal_ds4psy[[4]],
col_bg_lo = "white",
col_sample = FALSE,
rseed = NA,
cex = 3,
fontface = 1,
family = "sans",
borders = FALSE,
border_col = "white",
border_size = 0.5

)

Arguments

x The text to plot (as a character vector). Different elements denote different lines
of text. If x = NA (as per default), the file argument is used to read a text file or
user input from the Console.

file A text file to read (or its path). If file = "" (as per default), scan is used to read
user input from the Console. If a text file is stored in a sub-directory, enter its
path and name here (without any leading or trailing "." or "/").

lbl_hi Labels to highlight (as regex). Default: lbl_hi = NA.

lbl_lo Labels to de-emphasize (as regex). Default: lbl_lo = NA.

bg_hi Background tiles to highlight (as regex). Default: bg_hi = NA.

bg_lo Background tiles to de-emphasize (as regex). Default: bg_lo = "[[:space:]]".

lbl_rotate Labels to rotate (as regex). Default: lbl_rotate = NA.

case_sense Boolean: Distinguish lower- vs. uppercase characters in pattern matches? De-
fault: case_sense = TRUE.

lbl_tiles Add character labels to tiles? Default: lbl_tiles = TRUE (i.e., show labels).

76 plot_chars

angle_fg Angle(s) for rotating character labels matching the pattern of the lbl_rotate
expression. Default: angle_fg = c(-90, 90). If length(angle_fg) > 1, a ran-
dom value in uniform range(angle_fg) is used for every character.

angle_bg Angle(s) of rotating character labels not matching the pattern of the lbl_rotate
expression. Default: angle_bg = 0 (i.e., no rotation). If length(angle_bg) >
1, a random value in uniform range(angle_bg) is used for every character.

col_lbl Default color of text labels. Default: col_lbl = "black".

col_lbl_hi Highlighting color of text labels. Default: col_lbl_hi = pal_ds4psy[[1]].

col_lbl_lo De-emphasizing color of text labels. Default: col_lbl_lo = pal_ds4psy[[9]].

col_bg Default color to fill background tiles. Default: col_bg = pal_ds4psy[[7]].

col_bg_hi Highlighting color to fill background tiles. Default: col_bg_hi = pal_ds4psy[[4]].

col_bg_lo De-emphasizing color to fill background tiles. Default: col_bg_lo = "white".

col_sample Boolean: Sample color vectors (within category)? Default: col_sample = FALSE.

rseed Random seed (number). Default: rseed = NA (using random seed).

cex Character size (numeric). Default: cex = 3.

fontface Font face of text labels (numeric). Default: fontface = 1, (from 1 to 4).

family Font family of text labels (name). Default: family = "sans". Alternative op-
tions: "sans", "serif", or "mono".

borders Boolean: Add borders to tiles? Default: borders = FALSE (i.e., no borders).

border_col Color of tile borders. Default: border_col = "white".

border_size Size of tile borders. Default: border_size = 0.5.

Details

plot_chars blurs the boundary between a text and its graphical representation by combining op-
tions for matching patterns of text with visual features for displaying characters (e.g., their color or
orientation).

plot_chars is based on plot_text, but provides additional support for detecting and displaying
characters (i.e., text labels, their orientation, and color options) based on matching regular expres-
sion (regex).

Internally, plot_chars is a wrapper that calls (1) map_text_regex for creating a character map (al-
lowing for matching patterns for some aesthetics) and (2) plot_charmap for plotting this character
map.

However, in contrast to plot_charmap, plot_chars invisibly returns a description of the plot (as a
data frame).

The plot generated by plot_chars is character-based: Individual characters are plotted at equidis-
tant x-y-positions and the aesthetic settings provided for text labels and tile fill colors.

Five regular expressions and corresponding color and angle arguments allow identifying, marking
(highlighting or de-emphasizing), and rotating those sets of characters (i.e, their text labels or fill
colors). that match the provided patterns.

Value

An invisible data frame describing the plot.

plot_chars 77

See Also

plot_charmap for plotting character maps; plot_text for plotting characters and color tiles by
frequency; map_text_coord for mapping text to a table of character coordinates; map_text_regex
for mapping text to a character table and matching patterns; read_ascii for reading text inputs into
a character string; pal_ds4psy for default color palette.

Other plot functions: plot_charmap(), plot_circ_points(), plot_fn(), plot_fun(), plot_n(),
plot_text(), plot_tiles(), theme_clean(), theme_ds4psy(), theme_empty()

Examples

(A) From text string(s):
plot_chars(x = c("Hello world!", "Does this work?",

"That's good.", "Please carry on..."))

(B) From user input:
plot_chars() # (enter text in Console)

(C) From text file:
Create and use a text file:
cat("Hello world!", "This is a test file.",
"Can you see this text?",
"Good! Please carry on...",
file = "test.txt", sep = "\n")

plot_chars(file = "test.txt") # default
plot_chars(file = "test.txt", lbl_hi = "[[:upper:]]", lbl_lo = "[[:punct:]]",
col_lbl_hi = "red", col_lbl_lo = "blue")

plot_chars(file = "test.txt", lbl_hi = "[aeiou]", col_lbl_hi = "red",
col_bg = "white", bg_hi = "see") # mark vowels and "see" (in bg)
plot_chars(file = "test.txt", bg_hi = "[aeiou]", col_bg_hi = "gold") # mark (bg of) vowels

Label options:
plot_chars(file = "test.txt", bg_hi = "see", lbl_tiles = FALSE)
plot_chars(file = "test.txt", cex = 5, family = "mono", fontface = 4, lbl_angle = c(-20, 20))

Note: plot_chars() invisibly returns a description of the plot (as df):
tb <- plot_chars(file = "test.txt", lbl_hi = "[aeiou]", lbl_rotate = TRUE)
head(tb)

unlink("test.txt") # clean up (by deleting file).

(B) From text file (in subdir):
plot_chars(file = "data-raw/txt/hello.txt") # requires txt file
plot_chars(file = "data-raw/txt/ascii.txt", lbl_hi = "[2468]", bg_lo = "[[:digit:]]",
col_lbl_hi = "red", cex = 10, fontface = 2)

(C) User input:
plot_chars() # (enter text in Console)

78 plot_circ_points

plot_circ_points Plot objects (as points) arranged on a circle

Description

plot_circ_points arranges a number of n on a circle (defined by its origin coordinates and radius).

Usage

plot_circ_points(
n = 4,
x_org = 0,
y_org = 0,
radius = 1,
show_axes = FALSE,
show_label = FALSE,
...

)

Arguments

n The number of points (or shapes defined by pch) to plot.

x_org The x-value of circle origin.

y_org The y-value of circle origin.

radius The circle radius.

show_axes Show axes? Default: show_axes = FALSE.

show_label Show a point label? Default: show_label = FALSE.

... Additional aesthetics (passed to points of graphics).

Details

The ... is passed to points of the graphics package.

See Also

Other plot functions: plot_charmap(), plot_chars(), plot_fn(), plot_fun(), plot_n(), plot_text(),
plot_tiles(), theme_clean(), theme_ds4psy(), theme_empty()

plot_fn 79

Examples

plot_circ_points(8) # default

with aesthetics of points():
plot_circ_points(n = 8, r = 10, cex = 8,

pch = sample(21:25, size = 8, replace = TRUE), bg = "deeppink")
plot_circ_points(n = 12, r = 8, show_axes = TRUE, show_label = TRUE,

cex = 6, pch = 21, lwd = 5, col = "deepskyblue", bg = "gold")

plot_fn A function to plot a plot

Description

plot_fn is a function that uses parameters for plotting a plot.

Usage

plot_fn(
x = NA,
y = 1,
A = TRUE,
B = FALSE,
C = TRUE,
D = FALSE,
E = FALSE,
F = FALSE,
f = c(rev(pal_seeblau), "white", pal_pinky),
g = "white"

)

Arguments

x Numeric (integer > 0). Default: x = NA.

y Numeric (double). Default: y = 1.

A Boolean. Default: A = TRUE.

B Boolean. Default: B = FALSE.

C Boolean. Default: C = TRUE.

D Boolean. Default: D = FALSE.

E Boolean. Default: E = FALSE.

F Boolean. Default: F = FALSE.

f A color palette (as a vector). Default: f = c(rev(pal_seeblau), "white",
pal_pinky). Note: Using colors of the unikn package by default.

g A color (e.g., a color name, as a character). Default: g = "white".

80 plot_fun

Details

plot_fn is deliberately kept cryptic and obscure to illustrate how function parameters can be ex-
plored.

plot_fn also shows that brevity in argument names should not come at the expense of clarity. In
fact, transparent argument names are absolutely essential for understanding and using a function.

plot_fn currently requires pal_seeblau and pal_pinky (from the unikn package) for its default
colors.

See Also

plot_fun for a related function; pal_ds4psy for a color palette.

Other plot functions: plot_charmap(), plot_chars(), plot_circ_points(), plot_fun(), plot_n(),
plot_text(), plot_tiles(), theme_clean(), theme_ds4psy(), theme_empty()

Examples

Basics:
plot_fn()

Exploring options:
plot_fn(x = 2, A = TRUE)
plot_fn(x = 3, A = FALSE, E = TRUE)
plot_fn(x = 4, A = TRUE, B = TRUE, D = TRUE)
plot_fn(x = 5, A = FALSE, B = TRUE, E = TRUE, f = c("black", "white", "gold"))
plot_fn(x = 7, A = TRUE, B = TRUE, F = TRUE, f = c("steelblue", "white", "forestgreen"))

plot_fun An example function to plot some plot

Description

plot_fun provides options for plotting a plot.

Usage

plot_fun(
a = NA,
b = TRUE,
c = TRUE,
d = 1,
e = FALSE,
f = FALSE,
g = FALSE,
c1 = c(rev(pal_seeblau), "white", pal_grau, "black", Bordeaux),
c2 = "black"

)

plot_fun 81

Arguments

a Numeric (integer > 0). Default: a = NA.

b Boolean. Default: b = TRUE.

c Boolean. Default: c = TRUE.

d Numeric (double). Default: d = 1.0.

e Boolean. Default: e = FALSE.

f Boolean. Default: f = FALSE.

g Boolean. Default: g = FALSE.

c1 A color palette (as a vector). Default: c1 = c(rev(pal_seeblau), "white",
pal_grau, "black", Bordeaux) (i.e., using colors of the unikn package by
default).

c2 A color (e.g., color name, as character). Default: c2 = "black".

Details

plot_fun is deliberately kept cryptic and obscure to illustrate how function parameters can be
explored.

plot_fun also shows that brevity in argument names should not come at the expense of clarity. In
fact, transparent argument names are absolutely essential for understanding and using a function.

plot_fun currently requires pal_seeblau, pal_grau, and Bordeaux (from the unikn package) for
its default colors.

See Also

plot_fn for a related function; pal_ds4psy for color palette.

Other plot functions: plot_charmap(), plot_chars(), plot_circ_points(), plot_fn(), plot_n(),
plot_text(), plot_tiles(), theme_clean(), theme_ds4psy(), theme_empty()

Examples

Basics:
plot_fun()

Exploring options:
plot_fun(a = 3, b = FALSE, e = TRUE)
plot_fun(a = 4, f = TRUE, g = TRUE, c1 = c("steelblue", "white", "firebrick"))

82 plot_n

plot_n Plot n tiles

Description

plot_n plots a row or column of n tiles on fixed or polar coordinates.

