--- title: "deepSTRAPP: Categorical trait data" author: "Maël Doré" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{deepSTRAPP: Categorical trait data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r set_options, include = FALSE} knitr::opts_chunk$set( eval = FALSE, # Chunks of codes will not be evaluated by default collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, # Set device size at rendering time (when plots are generated) fig.align = "center" ) ``` ```{r setup, eval = TRUE, include = FALSE} library(deepSTRAPP) is_dev_version <- function (pkg = "deepSTRAPP") { # # Check if ran on CRAN # not_cran <- identical(Sys.getenv("NOT_CRAN"), "true") # || interactive() # Version number check version <- tryCatch(as.character(utils::packageVersion(pkg)), error = function(e) "") dev_version <- grepl("\\.9000", version) # not_cran || dev_version return(dev_version) } ``` ```{r adjust_dpi_CRAN, include = FALSE, eval = !is_dev_version()} knitr::opts_chunk$set( dpi = 50 # Lower DPI to save space ) ``` ```{r adjust_dpi_dev, include = FALSE, eval = is_dev_version()} knitr::opts_chunk$set( dpi = 72 # Default DPI for the dev version ) ```
This is a simple example that shows how deepSTRAPP can be used to test for __differences__ in diversification rates between multiple (three) __categorical states__ along evolutionary times. It presents the main functions in a typical __deepSTRAPP workflow__.
For an example with __binary data__ (2 levels), please see the example in the __Main tutorial__: `vignette("main_tutorial")`. For an example with __continuous data__, see this vignette: `vignette("deepSTRAPP_continuous_data")`
Please note that the trait data and phylogeny calibration used in this example are __NOT valid biological data__. They were modified in order to provide results illustrating the usefulness of deepSTRAPP.
```{r load_data_cat_3lvl} # ------ Step 0: Load data ------ # ## Load trait df data(Ponerinae_trait_tip_data, package = "deepSTRAPP") dim(Ponerinae_trait_tip_data) View(Ponerinae_trait_tip_data) # Extract categorical data with 3-levels Ponerinae_cat_3lvl_tip_data <- setNames(object = Ponerinae_trait_tip_data$fake_cat_3lvl_tip_data, nm = Ponerinae_trait_tip_data$Taxa) # Here, data represent three types of habitats table(Ponerinae_cat_3lvl_tip_data) ## Select color scheme for states (i.e., habitats) colors_per_states <- c("forestgreen", "sienna", "goldenrod") names(colors_per_states) <- c("arboreal", "subterranean", "terricolous") ## Load phylogeny with old time-calibration data(Ponerinae_tree_old_calib, package = "deepSTRAPP") plot(Ponerinae_tree_old_calib) ape::Ntip(Ponerinae_tree_old_calib) == length(Ponerinae_cat_3lvl_tip_data) ## Check that trait data and phylogeny are named and ordered similarly all(names(Ponerinae_cat_3lvl_tip_data) == Ponerinae_tree_old_calib$tip.label) ## Reorder trait data as in phylogeny Ponerinae_cat_3lvl_tip_data <- Ponerinae_cat_3lvl_tip_data[match(x = Ponerinae_tree_old_calib$tip.label, table = names(Ponerinae_cat_3lvl_tip_data))] ## Plot data on tips for visualization pdf(file = "./Ponerinae_cat_3lvl_data_old_calib_on_phylo.pdf", width = 20, height = 150) # Set plotting parameters old_par <- par(no.readonly = TRUE) par(mar = c(0.1,0.1,0.1,0.1), oma = c(0,0,0,0)) # bltr # Graph presence/absence using plotTree.datamatrix range_map <- phytools::plotTree.datamatrix( tree = Ponerinae_tree_old_calib, X = as.data.frame(Ponerinae_cat_3lvl_tip_data), fsize = 0.7, yexp = 1.1, header = TRUE, xexp = 1.25, colors = colors_per_states) # Get plot info in "last_plot.phylo" plot_info <- get("last_plot.phylo", envir=.PlotPhyloEnv) # Add time line # Extract root age root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)) # Define ticks # ticks_labels <- seq(from = 0, to = 100, by = 20) ticks_labels <- seq(from = 0, to = 120, by = 20) axis(side = 1, pos = 0, at = (-1 * ticks_labels) + root_age, labels = ticks_labels, cex.axis = 1.5) legend(x = root_age/2, y = 0 - 5, adj = 0, bty = "n", legend = "", title = "Time [My]", title.cex = 1.5) # Add a legend legend(x = plot_info$x.lim[2] - 10, y = mean(plot_info$y.lim), # adj = c(0,0), # x = "topleft", legend = c("Absence", "Presence"), pch = 22, pt.bg = c("white","gray30"), pt.cex = 1.8, cex = 1.5, bty = "n") dev.off() # Reset plotting parameters par(old_par) ## Inputs