Package ‘dgpsi’

October 15, 2025
Type Package

Title Interface to 'dgpsi' for Deep and Linked Gaussian Process
Emulations

Version 2.6.0
Maintainer Deyu Ming <deyu.ming.16@ucl.ac.uk>

Description Interface to the 'python' package 'dgpsi' for Gaussian process, deep Gaussian process,
and linked deep Gaussian process emulations of computer models and networks using stochas-
tic imputation (SI).

The implementations follow Ming & Guillas (2021) <doi:10.1137/20M1323771> and

Ming, Williamson, & Guillas (2023) <doi:10.1080/00401706.2022.2124311> and

Ming & Williamson (2023) <doi:10.48550/arXiv.2306.01212>. To get started with the package,
see <https://mingdeyu.github.io/dgpsi-R/>.

License MIT + file LICENSE

URL https://github.com/mingdeyu/dgpsi-R,
https://mingdeyu.github.io/dgpsi-R/

BugReports https://github.com/mingdeyu/dgpsi-R/issues
Encoding UTF-8
Depends R (>=4.0)

Imports reticulate (>= 1.26), benchmarkme (>= 1.0.8), utils, ggplot2,
ggforce, reshape2, patchwork, lhs, methods, stats, clhs, dplyr,
uuid, tidyr, rlang, lifecycle, magrittr, visNetwork, parallel,
kableExtra

Suggests knitr, rmarkdown, MASS, R.utils, spelling
VignetteBuilder knitr

RoxygenNote 7.3.3

Language en-US

NeedsCompilation no

Author Deyu Ming [aut, cre, cph],
Daniel Williamson [aut]

Repository CRAN
Date/Publication 2025-10-15 21:20:02 UTC

https://doi.org/10.1137/20M1323771
https://doi.org/10.1080/00401706.2022.2124311
https://doi.org/10.48550/arXiv.2306.01212
https://mingdeyu.github.io/dgpsi-R/
https://github.com/mingdeyu/dgpsi-R
https://mingdeyu.github.io/dgpsi-R/
https://github.com/mingdeyu/dgpsi-R/issues

2 alm

Contents
alm . L e e e 2
CONLINUE v v vt e ettt e e e e e e e e 6
deserialize L 8
designo 9
dgp . . e e 19
draw . . .o e e e e e 26
get_thread_num 28
ED e e e e e e 28
I PY - o o o e e e e 32
IgD . e e 33
MHCE . . o v e e e e e e e e e e e e e e e e 37
nllik ... e 41
PACK . . e 42
Plot . e 43
predict e e e e 47
PTUNE . . . L o bt e e e e e e e e e 50
read ... 52
serialize e e e e 53
set_id . Lo e 54
SELAMP . . . o e e e e e e e 55
set_seed e, 56
set_thread_num e 57
set_vecchia L e 57
SUMMATY + « v v v v v e 58
trace_plot L. e e 60
unpacko 60
update e e e e e e e 61
validate e e e e 63
VIgE e 68
WINdOW e e e e e e e e e e 72
125 L 73

Index 75

alm Locate the next design point(s) for a (D)GP emulator or a bundle of
(D)GP emulators using Active Learning MacKay (ALM)
Description

This function searches from a candidate set to locate the next design point(s) to be added to a (D)GP
emulator or a bundle of (D)GP emulators using the Active Learning MacKay (ALM) criterion (see
the reference below).

alm

Usage

alm(object, ...)

S3 method for class 'gp'
alm(

object,

x_cand = NULL,

n_start = 20,

batch_size = 1,

M = 50,

workers = 1,

limits = NULL,

int = FALSE,

)

S3 method for class 'dgp'
alm(
object,
x_cand = NULL,
n_start = 20,
batch_size = 1,
M = 50,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,

)

S3 method for class 'bundle'
alm(
object,
x_cand = NULL,
n_start = 20,
batch_size = 1,
M = 50,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,

Arguments

object can be one of the following:

e the S3 class gp.

x_cand

n_start

batch_size

M

workers

limits

int

aggregate

alm

* the S3 class dgp.
¢ the S3 class bundle.

any arguments (with names different from those of arguments used in alm())
that are used by aggregate can be passed here.

a matrix (with each row being a design point and column being an input di-
mension) that gives a candidate set from which the next design point(s) are de-
termined. If object is an instance of the bundle class and aggregate is not
supplied, x_cand can also be a list. The list must have a length equal to the
number of emulators in object, with each element being a matrix representing
the candidate set for a corresponding emulator in the bundle. Defaults to NULL.

an integer that gives the number of initial design points to be used to determine
next design point(s). This argument is only used when x_cand is NULL. Defaults
to 20.

an integer that gives the number of design points to be chosen. Defaults to 1.

the size of the conditioning set for the Vecchia approximation in the criterion
calculation. This argument is only used if the emulator object was constructed
under the Vecchia approximation. Defaults to 50.

the number of processes to be used for design point selection. If set to NULL,
the number of processes is set to max physical cores available %/% 2.
Defaults to 1. The argument does not currently support Windows machines
when the aggregate function is provided, due to the significant overhead caused
by initializing the Python environment for each worker under spawning.

a two-column matrix that gives the ranges of each input dimension, or a vector
of length two if there is only one input dimension. If a vector is provided, it will
be converted to a two-column row matrix. The rows of the matrix correspond to
input dimensions, and its first and second columns correspond to the minimum
and maximum values of the input dimensions. This argument is only used when
x_cand = NULL. Defaults to NULL.

a bool or a vector of bools that indicates if an input dimension is an integer
type. If a single bool is given, it will be applied to all input dimensions. If
a vector is provided, it should have a length equal to the input dimensions and
will be applied to individual input dimensions. This argument is only used when
x_cand = NULL. Defaults to FALSE.

an R function that aggregates scores of the ALM across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

* the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
is equal to:

— the emulator output dimension if object is an instance of the dgp class;
or

— the number of emulators contained in object if object is an instance
of the bundle class.

alm

Details

« the output should be a vector that gives aggregate scores at different design
points.

Set to NULL to disable aggregation. Defaults to NULL.

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

1. If x_cand is not NULL:

* When object is an instance of the gp class, a vector of length batch_size is returned,

containing the positions (row numbers) of the next design points from x_cand.

* When object is an instance of the dgp class, a vector of length batch_size * D is re-

turned, containing the positions (row numbers) of the next design points from x_cand to
be added to the DGP emulator.

— D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

— For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.

— For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or
D = K for multi-class output with K classes.

e When object is an instance of the bundle class, a matrix is returned with batch_size

rows and a column for each emulator in the bundle, containing the positions (row num-
bers) of the next design points from x_cand for individual emulators.

2. If x_cand is NULL:

Note

e When object is an instance of the gp class, a matrix with batch_size rows is returned,

giving the next design points to be evaluated.

* When object is an instance of the dgp class, a matrix with batch_size * D rows is

returned, where:

— D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

— For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.

— For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or
D = K for multi-class output with K classes.

* When object is an instance of the bundle class, a list is returned with a length equal

to the number of emulators in the bundle. Each element of the list is a matrix with
batch_size rows, where each row represents a design point to be added to the corre-
sponding emulator.

The first column of the matrix supplied to the first argument of aggregate must correspond to the
first output dimension of the DGP emulator if object is an instance of the dgp class, and so on
for subsequent columns and dimensions. If object is an instance of the bundle class, the first
column must correspond to the first emulator in the bundle, and so on for subsequent columns and
emulators.

https://mingdeyu.github.io/dgpsi-R/

6 continue

References

MacKay, D. J. (1992). Information-based objective functions for active data selection. Neural
Computation, 4(4), 590-604.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 1D non-stationary function

f <= function(x) {
sSin(30x((2xx-1)/2-0.4)"5)*cos(20*((2xx-1)/2-0.4))
3

generate the initial design
<- maximinLHS(10,1)
Y <= f(X)

>

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

specify the input range
lim <- c(0,1)

locate the next design point using ALM
X_new <- alm(m, limits = lim)

obtain the corresponding output at the located design point
Y_new <- f(X_new)

combine the new input-output pair to the existing data
X <= rbind(X, X_new)
Y <= rbind(Y, Y_new)

update the DGP emulator with the new input and output data and refit
m <- update(m, X, Y, refit = TRUE)

plot the LOO validation
plot(m)

End(Not run)

continue Continue training a DGP emulator

Description

This function implements additional training iterations for a DGP emulator.

continue

Usage

continue(
object,
N = NULL,
cores = 1,
ess_burn = 10
verb = TRUE,
burnin = NULL
B = NULL

Arguments

object
N

cores

ess_burn

verb

burnin

Details

’

’

an instance of the dgp class.

additional number of iterations to train the DGP emulator. If set to NULL, the
number of iterations is set to 500 if the DGP emulator was constructed without
the Vecchia approximation, and is set to 200 if Vecchia approximation was used.
Defaults to NULL.

the number of processes to be used to optimize GP components (in the same
layer) at each M-step of the training. If set to NULL, the number of processes
is set to (max physical cores available - 1) if the DGP emulator was
constructed without the Vecchia approximation. Otherwise, the number of pro-
cesses is set to max physical cores available %/% 2. Only use multiple
processes when there is a large number of GP components in different layers
and optimization of GP components is computationally expensive. Defaults to
1.

number of burnin steps for ESS-within-Gibbs at each I-step of the training. De-
faults to 10.

a bool indicating if a progress bar will be printed during training. Defaults to
TRUE.

the number of training iterations to be discarded for point estimates calculation.
Must be smaller than the overall training iterations so-far implemented. If this is
not specified, only the last 25% of iterations are used. This overrides the value
of burnin set in dgp (). Defaults to NULL.

the number of imputations to produce predictions. Increase the value to account
for more imputation uncertainty. This overrides the value of B set in dgp() if B
is not NULL. Defaults to NULL.

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object.

https://mingdeyu.github.io/dgpsi-R/

8 deserialize

Note

* One can also use this function to fit an untrained DGP emulator constructed by dgp() with
training = FALSE.

* The following slots:

— loo and oos created by validate(); and

— results created by predict() in object will be removed and not contained in the re-
turned object.

Examples

Not run:
See dgp() for an example.

End(Not run)

deserialize Restore the serialized emulator

Description

This function restores the serialized emulator created by serialize().

Usage

deserialize(object)
Arguments

object the serialized object of an emulator.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

The S3 class of a GP emulator, a DGP emulator, a linked (D)GP emulator, or a bundle of (D)GP
emulators.

Note

See the Note section in serialize().

https://mingdeyu.github.io/dgpsi-R/

design 9
Examples

Not run:

See serialize() for an example.

End(Not run)

design Sequential design of a (D)GP emulator or a bundle of (D)GP emula-
tors

Description

This function implements sequential design and active learning for a (D)GP emulator or a bundle
of (D)GP emulators, supporting an array of popular methods as well as user-specified approaches.
It can also be used as a wrapper for Bayesian optimization methods.

Usage

design(
object,
N,
x_cand,
y_cand,
n_sample,
limits,
f,
reps,
freq,
x_test,
y_test,
reset,
target,
method,
batch_size,
eval,
verb,
autosave,
new_wave,
M_val,
cores,

)

S3 method for class 'gp'
design(
object,

10

N,

x_cand = NULL,

y_cand = NULL,

n_sample = 200,
limits = NULL,

f = NULL,
reps = 1,
freq = c(1, 1),
x_test = NULL,

y_test = NULL,
reset = FALSE,
target = NULL,
method = vigf,
batch_size = 1,
eval = NULL,
verb = TRUE,
autosave = list(),
new_wave = TRUE,
M_val = 50,
cores = 1,

)

S3 method for class 'dgp'
design(
object,
N,
x_cand = NULL,
y_cand = NULL,
n_sample = 200,
limits = NULL,
f = NULL,
reps = 1,
freq = c(1, 1),
x_test = NULL,
y_test = NULL,
reset = FALSE,
target = NULL,
method = vigf,
batch_size = 1,
eval = NULL,
verb = TRUE,
autosave = list(),
new_wave = TRUE,
M_val = 50,
cores = 1,
train_N = NULL,
refit_cores = 1,

design

design

pruning

11

TRUE,

control = list(),

)

S3 method for class 'bundle'

design(
object,
N,
x_cand = NULL
y_cand = NULL

’

’

n_sample = 200,

limits = NULL
f = NULL,

reps = 1,

freq =
x_test NULL
y_test NULL
reset = FALSE
target = NULL
method = vigf

batch_size =
eval = NULL,
verb = TRUE,

’

c(1, 1),

’
’
’
’

’

1,

autosave = list(),
new_wave = TRUE,

M_val = 50,
cores = 1,

train_N = NULL,

refit_cores =

Arguments

object

x_cand

y_cand

T,

can be one of the following:

* the S3 class gp.
¢ the S3 class dgp.
* the S3 class bundle.

the number of iterations for the sequential design.

a matrix (with each row being a design point and column being an input dimen-
sion) that gives a candidate set from which the next design points are determined.
Defaults to NULL.

a matrix (with each row being a simulator evaluation and column being an output
dimension) that gives the realizations from the simulator at input positions in
x_cand. Defaults to NULL.

12

n_sample

limits

reps

freq

x_test

design

an integer that gives the size of a sub-set to be sampled from the candidate set
x_cand at each step of the sequential design to determine the next design point,
if x_cand is not NULL.

Defaults to 200.

a two-column matrix that gives the ranges of each input dimension, or a vector
of length two if there is only one input dimension. If a vector is provided, it will
be converted to a two-column row matrix. The rows of the matrix correspond to
input dimensions, and its first and second columns correspond to the minimum
and maximum values of the input dimensions. Set 1imits = NULL if x_cand is
supplied. This argument is only used when x_cand is not supplied, i.e., x_cand
=NULL. Defaults to NULL. If you provide a custom method function with an
argument called 1imits, the value of 1imits will be passed to your function.

an R function representing the simulator. f must adhere to the following rules:

* First argument: a matrix where rows correspond to different design points,
and columns represent input dimensions.