Usage

plot_n(
n = NA,
row = TRUE,
polar = FALSE,
pal = pal_ds4psy,
sort = TRUE,
borders = TRUE,
border_col = "black",
border_size = 0,
lbl_tiles = FALSE,
lbl_title = FALSE,
rseed = NA,
save = FALSE,
save_path = "images/tiles",
prefix = "",
suffix = ""

)

Arguments

n Basic number of tiles (on either side).
row Plot as a row? Default: row = TRUE (else plotted as a column).
polar Plot on polar coordinates? Default: polar = FALSE (i.e., using fixed coordi-

nates).
pal A color palette (automatically extended to n colors). Default: pal = pal_ds4psy.
sort Sort tiles? Default: sort = TRUE (i.e., sorted tiles).
borders Add borders to tiles? Default: borders = TRUE (i.e., use borders).
border_col Color of borders (if borders = TRUE). Default: border_col = "black".
border_size Size of borders (if borders = TRUE). Default: border_size = 0 (i.e., invisible).
lbl_tiles Add numeric labels to tiles? Default: lbl_tiles = FALSE (i.e., no labels).
lbl_title Add numeric label (of n) to plot? Default: lbl_title = FALSE (i.e., no title).
rseed Random seed (number). Default: rseed = NA (using random seed).
save Save plot as png file? Default: save = FALSE.
save_path Path to save plot (if save = TRUE). Default: save_path = "images/tiles".
prefix Prefix to plot name (if save = TRUE). Default: prefix = "".
suffix Suffix to plot name (if save = TRUE). Default: suffix = "".

plot_n 83

Details

Note that a polar row makes a tasty pie, whereas a polar column makes a target plot.

See Also

pal_ds4psy for default color palette.

Other plot functions: plot_charmap(), plot_chars(), plot_circ_points(), plot_fn(), plot_fun(),
plot_text(), plot_tiles(), theme_clean(), theme_ds4psy(), theme_empty()

Examples

(1) Basics (as ROW or COL):
plot_n() # default plot (random n, row = TRUE, with borders, no labels)
plot_n(row = FALSE) # default plot (random n, with borders, no labels)

plot_n(n = 4, sort = FALSE) # random order
plot_n(n = 6, borders = FALSE) # no borders
plot_n(n = 8, lbl_tiles = TRUE, # with tile +

lbl_title = TRUE) # title labels

Set colors:
plot_n(n = 5, row = TRUE, lbl_tiles = TRUE, lbl_title = TRUE,

pal = c("orange", "white", "firebrick"),
border_col = "white", border_size = 2)

Fixed rseed:
plot_n(n = 4, sort = FALSE, borders = FALSE,

lbl_tiles = TRUE, lbl_title = TRUE, rseed = 101)

(2) polar plot (as PIE or TARGET):
plot_n(polar = TRUE) # PIE plot (with borders, no labels)
plot_n(polar = TRUE, row = FALSE) # TARGET plot (with borders, no labels)

plot_n(n = 4, polar = TRUE, sort = FALSE) # PIE in random order
plot_n(n = 5, polar = TRUE, row = FALSE, borders = FALSE) # TARGET no borders
plot_n(n = 5, polar = TRUE, lbl_tiles = TRUE) # PIE with tile labels
plot_n(n = 5, polar = TRUE, row = FALSE, lbl_title = TRUE) # TARGET with title label

plot_n(n = 4, row = TRUE, sort = FALSE, borders = TRUE,
border_col = "white", border_size = 2,
polar = TRUE, rseed = 132)
plot_n(n = 4, row = FALSE, sort = FALSE, borders = TRUE,
border_col = "white", border_size = 2,
polar = TRUE, rseed = 134)

84 plot_text

plot_text Plot text characters (from file or user input)

Description

plot_text parses text (from a file or from user input) and plots its individual characters as a tile
plot (using ggplot2).

Usage

plot_text(
x = NA,
file = "",
char_bg = " ",
lbl_tiles = TRUE,
lbl_rotate = FALSE,
cex = 3,
fontface = 1,
family = "sans",
col_lbl = "black",
col_bg = "white",
pal = pal_ds4psy[1:5],
pal_extend = TRUE,
case_sense = FALSE,
borders = TRUE,
border_col = "white",
border_size = 0.5

)

Arguments

x The text to plot (as a character vector). Different elements denote different lines
of text. If x = NA (as per default), the file argument is used to read a text file or
scan user input (entering text in Console).

file A text file to read (or its path). If file = "" (as per default), scan is used to read
user input from the Console. If a text file is stored in a sub-directory, enter its
path and name here (without any leading or trailing "." or "/").

char_bg Character used as background. Default: char_bg = " ". If char_bg = NA, the
most frequent character is used.

lbl_tiles Add character labels to tiles? Default: lbl_tiles = TRUE (i.e., show labels).

lbl_rotate Rotate character labels? Default: lbl_rotate = FALSE (i.e., no rotation).

cex Character size (numeric). Default: cex = 3.

fontface Font face of text labels (numeric). Default: fontface = 1, (from 1 to 4).

family Font family of text labels (name). Default: family = "sans". Alternative op-
tions: "sans", "serif", or "mono".

plot_text 85

col_lbl Color of text labels. Default: col_lbl = "black" (if lbl_tiles = TRUE).

col_bg Color of char_bg (if defined), or the most frequent character in text (typically "
"). Default: col_bg = "white".

pal Color palette for filling tiles of text (used in order of character frequency). De-
fault: pal = pal_ds4psy[1:5] (i.e., shades of Seeblau).

pal_extend Boolean: Should pal be extended to match the number of different characters
in text? Default: pal_extend = TRUE. If pal_extend = FALSE, only the tiles of
the length(pal) most frequent characters will be filled by the colors of pal.

case_sense Boolean: Distinguish lower- vs. uppercase characters? Default: case_sense =
FALSE.

borders Boolean: Add borders to tiles? Default: borders = TRUE (i.e., use borders).

border_col Color of borders (if borders = TRUE). Default: border_col = "white".

border_size Size of borders (if borders = TRUE). Default: border_size = 0.5.

Details

plot_text blurs the boundary between a text and its graphical representation by adding visual
options for coloring characters based on their frequency counts. (Note that plot_chars provides
additional support for matching regular expressions.)

plot_text is character-based: Individual characters are plotted at equidistant x-y-positions with
color settings for text labels and tile fill colors.

By default, the color palette pal (used for tile fill colors) is scaled to indicate character frequency.

plot_text invisibly returns a description of the plot (as a data frame).

Value

An invisible data frame describing the plot.

See Also

plot_charmap for plotting character maps; plot_chars for creating and plotting character maps;
map_text_coord for mapping text to a table of character coordinates; map_text_regex for map-
ping text to a character table and matching patterns; read_ascii for parsing text from file or user
input; pal_ds4psy for default color palette.

Other plot functions: plot_charmap(), plot_chars(), plot_circ_points(), plot_fn(), plot_fun(),
plot_n(), plot_tiles(), theme_clean(), theme_ds4psy(), theme_empty()

Examples

(A) From text string(s):
plot_text(x = c("Hello", "world!"))
plot_text(x = c("Hello world!", "How are you today?"))

(B) From user input:
plot_text() # (enter text in Console)

(C) From text file:

86 plot_tiles

Create a temporary file "test.txt":
cat("Hello world!", "This is a test file.",
"Can you see this text?",
"Good! Please carry on...",
file = "test.txt", sep = "\n")

plot_text(file = "test.txt")

Set colors, pal_extend, and case_sense:
cols <- c("steelblue", "skyblue", "lightgrey")
cols <- c("firebrick", "olivedrab", "steelblue", "orange", "gold")
plot_text(file = "test.txt", pal = cols, pal_extend = TRUE)
plot_text(file = "test.txt", pal = cols, pal_extend = FALSE)
plot_text(file = "test.txt", pal = cols, pal_extend = FALSE, case_sense = TRUE)

Customize text and grid options:
plot_text(file = "test.txt", col_lbl = "darkblue", cex = 4, family = "sans", fontface = 3,
pal = "gold1", pal_extend = TRUE, border_col = NA)
plot_text(file = "test.txt", family = "serif", cex = 6, lbl_rotate = TRUE,
pal = NA, borders = FALSE)
plot_text(file = "test.txt", col_lbl = "white", pal = c("green3", "black"),
border_col = "black", border_size = .2)

Color ranges:
plot_text(file = "test.txt", pal = c("red2", "orange", "gold"))
plot_text(file = "test.txt", pal = c("olivedrab4", "gold"))

unlink("test.txt") # clean up.

(B) From text file (in subdir):
plot_text(file = "data-raw/txt/hello.txt") # requires txt file
plot_text(file = "data-raw/txt/ascii.txt", cex = 5,
col_bg = "grey", char_bg = "-")

(C) From user input:
plot_text() # (enter text in Console)

plot_tiles Plot n-by-n tiles.

Description

plot_tiles plots an area of n-by-n tiles on fixed or polar coordinates.

Usage

plot_tiles(

plot_tiles 87

n = NA,
pal = pal_ds4psy,
sort = TRUE,
borders = TRUE,
border_col = "black",
border_size = 0.2,
lbl_tiles = FALSE,
lbl_title = FALSE,
polar = FALSE,
rseed = NA,
save = FALSE,
save_path = "images/tiles",
prefix = "",
suffix = ""

)

Arguments

n Basic number of tiles (on either side).

pal Color palette (automatically extended to n x n colors). Default: pal = pal_ds4psy.

sort Boolean: Sort tiles? Default: sort = TRUE (i.e., sorted tiles).

borders Boolean: Add borders to tiles? Default: borders = TRUE (i.e., use borders).

border_col Color of borders (if borders = TRUE). Default: border_col = "black".

border_size Size of borders (if borders = TRUE). Default: border_size = 0.2.

lbl_tiles Boolean: Add numeric labels to tiles? Default: lbl_tiles = FALSE (i.e., no
labels).

lbl_title Boolean: Add numeric label (of n) to plot? Default: lbl_title = FALSE (i.e.,
no title).

polar Boolean: Plot on polar coordinates? Default: polar = FALSE (i.e., using fixed
coordinates).

rseed Random seed (number). Default: rseed = NA (using random seed).

save Boolean: Save plot as png file? Default: save = FALSE.

save_path Path to save plot (if save = TRUE). Default: save_path = "images/tiles".

prefix Prefix to plot name (if save = TRUE). Default: prefix = "".

suffix Suffix to plot name (if save = TRUE). Default: suffix = "".

See Also

pal_ds4psy for default color palette.

Other plot functions: plot_charmap(), plot_chars(), plot_circ_points(), plot_fn(), plot_fun(),
plot_n(), plot_text(), theme_clean(), theme_ds4psy(), theme_empty()

88 posPsy_AHI_CESD

Examples

(1) Tile plot:
plot_tiles() # default plot (random n, with borders, no labels)

plot_tiles(n = 4, sort = FALSE) # random order
plot_tiles(n = 6, borders = FALSE) # no borders
plot_tiles(n = 8, lbl_tiles = TRUE, # with tile +

lbl_title = TRUE) # title labels

Set colors:
plot_tiles(n = 4, pal = c("orange", "white", "firebrick"),

lbl_tiles = TRUE, lbl_title = TRUE,
sort = TRUE)

plot_tiles(n = 6, sort = FALSE, border_col = "white", border_size = 2)

Fixed rseed:
plot_tiles(n = 4, sort = FALSE, borders = FALSE,

lbl_tiles = TRUE, lbl_title = TRUE,
rseed = 101)

(2) polar plot:
plot_tiles(polar = TRUE) # default polar plot (with borders, no labels)

plot_tiles(n = 4, polar = TRUE, sort = FALSE) # random order
plot_tiles(n = 6, polar = TRUE, sort = TRUE, # sorted and with

lbl_tiles = TRUE, lbl_title = TRUE) # tile + title labels
plot_tiles(n = 4, sort = FALSE, borders = TRUE,

border_col = "white", border_size = 2,
polar = TRUE, rseed = 132) # fixed rseed

posPsy_AHI_CESD Positive Psychology: AHI CESD data

Description

posPsy_AHI_CESD is a dataset containing answers to the 24 items of the Authentic Happiness In-
ventory (AHI) and answers to the 20 items of the Center for Epidemiological Studies Depression
(CES-D) scale (Radloff, 1977) for multiple (1 to 6) measurement occasions.