needed for Step 1 are the tip_data (Ponerinae_cat_3lvl_tip_data) and the phylogeny ## (Ponerinae_tree_old_calib), and optionally, a color scheme (colors_per_states). ``` ```{r load_data_cat_3lvl_eval, eval = TRUE, echo = FALSE} ## Select color scheme for states colors_per_states <- c("forestgreen", "sienna", "goldenrod") names(colors_per_states) <- c("arboreal", "subterranean", "terricolous") ``` ```{r prepare_trait_data_cat_3lvl} # ------ Step 1: Prepare trait data ------ # ## Goal: Map trait evolution on the time-calibrated phylogeny # 1.1/ Fit evolutionary models to trait data using Maximum Likelihood. # 1.2/ Select the best fitting model comparing AICc. # 1.3/ Infer ancestral characters estimates (ACE) at nodes. # 1.4/ Run stochastic mapping simulations to generate evolutionary histories # compatible with the best model and inferred ACE. # 1.5/ Infer ancestral states along branches. # - Compute posterior frequencies of each state to produce a `densityMap` for each state. library(deepSTRAPP) # All these actions are performed by a single function: deepSTRAPP::prepare_trait_data() ?deepSTRAPP::prepare_trait_data() # Run prepare_trait_data with default options # For categorical trait, an ARD model is assumed by default. Ponerinae_trait_object <- prepare_trait_data( tip_data = Ponerinae_cat_3lvl_tip_data, phylo = Ponerinae_tree_old_calib, trait_data_type = "categorical", colors_per_levels = colors_per_states, nb_simulations = 100, # Reduce number of simulations to save time seed = 1234) # Set seed for reproducibility # Explore output str(Ponerinae_trait_object, 1) # Extract the densityMaps representing the posterior probabilities of states on the phylogeny Ponerinae_densityMaps <- Ponerinae_trait_object$densityMaps # Plot ancestral states as a single continuously mapped phylogeny overlaying # all state posterior probabilities plot_densityMaps_overlay(Ponerinae_densityMaps, colors_per_levels = colors_per_states) # Plot posterior probabilities of each state on an independent densityMap # Plot densityMap for state = "arboreal" plot(Ponerinae_densityMaps[[1]]) # Plot densityMap for state = "subterranean" plot(Ponerinae_densityMaps[[2]]) # Plot densityMap for state = "terricolous" plot(Ponerinae_densityMaps[[3]]) # Extract the Ancestral Character Estimates (ACE) = trait values at nodes Ponerinae_ACE <- Ponerinae_trait_object$ace head(Ponerinae_ACE) ## Inputs needed for Step 2 are the densityMaps, and optionally, the tip_data ## (Ponerinae_cat_3lvl_tip_data), and the ACE (Ponerinae_ACE) ``` ```{r prepare_diversification_data_cat_3lvl} # ------ Step 2: Prepare diversification data ------ # ## Goal: Map evolution of diversification rates and regime shifts on the time-calibrated phylogeny # Run a BAMM (Bayesian Analysis of Macroevolutionary Mixtures) # You need the BAMM C++ program installed in your machine to run this step. # See the BAMM website: http://bamm-project.org/ and the companion R package [BAMMtools]. # 2.1/ Set BAMM - Record BAMM settings and generate all input files needed for BAMM. # 2.2/ Run BAMM - Run BAMM and move output files in dedicated directory. # 2.3/ Evaluate BAMM - Produce evaluation plots and ESS data. # 2.4/ Import BAMM outputs - Load `BAMM_object` in R and subset posterior samples. # 2.5/ Clean BAMM files - Remove files generated during the BAMM run. # All these actions are performed by a single function: deepSTRAPP::prepare_diversification_data() ?deepSTRAPP::prepare_diversification_data() # Run BAMM workflow with deepSTRAPP ## This step is time-consuming. You can skip it and load directly the result if needed Ponerinae_BAMM_object_old_calib <- prepare_diversification_data( BAMM_install_directory_path = "./software/bamm-2.5.0/", # To adjust to your own path to BAMM phylo = Ponerinae_tree_old_calib, prefix_for_files = "Ponerinae_old_calib", seed = 1234, # Set seed for reproducibility numberOfGenerations = 10^7, # Set high for optimal run, but will take a long time BAMM_output_directory_path = "./BAMM_outputs/") # Load directly the result data(Ponerinae_BAMM_object_old_calib) # This dataset is only available in development versions installed from GitHub. # It is not available in CRAN versions. # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. # Explore output str(Ponerinae_BAMM_object_old_calib, 1) # Record the regime