* Function output:

— a matrix where rows correspond to different outputs (matching the in-
put design points) and columns represent output dimensions. If there is
only one output dimension, the function should return a matrix with a
single column.

— alternatively, a list where:
the first element is the output matrix as described above.

+ additional named elements can optionally update values of argu-
ments with matching names passed via This list output is useful
if additional arguments to f, method, or eval need to be updated af-
ter each sequential design iteration.

See the Note section below for additional details. This argument is required and
must be supplied when y_cand = NULL. Defaults to NULL.

an integer that gives the number of repetitions of the located design points to be
created and used for evaluations of f. Set the argument to an integer greater than
1 only if f is a stochastic function that can generate different responses given
for the same input and the supplied emulator object can deal with stochastic
responses, e.g., a (D)GP emulator with nugget_est = TRUE or a DGP emulator
with a likelihood layer. The argument is only used when f is supplied. Defaults
to 1.

a vector of two integers with the first element indicating the number of iterations
taken between re-estimating the emulator hyperparameters, and the second el-
ement defining the number of iterations to take between re-calculation of eval-
uating metrics on the validation set (see x_test below) via the eval function.
Defaults to c(1, 1).

a matrix (with each row being an input testing data point and each column being
an input dimension) that gives the testing input data to evaluate the emulator
after each freq[2] iterations of the sequential design. Set to NULL for LOO-
based emulator validation. Defaults to NULL. This argument is only used if eval
= NULL.

design

y_test

reset

target

method

13

the testing output data corresponding to x_test for emulator validation after
each freq[2] iterations of the sequential design:

* if object is an instance of the gp class, y_test is a matrix with only one
column and each row contains a testing output data point from the corre-
sponding row of x_test.

¢ if object is an instance of the dgp class, y_test is a matrix with its rows
containing testing output data points corresponding to the same rows of
x_test and columns representing the output dimensions.

e if object is an instance of the bundle class, y_test is a matrix with each
row representing the outputs for the corresponding row of x_test and each
column representing the output of the different emulators in the bundle.

Set to NULL for LOO-based emulator validation. Defaults to NULL. This argu-
ment is only used if eval = NULL.

A bool or a vector of bools indicating whether to reset the hyperparameters of
the emulator(s) to their initial values (as set during initial construction) before
re-fitting. The re-fitting occurs based on the frequency specified by freq[1].
This option is useful when hyperparameters are suspected to have converged to
a local optimum affecting validation performance.

* If a single bool is provided, it applies to every iteration of the sequential
design.

* If a vector is provided, its length must equal N (even if the re-fit frequency
specified in freq[1] is not 1) and it will apply to the corresponding itera-
tions of the sequential design.

Defaults to FALSE.

a number or vector specifying the target evaluation metric value(s) at which
the sequential design should terminate. Defaults to NULL, in which case the
sequential design stops after N steps. See the Note section below for further
details about target.
an R function that determines the next design points to be evaluated by f. The
function must adhere to the following rules:
* First argument: an emulator object, which can be one of the following:
— an instance of the gp class (produced by gp());
— an instance of the dgp class (produced by dgp());
— an instance of the bundle class (produced by pack()).
* Second argument (if x_cand is not NULL): a candidate matrix representing
a set of potential design points from which the method function selects the
next points.
* Function output:
— If x_cand is not NULL:
for gp or dgp objects, the output must be a vector of row indices cor-
responding to the selected design points from the candidate matrix
(the second argument).
+ for bundle objects, the output must be a matrix containing the row
indices of the selected design points from the candidate matrix. Each

column corresponds to the indices for an individual emulator in the
bundle.

14

batch_size

eval

verb

autosave

design

— If x_cand is NULL:

+ for gp or dgp objects, the output must be a matrix where each row
represents a new design point to be added.

for bundle objects, the output must be a list with a length equal to
the number of emulators in the bundle. Each element in the list is
a matrix where rows represent the new design points for the corre-
sponding emulator.

See alm(), mice(), and vigf () for examples of built-in method functions. De-
faults to vigf ().

an integer specifying the number of design points to select in a single iteration.
Defaults to 1. This argument is used by the built-in method functions alm(),
mice(), and vigf (). If you provide a custom method function with an argument
named batch_size, the value of batch_size will be passed to your function.

an R function that computes a customized metric for evaluating emulator per-
formance. The function must adhere to the following rules:
* First argument: an emulator object, which can be one of the following:
— an instance of the gp class (produced by gp());
— an instance of the dgp class (produced by dgp());
— an instance of the bundle class (produced by pack()).
* Function output:
— for gp objects, the output must be a single metric value.

— for dgp objects, the output can be a single metric value or a vector of
metric values with a length equal to the number of output dimensions.

— for bundle objects, the output can be a single metric value or a vector
of metric values with a length equal to the number of emulators in the
bundle.

If no custom function is provided, a built-in evaluation metric (RMSE or log-
loss, in the case of DGP emulators with categorical likelihoods) will be used.
Defaults to NULL. See the Note section below for additional details.

a bool indicating if trace information will be printed during the sequential de-
sign. Defaults to TRUE.

a list that contains configuration settings for the automatic saving of the emula-
tor:

* switch: a bool indicating whether to enable automatic saving of the emu-
lator during sequential design. When set to TRUE, the emulator in the final
iteration is always saved. Defaults to FALSE.

* directory: a string specifying the directory path where the emulators will
be stored. Emulators will be stored in a sub-directory of directory named
emulator-id’. Defaults to ’./check_points’.

e fname: a string representing the base name for the saved emulator files.
Defaults to *check_point’.

* save_freq: an integer indicating the frequency of automatic saves, mea-
sured in the number of iterations. Defaults to 5.

design

new_wave

M_val

cores

train_N

refit_cores

pruning

15

e overwrite: a bool value controlling the file saving behavior. When set to
TRUE, each new automatic save overwrites the previous one, keeping only
the latest version. If FALSE, each automatic save creates a new file, preserv-
ing all previous versions. Defaults to FALSE.

a bool indicating whether the current call to design () will create a new wave of
sequential designs or add the next sequence of designs to the most recent wave.
This argument is relevant only if waves already exist in the emulator. Creat-
ing new waves can improve the visualization of sequential design performance
across different calls to design() via draw(), and allows for specifying a dif-
ferent evaluation frequency in freq. However, disabling this option can help
limit the number of waves visualized in draw() to avoid issues such as running
out of distinct colors for large numbers of waves. Defaults to TRUE.

an integer that gives the size of the conditioning set for the Vecchia approxima-
tion in emulator validations. This argument is only used if the emulator object
was constructed under the Vecchia approximation. Defaults to 50.

an integer that gives the number of processes to be used for emulator validation.
If set to NULL, the number of processes is set to max physical cores available
Defaults to 1. This argument is only used if eval = NULL.

Any arguments with names that differ from those used in design() but are
required by f, method, or eval can be passed here. design() will forward
relevant arguments to f, method, and eval based on the names of the additional
arguments provided.

the number of training iterations to be used for re-fitting the DGP emulator at
each step of the sequential design:

o If train_N is an integer, the DGP emulator will be re-fitted at each step
(based on the re-fit frequency specified in freq[1]) using train_N itera-
tions.

e If train_N is a vector, its length must be N, even if the re-fit frequency
specified in freq[1] is not 1.
e If train_N is NULL, the DGP emulator will be re-fitted at each step (based
on the re-fit frequency specified in freq[1]) using:
— 100 iterations if the DGP emulator was constructed without the Vecchia
approximation, or

— 50 iterations if the Vecchia approximation was used.
Defaults to NULL.

the number of processes to be used to re-fit GP components (in the same layer
of a DGP emulator) at each M-step during the re-fitting. If set to NULL, the num-
ber of processes is set to (max physical cores available - 1) if the DGP
emulator was constructed without the Vecchia approximation. Otherwise, the
number of processes is set to max physical cores available %/% 2. Only
use multiple processes when there is a large number of GP components in dif-
ferent layers and optimization of GP components is computationally expensive.
Defaults to 1.

a bool indicating if dynamic pruning of DGP structures will be implemented
during the sequential design after the total number of design points exceeds

%% 2.

16 design

min_size in control. The argument is only applicable to DGP emulators (i.e.,
object is an instance of dgp class) produced by dgp (). Defaults to TRUE.

control a list that can supply any of the following components to control the dynamic
pruning of the DGP emulator:

* min_size, the minimum number of design points required to trigger dy-
namic pruning. Defaults to 10 times the number of input dimensions.

* threshold, the R? value above which a GP node is considered redundant.
Defaults to 9. 97.

* nexceed, the minimum number of consecutive iterations that the R? value
of a GP node must exceed threshold to trigger the removal of that node
from the DGP structure. Defaults to 3.

The argument is only used when pruning = TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value
An updated object is returned with a slot called design that contains:

* Sslots, named wavel, wave2, ..., waveS, that contain information of § waves of sequential
design that have been applied to the emulator. Each slot contains the following elements:
— N, an integer that gives the numbers of iterations implemented in the corresponding wave;

— rmse, a matrix providing the evaluation metric values for emulators constructed during the
corresponding wave, when eval = NULL. Each row of the matrix represents an iteration.

+ for an object of class gp, the matrix contains a single column of RMSE values.

+ foran object of class dgp without a categorical likelihood, each row contains mean/median
squared errors corresponding to different output dimensions.

x for an object of class dgp with a categorical likelihood, the matrix contains a single
column of log-loss values.

+ for an object of class bundle, each row contains either mean/median squared errors
or log-loss values for the emulators in the bundle.

— metric: a matrix providing the values of custom evaluation metrics, as computed by the
user-supplied eval function, for emulators constructed during the corresponding wave.

— freq, an integer that gives the frequency that the emulator validations are implemented
during the corresponding wave.

— enrichment, a vector of size N that gives the number of new design points added after
each step of the sequential design (if object is an instance of the gp or dgp class), or a
matrix that gives the number of new design points added to emulators in a bundle after
each step of the sequential design (if object is an instance of the bundle class).

If target is not NULL, the following additional elements are also included:

— target: the target evaluating metric computed by the eval or built-in function to stop
the sequential design.
— reached: indicates whether the target was reached at the end of the sequential design:
+ a bool if object is an instance of the gp or dgp class.

https://mingdeyu.github.io/dgpsi-R/

design

17

% a vector of bools if object is an instance of the bundle class, with its length deter-
mined as follows:

- equal to the number of emulators in the bundle when eval = NULL.

- equal to the length of the output from eval when a custom eval function is pro-
vided.

* aslot called type that gives the type of validation:

— either LOO (’10o0”) or OOS ("00s’) if eval = NULL. See validate () for more information
about LOO and OOS.

— ’customized’ if a customized R function is provided to eval.

* two slots called x_test and y_test that contain the data points for the OOS validation if the

type slot is 00s’.

e If y_cand =NULL and x_cand is supplied, and there are NAs returned from the supplied f

during the sequential design, a slot called exclusion is included that records the located
design positions that produced NAs via f. The sequential design will use this information to
avoid re-visiting the same locations in later runs of design().

See Note section below for further information.

Note

* Validation of an emulator is forced after the final step of a sequential design even if N is not a

multiple of the second element in freq.

Any loo or oos slot that already exists in object will be cleaned, and a new slot called 1loo
or oos will be created in the returned object depending on whether x_test and y_test are
provided. The new slot gives the validation information of the emulator constructed in the
final step of the sequential design. See validate() for more information about the slots loo
and oos.

If object has previously been used by design() for sequential design, the information of the
current wave of the sequential design will replace those of old waves and be contained in the
returned object, unless

— the validation type (LOO or OOS depending on whether x_test and y_test are supplied
or not) of the current wave of the sequential design is the same as the validation types
(shown in the type of the design slot of object) in previous waves, and if the validation
type is OOS, x_test and y_test in the current wave must also be identical to those in
the previous waves;

— both the current and previous waves of the sequential design supply customized evalua-
tion functions to eval. Users need to ensure the customized evaluation functions are con-
sistent among different waves. Otherwise, the trace plot of RMSEs produced by draw()
will show values of different evaluation metrics in different waves.

For the above two cases, the information of the current wave of the sequential design will be
added to the design slot of the returned object under the name waves.

If object is an instance of the gp class and eval = NULL, the matrix in the rmse slot is single-
columned. If object is an instance of the dgp or bundle class and eval = NULL, the matrix
in the rmse slot can have multiple columns that correspond to different output dimensions or
different emulators in the bundle.

18

design

* If object is an instance of the gp class and eval = NULL, target needs to be a single value

giving the RMSE threshold. If object is an instance of the dgp or bundle class and eval
=NULL, target can be a vector of values that gives the thresholds of evaluating metrics for
different output dimensions or different emulators. If a single value is provided, it will be used
as the threshold for all output dimensions (if object is an instance of the dgp) or all emulators
(if object is an instance of the bundle). If a customized function is supplied to eval and
target is given as a vector, the user needs to ensure that the length of target is equal to that
of the output from eval.

When defining f, it is important to ensure that:

— the column order of the first argument of f is consistent with the training input used for
the emulator;

— the column order of the output matrix of f is consistent with the order of emulator output
dimensions (if object is an instance of the dgp class), or the order of emulators placed
in object (if object is an instance of the bundle class).

The output matrix produced by f may include NAs. This is especially beneficial as it allows
the sequential design process to continue without interruption, even if errors or NA outputs are
encountered from f at certain input locations identified by the sequential design. Users should
ensure that any errors within f are handled by appropriately returning NAs.