Usage

posPsy_AHI_CESD

Format

A table with 992 cases (rows) and 50 variables (columns).

posPsy_AHI_CESD 89

Details

Codebook

• 1. id: Participant ID.

• 2. occasion: Measurement occasion: 0: Pretest (i.e., at enrolment), 1: Posttest (i.e., 7 days
after pretest), 2: 1-week follow-up, (i.e., 14 days after pretest, 7 days after posttest), 3: 1-
month follow-up, (i.e., 38 days after pretest, 31 days after posttest), 4: 3-month follow-up,
(i.e., 98 days after pretest, 91 days after posttest), 5: 6-month follow-up, (i.e., 189 days after
pretest, 182 days after posttest).

• 3. elapsed.days: Time since enrolment measured in fractional days.

• 4. intervention: Type of intervention: 3 positive psychology interventions (PPIs), plus 1
control condition: 1: "Using signature strengths", 2: "Three good things", 3: "Gratitude visit",
4: "Recording early memories" (control condition).

• 5.-28. (from ahi01 to ahi24): Responses on 24 AHI items.

• 29.-48. (from cesd01 to cesd20): Responses on 20 CES-D items.

• 49. ahiTotal: Total AHI score.

• 50. cesdTotal: Total CES-D score.

See codebook and references at https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html.

Source

Articles

• Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R., & Schüz, B. (2017). Web-based
positive psychology interventions: A reexamination of effectiveness. Journal of Clinical Psy-
chology, 73(3), 218–232. doi: 10.1002/jclp.22328

• Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R. and Schüz, B. (2018). Data from,
‘Web-based positive psychology interventions: A reexamination of effectiveness’. Journal of
Open Psychology Data, 6(1). doi: 10.5334/jopd.35

See https://openpsychologydata.metajnl.com/articles/10.5334/jopd.35/ for details and
doi:10.6084/m9.figshare.1577563.v1 for original dataset.

Additional references at https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html.

See Also

posPsy_long for a corrected version of this file (in long format).

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_long, posPsy_p_info, posPsy_wide, t3, t4,
t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html
https://openpsychologydata.metajnl.com/articles/10.5334/jopd.35/
https://doi.org/10.6084/m9.figshare.1577563.v1
https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html

90 posPsy_long

posPsy_long Positive Psychology: AHI CESD corrected data (in long format)

Description

posPsy_long is a dataset containing answers to the 24 items of the Authentic Happiness Inventory
(AHI) and answers to the 20 items of the Center for Epidemiological Studies Depression (CES-D)
scale (see Radloff, 1977) for multiple (1 to 6) measurement occasions.

Usage

posPsy_long

Format

A table with 990 cases (rows) and 50 variables (columns).

Details

This dataset is a corrected version of posPsy_AHI_CESD and in long-format.

Source

Articles

• Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R., & Schüz, B. (2017). Web-based
positive psychology interventions: A reexamination of effectiveness. Journal of Clinical Psy-
chology, 73(3), 218–232. doi: 10.1002/jclp.22328

• Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R. and Schüz, B. (2018). Data from,
‘Web-based positive psychology interventions: A reexamination of effectiveness’. Journal of
Open Psychology Data, 6(1). doi: 10.5334/jopd.35

See https://openpsychologydata.metajnl.com/articles/10.5334/jopd.35/ for details and
doi:10.6084/m9.figshare.1577563.v1 for original dataset.

Additional references at https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html.

See Also

posPsy_AHI_CESD for source of this file and codebook information; posPsy_wide for a version of
this file (in wide format).

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_p_info, posPsy_wide,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

https://openpsychologydata.metajnl.com/articles/10.5334/jopd.35/
https://doi.org/10.6084/m9.figshare.1577563.v1
https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html

posPsy_p_info 91

posPsy_p_info Positive Psychology: Participant data

Description

posPsy_p_info is a dataset containing details of 295 participants.

Usage

posPsy_p_info

Format

A table with 295 cases (rows) and 6 variables (columns).

Details

id Participant ID.

intervention Type of intervention: 3 positive psychology interventions (PPIs), plus 1 control con-
dition: 1: "Using signature strengths", 2: "Three good things", 3: "Gratitude visit", 4: "Record-
ing early memories" (control condition).

sex Sex: 1 = female, 2 = male.

age Age (in years).

educ Education level: Scale from 1: less than 12 years, to 5: postgraduate degree.

income Income: Scale from 1: below average, to 3: above average.

See codebook and references at https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html.

Source

Articles

• Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R., & Schüz, B. (2017). Web-based
positive psychology interventions: A reexamination of effectiveness. Journal of Clinical Psy-
chology, 73(3), 218–232. doi: 10.1002/jclp.22328

• Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R. and Schüz, B. (2018). Data from,
‘Web-based positive psychology interventions: A reexamination of effectiveness’. Journal of
Open Psychology Data, 6(1). doi: 10.5334/jopd.35

See https://openpsychologydata.metajnl.com/articles/10.5334/jopd.35/ for details and
doi:10.6084/m9.figshare.1577563.v1 for original dataset.

Additional references at https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html.

https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html
https://openpsychologydata.metajnl.com/articles/10.5334/jopd.35/
https://doi.org/10.6084/m9.figshare.1577563.v1
https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html

92 posPsy_wide

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_wide, t3,
t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

posPsy_wide Positive Psychology: All corrected data (in wide format)

Description

posPsy_wide is a dataset containing answers to the 24 items of the Authentic Happiness Inventory
(AHI) and answers to the 20 items of the Center for Epidemiological Studies Depression (CES-D)
scale (see Radloff, 1977) for multiple (1 to 6) measurement occasions.

Usage

posPsy_wide

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 295 rows and 294
columns.

Details

This dataset is based on posPsy_AHI_CESD and posPsy_long, but is in wide format.

Source

Articles

• Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R., & Schüz, B. (2017). Web-based
positive psychology interventions: A reexamination of effectiveness. Journal of Clinical Psy-
chology, 73(3), 218–232. doi: 10.1002/jclp.22328

• Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R. and Schüz, B. (2018). Data from,
‘Web-based positive psychology interventions: A reexamination of effectiveness’. Journal of
Open Psychology Data, 6(1). doi: 10.5334/jopd.35

See https://openpsychologydata.metajnl.com/articles/10.5334/jopd.35/ for details and
doi:10.6084/m9.figshare.1577563.v1 for original dataset.

Additional references at https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html.

https://openpsychologydata.metajnl.com/articles/10.5334/jopd.35/
https://doi.org/10.6084/m9.figshare.1577563.v1
https://bookdown.org/hneth/ds4psy/B.1-datasets-pos.html

read_ascii 93

See Also

posPsy_AHI_CESD for the source of this file, posPsy_long for a version of this file (in long format).

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

read_ascii Parse text (from file or user input) into string(s) of text

Description

read_ascii parses text inputs (from a file or from user input in the Console) into a character vector.

Usage

read_ascii(file = "", quiet = FALSE)

Arguments

file The text file to read (or its path). If file = "" (the default), scan is used to read
user input from the Console. If a text file is stored in a sub-directory, enter its
path and name here (without any leading or trailing "." or "/"). Default: file =
"".

quiet Boolean: Provide user feedback? Default: quiet = FALSE.

Details

Different lines of text are represented by different elements of the character vector returned.

The getwd function is used to determine the current working directory. This replaces the here
package, which was previously used to determine an (absolute) file path.

Note that read_ascii originally contained map_text_coord, but has been separated to enable
independent access to separate functionalities.

Value

A character vector, with its elements denoting different lines of text.

See Also

map_text_coord for mapping text to a table of character coordinates; plot_chars for a character
plotting function.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_chars(), map_text_coord(), map_text_regex(), metachar, text_to_chars(),
text_to_sentences(), text_to_words(), transl33t(), words_to_text()

94 sample_char

Examples

Create a temporary file "test.txt":
cat("Hello world!", "This is a test.",
"Can you see this text?",
"Good! Please carry on...",
file = "test.txt", sep = "\n")

(a) Read text (from file):
read_ascii("test.txt")
read_ascii("test.txt", quiet = TRUE) # y flipped

unlink("test.txt") # clean up (by deleting file).

(b) Read text (from file in subdir):
read_ascii("data-raw/txt/ascii.txt") # requires txt file

(c) Scan user input (from console):
read_ascii()

sample_char Draw a sample of n random characters (from given characters)

Description

sample_char draws a sample of n random characters from a given range of characters.

Usage

sample_char(x_char = c(letters, LETTERS), n = 1, replace = FALSE, ...)

Arguments

x_char Population of characters to sample from. Default: x_char = c(letters, LETTERS).

n Number of characters to draw. Default: n = 1.

replace Boolean: Sample with replacement? Default: replace = FALSE.

... Other arguments. (Use for specifying prob, as passed to sample().)

Details

By default, sample_char draws n = 1 a random alphabetic character from x_char = c(letters,
LETTERS).

As with sample(), the sample size n must not exceed the number of available characters nchar(x_char),
unless replace = TRUE (i.e., sampling with replacement).

sample_date 95

Value

A text string (scalar character vector).

See Also

Other sampling functions: coin(), dice(), dice_2(), sample_date(), sample_time()

Examples

sample_char() # default
sample_char(n = 10)
sample_char(x_char = "abc", n = 10, replace = TRUE)
sample_char(x_char = c("x y", "6 9"), n = 6, replace = FALSE)
sample_char(x_char = c("x y", "6 9"), n = 20, replace = TRUE)

Biased sampling:
sample_char(x_char = "abc", n = 20, replace = TRUE,

prob = c(3/6, 2/6, 1/6))

Note: By default, n must not exceed nchar(x_char):
sample_char(n = 52, replace = FALSE) # works, but
sample_char(n = 53, replace = FALSE) # would yield ERROR;
sample_char(n = 53, replace = TRUE) # works again.

sample_date Draw a sample of n random dates (from a given range).

Description

sample_date draws a sample of n random dates from a given range.

Usage

sample_date(from = "1970-01-01", to = Sys.Date(), size = 1, ...)

Arguments

from Earliest date (as "Date" or string). Default: from = "1970-01-01" (as a scalar).

to Latest date (as "Date" or string). Default: to = Sys.Date() (as a scalar).

size Size of date samples to draw. Default: size = 1.

... Other arguments. (Use for specifying replace, as passed to sample().)

Details

By default, sample_date draws n = 1 random date (as a "Date" object) in the range from = "1970-01-01"
to = Sys.Date() (current date).

Both from and to currently need to be scalars (i.e., with a length of 1).

96 sample_time

Value

A vector of class "Date".

See Also

Other sampling functions: coin(), dice(), dice_2(), sample_char(), sample_time()

Examples

sample_date()
sort(sample_date(size = 10))
sort(sample_date(from = "2020-02-28", to = "2020-03-01",

size = 10, replace = TRUE)) # 2020 is a leap year

Note: Oddity with sample():
sort(sample_date(from = "2020-01-01", to = "2020-01-01", size = 10, replace = TRUE)) # range of 0!
see sample(9:9, size = 10, replace = TRUE)

sample_time Draw a sample of n random times (from a given range).