shift events and macroevolutionary regimes parameters across posterior samples str(Ponerinae_BAMM_object_old_calib$eventData, 1) # Mean speciation rates at tips aggregated across all posterior samples head(Ponerinae_BAMM_object_old_calib$meanTipLambda) # Mean extinction rates at tips aggregated across all posterior samples head(Ponerinae_BAMM_object_old_calib$meanTipMu) # Plot mean net diversification rates and regime shifts on the phylogeny plot_BAMM_rates(Ponerinae_BAMM_object_old_calib, labels = FALSE, legend = TRUE) ## Input needed for Step 3 is the BAMM_object (Ponerinae_BAMM_object) ``` ```{r run_deepSTRAPP_cat_3lvl} # ------ Step 3: Run a deepSTRAPP workflow ------ # ## Goal: Extract traits, diversification rates and regimes at a given time in the past ## to test for differences with a STRAPP test # 3.1/ Extract trait data at a given time in the past ('focal_time') # 3.2/ Extract diversification rates and regimes at a given time in the past ('focal_time') # 3.3/ Compute STRAPP test # 3.4/ Repeat previous actions for many timesteps along evolutionary time # Because we have three levels as trait data, two types of tests can be performed: # - Overall Kruskal-Wallis tests that test for rate differences across all states at once. # - post hoc pairwise Dunn's tests that test for rate differences between pairs of states. # Here, we select 'posthoc_pairwise_tests = TRUE' to conduct post hoc pairwise tests # in addition to overall Kruskal-Wallis tests. # All these actions are performed by a single function: # For a single 'focal_time': deepSTRAPP::run_deepSTRAPP_for_focal_time() # For multiple 'time_steps': deepSTRAPP::run_deepSTRAPP_over_time() ?deepSTRAPP::run_deepSTRAPP_for_focal_time() ?deepSTRAPP::run_deepSTRAPP_over_time() ## Set for five time steps of 5 My. Will generate deepSTRAPP workflows for 0 to 40 Mya. time_step_duration <- 5 time_range <- c(0, 40) # Run deepSTRAPP on net diversification rates ## This step is time-consuming. You can skip it and load directly the result if needed Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40 <- run_deepSTRAPP_over_time( densityMaps = Ponerinae_densityMaps, ace = Ponerinae_ACE, tip_data = Ponerinae_cat_3lvl_data, trait_data_type = "categorical", BAMM_object = Ponerinae_BAMM_object_old_calib, time_range = time_range, time_step_duration = time_step_duration, seed = 1234, # Set seed for reproducibility alpha = 0.10, # Set significance threshold to use for tests posthoc_pairwise_tests = TRUE, # To run pairwise posthoc tests between pairs of states # Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2) return_perm_data = TRUE, # Needed to get trait data and plot rates through time (See 4.3) extract_trait_data_melted_df = TRUE, # Needed to get diversification data and plot rates through time (See 4.3) extract_diversification_data_melted_df = TRUE, # Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2) return_STRAPP_results = TRUE, # Needed to plot updated densityMaps (See 4.4) return_updated_trait_data_with_Map = TRUE, # Needed to map diversification rates on updated phylogenies (See 4.5) return_updated_BAMM_object = TRUE, verbose = TRUE, verbose_extended = TRUE) # Load the deepSTRAPP output summarizing results for 0 to 40 My data(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, package = "deepSTRAPP") # This dataset is only available in development versions installed from GitHub. # It is not available in CRAN versions. # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. ## Explore output str(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, max.level = 1) # See next step for how to generate plots from those outputs # Display test summaries # Can be passed down to [deepSTRAPP::plot_STRAPP_pvalues_over_time()] to generate a plot # showing the evolution of the test results across time # For overall Kruskal-Wallis tests over time-steps Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$pvalues_summary_df # For posthoc pairwise Dunn's tests over time-steps Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$pvalues_summary_df_for_posthoc_pairwise_tests # Access STRAPP test results # Can be passed down to [deepSTRAPP::plot_histograms_STRAPP_tests_over_time()] to generate plot # showing the null distribution of the test statistics # For overall Kruskal-Wallis tests over time-steps