When defining eval, the output metric needs to be positive if draw() is used with log =T.
And one needs to ensure that a lower metric value indicates a better emulation performance if
target is set.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

#
f

#

construct a 2D non-stationary function that takes a matrix as the input
<- function(x) {
sin(1/((0.7*x[,1,drop=F]1+0.3)*(0.7*x[,2,drop=F]1+0.3)))

generate the initial design
<- maximinLHS(5,2)
<- f(X)

generate the validation data

validate_x <- maximinLHS(30,2)
validate_y <- f(validate_x)

training a 2-layered DGP emulator with the initial design
m <- dgp(X, Y)

specify the ranges of the input dimensions
lim_1 <- c(o, 1)

lim_2 <- c(0, 1)

lim <- rbind(1lim_1, 1lim_2)

dgp

m

#

1st wave of the sequential design with 10 steps
<- design(m, N=10, limits

2nd wave of the sequential design with 10 steps

lim, f = f, x_test

<- design(m, N=10, limits = lim, f = f, x_test

3rd wave of the sequential design with 10 steps
<- design(m, N=10, limits

lim, f = f, x_test

draw the design created by the sequential design
draw(m, 'design')

validate_x, y_test

validate_x, y_test

validate_x, y_test

inspect the trace of RMSEs during the sequential design
draw(m, 'rmse")

reduce the number of imputations for faster 00S
m_faster <- set_imp(m, 5)

plot the 00S validation with the faster DGP emulator
plot(m_faster, x_test = validate_x, y_test = validate_y)

End(Not run)

validate_y)

validate_y)

validate_y)

19

dgp

Deep Gaussian process emulator construction

Description

[Updated]

This function builds and trains a DGP emulator.

Usage
dgp(
X,
Y,
depth = 2,
node = ncol(X),
name = "sexp”,

lengthscale = 1,

bounds = NULL,
prior = "ga",
share = TRUE,

nugget_est = FALSE,
nugget = NULL,
scale_est = TRUE,
scale = 1,

20

connect = NULL,
likelihood = NULL,
training = TRUE,
verb = TRUE,
check_rep = TRUE,
vecchia = FALSE,

M = 25,

ord = NULL,

N = ifelse(vecchia, 200, 500),

cores = 1,
blocked_gibbs = TRUE,
ess_burn = 10,

burnin = NULL,

B =10,

id = NULL,

decouple = FALSE,

dgp

link = "logit”

Arguments

X

depth
node

name

lengthscale

a matrix where each row is an input training data point and each column repre-
sents an input dimension.

a matrix containing observed training output data. The matrix has its rows
being output data points and columns representing output dimensions. When
likelihood (see below) is not NULL, Y must be a matrix with a single column.

number of layers (including the likelihood layer) for a DGP structure. depth
must be at least 2. Defaults to 2.

number of GP nodes in each layer (except for the final layer or the layer feeding
the likelihood node) of the DGP. Defaults to ncol (X).

a character or a vector of characters that indicates the kernel functions (either
"sexp" for squared exponential kernel or "matern2.5" for Matérn-2.5 kernel)
used in the DGP emulator:

1. if a single character is supplied, the corresponding kernel function will be
used for all GP nodes in the DGP hierarchy.

2. if a vector of characters is supplied, each character of the vector specifies
the kernel function that will be applied to all GP nodes in the corresponding
layer.

Defaults to "sexp”.

initial lengthscales for GP nodes in the DGP emulator. It can be a single numeric
value or a vector:

1. if it is a single numeric value, the value will be applied as the initial length-
scales for all GP nodes in the DGP hierarchy.

2. if it is a vector, each element of the vector specifies the initial lengthscales
that will be applied to all GP nodes in the corresponding layer. The vector
should have a length of depth if likelihood = NULL or a length of depth
- 1if likelihood is not NULL.

dgp

bounds

prior

share

nugget_est

nugget

21

Defaults to a numeric value of 1.0.

the lower and upper bounds of lengthscales in GP nodes. It can be a vector or a
matrix:

1. if it is a vector, the lower bound (the first element of the vector) and upper
bound (the second element of the vector) will be applied to lengthscales for
all GP nodes in the DGP hierarchy.

2. if it is a matrix, each row of the matrix specifies the lower and upper bounds
of lengthscales for all GP nodes in the corresponding layer. The matrix
should have its row number equal to depth if 1ikelihood = NULL or to
depth - 1if 1ikelihood is not NULL.

Defaults to NULL where no bounds are specified for the lengthscales.
prior to be used for MAP estimation of lengthscales and nuggets of all GP nodes
in the DGP hierarchy:
e gamma prior ("ga"),
* inverse gamma prior ("inv_ga"), or
* jointly robust prior ("ref").
Defaults to "ga".

a bool indicating if all input dimensions of a GP node share a common length-
scale. Defaults to TRUE.

[Updated] a bool or a bool vector indicating whether the nuggets of GP nodes
in the final layer (or the layer feeding the likelihood node) should be estimated.
If a bool is provided, it is applied to all GP nodes in that layer. If a bool vector
is provided, its length must match the number of GP nodes:

e ncol(Y) if likelihood = NULL

e 2if likelihood is "Hetero" or "NegBin"

e 1if likelihoodis "Poisson” or "Categorical” with two classes

¢ the number of classes if 1ikelihood is "Categorical” with more than
two classes.

Each element of the vector is applied to the corresponding GP node in the fi-
nal layer (or the layer feeding the likelihood node). The value of a bool has
following effects:

* FALSE: the nugget of the corresponding GP is fixed to the corresponding
value defined in nugget (see below).
* TRUE: the nugget of the corresponding GP will be estimated with the initial
value given by the correspondence in nugget (see below).
Defaults to FALSE.
the initial nugget value(s) of GP nodes (if any) in each layer:
1. if it is a single numeric value, the value will be applied as the initial nugget
for all GP nodes in the DGP hierarchy.

2. if it is a vector, each element of the vector specifies the initial nugget that
will be applied to all GP nodes in the corresponding layer. The vector
should have a length of depth if 1ikelihood = NULL or a length of depth
- 1if likelihood is not NULL.

22

scale_est

scale

connect

likelihood

dgp

Set nugget to a small value and the bools in nugget_est to FALSE for deter-
ministic emulation, where the emulator interpolates the training data points. Set
nugget to a larger value and the bools in nugget_est to TRUE for stochastic em-
ulation where the computer model outputs are assumed to follow a homogeneous
Gaussian distribution. Defaults to 1e-6 if 1ikelihood is NULL. If 1ikelihood
is not NULL, the nuggets of GPs that feed into the likelihood layer default to
1e-4, while those of all other GPs default to 1e-6.

a bool or a bool vector indicating whether the variances of GP nodes in the final
layer (or the layer feeding the likelihood node) should be estimated. If a bool is
provided, it is applied to all GP nodes in that layer. If a bool vector is provided,
its length must match the number of GP nodes:
¢ ncol(Y) if likelihood = NULL
e 2if likelihood is "Hetero" or "NegBin"
e 1if likelihood is "Poisson"” or "Categorical” with two classes
¢ the number of classes if 1ikelihood is "Categorical” with more than
two classes.
The value of a bool has following effects:
* FALSE: the variance of the corresponding GP is fixed to the corresponding
value defined in scale (see below).
* TRUE: the variance of the corresponding GP will be estimated with the initial
value given by the correspondence in scale (see below).
Defaults to TRUE.

the initial variance value(s) of GP nodes in the final layer (or the layer feeding
the likelihood node). If it is a single numeric value, it will be applied to all GP
nodes in the final layer (or the layer feeding the likelihood node). If it is a vector,
its length must match the number of GP nodes:

¢ ncol(Y) if likelihood = NULL

e 2if likelihood is "Hetero" or "NegBin"

e 1if likelihood is "Poisson” or "Categorical” with two classes

¢ the number of classes if 1likelihood is "Categorical” with more than

two classes.

Each numeric in the vector will be applied to the corresponding GP node.
Defaults to 1.
a bool indicating whether to apply global input connections in the DGP struc-
ture. Setting this to FALSE may yield a better emulator in some cases. When

set to NULL, the value defaults to FALSE if 1ikelihood = "Categorical" and to
TRUE otherwise. Defaults to NULL.

the likelihood type of a DGP emulator:

1. NULL: no likelihood layer is included in the emulator.

2. "Hetero": aheteroskedastic Gaussian likelihood layer is added for stochas-
tic emulation where the computer model outputs are assumed to follow
a heteroskedastic Gaussian distribution (i.e., the computer model outputs
have input-dependent noise).

dgp

training

verb

check_rep

vecchia

ord

cores

blocked_gibbs

23

3. "Poisson”: a Poisson likelihood layer is added for emulation where the
computer model outputs are counts and a Poisson distribution is used to
model them.

4. "NegBin": a negative Binomial likelihood layer is added for emulation
where the computer model outputs are counts and a negative Binomial dis-
tribution is used to capture dispersion variability in input space.

5. "Categorical": acategorical likelihood layer is added for emulation (clas-
sification), where the computer model output is categorical.

Defaults to NULL.

a bool indicating if the initialized DGP emulator will be trained. When set
to FALSE, dgp() returns an untrained DGP emulator, to which one can apply
summary () to inspect its specifications or apply predict() to check its emula-
tion performance before training. Defaults to TRUE.

a bool indicating if the trace information on DGP emulator construction and
training will be printed during the function execution. Defaults to TRUE.

a bool indicating whether to check for repetitions in the dataset, i.e., if one input
position has multiple outputs. Defaults to TRUE.

a bool indicating whether to use Vecchia approximation for large-scale DGP
emulator construction and prediction. Defaults to FALSE.

the size of the conditioning set for the Vecchia approximation in the DGP emu-
lator training. Defaults to 25.

an R function that returns the ordering of the input to each GP node contained
in the DGP emulator for the Vecchia approximation. The function must satisfy
the following basic rules:

* the first argument represents the input to a GP node scaled by its length-
scales.

* the output of the function is a vector of indices that gives the ordering of
the input to the GP node.

If ord = NULL, the default random ordering is used. Defaults to NULL.

number of iterations for the training. Defaults to 500 if vecchia = FALSE and
200 if vecchia = TRUE. This argument is only used when training = TRUE.

the number of processes to be used to optimize GP components (in the same
layer) at each M-step of the training. If set to NULL, the number of processes
is set to (max physical cores available - 1) if vecchia = FALSE and
max physical cores available %/% 2 if vecchia = TRUE. Only use multiple
processes when there is a large number of GP components in different layers
and optimization of GP components is computationally expensive. Defaults to
1.

a bool indicating if the latent variables are imputed layer-wise using ESS-within-
Blocked-Gibbs. ESS-within-Blocked-Gibbs would be faster and more efficient
than ESS-within-Gibbs that imputes latent variables node-wise because it re-
duces the number of components to be sampled during Gibbs steps, especially
when there is a large number of GP nodes in layers due to higher input dimen-
sions. Default to TRUE.

24

ess_burn

burnin

id

decouple

link

Details

dgp

number of burnin steps for the ESS-within-Gibbs at each I-step of the training.
Defaults to 10. This argument is only used when training = TRUE.

the number of training iterations to be discarded for point estimates of model
parameters. Must be smaller than the training iterations N. If this is not specified,
only the last 25% of iterations are used. Defaults to NULL. This argument is only
used when training = TRUE.

the number of imputations used to produce predictions. Increase the value to
refine the representation of imputation uncertainty. Defaults to 10.

an ID to be assigned to the DGP emulator. If an ID is not provided (i.e., id =
NULL), a UUID (Universally Unique Identifier) will be automatically generated
and assigned to the emulator. Default to NULL.

[New] A boolean indicating whether the model parameters for the heteroskedas-
tic Gaussian likelihood, negative Binomial likelihood, and categorical likelihood
(when the number of categories is greater than 2) should be modeled using sep-
arate deep Gaussian process hierarchies when depth is greater than 2. Defaults
to FALSE.

[New] the link function used for binary classification when 1ikelihood = "Categorical”.
Supported options are "logit"” and "probit”. Defaults to "logit".

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An S3 class named dgp that contains five slots:

e id: A number or character string assigned through the id argument.

* data: a list that contains two elements: X and Y which are the training input and output data

respectively.

e specs: a list that contains

1. L(i.e., the number of layers in the DGP hierarchy) sub-lists named layer1, layer2,..., layerL.
Each sub-list contains D (i.e., the number of GP/likelihood nodes in the corresponding
layer) sub-lists named node1, node2,..., nodeD. If a sub-list corresponds to a likeli-
hood node, it contains one element called type that gives the name (Hetero, Poisson,
NegBin, or Categorical) of the likelihood node. If a sub-list corresponds to a GP node,
it contains four elements:

— kernel: the type of the kernel function used for the GP node.

— lengthscales: a vector of lengthscales in the kernel function.

— scale: the variance value in the kernel function.

— nugget: the nugget value in the kernel function.

2. seed: the random seed generated to produce imputations. This information is stored for
reproducibility when the DGP emulator (that was saved by write() with the light option
light = TRUE) is loaded back to R by read().

3. B: the number of imputations used to generate the emulator.

4. vecchia: whether the Vecchia approximation is used for the GP emulator training.

https://mingdeyu.github.io/dgpsi-R/

dgp

25

5. M: the size of the conditioning set for the Vecchia approximation in the DGP emulator
training. M is generated only when vecchia = TRUE.

* constructor_obj: a ’python’ object that stores the information of the constructed DGP em-
ulator.

* container_obj: a ’python’ object that stores the information for the linked emulation.

* emulator_obj: a ’python’ object that stores the information for the predictions from the DGP
emulator.

The returned dgp object can be used by

Note

e predict() for DGP predictions.

* continue() for additional DGP training iterations.
e validate() for LOO and OOS validations.

* plot() for validation plots.

¢ 1gp() for linked (D)GP emulator constructions.

e window() for model parameter trimming.

e summary () to summarize the trained DGP emulator.
e write() to save the DGP emulator to a . pkl file.

* set_imp() to change the number of imputations.

* design() for sequential design.