Description

sample_time draws a sample of n random times from a given range.

Usage

sample_time(
from = "1970-01-01 00:00:00",
to = Sys.time(),
size = 1,
as_POSIXct = TRUE,
tz = "",
...

)

Arguments

from Earliest date-time (as string). Default: from = "1970-01-01 00:00:00" (as a
scalar).

to Latest date-time (as string). Default: to = Sys.time() (as a scalar).

size Size of time samples to draw. Default: size = 1.

as_POSIXct Boolean: Return calendar time ("POSIXct") object? Default: as_POSIXct =
TRUE. If as_POSIXct = FALSE, a local time ("POSIXlt") object is returned (as a
list).

sample_time 97

tz Time zone. Default: tz = "" (i.e., current system time zone, see Sys.timezone()).
Use tz = "UTC" for Universal Time, Coordinated.

... Other arguments. (Use for specifying replace, as passed to sample().)

Details

By default, sample_time draws n = 1 random calendar time (as a "POSIXct" object) in the range
from = "1970-01-01 00:00:00" to = Sys.time() (current time).

Both from and to currently need to be scalars (i.e., with a length of 1).

If as_POSIXct = FALSE, a local time ("POSIXlt") object is returned (as a list).

The tz argument allows specifying time zones (see Sys.timezone() for current setting and OlsonNames()
for options.)

Value

A vector of class "POSIXct" or "POSIXlt".

See Also

Other sampling functions: coin(), dice(), dice_2(), sample_char(), sample_date()

Examples

Basics:
sample_time()
sample_time(size = 10)

Specific ranges:
sort(sample_time(from = (Sys.time() - 60), size = 10)) # within last minute
sort(sample_time(from = (Sys.time() - 1 * 60 * 60), size = 10)) # within last hour
sort(sample_time(from = Sys.time(), to = (Sys.time() + 1 * 60 * 60),

size = 10, replace = FALSE)) # within next hour
sort(sample_time(from = "2020-12-31 00:00:00 CET", to = "2020-12-31 00:00:01 CET",

size = 10, replace = TRUE)) # within 1 sec range

Local time (POSIXlt) objects (as list):
(lt_sample <- sample_time(as_POSIXct = FALSE))
unlist(lt_sample)

Time zones:
sample_time(size = 3, tz = "UTC")
sample_time(size = 3, tz = "America/Los_Angeles")

Note: Oddity with sample():
sort(sample_time(from = "2020-12-31 00:00:00 CET", to = "2020-12-31 00:00:00 CET",

size = 10, replace = TRUE)) # range of 0!
see sample(9:9, size = 10, replace = TRUE)

98 t4

t3 Data: t3

Description

t3 is a fictitious dataset to practice importing and joining data (from a CSV file).

Usage

t3

Format

A table with 10 cases (rows) and 4 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/t3.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

t4 Data: t4

Description

t4 is a fictitious dataset to practice importing and joining data (from a CSV file).

Usage

t4

Format

A table with 10 cases (rows) and 4 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/t4.csv.

http://rpository.com/ds4psy/data/t3.csv
http://rpository.com/ds4psy/data/t4.csv

table6 99

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

table6 Data: table6

Description

table6 is a fictitious dataset to practice reshaping and tidying data.

Usage

table6

Format

A table with 6 cases (rows) and 2 variables (columns).

Details

This dataset is a further variant of the table1 to table5 datasets of the tidyr package.

Source

See CSV data at http://rpository.com/ds4psy/data/table6.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table7, table8, table9, tb

http://rpository.com/ds4psy/data/table6.csv

100 table8

table7 Data: table7

Description

table7 is a fictitious dataset to practice reshaping and tidying data.

Usage

table7

Format

A table with 6 cases (rows) and 1 (horrendous) variable (column).

Details

This dataset is a further variant of the table1 to table5 datasets of the tidyr package.

Source

See CSV data at http://rpository.com/ds4psy/data/table7.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table8, table9, tb

table8 Data: table8

Description

table9 is a fictitious dataset to practice reshaping and tidying data.

Usage

table8

Format

A table with 3 cases (rows) and 5 variables (columns).

http://rpository.com/ds4psy/data/table7.csv

table9 101

Details

This dataset is a further variant of the table1 to table5 datasets of the tidyr package.

Source

See CSV data at http://rpository.com/ds4psy/data/table8.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table7, table9, tb

table9 Data table9.

Description

table9 is a fictitious dataset to practice reshaping and tidying data.

Usage

table9

Format

A 3 x 2 x 2 array (of type "xtabs") with 2940985206 elements (frequency counts).

Details

This dataset is a further variant of the table1 to table5 datasets of the tidyr package.

Source

Generated by using stats::xtabs(formula = count ~., data = tidyr::table2).

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, tb

http://rpository.com/ds4psy/data/table8.csv

102 tb

tb Data table tb.

Description

tb is a fictitious set of data describing 100 non-existing, but otherwise ordinary people.

Usage

tb

Format

A table with 100 cases (rows) and 5 variables (columns).

Details

Codebook

The table contains 5 columns/variables:

• 1. id: Participant ID.

• 2. age: Age (in years).

• 3. height: Height (in cm).

• 4. shoesize: Shoe size (EU standard).

• 5. IQ: IQ score (according Raven’s Regressive Tables).

tb was originally created to practice loops and iterations (as a CSV file).

Source

See CSV data file at http://rpository.com/ds4psy/data/tb.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9

http://rpository.com/ds4psy/data/tb.csv

text_to_chars 103

text_to_chars Split string(s) of text x into its characters.

Description

text_to_chars splits a string of text x (consisting of one or more character strings) into a vector
of its individual characters.

Usage

text_to_chars(x, rm_specials = FALSE, sep = "")

Arguments

x A string of text (required).
rm_specials Boolean: Remove special characters? Default: rm_specials = TRUE.
sep Character to insert between the elements of a multi-element character vector as

input x? Default: sep = "" (i.e., add nothing).

Details

If rm_specials = TRUE, most special (or non-word) characters are removed. (Note that this cur-
rently works without using regular expressions.)

text_to_chars is an inverse function of chars_to_text.

Value

A character vector (containing individual characters).

See Also

chars_to_text for combining character vectors into text; text_to_sentences for splitting text
into a vector of sentences; text_to_words for splitting text into a vector of words; count_chars for
counting the frequency of characters; count_words for counting the frequency of words; strsplit
for splitting strings.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_chars(), map_text_coord(), map_text_regex(), metachar, read_ascii(),
text_to_sentences(), text_to_words(), transl33t(), words_to_text()

Examples

s3 <- c("A 1st sentence.", "The 2nd sentence.",
"A 3rd --- and FINAL --- sentence.")

text_to_chars(s3)
text_to_chars(s3, sep = "\n")
text_to_chars(s3, rm_specials = TRUE)

104 text_to_sentences

text_to_sentences Split strings of text x into sentences.

Description

text_to_sentences splits text x (consisting of one or more character strings) into a vector of its
constituting sentences.

Usage

text_to_sentences(
x,
sep = " ",
split_delim = "\\.|\\?|!",
force_delim = FALSE

)

Arguments

x A string of text (required), typically a character vector.

sep A character inserted as separator/delimiter between elements when collapsing
multi-element strings of x. Default: sep = " " (i.e., insert 1 space between ele-
ments).

split_delim Sentence delimiters (as regex) used to split the collapsed string of x into sub-
strings. Default: split_delim = "\.|\?|!" (rather than "[[:punct:]]").

force_delim Boolean: Enforce splitting at split_delim? If force_delim = FALSE (as per
default), a standard sentence-splitting pattern is assumed: split_delim is fol-
lowed by one or more blank spaces and a capital letter. If force_delim = TRUE,
splits at split_delim are enforced (without considering spacing or capitaliza-
tion).

Details

The splits of x will occur at given punctuation marks (provided as a regular expression, default:
split_delim = "\.|\?|!"). Empty leading and trailing spaces are removed before returning a
vector of the remaining character sequences (i.e., the sentences).

The Boolean argument force_delim distinguishes between two splitting modes:

1. If force_delim = FALSE (as per default), a standard sentence-splitting pattern is assumed:
A sentence delimiter in split_delim must be followed by one or more blank spaces and a
capital letter starting the next sentence. Sentence delimiters in split_delim are not removed
from the output.

2. If force_delim = TRUE, the function enforces splits at each delimiter in split_delim. For
instance, any dot (i.e., the metacharacter "\.") is interpreted as a full stop, so that sentences
containing dots mid-sentence (e.g., for abbreviations, etc.) are split into parts. Sentence de-
limiters in split_delim are removed from the output.

text_to_words 105

Internally, text_to_sentences first uses paste to collapse strings (adding sep between elements)
and then strsplit to split strings at split_delim.

Value

A character vector (of sentences).

See Also

text_to_words for splitting text into a vector of words; text_to_chars for splitting text into a
vector of characters; count_words for counting the frequency of words; strsplit for splitting
strings.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_chars(), map_text_coord(), map_text_regex(), metachar, read_ascii(),
text_to_chars(), text_to_words(), transl33t(), words_to_text()

Examples

x <- c("A first sentence. Exclamation sentence!",
"Any questions? But etc. can be tricky. A fourth --- and final --- sentence.")

text_to_sentences(x)
text_to_sentences(x, force_delim = TRUE)

Changing split delimiters:
text_to_sentences(x, split_delim = "\\.") # only split at "."

text_to_sentences("Buy apples, berries, and coconuts.")
text_to_sentences("Buy apples, berries; and coconuts.",

split_delim = ",|;|\\.", force_delim = TRUE)

text_to_sentences(c("123. 456? 789! 007 etc."), force_delim = TRUE)

Split multi-element strings (w/o punctuation):
e3 <- c("12", "34", "56")
text_to_sentences(e3, sep = " ") # Default: Collapse strings adding 1 space, but:
text_to_sentences(e3, sep = ".", force_delim = TRUE) # insert sep and force split.

Punctuation within sentences:
text_to_sentences("Dr. who is left intact.")
text_to_sentences("Dr. Who is problematic.")

text_to_words Split string(s) of text x into words.

Description

text_to_words splits a string of text x (consisting of one or more character strings) into a vector
of its constituting words.

106 theme_clean

Usage

text_to_words(x)

Arguments

x A string of text (required), typically a character vector.

Details

text_to_words removes all (standard) punctuation marks and empty spaces in the resulting text
parts, before returning a vector of the remaining character symbols (as its words).

Internally, text_to_words uses strsplit to split strings at punctuation marks (split = "[[:punct:]]")
and blank spaces (split = "(){1,}").

Value

A character vector (of words).