str(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$STRAPP_results, max.level = 2) # For posthoc pairwise Dunn's tests over time-steps # Results are found in the '$posthoc_pairwise_tests' element of each 'STRAPP_result'. str(lapply(X = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$STRAPP_results, FUN = function (x) { x$posthoc_pairwise_tests } ), max.level = 3) # Access trait data in a melted data.frame head(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$trait_data_df_over_time) # Access the diversification data in a melted data.frame head(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$diversification_data_df_over_time) # Both can be passed down to [deepSTRAPP::plot_rates_through_time()] to generate a plot # showing the evolution of diversification rates though time in relation to trait values # Access updated densityMaps for each focal time # Can be used to plot densityMaps with branch cut-off at focal time # with [deepSTRAPP::plot_densityMaps_overlay()] str(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time, max.level = 2) # Access updated BAMM_object for each focal time # Can be used to map rates and regime shifts on phylogeny with branch cut-off # at focal time with [deepSTRAPP::plot_BAMM_rates()] str(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time, max.level = 2) ## Input needed for Step 4 is the deepSTRAPP object (Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40) ``` ```{r plot_pvalues_cat_3lvl} # ------ Step 4: Plot results ------ # ## Goal: Summarize the outputs in meaningful plots # 4.1/ Plot evolution of STRAPP tests p-values through time # 4.2/ Plot histogram of STRAPP test stats # 4.3/ Plot evolution of rates through time in relation to trait values # 4.4/ Plot rates vs. states across branches for a given 'focal_time' # 4.5/ Plot updated densityMaps mapping trait evolution for a given 'focal_time' # 4.6/ Plot updated diversification rates and regimes for a given 'focal_time' # 4.7/ Combine 4.5 and 4.6 to plot both mapped phylogenies with trait evolution (4.5) # and diversification rates and regimes (4.6). # Each plot is achieved through a dedicated function # Load the deepSTRAPP output summarizing results for 0 to 40 My data(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, package = "deepSTRAPP") # This dataset is only available in development versions installed from GitHub. # It is not available in CRAN versions. # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. ### 4.1/ Plot evolution of STRAPP tests p-values through time #### # ?deepSTRAPP::plot_STRAPP_pvalues_over_time() ## 4.1.1/ Plot results of overall Kruskal-Wallis tests over time deepSTRAPP::plot_STRAPP_pvalues_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, alpha = 0.10) # This is the main output of deepSTRAPP. They show the evolution of the significance of # the STRAPP tests over time. # Here, overall Kruskal-Wallis tests for rate difference across all states (i.e., habitats) are shown. # This example highlights the importance of deepSTRAPP as the significance of # STRAPP tests change over time. # Differences in net diversification rates are not significant in the present # (assuming a significant threshold of alpha = 0.10). # Meanwhile, rates are significantly different in the past between 5 My to 15 My (the green area). # This result supports the idea that differences in biodiversity across habitats # (i.e., "arboreal" vs. , "subterranean" vs. "terricolous" ants) can be explained # by differences of diversification rates that was detected in the past. Without use of deepSTRAPP, # this conclusion would not have been supported by current diversification rates alone. # Note: This is NOT true ecological data. It is not a valid scientific result, # but an illustration of the use of deepSTRAPP. # A next step is to look in details into rate differences across pairs of states (i.e., habitats). # For this, we can plot the results of the post hoc pairwise tests. ## 4.1.2/ Plot results of posthoc pairwise Dunn's tests over time deepSTRAPP::plot_STRAPP_pvalues_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, plot_posthoc_tests = TRUE) # To plot results of post hoc pairwise tests instead # Here, post hoc pairwise Dunn's tests for rate difference between pairs of states are shown. # These results show that