* update() to update the DGP emulator with new inputs and outputs.

e alm(), mice(), and vigf () to locate next design points.

Any R vector detected in X and Y will be treated as a column vector and automatically converted
into a single-column R matrix. Thus, if X is a single data point with multiple dimensions, it must be
given as a matrix.

Examples

Not run:

#

load the package and the Python env

library(dgpsi)

#
f

>

construct a step function
<- function(x) {

if (x < 0.5) return(-1)
if (x >= 0.5) return(1)

}

generate training data

<- seq(@, 1, length = 10)
<- sapply(X, f)

set a random seed

26 draw

set_seed(999)

training a DGP emulator
<- dgp(X, Y)

3

continue for further training iterations
m <- continue(m)

summarizing
summary (m)

trace plot
trace_plot(m)

trim the traces of model parameters
m <- window(m, 800)

LOO cross validation
m <- validate(m)
plot(m)

prediction
test_x <- seq(@, 1, length = 200)
m <- predict(m, x = test_x)

00S validation

validate_x <- sample(test_x, 10)
validate_y <- sapply(validate_x, f)
plot(m, validate_x, validate_y)

write and read the constructed emulator
write(m, 'step_dgp')
m <- read('step_dgp')

End(Not run)

draw Validation and diagnostic plots for a sequential design

Description
This function draws diagnostic and validation plots for a sequential design of a (D)GP emulator or
a bundle of (D)GP emulators.

Usage
draw(object, ...)

S3 method for class 'gp'
draw(object, type = "rmse”, log = FALSE, ...)

draw

27

S3 method for class 'dgp'

draw(object, type = "rmse”, log

FALSE, ...)

S3 method for class 'bundle'

draw(object, type = "rmse"”, log

Arguments

object

type

log

emulator

Details

FALSE, emulator = NULL, ...)

can be one of the following emulator classes:

e the S3 class gp.
e the S3 class dgp.
¢ the S3 class bundle.

N/A.
specifies the type of plot or visualization to generate:

* "rmse": generates a trace plot of RMSEs, log-losses for DGP emulators
with categorical likelihoods, or custom evaluation metrics specified via the
"eval"” argument in the [design ()] function.

* "design": shows visualizations of input designs created by the sequential
design procedure.

Defaults to "rmse”.

a bool indicating whether to plot RMSEs, log-losses (for DGP emulators with
categorical likelihoods), or custom evaluation metrics on a log scale when type
= "rmse". Defaults to FALSE.

an index or vector of indices of emulators packed in object. This argument is
only used if object is an instance of the bundle class. When set to NULL, all
emulators in the bundle are drawn. Defaults to NULL.

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A patchwork object.

Examples

Not run:

See design() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

28

&p

get_thread_num Get the number of threads

Description

This function gets the number of threads used for parallel computations involved in the package.

Usage

get_thread_num()

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

the number of threads.

gp Gaussian process emulator construction

Description

[Updated]

This function builds and trains a GP emulator.

Usage

gp(
X,
Y,
name = "sexp",
lengthscale = rep(@.1, ncol(X)),
bounds = NULL,
prior = "ref",
nugget_est = FALSE,
nugget = ifelse(nugget_est, 0.01, 1e-08),
scale_est = TRUE,

scale = 1,
training = TRUE,
verb = TRUE,

check_rep = TRUE,
vecchia = FALSE,
M = 25,

https://mingdeyu.github.io/dgpsi-R/

&p

ord = NULL,
id = NULL

Arguments

X

name

lengthscale

bounds

prior

nugget_est

nugget

scale_est

scale

29

a matrix where each row is an input data point and each column is an input
dimension.

a matrix with only one column and each row being an output data point.

kernel function to be used. Either "sexp"” for squared exponential kernel or
"matern2.5" for Matérn-2.5 kernel. Defaults to "sexp".

initial values of lengthscales in the kernel function. It can be a single numeric
value or a vector of length ncol (X):

« if it is a single numeric value, it is assumed that kernel functions across
input dimensions share the same lengthscale;

« if it is a vector, it is assumed that kernel functions across input dimensions
have different lengthscales.

Defaults to a vector of 0. 1.

the lower and upper bounds of lengthscales in the kernel function. It is a vector
of length two where the first element is the lower bound and the second element
is the upper bound. The bounds will be applied to all lengthscales in the kernel
function. Defaults to NULL where no bounds are specified for the lengthscales.

prior to be used for Maximum a Posterior for lengthscales and nugget of the
GP: gamma prior ("ga"), inverse gamma prior ("inv_ga"), or jointly robust
prior ("ref™). Defaults to "ref”. See the reference below for the jointly robust
prior.
a bool indicating if the nugget term is to be estimated:

1. FALSE: the nugget term is fixed to nugget.

2. TRUE: the nugget term will be estimated.

Defaults to FALSE.

the initial nugget value. If nugget_est = FALSE, the assigned value is fixed dur-
ing the training. Set nugget to a small value (e.g., 1e-8) and the corresponding
bool in nugget_est to FALSE for deterministic computer models where the emu-
lator should interpolate the training data points. Set nugget to a larger value and
the corresponding bool in nugget_est to TRUE for stochastic emulation where
the computer model outputs are assumed to follow a homogeneous Gaussian
distribution. Defaults to 1e-8 if nugget_est = FALSE and 0.01 if nugget_est
= TRUE.

a bool indicating if the variance is to be estimated:
1. FALSE: the variance is fixed to scale.
2. TRUE: the variance term will be estimated.
Defaults to TRUE.

the initial variance value. If scale_est = FALSE, the assigned value is fixed
during the training. Defaults to 1.

30

training

verb

check_rep

vecchia

ord

id

Details

&p

a bool indicating if the initialized GP emulator will be trained. When set to
FALSE, gp () returns an untrained GP emulator, to which one can apply summary ()
to inspect its specification or apply predict() to check its emulation perfor-
mance before the training. Defaults to TRUE.

a bool indicating if the trace information on GP emulator construction and train-
ing will be printed during function execution. Defaults to TRUE.

[New] a bool indicating whether to check for repetitions in the dataset, i.e., if
one input position has multiple outputs. Defaults to TRUE.

a bool indicating whether to use Vecchia approximation for large-scale GP emu-
lator construction and prediction. Defaults to FALSE. The Vecchia approximation
implemented for the GP emulation largely follows Katzfuss et al. (2022). See
reference below.

the size of the conditioning set for the Vecchia approximation in the GP emulator
training. Defaults to 25.

an R function that returns the ordering of the input to the GP emulator for the
Vecchia approximation. The function must satisfy the following basic rules:
* the first argument represents the input scaled by the lengthscales.
* the output of the function is a vector of indices that gives the ordering of
the input to the GP emulator.
If ord = NULL, the default random ordering is used. Defaults to NULL.

an ID to be assigned to the GP emulator. If an ID is not provided (i.e., id =
NULL), a UUID (Universally Unique Identifier) will be automatically generated
and assigned to the emulator. Default to NULL.

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An S3 class named gp that contains five slots:

e id: A number or character string assigned through the id argument.

* data: a list that contains two elements: X and Y which are the training input and output data

respectively.

e specs: a list that contains seven elements:

1. kernel: the type of the kernel function used. FEither "sexp” for squared exponential
kernel or "matern2.5" for Matérn-2.5 kernel.

A e

lengthscales: a vector of lengthscales in the kernel function.

scale: the variance value in the kernel function.

nugget: the nugget value in the kernel function.

vecchia: whether the Vecchia approximation is used for the GP emulator training.

M: the size of the conditioning set for the Vecchia approximation in the GP emulator
training.

https://mingdeyu.github.io/dgpsi-R/

&p

31

constructor_obj: a ’python’ object that stores the information of the constructed GP emu-
lator.

container_obj: a ’python’ object that stores the information for the linked emulation.

emulator_obj: a ’python’ object that stores the information for the predictions from the GP
emulator.

The returned gp object can be used by

Note

predict() for GP predictions.

validate() for LOO and OOS validations.

plot() for validation plots.

1gp () for linked (D)GP emulator constructions.

summary () to summarize the trained GP emulator.

write() to save the GP emulator to a . pk1 file.

design() for sequential designs.

update() to update the GP emulator with new inputs and outputs.

alm(), mice(), and vigf () to locate next design points.

Any R vector detected in X and Y will be treated as a column vector and automatically converted
into a single-column R matrix. Thus, if X is a single data point with multiple dimensions, it must be
given as a matrix.

References

Gu, M. (2019). Jointly robust prior for Gaussian stochastic process in emulation, calibration
and variable selection. Bayesian Analysis, 14(3), 857-885.

Katzfuss, M., Guinness, J., & Lawrence, E. (2022). Scaled Vecchia approximation for fast
computer-model emulation. SIAM/ASA Journal on Uncertainty Quantification, 10(2), 537-
554.

Examples

Not run:
load the package and the Python env
library(dgpsi)

construct a step function

f <-

function(x) {

if (x < 0.5) return(-1)
if (x >= 0.5) return(1)

}

generate training data
X <- seq(@, 1, length = 10)
Y <- sapply(X, f)

32

training
m <= gp(X, Y)

summarizing
summary (m)

LOO cross validation
m <- validate(m)
plot(m)

prediction
test_x <- seq(@, 1, length = 200)
m <- predict(m, x = test_x)

00S validation

validate_x <- sample(test_x, 10)
validate_y <- sapply(validate_x, f)
plot(m, validate_x, validate_y)

write and read the constructed emulator
write(m, 'step_gp')
m <- read('step_gp')

End(Not run)

init_py

init_py "python’ environment initialization

Description

This function initializes the *python’ environment for the package.

Usage

init_py(
py_ver = NULL,
dgpsi_ver = NULL,
reinstall = FALSE,
uninstall = FALSE,
verb = TRUE

Arguments

py_ver a string that gives the *python’ version to be installed. Supported versions are
3.10, 3.11, and 3.12. If py_ver = NULL, the default *python’ version ’3.10” will

be installed.

Igp

dgpsi_ver

reinstall

uninstall

verb

Details

33

a string that gives the ’python’ version of ’dgpsi’ to be used. If dgpsi_ver =
NULL,

* the latest ’python’ version of *dgpsi’ will be used, if the package is installed
from CRAN;

* the development ’python’ version of ’dgpsi’ will be used, if the package is
installed from GitHub.

a bool that indicates whether to reinstall the ’python’ version of "dgpsi’ specified
in dgpsi_ver if it has already been installed. This argument is useful when the
development version of the R package is installed and one may want to regularly
update the development ’python’ version of ’dgpsi’. Defaults to FALSE.

a bool that indicates whether to uninstall the python’ version of dgpsi’ specified
in dgpsi_ver if it has already been installed. This argument is useful when the
"python’ environment is corrupted and one wants to completely uninstall and
reinstall it. Defaults to FALSE.

a bool indicating if trace information will be printed during function execution.
Defaults to TRUE.

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

No return value, called to install required ’python’ environment.

Examples

Not run:

See gp(), dgp(), or 1gp() for an example.

End(Not run)

1gp

Linked (D)GP emulator construction

Description

This function constructs a linked (D)GP emulator for a model chain or network.

Usage

lgp(struc, emulators, B = 10, activate = TRUE, verb = TRUE, id = NULL)

https://mingdeyu.github.io/dgpsi-R/

34 Igp

Arguments

struc a data frame that defines the connection structure between emulators in the
linked system, with the following columns:

* From_Emulator: the ID of the emulator providing the output. This ID must
match the id slot in the corresponding emulator object (produced by gp()
or dgp()) within emulators argument of 1gp(), or it should be special
value "Global”, indicating the global inputs to the model chain or network.
The id slot is either automatically generated by gp() or dgp(), or can be
manually specified via the id argument in these functions or set with the
set_id() function.

* To_Emulator: the ID of the emulator receiving the input, also matching the
id slot in the corresponding emulator object.

* From_Output: asingle integer specifying the output dimension of the From_Emulator
that is being connected to the input dimension of the To_Emulator specified
by To_Input. If From_Emulator is "Global”, then From_Output indicates
the dimension of the global input passed to the To_Emulator.

* To_Input: asingle integer specifying the input dimension of the To_Emulator
that is receiving the From_Output dimension from the From_Emulator.

Each row represents a single one-to-one connection between a specified output
dimension of From_Emulator and a corresponding input dimension of To_Emulator.
If multiple connections are required between two emulators, each connection
should be specified in a separate row.

emulators a list of emulator objects, each containing an id slot that uniquely identifies it
within the linked system. The id slot in each emulator object must match the
From_Emulator/To_Emulator columns in struc.
If the same emulator is used multiple times within the linked system, the list
must contain distinct copies of that emulator, each with a unique ID stored in
their id slot. Use the set_id() function to produce copies with different IDs to
ensure each instance can be uniquely referenced.

B the number of imputations used for prediction. Increase the value to refine repre-
sentation of imputation uncertainty. If the system consists of only GP emulators,
B is set to 1 automatically. Defaults to 10.

activate a bool indicating whether the initialized linked emulator should be activated:

e If activate = FALSE, 1gp() returns an inactive linked emulator, allowing
inspection of its structure using summary ().

e Ifactivate = TRUE, 1gp() returns an active linked emulator, ready for pre-
diction and validation using predict() and validate(), respectively.
Defaults to TRUE.

verb a bool indicating if the trace information on linked (D)GP emulator construction
should be printed during the function call. Defaults to TRUE.

id an ID to be assigned to the linked (D)GP emulator. If an ID is not provided
(i.e., id = NULL), a UUID (Universally Unique Identifier) will be automatically
generated and assigned to the emulator. Defaults to NULL.

35

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

An S3 class named 1gp that contains three slots:

id: A number or character string assigned through the id argument.

constructor_obj: a list of ’python’ objects that stores the information of the constructed
linked emulator.

emulator_obj, a ’python’ object that stores the information for predictions from the linked

specs: a list that contains

1. seed: the random seed generated to produce the imputations. This information is stored
for reproducibility when the linked (D)GP emulator (that was saved by write() with the
light option 1ight = TRUE) is loaded back to R by read().