See Also

text_to_words for splitting a text into its words; text_to_sentences for splitting text into a
vector of sentences; text_to_chars for splitting text into a vector of characters; count_words for
counting the frequency of words; strsplit for splitting strings.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_chars(), map_text_coord(), map_text_regex(), metachar, read_ascii(),
text_to_chars(), text_to_sentences(), transl33t(), words_to_text()

Examples

Default:
x <- c("Hello!", "This is a 1st sentence.", "This is the 2nd sentence.", "The end.")
text_to_words(x)

theme_clean A clean alternative theme for ggplot2

Description

theme_clean provides an alternative ds4psy theme to use in ggplot2 commands.

theme_clean 107

Usage

theme_clean(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22,
col_title = grey(0, 1),
col_panel = grey(0.85, 1),
col_gridx = grey(1, 1),
col_gridy = grey(1, 1),
col_ticks = grey(0.1, 1)

)

Arguments

base_size Base font size (optional, numeric). Default: base_size = 11.

base_family Base font family (optional, character). Default: base_family = "". Options
include "mono", "sans" (default), and "serif".

base_line_size Base line size (optional, numeric). Default: base_line_size = base_size/22.

base_rect_size Base rectangle size (optional, numeric). Default: base_rect_size = base_size/22.

col_title Color of plot title (and tag). Default: col_title = grey(.0, 1) (i.e., "black").

col_panel Color of panel background(s). Default: col_panel = grey(.85, 1) (i.e., light
"grey").

col_gridx Color of (major) panel lines (through x/vertical). Default: col_gridx = grey(1.0,
1) (i.e., "white").

col_gridy Color of (major) panel lines (through y/horizontal). Default: col_gridy = grey(1.0,
1) (i.e., "white").

col_ticks Color of axes text and ticks. Default: col_ticks = grey(.10, 1) (i.e., near
"black").

Details

theme_clean is more minimal than theme_ds4psy and fills panel backgrounds with a color col_panel.

This theme works well for plots with multiple panels, strong colors and bright color accents, but is
of limited use with transparent colors.

Value

A ggplot2 theme.

See Also

theme_ds4psy for default theme.

Other plot functions: plot_charmap(), plot_chars(), plot_circ_points(), plot_fn(), plot_fun(),
plot_n(), plot_text(), plot_tiles(), theme_ds4psy(), theme_empty()

108 theme_ds4psy

Examples

Plotting iris dataset (using ggplot2, theme_grau, and unikn colors):

library('ggplot2') # theme_clean() requires ggplot2
library('unikn') # for colors and usecol() function

ggplot(datasets::iris) +
geom_jitter(aes(x = Sepal.Length, y = Sepal.Width, color = Species), size = 3, alpha = 3/4) +
facet_wrap(~Species) +
scale_color_manual(values = usecol(pal = c(Pinky, Karpfenblau, Seegruen))) +
labs(tag = "B",

title = "Iris sepals",
caption = "Data from datasets::iris") +

coord_fixed(ratio = 3/2) +
theme_clean()

theme_ds4psy A basic and flexible plot theme

Description

theme_ds4psy provides a generic ds4psy theme to use in ggplot2 commands.

Usage

theme_ds4psy(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22,
col_title = grey(0, 1),
col_txt_1 = grey(0.1, 1),
col_txt_2 = grey(0.2, 1),
col_txt_3 = grey(0.1, 1),
col_bgrnd = "transparent",
col_panel = grey(1, 1),
col_strip = "transparent",
col_axes = grey(0, 1),
col_gridx = grey(0.75, 1),
col_gridy = grey(0.75, 1),
col_brdrs = "transparent"

)

theme_ds4psy 109

Arguments

base_size Base font size (optional, numeric). Default: base_size = 11.

base_family Base font family (optional, character). Default: base_family = "". Options
include "mono", "sans" (default), and "serif".

base_line_size Base line size (optional, numeric). Default: base_line_size = base_size/22.

base_rect_size Base rectangle size (optional, numeric). Default: base_rect_size = base_size/22.

col_title Color of plot title (and tag). Default: col_title = grey(.0, 1) (i.e., "black").

col_txt_1 Color of primary text (headings and axis labels). Default: col_title = grey(.1,
1).

col_txt_2 Color of secondary text (caption, legend, axes labels/ticks). Default: col_title
= grey(.2, 1).

col_txt_3 Color of other text (facet strip labels). Default: col_title = grey(.1, 1).

col_bgrnd Color of plot background. Default: col_bgrnd = "transparent".

col_panel Color of panel background(s). Default: col_panel = grey(1.0, 1) (i.e., "white").

col_strip Color of facet strips. Default: col_strip = "transparent".

col_axes Color of (x and y) axes. Default: col_axes = grey(.00, 1) (i.e., "black").

col_gridx Color of (major and minor) panel lines (through x/vertical). Default: col_gridx
= grey(.75, 1) (i.e., light "grey").

col_gridy Color of (major and minor) panel lines (through y/horizontal). Default: col_gridy
= grey(.75, 1) (i.e., light "grey").

col_brdrs Color of (panel and strip) borders. Default: col_brdrs = "transparent".

Details

The theme is lightweight and no-nonsense, but somewhat opinionated (e.g., in using transparency
and grid lines, and relying on grey tones for emphasizing data with color accents).

Basic sizes and the colors of text elements, backgrounds, and lines can be specified. However,
excessive customization rarely yields aesthetic improvements over the standard ggplot2 themes.

Value

A ggplot2 theme.

See Also

unikn::theme_unikn inspired the current theme.

Other plot functions: plot_charmap(), plot_chars(), plot_circ_points(), plot_fn(), plot_fun(),
plot_n(), plot_text(), plot_tiles(), theme_clean(), theme_empty()

110 theme_empty

Examples

Plotting iris dataset (using ggplot2 and unikn):

library('ggplot2') # theme_ds4psy() requires ggplot2
library('unikn') # for colors and usecol() function

ggplot(datasets::iris) +
geom_jitter(aes(x = Petal.Length, y = Petal.Width, color = Species), size = 3, alpha = 2/3) +
scale_color_manual(values = usecol(pal = c(Pinky, Seeblau, Seegruen))) +
labs(title = "Iris petals",

subtitle = "The subtitle of this plot",
caption = "Data from datasets::iris") +

theme_ds4psy()

ggplot(datasets::iris) +
geom_jitter(aes(x = Sepal.Length, y = Sepal.Width, color = Species), size = 3, alpha = 2/3) +
facet_wrap(~Species) +
scale_color_manual(values = usecol(pal = c(Pinky, Seeblau, Seegruen))) +
labs(tag = "A",

title = "Iris sepals",
subtitle = "Demo plot with facets and default colors",
caption = "Data from datasets::iris") +

coord_fixed(ratio = 3/2) +
theme_ds4psy()

A unikn::Seeblau look:

ggplot(datasets::iris) +
geom_jitter(aes(x = Sepal.Length, y = Sepal.Width, color = Species), size = 3, alpha = 2/3) +
facet_wrap(~Species) +
scale_color_manual(values = usecol(pal = c(Pinky, Seeblau, Seegruen))) +
labs(tag = "B",

title = "Iris sepals",
subtitle = "Demo plot in unikn::Seeblau colors",
caption = "Data from datasets::iris") +

coord_fixed(ratio = 3/2) +
theme_ds4psy(col_title = pal_seeblau[[4]], col_strip = pal_seeblau[[1]], col_brdrs = Grau)

theme_empty A basic and flexible plot theme (using ggplot2)

Description

theme_empty provides an empty (blank) theme to use in ggplot2 commands.

theme_empty 111

Usage

theme_empty(
font_size = 12,
font_family = "",
rel_small = 12/14,
plot_mar = c(0, 0, 0, 0)

)

Arguments

font_size Overall font size. Default: font_size = 12.

font_family Base font family. Default: font_family = "".

rel_small Relative size of smaller text. Default: rel_small = 10/12.

plot_mar Plot margin sizes (on top, right, bottom, left). Default: plot_mar = c(0, 0, 0,
0) (in lines).

Details

theme_empty shows nothing but the plot panel.

theme_empty is based on theme_nothing of the cowplot package and uses theme_void of the
ggplot2 package.

Value

A ggplot2 theme.

See Also

cowplot::theme_nothing is the inspiration and source of this theme.

Other plot functions: plot_charmap(), plot_chars(), plot_circ_points(), plot_fn(), plot_fun(),
plot_n(), plot_text(), plot_tiles(), theme_clean(), theme_ds4psy()

Examples

Plotting iris dataset (using ggplot2):

library('ggplot2') # theme_empty() requires ggplot2

ggplot(datasets::iris) +
geom_point(aes(x = Petal.Length, y = Petal.Width, color = Species), size = 4, alpha = 1/2) +
scale_color_manual(values = c("firebrick3", "deepskyblue3", "olivedrab3")) +
labs(title = "NOT SHOWN: Title",

subtitle = "NOT SHOWN: Subtitle",
caption = "NOT SHOWN: Data from datasets::iris") +

theme_empty(plot_mar = c(2, 0, 1, 0)) # margin lines (top, right, bot, left)

112 transl33t

transl33t Translate text into leet slang

Description

transl33t translates text into leet (or l33t) slang given a set of rules.

Usage

transl33t(txt, rules = l33t_rul35, in_case = "no", out_case = "no")

Arguments

txt The text (character string) to translate.

rules Rules which existing character in txt is to be replaced by which new character
(as a named character vector). Default: rules = l33t_rul35.

in_case Change case of input string txt. Default: in_case = "no". Set to "lo" or "up"
for lower or uppercase, respectively.

out_case Change case of output string. Default: out_case = "no". Set to "lo" or "up"
for lower or uppercase, respectively.

Details

The current version of transl33t only uses base R commands, rather than the stringr package.

Value

A character vector.

See Also

l33t_rul35 for default rules used; invert_rules for inverting rules.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_chars(), map_text_coord(), map_text_regex(), metachar, read_ascii(),
text_to_chars(), text_to_sentences(), text_to_words(), words_to_text()

Trumpisms 113

Examples

Use defaults:
transl33t(txt = "hello world")
transl33t(txt = c(letters))
transl33t(txt = c(LETTERS))

Specify rules:
transl33t(txt = "hello world",

rules = c("e" = "3", "l" = "1", "o" = "0"))

Set input and output case:
transl33t(txt = "hello world", in_case = "up",

rules = c("e" = "3", "l" = "1", "o" = "0")) # e only capitalized
transl33t(txt = "hEllo world", in_case = "lo", out_case = "up",

rules = c("e" = "3", "l" = "1", "o" = "0")) # e transl33ted

Trumpisms Data: Trumpisms

Description

Trumpisms contains characteristic words and phrases used by U.S. president Donald J. Trump (the
45th and 47th president of the United States of America) during his first presidency (ranging from
January 20, 2017, to January 20, 2021).

Usage

Trumpisms

Format

A vector of type character with length(Trumpisms) = 168 (on 2021-01-28).

Details

See https://en.wikiquote.org/wiki/Donald_Trump for a more recent collection of attributed
and disputed quotes.

Source

Data originally based on a collection of Donald Trump’s 20 most frequently used words on https:
//www.yourdictionary.com and expanded by interviews, public speeches, and Twitter tweets
from https://twitter.com/realDonaldTrump.

https://en.wikiquote.org/wiki/Donald_Trump
https://www.yourdictionary.com
https://www.yourdictionary.com

114 t_2

See Also

Other datasets: Bushisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, t_4, table6, table7, table8, table9, tb

t_1 Data: t_1

Description

t_1 is a fictitious dataset to practice tidying data.

Usage

t_1

Format

A table with 8 cases (rows) and 9 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/t_1.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_2, t_3, t_4, table6, table7, table8, table9, tb

t_2 Data: t_2

Description

t_2 is a fictitious dataset to practice tidying data.

Usage

t_2

Format

A table with 8 cases (rows) and 5 variables (columns).

http://rpository.com/ds4psy/data/t_1.csv

t_3 115

Source

See CSV data at http://rpository.com/ds4psy/data/t_2.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_3, t_4, table6, table7, table8, table9, tb

t_3 Data: t_3

Description

t_3 is a fictitious dataset to practice tidying data.

Usage

t_3

Format

A table with 16 cases (rows) and 6 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/t_3.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_4, table6, table7, table8, table9, tb

http://rpository.com/ds4psy/data/t_2.csv
http://rpository.com/ds4psy/data/t_3.csv

116 Umlaut

t_4 Data: t_4

Description

t_4 is a fictitious dataset to practice tidying data.