differences in rates were only detected between "arboreal" # and "terricolous" ants between 2 My to 15 My (the green area), providing more detailed insights on # how type of habitats may affect diversification rates. # Note: This is NOT true ecological data. It is not a valid scientific result, # but an illustration of the use of deepSTRAPP. # This highlights the critical use of deepSTRAPP in revealing differences in diversification rates # occurring in the past, that may drive current biodiversity patterns. ``` ```{r plot_pvalues_cat_3lvl_eval_dev, eval = is_dev_version(), echo = FALSE} # Load the deepSTRAPP output summarizing results for 0 to 40 My data(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, package = "deepSTRAPP") # Produce the results of overall Kruskal-Wallis tests over time ggplot_STRAPP_pvalues <- deepSTRAPP::plot_STRAPP_pvalues_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, alpha = 0.10, display_plot = FALSE) # Adjust main title size ggplot_STRAPP_pvalues <- ggplot_STRAPP_pvalues + ggplot2::theme(plot.title = ggplot2::element_text(size = 18)) # Print plot print(ggplot_STRAPP_pvalues) # Produce the results of posthoc pairwise Dunn's tests over time ggplot_STRAPP_pvalues_posthoc <- deepSTRAPP::plot_STRAPP_pvalues_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, plot_posthoc_tests = TRUE, # To plot results of post hoc pairwise tests instead display_plot = FALSE) # Adjust main title size + legend ggplot_STRAPP_pvalues_posthoc <- ggplot_STRAPP_pvalues_posthoc + ggplot2::theme( plot.title = ggplot2::element_text(size = 18), legend.title = ggplot2::element_text(size = 12), legend.position.inside = c(0.30, 0.40), legend.text = ggplot2::element_text(size = 9)) # Print plot print(ggplot_STRAPP_pvalues_posthoc) ``` ```{r plot_pvalues_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.1_plot_pvalues_1.PNG") knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.1_plot_pvalues_2.PNG") ``` ```{r plot_histogram_STRAPP_tests_overall_cat_3lvl} ### 4.2/ Plot histogram of STRAPP test stats #### # Plot an histogram of the distribution of the test statistics used to assess # the significance of STRAPP tests # For a single 'focal_time': deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time() # For multiple 'time_steps': deepSTRAPP::plot_histograms_STRAPP_tests_over_time() # ?deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time # ?deepSTRAPP::plot_histograms_STRAPP_tests_over_time ## These functions are used to provide visual illustration of the results of each STRAPP test. # They can be used to complement the provision of the statistical results summarized in Step 3. # Display the time-steps Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$time_steps ## 4.2.1/ Plot results from overall Kruskal-Wallis tests across all states #### # Plot the histogram of overall Kruskal-Wallis stats for time-step n°3 = 10 My plot_histogram_STRAPP_test_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, focal_time = 10) # The black line represents the expected value under the null hypothesis H0 # => Δ Kruskal-Wallis H-stat = 0. # The histogram shows the distribution of the test statistics as observed across # the 1000 posterior samples from BAMM. # The red line represents the significance threshold for which 90% of the observed data # exhibited a higher value than expected. # Since this red line is below the null expectation (quantile 10% = 6.942), # the test is significant for a value of alpha = 0.10. # However, this significance must be discussed in regards to the relatively generous # significance threshold chosen here (alpha = 0.10). # Plot the histograms of overall Kruskal-Wallis stats for all time-steps plot_histograms_STRAPP_tests_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40) ## 4.2.2/ Plot results from posthoc pairwise Dunn's tests between pairs of states #### # Plot the histogram of posthoc pairwise Dunn's stats for time-step n°3 = 10 My plot_histogram_STRAPP_test_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, plot_posthoc_tests = TRUE, # To plot results of post hoc pairwise tests instead focal_time = 10) # Each facet represent a pairwise post hoc test conducted across a given pair of states. # In each facet, the black line represents the expected value under the null hypothesis H0 # => Δ Dunn's