2. B: the number of imputations used to generate the linked (D)GP emulator.

3. metadata: a data frame providing configuration details for each emulator in the linked
system, with following columns:

Emulator: the ID of an emulator.

Layer: the layer in the linked system where the emulator is positioned. A lower
Layer number indicates a position closer to the input, with layer numbering increas-
ing as you move away from the input.

Pos_in_Layer: the position of the emulator within its layer. A lower Pos_in_Layer
number indicates a position higher up in that layer.

Total_Input_Dims: the total number of input dimensions of the emulator.
Total_Output_Dims: the total number of output dimensions of the emulator.

4. struc: The linked system structure, as supplied by struc.

The returned 1gp object can be used by

e predict() for linked (D)GP predictions.
validate() for OOS validation.
plot() for validation plots.

summary () to summarize the constructed linked (D)GP emulator.

write() to save the linked (D)GP emulator to a . pk1 file.

Igp
Details
Value
emulator.
Examples

Not run:

load the package and the Python env
library(dgpsi)

model 1
f1 <= function(x) {

https://mingdeyu.github.io/dgpsi-R/

36

(sin(7.5%x)+1)/2
3
model 2
f2 <= function(x) {
2/3xsin(2%(2*x - 1))+4/3%exp(-30*(2*(2*x-1))*2)-1/3
3
linked model
f12 <= function(x) {
f2(f1(x))
}

training data for Model 1

X1 <- seq(@, 1, length = 9)

Y1 <- sapply(X1, f1)

training data for Model 2

X2 <- seq(@, 1, length = 13)
Y2 <- sapply(X2, f2)

emulation of model 1

ml <- gp(X1, Y1, name = "matern2.5", id = "emulator1”)

emulation of model 2

m2 <- dgp(X2, Y2, depth = 2, name = "matern2.5", id = "emulator2")

struc <- data.frame(From_Emulator = c("Global”, "emulatorl”),
To_Emulator = c("emulator1”, "emulator2"),
From_Output = c(1, 1),
To_Input = c(1, 1))

emulators <- list(ml, m2)

construct the linked emulator for visual inspection
m_link <- lgp(struc, emulators, activate = FALSE)

visual inspection
summary (m_link)

build the linked emulator for prediction
m_link <- lgp(struc, emulators, activate = TRUE)
test_x <- seq(@, 1, length = 300)

m_link <- predict(m_link, x = test_x)

00S validation

validate_x <- sample(test_x, 20)

validate_y <- sapply(validate_x, f12)
plot(m_link, validate_x, validate_y, style = 2)

write and read the constructed linked emulator
write(m_link, 'linked_emulator')

m_link <- read('linked_emulator"')

End(Not run)

Igp

mice 37

mice Locate the next design point for a (D)GP emulator or a bundle of
(D)GP emulators using MICE

Description

This function searches from a candidate set to locate the next design point(s) to be added to a (D)GP
emulator or a bundle of (D)GP emulators using the Mutual Information for Computer Experiments
(MICE), see the reference below.

Usage

mice(object, ...)

S3 method for class 'gp'

mice(
object,
x_cand = NULL,
n_cand = 200,
batch_size = 1,
M = 50,

nugget_s = 1e-06,
workers = 1,
limits = NULL,

int = FALSE,
)
S3 method for class 'dgp'
mice(

object,

x_cand = NULL,

n_cand = 200,

batch_size = 1,

M = 50,

nugget_s = 1e-06,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,

)

S3 method for class 'bundle'
mice(

object,

x_cand = NULL,

38

n_cand = 200,
batch_size = 1,

M = 50,

nugget_s = 1e-06,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,

mice

Arguments

object

x_cand

n_cand

batch_size
M

nugget_s

workers

limits

int

can be one of the following:

* the S3 class gp.
e the S3 class dgp.
¢ the S3 class bundle.

any arguments (with names different from those of arguments used in mice())
that are used by aggregate can be passed here.

a matrix (with each row being a design point and column being an input di-
mension) that gives a candidate set from which the next design point(s) are de-
termined. If object is an instance of the bundle class and aggregate is not
supplied, x_cand can also be a list. The list must have a length equal to the
number of emulators in object, with each element being a matrix representing
the candidate set for a corresponding emulator in the bundle. Defaults to NULL.

an integer specifying the size of the candidate set to be generated for selecting
the next design point(s). This argument is used only when x_cand is NULL.
Defaults to 200.

an integer that gives the number of design points to be chosen. Defaults to 1.

the size of the conditioning set for the Vecchia approximation in the criterion
calculation. This argument is only used if the emulator object was constructed
under the Vecchia approximation. Defaults to 50.

the value of the smoothing nugget term used by MICE. Defaults to 1e-6.

the number of processes to be used for the criterion calculation. If set to NULL,
the number of processes is set to max physical cores available %/% 2.
Defaults to 1.

a two-column matrix that gives the ranges of each input dimension, or a vector
of length two if there is only one input dimension. If a vector is provided, it will
be converted to a two-column row matrix. The rows of the matrix correspond to
input dimensions, and its first and second columns correspond to the minimum
and maximum values of the input dimensions. This argument is only used when
x_cand = NULL. Defaults to NULL.

a bool or a vector of bools that indicates if an input dimension is an integer
type. If a single bool is given, it will be applied to all input dimensions. If
a vector is provided, it should have a length equal to the input dimensions and

mice 39

will be applied to individual input dimensions. This argument is only used when
x_cand = NULL. Defaults to FALSE.

aggregate an R function that aggregates scores of the MICE across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

* the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
equals to:

— the emulator output dimension if object is an instance of the dgp class;
or

— the number of emulators contained in object if object is an instance
of the bundle class.

* the output should be a vector that gives aggregate scores at different design
points.

Set to NULL to disable aggregation. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

1. If x_cand is not NULL:
* When object is an instance of the gp class, a vector of length batch_size is returned,
containing the positions (row numbers) of the next design points from x_cand.

* When object is an instance of the dgp class, a vector of length batch_size * D is re-
turned, containing the positions (row numbers) of the next design points from x_cand to
be added to the DGP emulator.

— D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

— For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.

— For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or
D =K for multi-class output with K classes.

¢ When object is an instance of the bundle class, a matrix is returned with batch_size
rows and a column for each emulator in the bundle, containing the positions (row num-
bers) of the next design points from x_cand for individual emulators.

2. If x_cand is NULL:
e When object is an instance of the gp class, a matrix with batch_size rows is returned,
giving the next design points to be evaluated.

* When object is an instance of the dgp class, a matrix with batch_size * D rows is
returned, where:

— D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

— For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.

https://mingdeyu.github.io/dgpsi-R/

40 mice

— For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or
D =K for multi-class output with K classes.

* When object is an instance of the bundle class, a list is returned with a length equal
to the number of emulators in the bundle. Each element of the list is a matrix with
batch_size rows, where each row represents a design point to be added to the corre-
sponding emulator.

Note

The first column of the matrix supplied to the first argument of aggregate must correspond to the
first output dimension of the DGP emulator if object is an instance of the dgp class, and so on
for subsequent columns and dimensions. If object is an instance of the bundle class, the first
column must correspond to the first emulator in the bundle, and so on for subsequent columns and
emulators.

References

Beck, J., & Guillas, S. (2016). Sequential design with mutual information for computer experiments
(MICE): emulation of a tsunami model. SIAM/ASA Journal on Uncertainty Quantification, 4(1),
739-766.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 1D non-stationary function

f <- function(x) {
sin(30x((2xx-1)/2-0.4)"5)*cos(20x((2*xx-1)/2-0.4))
3

generate the initial design
<- maximinLHS(10,1)
Y <= f(X)

>

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

generate a candidate set
x_cand <- maximinLHS(200,1)

locate the next design point using MICE
next_point <- mice(m, x_cand = x_cand)
X_new <- x_cand[next_point, ,drop = F]

obtain the corresponding output at the located design point
Y_new <- f(X_new)

nllik 41

combine the new input-output pair to the existing data
<- rbind(X, X_new)
Y <= rbind(Y, Y_new)

>

update the DGP emulator with the new input and output data and refit
m <- update(m, X, Y, refit = TRUE)

plot the LOO validation
plot(m)

End(Not run)

nllik Calculate the predictive negative log-likelihood

Description

This function computes the predictive negative log-likelihood from a DGP emulator with a likeli-
hood layer.

Usage

nllik(object, x, y)

Arguments
object an instance of the dgp class and it should be produced by dgp () with 1ikelihood
not being NULL;
X a matrix where each row is an input testing data point and each column is an
input dimension.
y a matrix with only one column where each row is a scalar-valued testing output
data point.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object is returned with an additional slot named NLL that contains two elements. The
first one, named meanNLL, is a scalar that gives the average negative predicted log-likelihood across
all testing data points. The second one, named allNLL, is a vector that gives the negative predicted
log-likelihood for each testing data point.

https://mingdeyu.github.io/dgpsi-R/

42 pack

pack Pack GP and DGP emulators into a bundle

Description

This function packs GP emulators and DGP emulators into a bundle class for sequential designs if
each emulator emulates one output dimension of the underlying simulator.

Usage
pack(..., id = NULL)
Arguments
a sequence or a list of emulators produced by gp() or dgp().

id an ID to be assigned to the bundle emulator. If an ID is not provided (i.e., id =
NULL), a UUID (Universally Unique Identifier) will be automatically generated
and assigned to the emulator. Default to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value
An S3 class named bundle to be used by design() for sequential designs. It has:

* aslot called id that is assigned through the id argument.

e N slots named emulator, . ..,emulatorN, each of which contains a GP or DGP emulator,
where N is the number of emulators that are provided to the function.

 aslot called data which contains two elements X and Y. X contains N matrices named emulatorl, ... ,emulatorN
that are training input data for different emulators. Y contains N single-column matrices named
emulatori,...,emulatorN that are training output data for different emulators.

Examples

Not run:

load packages
library(lhs)
library(dgpsi)

construct a function with a two-dimensional output

f <- function(x) {

y1 = sin(30%((2%x-1)/2-0.4)*5)%cos (20% ((2%x-1)/2-0.4))
y2 = 1/3%sin(2%(2%x - 1))+2/3%exp(-30% (2% (2%x~-1))*2)+1/3
return(cbind(y1,y2))

3

https://mingdeyu.github.io/dgpsi-R/

plot 43

generate the initial design
X <- maximinLHS(10,1)
Y <= f(X)

generate the validation data
validate_x <- maximinLHS(30,1)
validate_y <- f(validate_x)

training a 2-layered DGP emulator with respect to each output with the global connection off
ml <- dgp(X, Y[,1], connect = F)
m2 <- dgp(X, Y[,2], connect = F)

specify the range of the input dimension
lim <- c(0, 1)

pack emulators to form an emulator bundle
m <- pack(ml, m2)

1st wave of the sequential design with 10 iterations and the target RMSE of 0.01
m <- design(m, N =10, limits = 1lim, f = f, x_test = validate_x, y_test = validate_y, target = 0.01)

2rd wave of the sequential design with additional 10 iterations and the same target
m <- design(m, N =10, limits = 1lim, f = f, x_test = validate_x, y_test = validate_y, target = 0.01)

draw sequential designs of the two packed emulators
draw(m, type = 'design')

inspect the traces of RMSEs of the two packed emulators
draw(m, type = 'rmse')

write and read the constructed emulator bundle
write(m, 'bundle_dgp')
m <- read('bundle_dgp"')

unpack the bundle into individual emulators
m_unpacked <- unpack(m)

plot 00S validations of individual emulators
plot(m_unpacked[[1]], x_test = validate_x, y_test = validate_y[,1])
plot(m_unpacked[[2]], x_test = validate_x, y_test = validate_y[,2])

End(Not run)

plot Validation plots of a constructed GP, DGP, or linked (D)GP emulator

Description

This function draws validation plots of a GP, DGP, or linked (D)GP emulator.

44 plot

Usage

S3 method for class 'dgp'
plot(
X,
x_test NULL,
y_test = NULL,
dim = NULL,
method = "mean_var",
sample_size = 50,
style = 1,
min_max = TRUE,
normalize = TRUE,

color = "turbo”,

type = "points”,

verb = TRUE,

M = 50,

force = FALSE,

cores =1,
)
S3 method for class 'lgp'
plot(

X!

x_test = NULL,
y_test = NULL,

dim = NULL,
method = "mean_var",
sample_size = 50,
style = 1,
min_max = TRUE,
color = "turbo",
type = "points”,
M = 50,
verb = TRUE,
force = FALSE,
cores = 1,
)
S3 method for class 'gp'
plot(
X,

x_test = NULL,
y_test = NULL,

dim = NULL,

method = "mean_var”,
sample_size = 50,

plot 45

style = 1,
min_max = TRUE,
color = "turbo",
type = "points”,
verb = TRUE,
M = 50,
force = FALSE,
cores = 1,
)
Arguments
X can be one of the following emulator classes:
e the S3 class gp.
* the S3 class dgp.
 the S3 class 1gp.