Usage

t_4

Format

A table with 16 cases (rows) and 8 variables (columns).

Source

See CSV data at http://rpository.com/ds4psy/data/t_4.csv.

See Also

Other datasets: Bushisms, Trumpisms, countries, data_1, data_2, data_t1, data_t1_de, data_t1_tab,
data_t2, data_t3, data_t4, dt_10, exp_num_dt, exp_wide, falsePosPsy_all, fame, flowery,
fruits, i2ds_survey, outliers, pi_100k, posPsy_AHI_CESD, posPsy_long, posPsy_p_info,
posPsy_wide, t3, t4, t_1, t_2, t_3, table6, table7, table8, table9, tb

Umlaut Umlaut provides German Umlaut letters (as Unicode characters).

Description

Umlaut provides the German Umlaut letters (aka. diaeresis/diacritic) as a named character vector.

Usage

Umlaut

Format

An object of class character of length 7.

Details

For Unicode details, see https://home.unicode.org/,

For details on German Umlaut letters (aka. diaeresis/diacritic), see https://en.wikipedia.org/
wiki/Diaeresis_(diacritic) and https://en.wikipedia.org/wiki/Germanic_umlaut.

http://rpository.com/ds4psy/data/t_4.csv
https://home.unicode.org/
https://en.wikipedia.org/wiki/Diaeresis_(diacritic)
https://en.wikipedia.org/wiki/Diaeresis_(diacritic)
https://en.wikipedia.org/wiki/Germanic_umlaut

what_date 117

See Also

Other text objects and functions: capitalize(), caseflip(), cclass, chars_to_text(), collapse_chars(),
count_chars(), count_chars_words(), count_words(), invert_rules(), l33t_rul35, map_text_chars(),
map_text_coord(), map_text_regex(), metachar, read_ascii(), text_to_chars(), text_to_sentences(),
text_to_words(), transl33t(), words_to_text()

Examples

Umlaut
names(Umlaut)

paste0("Hansj", Umlaut["o"], "rg i", Umlaut["s"], "t s", Umlaut["u"], "sse ", Umlaut["A"], "pfel.")
paste0("Das d", Umlaut["u"], "nne M", Umlaut["a"], "dchen l", Umlaut["a"], "chelt.")
paste0("Der b", Umlaut["o"], "se Mann macht ", Umlaut["u"], "blen ", Umlaut["A"], "rger.")
paste0("Das ", Umlaut["U"], "ber-Ich ist ", Umlaut["a"], "rgerlich.")

what_date What date is it?

Description

what_date provides a satisficing version of Sys.Date() that is sufficient for most purposes.

Usage

what_date(
when = NA,
rev = FALSE,
as_string = TRUE,
sep = "-",
month_form = "m",
tz = ""

)

Arguments

when Date(s) (as a scalar or vector). Default: when = NA. Using as.Date(when) to
convert strings into dates, and Sys.Date(), if when = NA.

rev Boolean: Reverse date (to Default: rev = FALSE.
as_string Boolean: Return as character string? Default: as_string = TRUE. If as_string

= FALSE, a "Date" object is returned.
sep Character: Separator to use. Default: sep = "-".
month_form Character: Month format. Default: month_form = "m" for numeric month (01-

12). Use month_form = "b" for short month name and month_form = "B" for
full month name (in current locale).

tz Time zone. Default: tz = "" (i.e., current system time zone, see Sys.timezone()).
Use tz = "UTC" for Coordinated Universal Time.

118 what_date

Details

By default, what_date returns either Sys.Date() or the dates provided by when as a character string
(using current system settings and sep for formatting). If as_string = FALSE, a "Date" object is
returned.

The tz argument allows specifying time zones (see Sys.timezone() for current setting and OlsonNames()
for options.)

However, tz is merely used to represent the dates provided to the when argument. Thus, there
currently is no active conversion of dates into other time zones (see the today function of lubridate
package).

Value

A character string or object of class "Date".

See Also

what_wday() function to obtain (week)days; what_time() function to obtain times; cur_time()
function to print the current time; cur_date() function to print the current date; now() function of
the lubridate package; Sys.time() function of base R.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_month(), what_time(), what_wday(),
what_week(), what_year(), zodiac()

Examples

what_date()
what_date(sep = "/")
what_date(rev = TRUE)
what_date(rev = TRUE, sep = ".")
what_date(rev = TRUE, sep = " ", month_form = "B")

with "POSIXct" times:
what_date(when = Sys.time())

with time vector (of "POSIXct" objects):
ts <- c("1969-07-13 13:53 CET", "2020-12-31 23:59:59")
what_date(ts)
what_date(ts, rev = TRUE, sep = ".")
what_date(ts, rev = TRUE, month_form = "b")

return a "Date" object:
dt <- what_date(as_string = FALSE)
class(dt)

with time zone:
ts <- ISOdate(2020, 12, 24, c(0, 12)) # midnight and midday UTC
what_date(when = ts, tz = "Pacific/Honolulu", as_string = FALSE)

what_month 119

what_month What month is it?

Description

what_month provides a satisficing version of to determine the month corresponding to a given date.

Usage

what_month(when = Sys.Date(), abbr = FALSE, as_integer = FALSE)

Arguments

when Date (as a scalar or vector). Default: when = NA. Using as.Date(when) to con-
vert strings into dates, and Sys.Date(), if when = NA.

abbr Boolean: Return abbreviated? Default: abbr = FALSE.

as_integer Boolean: Return as integer? Default: as_integer = FALSE.

Details

what_month returns the month of when or Sys.Date() (as a name or number).

See Also

what_week() function to obtain weeks; what_date() function to obtain dates; cur_time() func-
tion to print the current time; cur_date() function to print the current date; now() function of the
lubridate package; Sys.time() function of base R.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_date(), what_time(), what_wday(),
what_week(), what_year(), zodiac()

Examples

what_month()
what_month(abbr = TRUE)
what_month(as_integer = TRUE)

with date vector (as characters):
ds <- c("2020-01-01", "2020-02-29", "2020-12-24", "2020-12-31")
what_month(when = ds)
what_month(when = ds, abbr = TRUE, as_integer = FALSE)
what_month(when = ds, abbr = TRUE, as_integer = TRUE)

with time vector (strings of POSIXct times):
ts <- c("2020-02-29 10:11:12 CET", "2020-12-31 23:59:59")
what_month(ts)

120 what_time

what_time What time is it?

Description

what_time provides a satisficing version of Sys.time() that is sufficient for most purposes.

Usage

what_time(when = NA, seconds = FALSE, as_string = TRUE, sep = ":", tz = "")

Arguments

when Time (as a scalar or vector). Default: when = NA. Returning Sys.time(), if when
= NA.

seconds Boolean: Show time with seconds? Default: seconds = FALSE.

as_string Boolean: Return as character string? Default: as_string = TRUE. If as_string
= FALSE, a "POSIXct" object is returned.

sep Character: Separator to use. Default: sep = ":".

tz Time zone. Default: tz = "" (i.e., current system time zone, see Sys.timezone()).
Use tz = "UTC" for Coordinated Universal Time.

Details

By default, what_time prints a simple version of when or Sys.time() as a character string (in "
using current default system settings. If as_string = FALSE, a "POSIXct" (calendar time) object is
returned.

The tz argument allows specifying time zones (see Sys.timezone() for current setting and OlsonNames()
for options.)

However, tz is merely used to represent the times provided to the when argument. Thus, there
currently is no active conversion of times into other time zones (see the now function of lubridate
package).

Value

A character string or object of class "POSIXct".

See Also

cur_time() function to print the current time; cur_date() function to print the current date; now()
function of the lubridate package; Sys.time() function of base R.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_wday(),
what_week(), what_year(), zodiac()

what_wday 121

Examples

what_time()

with vector (of "POSIXct" objects):
tm <- c("2020-02-29 01:02:03", "2020-12-31 14:15:16")
what_time(tm)

with time zone:
ts <- ISOdate(2020, 12, 24, c(0, 12)) # midnight and midday UTC
t1 <- what_time(when = ts, tz = "Pacific/Honolulu")
t1 # time display changed, due to tz

return "POSIXct" object(s):
Same time in differen tz:
t2 <- what_time(as.POSIXct("2020-02-29 10:00:00"), as_string = FALSE, tz = "Pacific/Honolulu")
format(t2, "%F %T %Z (UTF %z)")
from string:
t3 <- what_time("2020-02-29 10:00:00", as_string = FALSE, tz = "Pacific/Honolulu")
format(t3, "%F %T %Z (UTF %z)")

what_wday What day of the week is it?

Description

what_wday provides a satisficing version of to determine the day of the week corresponding to a
given date.

Usage

what_wday(when = Sys.Date(), abbr = FALSE)

Arguments

when Date (as a scalar or vector). Default: when = Sys.Date(). Aiming to convert
when into "Date" if a different object class is provided.

abbr Boolean: Return abbreviated? Default: abbr = FALSE.

Details

what_wday returns the name of the weekday of when or of Sys.Date() (as a character string).

122 what_week

See Also

what_date() function to obtain dates; what_time() function to obtain times; cur_time() function
to print the current time; cur_date() function to print the current date; now() function of the
lubridate package; Sys.time() function of base R.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(),
what_week(), what_year(), zodiac()

Examples

what_wday()
what_wday(abbr = TRUE)

what_wday(Sys.Date() + -1:1) # Date (as vector)
what_wday(Sys.time()) # POSIXct
what_wday("2020-02-29") # string (of valid date)
what_wday(20200229) # number (of valid date)

date vector (as characters):
ds <- c("2020-01-01", "2020-02-29", "2020-12-24", "2020-12-31")
what_wday(when = ds)
what_wday(when = ds, abbr = TRUE)

time vector (strings of POSIXct times):
ts <- c("1969-07-13 13:53 CET", "2020-12-31 23:59:59")
what_wday(ts)

fame data:
greta_dob <- as.Date(fame[grep(fame$name, pattern = "Greta") ,]$DOB, "%B %d, %Y")
what_wday(greta_dob) # Friday, of course.

what_week What week is it?

Description

what_week provides a satisficing version of to determine the week corresponding to a given date.

Usage

what_week(when = Sys.Date(), unit = "year", as_integer = FALSE)

Arguments

when Date (as a scalar or vector). Default: when = Sys.Date(). Using as.Date(when)
to convert strings into dates if a different when is provided.

what_year 123

unit Character: Unit of week? Possible values are "month", "year". Default: unit
= "year" (for week within year).

as_integer Boolean: Return as integer? Default: as_integer = FALSE.

Details

what_week returns the week of when or Sys.Date() (as a name or number).

See Also

what_wday() function to obtain (week)days; what_date() function to obtain dates; cur_time()
function to print the current time; cur_date() function to print the current date; now() function of
the lubridate package; Sys.time() function of base R.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(),
what_wday(), what_year(), zodiac()

Examples

what_week()
what_week(as_integer = TRUE)

Other dates/times:
d1 <- as.Date("2020-12-24")
what_week(when = d1, unit = "year")
what_week(when = d1, unit = "month")

what_week(Sys.time()) # with POSIXct time

with date vector (as characters):
ds <- c("2020-01-01", "2020-02-29", "2020-12-24", "2020-12-31")
what_week(when = ds)
what_week(when = ds, unit = "month", as_integer = TRUE)
what_week(when = ds, unit = "year", as_integer = TRUE)

with time vector (strings of POSIXct times):
ts <- c("2020-12-25 10:11:12 CET", "2020-12-31 23:59:59")
what_week(ts)

what_year What year is it?