Z-stat = 0. # The red line represents the significance threshold for which 90% of the observed data # exhibited a higher value than expected. # This red line is below the null expectation for the "arboreal != subterranean" and # "subterranean != terricolous" pairs. This means the test is not significant for these pairs of habitats. # The red line is above the null expectation for the "arboreal != terricolous" pair # (Q10% = 1.695, p = 0.025). This means the test is significant for this pair of habitat. # This is the pair that is driving the significance detected in the previous plot # when looking at differences across all habitats. # This significance must still be discussed in regards to the relatively generous # significance threshold chosen here (alpha = 0.10). # Plot the histograms of posthoc pairwise Dunn's stats for all time-steps plot_histograms_STRAPP_tests_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, plot_posthoc_tests = TRUE) # To plot results of post hoc pairwise tests instead ``` ```{r plot_histogram_STRAPP_tests_cat_3lvl_eval_dev, fig.width = 8.5, fig.height = 6, out.width = "100%", eval = is_dev_version(), echo = FALSE} # Plot the histogram of test stats for time-step n°3 = 10 My plot_histogram_STRAPP_test_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, focal_time = 10) # Plot the histogram of test stats for time-step n°3 = 10 My ggplot_STRAPP_pvalues_posthoc <- plot_histogram_STRAPP_test_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, plot_posthoc_tests = TRUE, # To plot results of post hoc pairwise tests instead focal_time = 10) ``` ```{r plot_histogram_STRAPP_tests_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.2_plot_histograms_1.PNG") knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.2_plot_histograms_2.PNG") ``` ```{r plot_rates_through_time_cat_3lvl} ### 4.3/ Plot evolution of rates through time ~ trait data #### # ?deepSTRAPP::plot_rates_through_time() # Generate ggplot plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, colors_per_levels = colors_per_states, plot_CI = TRUE) # This plot helps to visualize how differences in rates evolved over time. # You can see that both type of ants "arboreal" and "terricolous" had fairly different rates over time, # with differences detected as significant between 2 to 15 My. # Meanwhile, "subterranean" ants exhibited intermediate diversification levels. # This plot, alongside results of deepSTRAPP, supports the Diversification Rate Hypothesis in showing # how "terricolous" ant lineages may have accumulated faster, especially between 2 to 15 My. # It hints that "terricolous" ant lineages are fairly recent as no lineage in this state/habitat # is inferred to have existed before 25 Mya. # The larger uncertainty across estimates of diversification rates for "terricolous" ant lineages # also hints at their relatively lower number due to their recent emergence. # Note: This is NOT true ecological data. It is not a valid scientific result, # but an illustration of the use of deepSTRAPP. ``` ```{r plot_rates_through_time_cat_3lvl_eval_dev, fig.width = 8.5, out.width = "100%", eval = is_dev_version(), echo = FALSE} # Produce RTT plot ggplot_RTT_list <- plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, colors_per_levels = colors_per_states, plot_CI = TRUE, display_plot = FALSE) # Adjust title size ggplot_RTT <- ggplot_RTT_list$rates_TT_ggplot + ggplot2::theme(plot.title = ggplot2::element_text(size = 18), axis.title = ggplot2::element_text(size = 16)) # Print plot print(ggplot_RTT) ``` ```{r plot_rates_through_time_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.3_plot_rates_through_time.PNG") ``` ```{r plot_rates_vs_traits_cat_3lvl} ### 4.4/ Plot rates vs. states across branches for a given focal time #### # ?deepSTRAPP::plot_rates_vs_trait_data_for_focal_time() # ?deepSTRAPP::plot_rates_vs_trait_data_over_time() # This plot help to visualize differences in rates vs. states across all branches # found at specific time-steps (i.e., 'focal_time'). # Generate ggplot for time = 10 My plot_rates_vs_trait_data_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, focal_time = 10, colors_per_levels = colors_per_states) # Here we focus on T = 10 My to highlight the differences detected in the previous steps. # You can see that "terricolous" ants