X_test same as that of validate().

y_test same as that of validate().

dim if dim = NULL, the index of an emulator’s input within the design will be shown
on the x-axis in validation plots. Otherwise, dim indicates which dimension of
an emulator’s input will be shown on the x-axis in validation plots:

 If x is an instance of the gp of dgp class, dim is an integer.
* If x is an instance of the 1gp class, dim is an integer referring to the dimen-
sion of the global input to the linked emulator system.
This argument is only used when style = 1. Defaults to NULL.

method same as that of validate().

sample_size same as that of validate().

style either 1 or 2, indicating two different plotting styles for validation.

min_max a bool indicating if min-max normalization will be used to scale the testing
output, RMSE, predictive mean and std from the emulator. Defaults to TRUE.
This argument is not applicable to DGP emulators with categorical likelihoods.

normalize [New] a bool indicating if normalization will be used to scale the counts in
validation plots of DGP emulators with categorical likelihoods when style = 2.
Defaults to TRUE.

color a character string indicating the color map to use when style = 2:

* 'magma' (or 'A')
e 'inferno' (or 'B')
e 'plasma’ (or’C’)
e 'viridis' (or 'D")
e 'cividis' (or 'E")
* 'rocket' (or 'F'")
* 'mako' (or 'G")

46 plot
e "turbo' (or 'H")
Defaults to 'turbo' (or 'H").
type either 'line' or 'points, indicating whether to draw testing data in the OOS
validation plot as a line or individual points when the input of the emulator is
one-dimensional and style = 1. This argument is not applicable to DGP emu-
lators with categorical likelihoods. Defaults to 'points’
verb a bool indicating if trace information on plotting will be printed during execu-
tion. Defaults to TRUE.
M same as that of validate().
force same as that of validate().
cores same as that of validate().
N/A.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A patchwork object.

Note

e plot() calls validate() internally to obtain validation results for plotting. However, plot ()

will not export the emulator object with validation results. Instead, it only returns the plotting
object. For small-scale validations (i.e., small training or testing data points), direct execution
of plot() works well. However, for moderate- to large-scale validation, it is recommended
to first run validate() to obtain and store validation results in the emulator object, and then
supply the object to plot(). plot() checks the object’s 1loo and oos slots prior to calling
validate() and will not perform further calculation if the required information is already
stored.

plot() will only use stored OOS validation if x_test and y_test are identical to those used
by validate() to produce the data contained in the object’s oos slot, otherwise plot() will
re-evaluate OOS validation before plotting.

The returned patchwork::patchwork object contains the ggplot2::ggplot2 objects. One can
modify the included individual ggplots by accessing them with double-bracket indexing. See
https://patchwork.data-imaginist.com/ for further information.

Examples

Not run:

See gp(), dgp(), or 1gp() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/
https://patchwork.data-imaginist.com/

predict

47

predict Prediction from GP, DGP, or linked (D)GP emulators

Description

This function implements prediction from GP, DGP, or linked (D)GP emulators.

Usage
S3 method for class 'dgp'
predict(
object,
X)
method = "mean_var",

full_layer = FALSE,
sample_size = 50,

M = 50,

cores = 1,

chunks = NULL,

)

S3 method for class 'lgp'
predict(

object,

X,

method = "mean_var",

full_layer = FALSE,
sample_size = 50,

M = 50,

cores = 1,

chunks = NULL,

)

S3 method for class 'gp'
predict(

object,

X,

method = "mean_var",

sample_size = 50,

M = 50,

cores = 1,

chunks = NULL,

48

Arguments

object

X

method

full_layer

sample_size

cores

chunks

Details

predict

an instance of the gp, dgp, or 1gp class.
the testing input data:

e if object is an instance of the gp or dgp class, x is a matrix where each row
is an input testing data point and each column is an input dimension.

* if object is an instance of the 1gp class, x must be a matrix represent-
ing the global input, where each row corresponds to a test data point and
each column represents a global input dimension. The column indices
in x must align with the indices specified in the From_Output column of
the struc data frame (used in 1gp()), corresponding to rows where the
From_Emulator column is "Global"”.

[Updated] the prediction approach to use: either the mean-variance approach
("mean_var") or the sampling approach ("sampling"). The mean-variance ap-
proach returns the means and variances of the predictive distributions, while the
sampling approach generates samples from predictive distributions using the de-
rived means and variances. Defaults to "mean_var".

a bool indicating whether to output the predictions of all layers. Defaults to
FALSE. Only used when object is a DGP or a linked (D)GP emulator.

the number of samples to draw for each given imputation if method = "sampling”.
Defaults to 50.

the size of the conditioning set for the Vecchia approximation in the emulator
prediction. Defaults to 50. This argument is only used if the emulator object
was constructed under the Vecchia approximation.

the number of processes to be used for prediction. If set to NULL, the number of
processes is set to max physical cores available %/% 2. Defaults to 1.

the number of chunks that the testing input matrix x will be divided into for
multi-cores to work on. Only used when cores is not 1. If not specified (i.e.,
chunks = NULL), the number of chunks is set to the value of cores. Defaults to
NULL.

N/A.

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

e If object is an instance of the gp class:

1. if method = "mean_var": an updated object is returned with an additional slot called
results that contains two matrices named mean for the predictive means and var for the
predictive variances. Each matrix has only one column with its rows corresponding to
testing positions (i.e., rows of x).

2. if method = "sampling"”: an updated object is returned with an additional slot called
results that contains a matrix whose rows correspond to testing positions and columns
correspond to sample_size number of samples drawn from the predictive distribution of

GP.

https://mingdeyu.github.io/dgpsi-R/

predict 49

* [Updated] If object is an instance of the dgp class:

1. if method = "mean_var"” and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains two matrices named mean for the predic-
tive means and var for the predictive variances respectively. Each matrix has its rows
corresponding to testing positions and columns corresponding to DGP global output di-
mensions (i.e., the number of GP/likelihood nodes in the final layer). If the likelihood
node is categorical, the matrices contain the predictive means and variances of the class
probabilities, with columns corresponding to different classes.

2. if method = "mean_var"” and full_layer = TRUE: an updated object is returned with an
additional slot called results that contains two sub-lists named mean for the predictive
means and var for the predictive variances respectively. Each sub-list contains L (i.e., the
number of layers) matrices named layer1, layer2,..., layerL. Each matrix has its
rows corresponding to testing positions and columns corresponding to output dimensions
(i.e., the number of GP/likelihood nodes from the associated layer). If the likelihood node
is categorical, the matrices named layerL in both mean and var contain the predictive
means and variances of the class probabilities, respectively, with columns corresponding
to different classes.

3. if method = "sampling” and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains D (i.e., the number of GP/likelihood nodes
in the final layer) matrices named outputl, output2,..., outputD. If the likelihood
node in the final layer is categorical, results contains D matrices (where D is the number
of classes) of sampled class probabilities, each named according to its corresponding
class label. Each matrix in results has its rows corresponding to testing positions and
columns corresponding to samples of size: B x sample_size, where B is the number of
imputations specified in dgp().

4. if method = "sampling” and full_layer = TRUE: an updated object is returned with
an additional slot called results that contains L (i.e., the number of layers) sub-lists
named layer1, layer2,..., layerL. Each sub-list represents samples drawn from
the GP/likelihood nodes in the corresponding layer, and contains D (i.e., the number of
GP/likelihood nodes in the corresponding layer) matrices named output1, output2, ..., outputD.
If the likelihood node in the final layer is categorical, layerL contains D matrices (where
D is the number of classes) of sampled class probabilities, each named according to its
corresponding class label. Each matrix has its rows corresponding to testing positions
and columns corresponding to samples of size: B * sample_size, where B is the number
of imputations specified in dgp().

e If object is an instance of the 1gp class:

1. if method = "mean_var"” and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains two sub-lists named mean for the predic-
tive means and var for the predictive variances respectively. Each sub-list contains K
(same number of emulators in the final layer of the system) matrices named using the
IDs of the corresponding emulators in the final layer. Each matrix has rows correspond-
ing to global testing positions and columns corresponding to output dimensions of the
associated emulator in the final layer.

2. if method = "mean_var"” and full_layer = TRUE: an updated object is returned with an
additional slot called results that contains two sub-lists named mean for the predictive
means and var for the predictive variances respectively. Each sub-list contains L (i.e., the
number of layers in the emulated system) components named layer1, layer2,..., layerL.

50

prune

Each component represents a layer and contains K (same number of emulators in the
corresponding layer of the system) matrices named using the IDs of the corresponding
emulators in that layer. Each matrix has its rows corresponding to global testing positions
and columns corresponding to output dimensions of the associated GP/DGP emulator in
the corresponding layer.

if method = "sampling” and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains K (same number of emulators in the final
layer of the system) sub-lists named using the IDs of the corresponding emulators in the
final layer. Each sub-list contains D matrices, named output1, output2,..., outputD,
that correspond to the output dimensions of the GP/DGP emulator. Each matrix has rows
corresponding to testing positions and columns corresponding to samples of size: B
sample_size, where B is the number of imputations specified in 1gp().

if method = "sampling” and full_layer = TRUE: an updated object is returned with
an additional slot called results that contains L (i.e., the number of layers of the emu-
lated system) sub-lists named layer1, layer2,..., layerL.Each sub-list represents a
layer and contains K (same number of emulators in the corresponding layer of the system)
components named using the IDs of the corresponding emulators in that layer. Each com-
ponent contains D matrices, named outputl, output2,..., outputD, that correspond
to the output dimensions of the GP/DGP emulator. Each matrix has its rows correspond-
ing to testing positions and columns corresponding to samples of size: B * sample_size,
where B is the number of imputations specified in 1gp().

The results slot will also include:

* the value of M, which represents the size of the conditioning set for the Vecchia approximation,
if used, in the emulator prediction.

* the value of sample_size if method = "sampling"”.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

prune

Static pruning of a DGP emulator

Description

This function implements static pruning for a DGP emulator.

Usage

prune(object, control = list(), verb = TRUE)

prune 51

Arguments
object an instance of the dgp class that is generated by dgp().
control a list that can supply the following two components to control static pruning of
the DGP emulator:
* min_size, the minimum number of design points required to trigger prun-
ing. Defaults to 10 times of the input dimensions.
« threshold, the R? value above which a GP node is considered redundant
and removable. Defaults to 0. 97.
verb a bool indicating if trace information will be printed during the function execu-
tion. Defaults to TRUE.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object that could be an instance of gp, dgp, or bundle (of GP emulators) class.

Note
* The function requires a DGP emulator that has been trained with a dataset comprising a min-
imum size equal to min_size in control. If the training dataset size is smaller than this, it
is recommended that the design of the DGP emulator is enriched and its structure pruned dy-
namically using the design() function. Depending on the design of the DGP emulator, static
pruning may not be accurate. It is thus recommended that dynamic pruning is implemented as
a part of a sequential design via design().
* The following slots:
— loo and oos created by validate(); and
— results created by predict();
in object will be removed and not contained in the returned object.
Examples
Not run:

load the package and the Python env
library(dgpsi)

construct the borehole function over a hypercube
f <= function(x){
x[,1] <- (0.15 - 0.5) % x[,1] + 0.5
x[,2] <- exp((log(50000) - log(100)) * x[,2] + log(100))
x[,3] <- (115600 - 63070) *x[,3] + 63070
x[,4] <- (1110 - 990) * x[,4] + 990
x[,5] <= (116 - 63.1) * x[,5] + 63.1
x[,6] <- (820 - 700) * x[,6] + 700
x[,7] <- (1680 - 1120) * x[,7] + 1120

https://mingdeyu.github.io/dgpsi-R/

52

x[,8] <- (12045 - 9855) * x[,8] + 9855
y <- apply(x, 1, RobustGaSP::borehole)
3

set a random seed
set_seed(999)

generate training data
X <- maximinLHS(80, 8)
Y <= f(X)

generate validation data
validate_x <- maximinLHS (500, 8)
validate_y <- f(validate_x)

training a DGP emulator with anisotropic squared exponential kernels
m <- dgp(X, Y, share = F)

00S validation of the DGP emulator
plot(m, validate_x, validate_y)

prune the emulator until no more GP nodes are removable
m <- prune(m)

00S validation of the resulting emulator
plot(m, validate_x, validate_y)

End(Not run)

read

read Load the stored emulator

Description

This function loads the . pkl file that stores the emulator.

Usage
read(pkl_file)

Arguments

pkl_file the path to and the name of the . pkl file where the emulator is stored.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/

serialize 53

Value

The S3 class of a GP emulator, a DGP emulator, a linked (D)GP emulator, or a bundle of (D)GP
emulators.

Examples

Not run:
See gp(), dgp(), lgp(), or pack() for an example.

End(Not run)

serialize Serialize the constructed emulator

Description

This function serializes the constructed emulator.

Usage

serialize(object, light = TRUE)

Arguments
object an instance of the S3 class gp, dgp, 1gp, or bundle.
light a bool indicating if a light version of the constructed emulator (that requires a
small storage) will be serialized. Defaults to TRUE.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A serialized version of object.

Note

Since the constructed emulators are ’python’ objects, they cannot be directly exported to other R
processes for parallel processing. This function provides a solution by converting the emulators
into serialized objects, which can be restored using deserialize() for multi-process parallel im-
plementation.

https://mingdeyu.github.io/dgpsi-R/

54 set_id

Examples

Not run:

library(parallel)
library(dgpsi)

model

f <- function(x) {
(sin(7.5%xx)+1)/2

}

training data
X <- seq(@, 1, length = 10)
Y <- sapply(X, f)

train a DGP emulator
m <- dgp(X, Y, name = "matern2.5")

testing input data
X_dgp <- seq(@, 1, length = 100)

serialize the DGP emulator
m_serialized <- serialize(m)

create a cluster with 8 workers for parallel predictions
cl <- makeCluster(8)

export objects to the cluster
clusterExport(cl, varlist = c("m_serialized”, "X_dgp"))

initialize deserialized object on each worker
res <- clusterkEvalQ(cl, {
library(dgpsi)
assign("m_deserialized”, deserialize(m_serialized), envir = .GlobalEnv)

b

perform parallel predictions
results <- parlLapply(cl, 1:length(X_dgp), function(i) {
mean_i <- predict(m_deserialized, X_dgp[i])$results$mean

b

reset the cluster
stopCluster(cl)

combine mean predictions
pred_mean <- do.call(rbind, results)

End(Not run)

set_id Set Emulator ID

set_imp 55

Description

This function assigns a unique identifier to an emulator.