Description

what_year provides a satisficing version of to determine the year corresponding to a given date.

124 words_to_text

Usage

what_year(when = Sys.Date(), abbr = FALSE, as_integer = FALSE)

Arguments

when Date (as a scalar or vector). Default: when = NA. Using as.Date(when) to con-
vert strings into dates, and Sys.Date(), if when = NA.

abbr Boolean: Return abbreviated? Default: abbr = FALSE.

as_integer Boolean: Return as integer? Default: as_integer = FALSE.

Details

what_year returns the year of when or Sys.Date() (as a name or number).

See Also

what_week() function to obtain weeks; what_month() function to obtain months; cur_time()
function to print the current time; cur_date() function to print the current date; now() function of
the lubridate package; Sys.time() function of base R.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(),
what_wday(), what_week(), zodiac()

Examples

what_year()
what_year(abbr = TRUE)
what_year(as_integer = TRUE)

with date vectors (as characters):
ds <- c("2020-01-01", "2020-02-29", "2020-12-24", "2020-12-31")
what_year(when = ds)
what_year(when = ds, abbr = TRUE, as_integer = FALSE)
what_year(when = ds, abbr = TRUE, as_integer = TRUE)

with time vector (strings of POSIXct times):
ts <- c("2020-02-29 10:11:12 CET", "2020-12-31 23:59:59")
what_year(ts)

words_to_text Paste or collapse words x into a text.

Description

words_to_text pastes or collapses a character string x into a single text string.

zodiac 125

Usage

words_to_text(x, collapse = " ")

Arguments

x A string of text (required), typically a character vector.

collapse A character string to separate the elements of x in the resulting text. Default:
collapse = " ".

Details

words_to_text is essentially identical to collapse_chars. Internally, both functions are wrappers
around paste with a collapse argument.

Value

A text (as a collapsed character vector).

See Also

text_to_words for splitting a text into its words; text_to_sentences for splitting text into a
vector of sentences; text_to_chars for splitting text into a vector of characters; count_words for
counting the frequency of words; collapse_chars for collapsing character vectors; strsplit for
splitting strings.

Other text objects and functions: Umlaut, capitalize(), caseflip(), cclass, chars_to_text(),
collapse_chars(), count_chars(), count_chars_words(), count_words(), invert_rules(),
l33t_rul35, map_text_chars(), map_text_coord(), map_text_regex(), metachar, read_ascii(),
text_to_chars(), text_to_sentences(), text_to_words(), transl33t()

Examples

s <- c("Hello world!", "A 1st sentence.", "A 2nd sentence.", "The end.")
words_to_text(s)
cat(words_to_text(s, collapse = "\n"))

zodiac Get zodiac corresponding to date(s)

Description

zodiac provides the tropical zodiac sign or symbol (aka. astrological sign) for given date(s) x.

126 zodiac

Usage

zodiac(
x,
out = "en",
zodiac_swap_mmdd = c(120, 219, 321, 421, 521, 621, 723, 823, 923, 1023, 1123, 1222)

)

Arguments

x Date (as a scalar or vector, required). If x is not a date (of class "Date"), the
function tries to coerce x into a "Date".

out Output format (as character). Available output formats are: English/Latin (out
= "en", by default), German/Deutsch (out = "de"), HTML (out = "html"), or
Unicode (out = "Unicode") symbols.

zodiac_swap_mmdd

Monthly dates on which the 12 zodiac signs switch (in mmdd format, ordered
chronologically within a calendar year). Default: zodiac_swap_mmdd = c(0120,
0219, 0321, 0421, 0521, 0621,0723, 0823, 0923, 1023, 1123, 1222).

Details

zodiac is flexible by providing different output formats (in Latin/English, German, or Unicode/HTML,
see out) and allowing to adjust the calendar dates on which a new zodiac is assigned (via zodiac_swap_mmdd).

Value

Zodiac label or symbol (as a factor).

Source

See https://en.wikipedia.org/wiki/Zodiac or https://de.wikipedia.org/wiki/Tierkreiszeichen
for alternative date ranges.

See Also

Zodiac() function of the DescTools package.

Other date and time functions: change_time(), change_tz(), cur_date(), cur_time(), days_in_month(),
diff_dates(), diff_times(), diff_tz(), is_leap_year(), what_date(), what_month(), what_time(),
what_wday(), what_week(), what_year()

Examples

zodiac(Sys.Date())

Works with vectors:
dt <- sample_date(size = 10)
zodiac(dt)
levels(zodiac(dt))

https://en.wikipedia.org/wiki/Zodiac
https://de.wikipedia.org/wiki/Tierkreiszeichen

zodiac 127

Alternative outputs:
zodiac(dt, out = "de") # German/deutsch
zodiac(dt, out = "Unicode") # Unicode
zodiac(dt, out = "HTML") # HTML

Alternative date breaks:
zodiac("2000-08-23") # 0823 is "Virgo" by default
zodiac("2000-08-23", # change to 0824 (i.e., August 24):

zodiac_swap_mmdd = c(0120, 0219, 0321, 0421, 0521, 0621,
0723, 0824, 0923, 1023, 1123, 1222))

Index

∗ color objects and functions
pal_ds4psy, 70
pal_n_sq, 71

∗ data functions
get_set, 44
make_grid, 59

∗ datasets
base_digits, 6
Bushisms, 7
cclass, 9
countries, 16
data_1, 22
data_2, 23
data_t1, 24
data_t1_de, 24
data_t1_tab, 25
data_t2, 25
data_t3, 26
data_t4, 27
dt_10, 38
exp_num_dt, 39
exp_wide, 40
falsePosPsy_all, 40
fame, 42
flowery, 43
fruits, 43
i2ds_survey, 45
l33t_rul35, 59
metachar, 65
outliers, 70
pal_ds4psy, 70
pi_100k, 72
posPsy_AHI_CESD, 88
posPsy_long, 90
posPsy_p_info, 91
posPsy_wide, 92
t3, 98
t4, 98
t_1, 114

t_2, 114
t_3, 115
t_4, 116
table6, 99
table7, 100
table8, 100
table9, 101
tb, 102
Trumpisms, 113
Umlaut, 116

∗ date and time functions
change_time, 10
change_tz, 11
cur_date, 20
cur_time, 21
days_in_month, 27
diff_dates, 32
diff_times, 35
diff_tz, 36
is_leap_year, 55
what_date, 117
what_month, 119
what_time, 120
what_wday, 121
what_week, 122
what_year, 123
zodiac, 125

∗ numeric functions
base2dec, 4
base_digits, 6
dec2base, 28
is_equal, 54
is_wholenumber, 58
num_as_char, 66
num_as_ordinal, 67
num_equal, 68

∗ plot functions
plot_charmap, 72
plot_chars, 74

128

INDEX 129

plot_circ_points, 78
plot_fn, 79
plot_fun, 80
plot_n, 82
plot_text, 84
plot_tiles, 86
theme_clean, 106
theme_ds4psy, 108
theme_empty, 110

∗ sampling functions
coin, 14
dice, 30
dice_2, 31
sample_char, 94
sample_date, 95
sample_time, 96

∗ text objects and functions
capitalize, 7
caseflip, 8
cclass, 9
chars_to_text, 13
collapse_chars, 15
count_chars, 17
count_chars_words, 18
count_words, 19
invert_rules, 53
l33t_rul35, 59
map_text_chars, 60
map_text_coord, 61
map_text_regex, 62
metachar, 65
read_ascii, 93
text_to_chars, 103
text_to_sentences, 104
text_to_words, 105
transl33t, 112
Umlaut, 116
words_to_text, 124

∗ utility functions
base2dec, 4
base_digits, 6
dec2base, 28
is_equal, 54
is_vect, 56
is_wholenumber, 58
num_as_char, 66
num_as_ordinal, 67
num_equal, 68

all.equal, 54, 69
as.roman, 5, 6, 29

base2dec, 4, 6, 29, 54, 57, 58, 66, 68, 69
base_digits, 4, 5, 6, 28, 29, 54, 57, 58, 66,

68, 69
Bushisms, 7, 16, 23–27, 38, 40, 42–44, 53, 70,

72, 89, 90, 92, 93, 98–102, 114–116

capitalize, 7, 9, 13, 16, 17, 19, 20, 54, 59,
61, 62, 64, 65, 93, 103, 105, 106,
112, 117, 125

caseflip, 8, 8, 9, 13, 16, 17, 19, 20, 54, 59,
61, 62, 64, 65, 93, 103, 105, 106,
112, 117, 125

cclass, 8, 9, 9, 13, 16, 17, 19, 20, 54, 59, 61,
62, 64, 65, 93, 103, 105, 106, 112,
117, 125

change_time, 10, 12, 21, 22, 28, 34, 36, 37,
56, 118–120, 122–124, 126

change_tz, 10, 11, 21, 22, 28, 34, 36, 37, 56,
118–120, 122–124, 126

chars_to_text, 8, 9, 13, 15–17, 19, 20, 54,
59, 61, 62, 64, 65, 93, 103, 105, 106,
112, 117, 125

coin, 14, 30, 32, 95–97
collapse_chars, 8, 9, 13, 15, 17, 19, 20, 54,

59, 61, 62, 64, 65, 93, 103, 105, 106,
112, 117, 125

count_chars, 8, 9, 13, 16, 17, 18–20, 54, 59,
61, 62, 64, 65, 93, 103, 105, 106,
112, 117, 125

count_chars_words, 8, 9, 13, 16, 17, 18, 20,
54, 59, 61, 62, 64, 65, 93, 103, 105,
106, 112, 117, 125

count_words, 8, 9, 13, 16–19, 19, 54, 59, 61,
62, 64, 65, 93, 103, 105, 106, 112,
117, 125

countries, 7, 16, 23–27, 38, 40, 42–44, 53,
70, 72, 89, 90, 92, 93, 98–102,
114–116

cur_date, 10, 12, 20, 22, 28, 34, 36, 37, 56,
118–120, 122–124, 126

cur_time, 10, 12, 21, 21, 28, 34, 36, 37, 56,
118–120, 122–124, 126

data_1, 7, 16, 22, 23–27, 38, 40, 42–44, 53,
70, 72, 89, 90, 92, 93, 98–102,
114–116

130 INDEX

data_2, 7, 16, 23, 23, 24–27, 38, 40, 42–44,
53, 70, 72, 89, 90, 92, 93, 98–102,
114–116

data_t1, 7, 16, 23, 24, 25–27, 38, 40, 42–44,
53, 70, 72, 89, 90, 92, 93, 98–102,
114–116

data_t1_de, 7, 16, 23, 24, 24, 25–27, 38, 40,
42–44, 53, 70, 72, 89, 90, 92, 93,
98–102, 114–116

data_t1_tab, 7, 16, 23–25, 25, 26, 27, 38, 40,
42–44, 53, 70, 72, 89, 90, 92, 93,
98–102, 114–116

data_t2, 7, 16, 23–25, 25, 26, 27, 38, 40,
42–44, 53, 70, 72, 89, 90, 92, 93,
98–102, 114–116

data_t3, 7, 16, 23–26, 26, 27, 38, 40, 42–44,
53, 70, 72, 89, 90, 92, 93, 98–102,
114–116

data_t4, 7, 16, 23–26, 27, 38, 40, 42–44, 53,
70, 72, 89, 90, 92, 93, 98–102,
114–116

days_in_month, 10, 12, 21, 22, 27, 34, 36, 37,
56, 118–120, 122–124, 126

dec2base, 4–6, 28, 54, 57, 58, 66, 68, 69
dice, 14, 30, 31, 32, 95–97
dice_2, 14, 30, 31, 95–97
diff_dates, 10, 12, 21, 22, 28, 32, 36, 37, 56,