tend to have higher rates than "subterranean" ants, # who tends to have higher rates than "arboreal" ants, at this time-step. # This plot, alongside other results of deepSTRAPP, supports the Diversification Rate Hypothesis in showing # how "terricolous" ant lineages may have accumulated faster, especially between 5 to 15 My. # Additionally, the plot displays summary statistics for the STRAPP test associated with the data shown: # * An observed statistic computed across the mean rates and trait states (i.e., habitats) shown on the plot. # Here, H-stat obs = 374.82. Please note that this is not the statistic of the STRAPP test itself, # which is conducted across all BAMM posterior samples. # * The quantile of null statistic distribution at the significant threshold used to define test significance. # The test will be considered significant (i.e., the null hypothesis is rejected) # if this value is higher than zero, as shown on the histogram in Section 4.2. # Here, Q10% = 6.942, so the test is significant (according to this significance threshold). # * The p-value of the associated STRAPP test. Here, p = 0.071. # Plot rates vs. trait data for all time-steps plot_rates_vs_trait_data_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, colors_per_levels = colors_per_states) ``` ```{r plot_rates_vs_traits_cat_3lvl_eval_dev, fig.height = 7, fig.width = 8.5, out.width = "100%", eval = is_dev_version(), echo = FALSE} # Generate ggplot for time = 10 My plot_rates_vs_trait_data_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, focal_time = 10, colors_per_levels = colors_per_states) ``` ```{r plot_rates_vs_traits_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.4_plot_rates_vs_traits.PNG") ``` ```{r plot_updated_densityMaps_cat_3lvl} ### 4.5/ Plot updated densityMaps mapping trait evolution for a given 'focal_time' #### # ?deepSTRAPP::plot_densityMaps_overlay() ## These plots help to visualize the evolution of states across the phylogeny, ## and to focus on tip values at specific time-steps. # Display the time-steps Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$time_steps ## The next plot shows the evolution of states across the whole phylogeny (100-0 My). # Plot initial densityMaps (t = 0) densityMaps_0My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]] plot_densityMaps_overlay(densityMaps_0My$densityMaps, colors_per_levels = colors_per_states, fsize = 0.1) # Reduce tip label size title(main = "Trait evolution for 100-0 My") # It highlights the relatively recent emergence of "terricolous" ants (in this fake illustrative dataset), # where no lineages exhibit this state in deep times. ## The next plot shows the evolution of states from root to 10 Mya (100-10 My). # Plot updated densityMaps for time-step n°3 = 10 My densityMaps_10My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[3]] plot_densityMaps_overlay(densityMaps_10My$densityMaps, colors_per_levels = colors_per_states, fsize = 0.1) # Reduce tip label size title(main = "Trait evolution for 100-10 My") ## The next plot shows the evolution of states from root to 40 Mya (100-40 My). # Plot updated densityMaps for time-step n°9 = 40 My densityMaps_40My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[9]] plot_densityMaps_overlay(densityMaps = densityMaps_40My$densityMaps, colors_per_levels = colors_per_states, fsize = 0.2) # Reduce tip label size title(main = "Trait evolution for 100-40 My") # In this simulated illustrative dataset, no ant lineages are inferred in "terricolous" habitats 40 Mya. ``` ```{r plot_updated_densityMaps_cat_3lvl_eval_dev, fig.height = 7, eval = is_dev_version(), echo = FALSE} # Plot initial densityMaps (t = 0) densityMaps_0My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]] plot_densityMaps_overlay(densityMaps_0My$densityMaps, colors_per_levels = colors_per_states, cex_pies = 0.3, fsize = 0.1) # Reduce tip label size title(main = "Trait evolution for 100-0 My") # Plot updated densityMaps for time-step n°9 = 40 My densityMaps_40My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[9]] plot_densityMaps_overlay(densityMaps_40My$densityMaps, colors_per_levels = colors_per_states, cex_pies = 0.4, fsize = 0.2) # Reduce tip label size title(main = "Trait evolution for 100-40 My") ``` ```{r