Usage

set_id(object, id)

Arguments

object an emulator object to which the ID will be assigned.

id a unique identifier for the emulator as either a numeric or character string. En-
sure this ID does not conflict with other emulator IDs, especially when used in
linked emulations.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

The updated object, with the assigned ID stored in its id slot.
Examples

Not run:

See lgp() for an example.

End(Not run)

set_imp Reset number of imputations for a DGP emulator

Description

This function resets the number of imputations for prediction from a DGP emulator.

Usage

set_imp(object, B = 5)

Arguments
object an instance of the S3 class dgp.
B the number of imputations to produce predictions from object. Increase the

value to improve imputation uncertainty quantification. Decrease the value to
improve speed of prediction. Defaults to 5.

https://mingdeyu.github.io/dgpsi-R/

56 set_seed

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object with the information of B incorporated.

Note

» This function is useful when a DGP emulator has been trained and one wants to make faster
predictions by decreasing the number of imputations without rebuilding the emulator.

* The following slots:

— loo and oos created by validate(); and

— results created by predict() in object will be removed and not contained in the re-
turned object.

Examples
Not run:
See design() for an example.

End(Not run)

set_seed Random seed generator

Description
This function initializes a random number generator that sets the random seed in both R and Python
to ensure reproducible results from the package.

Usage

set_seed(seed)

Arguments

seed a single integer value.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

No return value.

https://mingdeyu.github.io/dgpsi-R/
https://mingdeyu.github.io/dgpsi-R/

set_thread num 57
Examples

Not run:

See dgp() for an example.

End(Not run)

set_thread_num Set the number of threads

Description

This function sets the number of threads for parallel computations involved in the package.

Usage

set_thread_num(num)

Arguments
num the number of threads. If it is greater than the maximum number of threads
available, the number of threads will be set to the maximum value.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

No return value.

set_vecchia Add or remove the Vecchia approximation

Description

This function adds or removes the Vecchia approximation from a GP, DGP or linked (D)GP emula-
tor constructed by gp(), dgp() or 1gp().

Usage

set_vecchia(object, vecchia = TRUE, M = 25, ord = NULL)

https://mingdeyu.github.io/dgpsi-R/

58

Arguments

object

vecchia

ord

Details

sumimary

an instance of the S3 class gp, dgp, or 1gp.
a bool to indicate the addition or removal of the Vecchia approximation:

¢ if object is an instance of the gp or dgp class, vecchia indicates either
addition (vecchia = TRUE) or removal (vecchia = FALSE) of the Vecchia
approximation from object.

¢ if object is an instance of the 1gp class, vecchia indicates either addition
(vecchia = TRUE) or removal (vecchia = FALSE) of the Vecchia approxi-
mation from all individual (D)GP emulators contained in object.

Defaults to TRUE.

the size of the conditioning set for the Vecchia approximation in the (D)GP
emulator training. Defaults to 25.

an R function that returns the ordering of the input to the (D)GP emulator for
the Vecchia approximation. The function must satisfy the following basic rules:

* the first argument represents the lengthscale-scaled input to the GP emula-
tor or the lengthscale-scaled input to a GP node of the DGP emulator.

* the output of the function is a vector of indices that gives the ordering of the
input to the GP emulator or the input to the GP nodes of the DGP emulator.

If ord = NULL, the default random ordering is used. Defaults to NULL.

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object with the Vecchia approximation either added or removed.

Note

This function is useful for quickly switching between Vecchia and non-Vecchia approximations for
an existing emulator without the need to reconstruct the emulator. If the emulator was built without
the Vecchia approximation, the function can add it, and if the emulator was built with the Vecchia
approximation, the function can remove it. If the current state already matches the requested state,
the emulator remains unchanged.

summary

Summary of a constructed GP, DGP, or linked (D)GP emulator

Description

This function provides a summary of key information for a GP, DGP, or linked (D)GP emulator by
generating either a table or an interactive plot of the emulator’s structure.

https://mingdeyu.github.io/dgpsi-R/

summary 59

Usage

S3 method for class 'gp'
summary(object, type = "plot"”, ...)

S3 method for class 'dgp'
summary(object, type = "plot”, ...)

S3 method for class 'lgp'

summary(object, type = "plot"”, group_size =1, ...)
Arguments
object can be one of the following:

¢ the S3 class gp.
¢ the S3 class dgp.
¢ the S3 class 1gp.

type a character string, either "table"” or "plot”, indicating the format of the output.
If set to "table”, the function returns a summary in table. If set to "plot”, the
function returns an interactive visualization. Defaults to "plot”.

Any arguments that can be passed to kableExtra: :kb1() when type = "table".

group_size an integer specifying the number of consecutive layers to be grouped together
in the interactive visualization of linked emulators when type = "plot"”. This
argument is only applicable if object is an instance of the 1gp class. Defaults
to 1.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

Either a summary table (returned as kableExtra object) or an interactive visualization (returned
as a visNetwork object) of the emulator. The visualization is compatible with R Markdown
documents and the RStudio Viewer. The summary table can be further customized by kableEx-
tra::kableExtra package. The resulting visNetwork object can be saved as an HTML file using
visNetwork: :visSave() from the visNetwork::visNetwork package.

Examples

Not run:
See gp(), dgp(), or 1gp() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

60 unpack

trace_plot Trace plot for DGP hyperparameters

Description

This function draws trace plots for the hyperparameters of a chosen GP node in a DGP emulator.

Usage

trace_plot(object, layer = NULL, node = 1)

Arguments
object an instance of the dgp class.
layer the index of a layer. Defaults to NULL for the final layer.
node the index of a GP node in the layer specified by layer. Defaults to 1 for the first
GP node in the corresponding layer.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A ggplot object.
Examples
Not run:
See dgp() for an example.

End(Not run)

unpack Unpack a bundle of (D)GP emulators

Description
This function unpacks a bundle of (D)GP emulators safely so that any further manipulations of
unpacked individual emulators will not impact those in the bundle.

Usage

unpack(object)

https://mingdeyu.github.io/dgpsi-R/

update 61

Arguments

object an instance of the class bundle.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A named list that contains individual emulators (named emulatori, .. .,emulatorS) packed in
object, where S is the number of emulators in object.

Examples
Not run:

See pack() for an example.

End(Not run)

update Update a GP or DGP emulator

Description

This function updates the training input and output of a GP or DGP emulator with an option to refit
the emulator.

Usage

update(object, X, Y, refit, reset, verb, ...)

S3 method for class 'dgp'
update(
object,
X,
Y,
refit = TRUE,
reset FALSE,
verb = TRUE,
N = NULL,
cores = 1,
ess_burn = 10,
B = NULL,

)

S3 method for class 'gp'
update(object, X, Y, refit = TRUE, reset = FALSE, verb = TRUE, ...)

https://mingdeyu.github.io/dgpsi-R/

62

Arguments

object

refit

reset

verb

cores

ess_burn

Details

update

can be one of the following:

* the S3 class gp.
 the S3 class dgp.

the new input data which is a matrix where each row is an input training data
point and each column represents an input dimension.

the new output data:

 If object is an instance of the gp class, Y is a matrix with only one column
and each row being an output data point.

* If object is an instance of the dgp class, Y is a matrix with its rows being
output data points and columns being output dimensions. When 1ikelihood
(see below) is not NULL, Y must be a matrix with only one column.

a bool indicating whether to re-fit the emulator object after the training input
and output are updated. Defaults to TRUE.

a bool indicating whether to reset hyperparameters of the emulator object to
the initial values first obtained when the emulator was constructed. Use if it is
suspected that a local mode for the hyperparameters has been reached through
successive updates. Defaults to FALSE.

a bool indicating if trace information will be printed during the function execu-
tion. Defaults to TRUE.

N/A.

number of training iterations used to re-fit the emulator object if it is an instance
of the dgp class. If set to NULL, the number of iterations is set to 100 if the DGP
emulator was constructed without the Vecchia approximation, and is set to 50 if
Vecchia approximation was used. Defaults to NULL.

the number of processes to be used to re-fit GP components (in the same layer)
at each M-step during the re-fitting. If set to NULL, the number of processes
is set to (max physical cores available - 1) if vecchia = FALSE and
max physical cores available %/% 2 if vecchia = TRUE. Only use multiple
processes when there is a large number of GP components in different layers
and optimization of GP components is computationally expensive. Defaults to
1.

number of burnin steps for the ESS-within-Gibbs sampler at each I-step of the
training of the emulator object if it is an instance of the dgp class. Defaults to
10.

the number of imputations for predictions from the updated emulator object if
it is an instance of the dgp class. This overrides the number of imputations set
in object. Set to NULL to use the same number of imputations set in object.
Defaults to NULL.

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/

validate 63

Value

An updated object.

Note

* The following slots:

— loo and oos created by validate();
— results created by predict(); and
— design created by design()

in object will be removed and not contained in the returned object.
Examples
Not run:
See alm(), mice(), or vigf() for an example.

End(Not run)

validate Validate a constructed GP, DGP, or linked (D)GP emulator

Description

This function calculates Leave-One-Out (LOO) cross validation or Out-Of-Sample (OOS) valida-
tion statistics for a constructed GP, DGP, or linked (D)GP emulator.

Usage

validate(
object,
x_test,
y_test,
method,
sample_size,
verb,
M,
force,
cores,

) .

S3 method for class 'gp'
validate(

object,

x_test = NULL,

64 validate

y_test = NULL,
method = "mean_var",
sample_size = 50,
verb = TRUE,
M = 50,
force = FALSE,
cores = 1,
)
S3 method for class 'dgp'
validate(
object,
x_test = NULL,
y_test = NULL,
method = "mean_var”,
sample_size = 50,
verb = TRUE,
M = 50,
force = FALSE,
cores = 1,
)
S3 method for class 'lgp'
validate(
object,
x_test = NULL,
y_test = NULL,
method = "mean_var”,
sample_size = 50,
verb = TRUE,
M = 50,
force = FALSE,
cores = 1,
)
Arguments
object can be one of the following:
* the S3 class gp.
* the S3 class dgp.
¢ the S3 class 1gp.
x_test OOS testing input data:

 if object is an instance of the gp or dgp class, x_test is a matrix where
each row is a new input location to be used for validating the emulator and
each column is an input dimension.

validate 65

* if object is an instance of the 1gp class, x_test must be a matrix repre-
senting the global input, where each row corresponds to a test data point
and each column represents a global input dimension. The column indices
in x_test must align with the indices specified in the From_Output column
of the struc data frame (used in 1gp()), corresponding to rows where the
From_Emulator column is "Global"”.

x_test must be provided if object is an instance of the 1gp. x_test must
also be provided if y_test is provided. Defaults to NULL, in which case LOO
validation is performed.

y_test the OOS output data corresponding to x_test:

* if object is an instance of the gp class, y_test is a matrix with only one
column where each row represents the output corresponding to the match-
ing row of x_test.

 if object is an instance of the dgp class, y_test is a matrix where each
row represents the output corresponding to the matching row of x_test
and with columns representing output dimensions.

* if object is an instance of the 1gp class, y_test can be a single matrix or
a list of matrices:

— if y_test is a single matrix, then there should be only one emulator in
the final layer of the linked emulator system and y_test represents the
emulator’s output with rows being testing positions and columns being
output dimensions.

— if y_test is a list, then y_test should have L matrices, where L is the
number of emulators in the final layer of the system. Each matrix has
its rows corresponding to testing positions and columns corresponding
to output dimensions of the associated emulator in the final layer.

y_test must be provided if object is an instance of the lgp. y_test must
also be provided if x_test is provided. Defaults to NULL, in which case LOO
validation is performed.

method [Updated] the prediction approach to use for validation: either the mean-variance
approach ("mean_var") or the sampling approach ("sampling"). For details see
predict(). Defaults to "mean_var".

sample_size the number of samples to draw for each given imputation if method = "sampling”.
Defaults to 50.
verb a bool indicating if trace information for validation should be printed during

function execution. Defaults to TRUE.

M the size of the conditioning set for the Vecchia approximation in emulator val-
idation. This argument is only used if the emulator object was constructed
under the Vecchia approximation. Defaults to 50.

force a bool indicating whether to force LOO or OOS re-evaluation when the loo
or oos slot already exists in object. When force = FALSE, validate() will
only re-evaluate the emulators if the x_test and y_test are not identical to the
values in the oos slot. If the existing 1oo or oos validation used a different M
in a Vecchia approximation or a different method to the one prescribed in this
call, the emulator will be re-evaluated. Set force to TRUE when LOO or OOS
re-evaluation is required. Defaults to FALSE.

66 validate

cores the number of processes to be used for validation. If set to NULL, the number of
processes is set to max physical cores available %/% 2. Defaults to 1.
N/A.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

* If object is an instance of the gp class, an updated object is returned with an additional slot
called 1oo (for LOO cross validation) or oos (for OOS validation) that contains:

— two slots called x_train (or x_test) and y_train (or y_test) that contain the validation
data points for LOO (or OOS).

— acolumn matrix called mean, if method = "mean_var", or median, if method = "sampling”,
that contains the predictive means or medians of the GP emulator at validation positions.

— three column matrices called std, lower, and upper that contain the predictive standard
deviations and credible intervals of the GP emulator at validation positions. If method
= "mean_var"”, the upper and lower bounds of a credible interval are two standard de-
viations above and below the predictive mean. If method = "sampling”, the upper and
lower bounds of a credible interval are 2.5th and 97.5th percentiles.

— anumeric value called rmse that contains the root mean/median squared error of the GP
emulator.

— a numeric value called nrmse that contains the (max-min) normalized root mean/median
squared error of the GP emulator. The max-min normalization uses the maximum and
minimum values of the validation outputs contained in y_train (or y_test).

— an integer called M that contains the size of the conditioning set used for the Vecchia
approximation, if used, for emulator validation.

— an integer called sample_size that contains the number of samples used for validation if
method = "sampling”.