118–120, 122–124, 126
diff_times, 10, 12, 21, 22, 28, 34, 35, 37, 56,

118–120, 122–124, 126
diff_tz, 10, 12, 21, 22, 28, 34, 36, 36, 56,

118–120, 122–124, 126
ds4psy.guide, 38
dt_10, 7, 16, 23–27, 38, 40, 42–44, 53, 70, 72,

89, 90, 92, 93, 98–102, 114–116

exp_num_dt, 7, 16, 23–27, 38, 39, 40, 42–44,
53, 70, 72, 89, 90, 92, 93, 98–102,
114–116

exp_wide, 7, 16, 23–27, 38, 40, 40, 42–44, 53,
70, 72, 89, 90, 92, 93, 98–102,
114–116

falsePosPsy_all, 7, 16, 23–27, 38, 40, 40,
42–44, 53, 70, 72, 89, 90, 92, 93,
98–102, 114–116

fame, 7, 16, 23–27, 38, 40, 42, 42, 43, 44, 53,
70, 72, 89, 90, 92, 93, 98–102,
114–116

flowery, 7, 16, 23–27, 38, 40, 42, 43, 44, 53,
70, 72, 89, 90, 92, 93, 98–102,
114–116

fruits, 7, 16, 23–27, 38, 40, 42, 43, 43, 53,
70, 72, 89, 90, 92, 93, 98–102,
114–116

get_set, 44, 60

i2ds_survey, 7, 16, 23–27, 38, 40, 42–44, 45,
70, 72, 89, 90, 92, 93, 98–102,
114–116

invert_rules, 8, 9, 13, 16, 17, 19, 20, 53, 59,
61, 62, 64, 65, 93, 103, 105, 106,
112, 117, 125

is.atomic, 57
is.integer, 58
is.list, 57
is.vector, 57
is_equal, 5, 6, 29, 54, 57, 58, 66, 68, 69
is_leap_year, 10, 12, 21, 22, 28, 34, 36, 37,

55, 118–120, 122–124, 126
is_vect, 5, 6, 29, 54, 56, 58, 66, 68, 69
is_wholenumber, 5, 6, 29, 54, 57, 58, 66, 68,

69

l33t_rul35, 8, 9, 13, 16, 17, 19, 20, 54, 59,
61, 62, 64, 65, 93, 103, 105, 106,
112, 117, 125

make_grid, 44, 59
map_text_chars, 8, 9, 13, 16, 17, 19, 20, 54,

59, 60, 62, 64, 65, 93, 103, 105, 106,
112, 117, 125

map_text_coord, 8, 9, 13, 16, 17, 19, 20, 54,
59, 61, 61, 64, 65, 73, 74, 77, 85, 93,
103, 105, 106, 112, 117, 125

map_text_regex, 8, 9, 13, 16, 17, 19, 20, 54,
59, 61, 62, 62, 65, 73, 74, 76, 77, 85,
93, 103, 105, 106, 112, 117, 125

metachar, 8, 9, 13, 16, 17, 19, 20, 54, 59, 61,
62, 64, 65, 93, 103, 105, 106, 112,
117, 125

num_as_char, 5, 6, 29, 54, 57, 58, 66, 68, 69
num_as_ordinal, 5, 6, 29, 54, 57, 58, 66, 67,

69
num_equal, 5, 6, 29, 54, 57, 58, 66, 68, 68

INDEX 131

outliers, 7, 16, 23–27, 38, 40, 42–44, 53, 70,
72, 89, 90, 92, 93, 98–102, 114–116

pal_ds4psy, 70, 71, 74, 77, 80–83, 85, 87
pal_n_sq, 71, 71
paste, 105, 125
pi_100k, 7, 16, 23–27, 38, 40, 42–44, 53, 70,

72, 89, 90, 92, 93, 98–102, 114–116
plot_charmap, 62, 64, 72, 76–78, 80, 81, 83,

85, 87, 107, 109, 111
plot_chars, 17, 19, 20, 61, 62, 64, 73, 74, 74,

78, 80, 81, 83, 85, 87, 93, 107, 109,
111

plot_circ_points, 74, 77, 78, 80, 81, 83, 85,
87, 107, 109, 111

plot_fn, 74, 77, 78, 79, 81, 83, 85, 87, 107,
109, 111

plot_fun, 74, 77, 78, 80, 80, 83, 85, 87, 107,
109, 111

plot_n, 74, 77, 78, 80, 81, 82, 85, 87, 107,
109, 111

plot_text, 64, 74, 76–78, 80, 81, 83, 84, 87,
107, 109, 111

plot_tiles, 71, 74, 77, 78, 80, 81, 83, 85, 86,
107, 109, 111

points, 78
posPsy_AHI_CESD, 7, 16, 23–27, 38, 40,

42–44, 53, 70, 72, 88, 90, 92, 93,
98–102, 114–116

posPsy_long, 7, 16, 23–27, 38, 40, 42–44, 53,
70, 72, 89, 90, 92, 93, 98–102,
114–116

posPsy_p_info, 7, 16, 23–27, 38, 40, 42–44,
53, 70, 72, 89, 90, 91, 93, 98–102,
114–116

posPsy_wide, 7, 16, 23–27, 38, 40, 42–44, 53,
70, 72, 89, 90, 92, 92, 98–102,
114–116

read_ascii, 8, 9, 13, 16, 17, 19, 20, 54,
59–62, 64, 65, 74, 77, 85, 93, 103,
105, 106, 112, 117, 125

sample_char, 14, 30, 32, 94, 96, 97
sample_date, 14, 30, 32, 95, 95, 97
sample_time, 14, 30, 32, 95, 96, 96
str2vec (text_to_chars), 103
strsplit, 13, 16, 103, 105, 106, 125

t3, 7, 16, 23–27, 38, 40, 42–44, 53, 70, 72, 89,
90, 92, 93, 98, 99–102, 114–116

t4, 7, 16, 23–27, 38, 40, 42–44, 53, 70, 72, 89,
90, 92, 93, 98, 98, 99–102, 114–116

t_1, 7, 16, 23–27, 38, 40, 42–44, 53, 70, 72,
89, 90, 92, 93, 98–102, 114, 114,
115, 116

t_2, 7, 16, 23–27, 38, 40, 42–44, 53, 70, 72,
89, 90, 92, 93, 98–102, 114, 114,
115, 116

t_3, 7, 16, 23–27, 38, 40, 42–44, 53, 70, 72,
89, 90, 92, 93, 98–102, 114, 115,
115, 116

t_4, 7, 16, 23–27, 38, 40, 42–44, 53, 70, 72,
89, 90, 92, 93, 98–102, 114, 115, 116

table6, 7, 16, 23–27, 38, 40, 42–44, 53, 70,
72, 89, 90, 92, 93, 98, 99, 99,
100–102, 114–116

table7, 7, 16, 23–27, 38, 40, 42–44, 53, 70,
72, 89, 90, 92, 93, 98, 99, 100, 101,
102, 114–116

table8, 7, 16, 23–27, 38, 40, 42–44, 53, 70,
72, 89, 90, 92, 93, 98–100, 100, 101,
102, 114–116

table9, 7, 16, 23–27, 38, 40, 42–44, 53, 70,
72, 89, 90, 92, 93, 98–101, 101, 102,
114–116

tb, 7, 16, 23–27, 38, 40, 42–44, 53, 70, 72, 89,
90, 92, 93, 98–101, 102, 114–116

text_to_chars, 8, 9, 13, 16, 17, 19, 20, 54,
59, 61, 62, 64, 65, 93, 103, 105, 106,
112, 117, 125

text_to_sentences, 8, 9, 13, 16, 17, 19, 20,
54, 59, 61, 62, 64, 65, 93, 103, 104,
106, 112, 117, 125

text_to_words, 8, 9, 13, 16, 17, 19, 20, 54,
59, 61, 62, 64, 65, 93, 103, 105, 105,
106, 112, 117, 125

theme_clean, 74, 77, 78, 80, 81, 83, 85, 87,
106, 109, 111

theme_ds4psy, 74, 77, 78, 80, 81, 83, 85, 87,
107, 108, 111

theme_empty, 74, 77, 78, 80, 81, 83, 85, 87,
107, 109, 110

transl33t, 8, 9, 13, 16, 17, 19, 20, 54, 59, 61,
62, 64, 65, 93, 103, 105, 106, 112,
117, 125

Trumpisms, 7, 16, 23–27, 38, 40, 42–44, 53,

132 INDEX

70, 72, 89, 90, 92, 93, 98–102, 113,
114–116

Umlaut, 8, 9, 13, 16, 17, 19, 20, 54, 59, 61, 62,
64, 65, 93, 103, 105, 106, 112, 116,
125

vec2str (chars_to_text), 13

what_date, 10, 12, 21, 22, 28, 34, 36, 37, 56,
117, 119, 120, 122–124, 126

what_month, 10, 12, 21, 22, 28, 34, 36, 37, 56,
118, 119, 120, 122–124, 126

what_time, 10, 12, 21, 22, 28, 34, 36, 37, 56,
118, 119, 120, 122–124, 126

what_wday, 10, 12, 21, 22, 28, 34, 36, 37, 56,
118–120, 121, 123, 124, 126

what_week, 10, 12, 21, 22, 28, 34, 36, 37, 56,
118–120, 122, 122, 124, 126

what_year, 10, 12, 21, 22, 28, 34, 36, 37, 56,
118–120, 122, 123, 123, 126

words_to_text, 8, 9, 13, 16, 17, 19, 20, 54,
59, 61, 62, 64, 65, 93, 103, 105, 106,
112, 117, 124

zodiac, 10, 12, 21, 22, 28, 34, 36, 37, 56,
118–120, 122–124, 125

	base2dec
	base_digits
	Bushisms
	capitalize
	caseflip
	cclass
	change_time
	change_tz
	chars_to_text
	coin
	collapse_chars
	countries
	count_chars
	count_chars_words
	count_words
	cur_date
	cur_time
	data_1
	data_2
	data_t1
	data_t1_de
	data_t1_tab
	data_t2
	data_t3
	data_t4
	days_in_month
	dec2base
	dice
	dice_2
	diff_dates
	diff_times
	diff_tz
	ds4psy.guide
	dt_10
	exp_num_dt
	exp_wide
	falsePosPsy_all
	fame
	flowery
	fruits
	get_set
	i2ds_survey
	invert_rules
	is_equal
	is_leap_year
	is_vect
	is_wholenumber
	l33t_rul35
	make_grid
	map_text_chars
	map_text_coord
	map_text_regex
	metachar
	num_as_char
	num_as_ordinal
	num_equal
	outliers
	pal_ds4psy
	pal_n_sq
	pi_100k
	plot_charmap
	plot_chars
	plot_circ_points
	plot_fn
	plot_fun
	plot_n
	plot_text
	plot_tiles
	posPsy_AHI_CESD
	posPsy_long
	posPsy_p_info
	posPsy_wide
	read_ascii
	sample_char
	sample_date
	sample_time
	t3
	t4
	table6
	table7
	table8
	table9
	tb
	text_to_chars
	text_to_sentences
	text_to_words
	theme_clean
	theme_ds4psy
	theme_empty
	transl33t
	Trumpisms
	t_1
	t_2
	t_3
	t_4
	Umlaut
	what_date
	what_month
	what_time
	what_wday
	what_week
	what_year
	words_to_text
	zodiac
	Index