The rows of matrices (mean, median, std, lower, and upper) correspond to the validation
positions.

* If object is an instance of the dgp class, an updated object is returned with an additional
slot called 1oo (for LOO cross validation) or oos (for OOS validation) that contains:

— two slots called x_train (or x_test) and y_train (or y_test) that contain the validation
data points for LOO (or OOS).

— a matrix called mean, if method = "mean_var", or median, if method = "sampling”, that
contains the predictive means or medians of the DGP emulator at validation positions.

— three matrices called std, lower, and upper that contain the predictive standard devi-
ations and credible intervals of the DGP emulator at validation positions. If method =
"mean_var"”, the upper and lower bounds of a credible interval are two standard devia-
tions above and below the predictive mean. If method = "sampling”, the upper and lower
bounds of a credible interval are 2.5th and 97.5th percentiles.

— avector called rmse that contains the root mean/median squared errors of the DGP emu-
lator across different output dimensions.

https://mingdeyu.github.io/dgpsi-R/

validate

67

a vector called nrmse that contains the (max-min) normalized root mean/median squared
errors of the DGP emulator across different output dimensions. The max-min normal-
ization uses the maximum and minimum values of the validation outputs contained in
y_train (or y_test).

an integer called M that contains size of the conditioning set used for the Vecchia approx-
imation, if used, for emulator validation.

an integer called sample_size that contains the number of samples used for validation if
method = "sampling”.

The rows and columns of matrices (mean, median, std, lower, and upper) correspond to the
validation positions and DGP emulator output dimensions, respectively.

* [Updated] If object is an instance of the dgp class with a categorical likelihood, an updated
object is returned with an additional slot called 1oo (for LOO cross validation) or oos (for
OOS validation) that contains:

two slots called x_train (or x_test) and y_train (or y_test) that contain the validation
data points for LOO (or OOS).

a vector called 1abel that contains predictive labels from the DGP emulator at validation
positions.

a matrix called probability that contains mean predictive probabilities for each class
from the DGP emulator at validation positions. The matrix has its rows corresponding to
validation positions and columns corresponding to different classes.

a scalar called log_loss that represents the log loss of the trained DGP classifier. Log
loss measures the accuracy of probabilistic predictions, with lower values indicating bet-
ter classification performance. log_loss ranges from 0 to positive infinity, where a value
closer to @ suggests more confident and accurate predictions.

a scalar called accuracy that represents the accuracy of the trained DGP classifier. Accu-
racy measures the proportion of correctly classified instances among all predictions, with
higher values indicating better classification performance. accuracy ranges from @ to 1,
where a value closer to 1 suggests more reliable and precise predictions.

a slot named method indicating whether the matrix in the probability slot were obtained
using the "mean-var" method or the "sampling” method.

an integer called M that contains size of the conditioning set used for the Vecchia approx-
imation, if used, in emulator validation.

an integer called sample_size that contains the number of samples used for validation.

 If object is an instance of the 1gp class, an updated object is returned with an additional
slot called oos (for OOS validation) that contains:

two slots called x_test and y_test that contain the validation data points for OOS.

a list called mean, if method = "mean_var"”, or median, if method = "sampling”, that
contains the predictive means or medians of the linked (D)GP emulator at validation
positions.

three lists called std, lower, and upper that contain the predictive standard deviations
and credible intervals of the linked (D)GP emulator at validation positions. If method
= "mean_var", the upper and lower bounds of a credible interval are two standard de-
viations above and below the predictive mean. If method = "sampling”, the upper and
lower bounds of a credible interval are 2.5th and 97.5th percentiles.

a list called rmse that contains the root mean/median squared errors of the linked (D)GP
emulator.

68 vigf

— a list called nrmse that contains the (max-min) normalized root mean/median squared
errors of the linked (D)GP emulator. The max-min normalization uses the maximum and
minimum values of the validation outputs contained in y_test.

— an integer called M that contains size of the conditioning set used for the Vecchia approx-
imation, if used, in emulator validation.

— an integer called sample_size that contains the number of samples used for validation if
method = "sampling”.

Each element in mean, median, std, lower, upper, rmse, and nrmse corresponds to a (D)GP
emulator in the final layer of the linked (D)GP emulator.

Note
* When both x_test and y_test are NULL, LOO cross validation will be implemented. Other-

wise, OOS validation will be implemented. LOO validation is only applicable to a GP or DGP
emulator (i.e., object is an instance of the gp or dgp class). If a linked (D)GP emulator (i.e.,
object is an instance of the 1gp class) is provided, x_test and y_test must also be provided
for OOS validation.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

vigf Locate the next design point for a (D)GP emulator or a bundle of
(D)GP emulators using VIGF

Description

This function searches from a candidate set to locate the next design point(s) to be added to a (D)GP
emulator or a bundle of (D)GP emulators using the Variance of Improvement for Global Fit (VIGF).
For VIGF on GP emulators, see the reference below.

Usage

vigf(object, ...)

S3 method for class 'gp'
vigf(

object,

x_cand = NULL,

n_start = 10,

batch_size = 1,

M = 50,

vigf 69

workers = 1,
limits = NULL,

int = FALSE,
)
S3 method for class 'dgp'
vigf(

object,

x_cand = NULL,

n_start = 10,

batch_size = 1,

M = 50,

workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,

)
S3 method for class 'bundle'
vigf(

object,

x_cand = NULL,

n_start = 10,

batch_size = 1,

M = 50,

workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,

)
Arguments
object can be one of the following:
 the S3 class gp.
* the S3 class dgp.
e the S3 class bundle.
any arguments (with names different from those of arguments used in vigf())
that are used by aggregate can be passed here.
x_cand a matrix (with each row being a design point and column being an input di-

mension) that gives a candidate set from which the next design point(s) are de-
termined. If object is an instance of the bundle class and aggregate is not
supplied, x_cand can also be a list. The list must have a length equal to the
number of emulators in object, with each element being a matrix representing
the candidate set for a corresponding emulator in the bundle. Defaults to NULL.

70

n_start

batch_size

M

workers

limits

int

aggregate

Details

vigf

an integer that gives the number of initial design points to be used to determine
next design point(s). This argument is only used when x_cand is NULL. Defaults
to 10.

an integer that gives the number of design points to be chosen. Defaults to 1.

the size of the conditioning set for the Vecchia approximation in the criterion
calculation. This argument is only used if the emulator object was constructed
under the Vecchia approximation. Defaults to 50.

the number of processes to be used for design point selection. If set to NULL,
the number of processes is set to max physical cores available %/% 2.
Defaults to 1. The argument does not currently support Windows machines
when the aggregate function is provided, due to the significant overhead caused
by initializing the Python environment for each worker under spawning.

a two-column matrix that gives the ranges of each input dimension, or a vector
of length two if there is only one input dimension. If a vector is provided, it will
be converted to a two-column row matrix. The rows of the matrix correspond to
input dimensions, and its first and second columns correspond to the minimum
and maximum values of the input dimensions. This argument is only used when
x_cand = NULL. Defaults to NULL.

a bool or a vector of bools that indicates if an input dimension is an integer
type. If a single bool is given, it will be applied to all input dimensions. If
a vector is provided, it should have a length equal to the input dimensions and
will be applied to individual input dimensions. This argument is only used when
x_cand = NULL. Defaults to FALSE.

an R function that aggregates scores of the VIGF across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

* the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
equals to:

— the emulator output dimension if object is an instance of the dgp class;
or

— the number of emulators contained in object if object is an instance
of the bundle class.

* the output should be a vector that gives aggregate scores at different design
points.

Set to NULL to disable aggregation. Defaults to NULL.

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

1. If x_cand is not NULL:

https://mingdeyu.github.io/dgpsi-R/

vigf 71

* When object is an instance of the gp class, a vector of length batch_size is returned,
containing the positions (row numbers) of the next design points from x_cand.

* When object is an instance of the dgp class, a vector of length batch_size * D is re-
turned, containing the positions (row numbers) of the next design points from x_cand to
be added to the DGP emulator.

— D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

— For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.

— For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or
D =K for multi-class output with K classes.

¢ When object is an instance of the bundle class, a matrix is returned with batch_size
rows and a column for each emulator in the bundle, containing the positions (row num-
bers) of the next design points from x_cand for individual emulators.

2. If x_cand is NULL:

* When object is an instance of the gp class, a matrix with batch_size rows is returned,
giving the next design points to be evaluated.

¢ When object is an instance of the dgp class, a matrix with batch_size * D rows is
returned, where:

— D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

— For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.

— For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or
D =K for multi-class output with K classes.

* When object is an instance of the bundle class, a list is returned with a length equal
to the number of emulators in the bundle. Each element of the list is a matrix with
batch_size rows, where each row represents a design point to be added to the corre-
sponding emulator.

Note

The first column of the matrix supplied to the first argument of aggregate must correspond to the
first output dimension of the DGP emulator if object is an instance of the dgp class, and so on
for subsequent columns and dimensions. If object is an instance of the bundle class, the first
column must correspond to the first emulator in the bundle, and so on for subsequent columns and
emulators.

References
Mohammadi, H., & Challenor, P. (2022). Sequential adaptive design for emulating costly computer
codes. arXiv:2206.12113.

Examples

Not run:

load packages and the Python env
library(lhs)

72

window

library(dgpsi)

construct a 1D non-stationary function

f <- function(x) {
sin(30%((2*%x-1)/2-0.4)*5)*cos (20* ((2*x-1)/2-0.4))
3

generate the initial design
<- maximinLHS(10,1)
Y <= f(X)

>

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

specify the input range
lim <- c(0,1)

locate the next design point using VIGF
X_new <- vigf(m, limits = lim)

obtain the corresponding output at the located design point
Y_new <- f(X_new)

combine the new input-output pair to the existing data
X <= rbind(X, X_new)
Y <- rbind(Y, Y_new)

update the DGP emulator with the new input and output data and refit
m <- update(m, X, Y, refit = TRUE)

plot the LOO validation
plot(m)

End(Not run)

window Trim the sequence of hyperparameter estimates within a DGP emula-
tor

Description

This function trims the sequence of hyperparameter estimates within a DGP emulator generated
during training.

Usage

window(object, start, end = NULL, thin = 1)

write 73

Arguments
object an instance of the S3 class dgp.
start the first iteration before which all iterations are trimmed from the sequence.
end the last iteration after which all iterations are trimmed from the sequence. Set to
NULL to keep all iterations after (including) start. Defaults to NULL.
thin the interval between the start and end iterations to thin out the sequence. De-
faults to 1.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object with a trimmed sequence of hyperparameters.

Note

e This function is useful when a DGP emulator has been trained and one wants to trim the
sequence of hyperparameters estimated and to use the trimmed sequence to generate point
estimates of the DGP model parameters for prediction.

* The following slots:

— loo and oos created by validate(); and

— results created by predict() in object will be removed and not contained in the re-
turned object.

Examples

Not run:
See dgp() for an example.

End(Not run)

write Save the constructed emulator

Description

This function saves the constructed emulator to a . pkl file.

Usage
write(object, pkl_file, light = TRUE)

https://mingdeyu.github.io/dgpsi-R/

74 write

Arguments
object an instance of the S3 class gp, dgp, 1gp, or bundle.
pkl_file the path to and the name of the . pk1 file to which the emulator object is saved.
light a bool indicating if a light version of the constructed emulator (that requires less
disk space to store) will be saved. Defaults to TRUE.
Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

No return value. object will be saved to a local . pkl file specified by pkl_file.

Note

Since emulators built from the package are 'python’ objects, save() from R will not work as it
would for R objects. If object was processed by set_vecchia() to add or remove the Vecchia
approximation, light should be set to FALSE to ensure reproducibility after the saved emulator is
reloaded by read().

Examples
Not run:
See gp(), dgp(), lgp(), or pack() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

Index

alm, 2
alm(), 4, 14, 25, 31

continue, 6
continue(), 25

deserialize, 8

deserialize(), 53

design, 9
design(), 15, 17,25, 31,42, 63

dgp, 19

dgp(), 7, 8,13, 14, 23, 34,41, 42,49, 57
draw, 26

draw(), 15,17, 18

get_thread_num, 28
ggplot2: :ggplot2, 46
gp, 28

gp(), 13, 14, 30, 34,42, 57

init_py, 32

kableExtra: :kableExtra, 59
kableExtra::kbl(), 59

1gp, 33
1gp(), 25, 31, 34, 48, 50, 57, 65

mice, 37
mice(), 14, 25, 31, 38

nllik, 41

pack, 42

pack(), 13, 14

patchwork: :patchwork, 46
plot, 43
plot(), 25, 31, 35,46
predict, 47

predict(), 8, 23, 25, 30, 31, 34, 35, 51, 56,

63, 065,73

prune, 50

read, 52
read(), 24, 35, 74

save(), 74
serialize, 53
serialize(), 8
set_id, 54
set_id(), 34
set_imp, 55
set_imp(), 25
set_seed, 56
set_thread_num, 57
set_vecchia, 57
set_vecchia(), 74
summary, 58
summary (), 23, 25, 30, 31, 34, 35

trace_plot, 60

unpack, 60
update, 61
update(), 25, 31

validate, 63

validate(), 8, 17, 25, 31, 34, 35,45, 46, 51,
56,63,65,73

vigf, 68

vigf (), 14, 25, 31, 69

visNetwork: :visNetwork, 59

visNetwork: :visSave(), 59

window, 72
window(), 25
write, 73
write(), 24, 25,31, 35

	alm
	continue
	deserialize
	design
	dgp
	draw
	get_thread_num
	gp
	init_py
	lgp
	mice
	nllik
	pack
	plot
	predict
	prune
	read
	serialize
	set_id
	set_imp
	set_seed
	set_thread_num
	set_vecchia
	summary
	trace_plot
	unpack
	update
	validate
	vigf
	window
	write
	Index