plot_updated_densityMaps_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.5_plot_updated_densityMaps_1.PNG") knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.5_plot_updated_densityMaps_2.PNG") ``` ```{r plot_BAMM_rates_cat_3lvl} ### 4.6/ Plot updated diversification rates and regimes for a given 'focal_time' #### # ?deepSTRAPP::plot_BAMM_rates() ## These plots help to visualize the evolution of diversification rates across the phylogeny, ## and to focus on tip values at specific time-steps. # Display the time-steps Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$time_steps # Extract root age root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) ## The next plot shows the evolution of diversification rates across the whole phylogeny (100-0 My). # Plot diversification rates on initial phylogeny (t = 0) BAMM_map_0My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[1]] plot_BAMM_rates(BAMM_map_0My, labels = FALSE, par.reset = FALSE) abline(v = root_age - 10, col = "red", lty = 2) # Show where the phylogeny will be cut at 10 Mya abline(v = root_age - 40, col = "red", lty = 2) # Show where the phylogeny will be cut at 40 Mya title(main = "BAMM rates for 100-0 My") ## The next plot shows the evolution of diversification rates from root to 10 Mya (100-10 My). # Plot diversification rates on updated phylogeny for time-step n°3 = 10 My BAMM_map_10My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[3]] plot_BAMM_rates(BAMM_map_10My, labels = FALSE, colorbreaks = BAMM_map_10My$initial_colorbreaks$net_diversification) title(main = "BAMM rates for 100-10 My") ## The next plot shows the evolution of diversification rates from root to 40 Mya (100-40 My). # Plot diversification rates on updated phylogeny for time-step n°9 = 40 My BAMM_map_40My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[9]] plot_BAMM_rates(BAMM_map_40My, labels = FALSE, colorbreaks = BAMM_map_40My$initial_colorbreaks$net_diversification) title(main = "BAMM rates for 100-40 My") ``` ```{r plot_BAMM_rates_cat_3lvl_eval_dev, eval = is_dev_version(), echo = FALSE} old_par <- par(no.readonly = TRUE) par(mfrow = c(1, 2)) # Plot diversification rates on initial phylogeny (t = 0) BAMM_map_0My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[1]] plot_BAMM_rates(BAMM_map_0My, labels = FALSE, legend = TRUE, par.reset = FALSE) abline(v = max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) - 10, col = "red", lty = 2) # Show where the phylogeny will be cut at 10 Mya title(main = "BAMM rates for 100-0 My") # Plot diversification rates on updated phylogeny for time-step n°3 = 10 My BAMM_map_10My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[3]] plot_BAMM_rates(BAMM_map_10My, labels = FALSE, legend = TRUE, colorbreaks = BAMM_map_10My$initial_colorbreaks$net_diversification) title(main = "BAMM rates for 100-10 My") par(old_par) ``` ```{r plot_BAMM_rates_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.6_plot_BAMM_rates.PNG") ``` ```{r plot_traits_vs_rates_on_phylogeny_cat_3lvl} ### 4.7/ Plot both trait evolution and diversification rates and regimes updated for a given 'focal_time' #### # ?deepSTRAPP::plot_traits_vs_rates_on_phylogeny_for_focal_time() ## These plots help to visualize simultaneously the evolution of trait and diversification rates ## across the phylogeny, and to focus on tip values at specific time-steps. # Display the time-steps Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$time_steps ## The next plot shows the evolution of states and rates across the whole phylogeny (100-0 My). # Plot both mapped phylogenies in the present (t = 0) plot_traits_vs_rates_on_phylogeny_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, focal_time = 0, ftype = "off", lwd = 0.7, colors_per_levels = colors_per_states, labels = FALSE, legend = FALSE, par.reset = FALSE) ## The next plot shows the evolution of states and rates from root to 10 Mya (100-10 My). # Plot both mapped phylogenies for time-step n°3 = 10 My plot_traits_vs_rates_on_phylogeny_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, focal_time = 10, ftype = "off", lwd = 1.2, colors_per_levels = colors_per_states, labels = FALSE, legend = FALSE, par.reset = FALSE) ## The next plot shows the evolution of states and rates from root to 40 Mya (100-40 My). # Plot both mapped phylogenies for time-step n°9 = 40 My plot_traits_vs_rates_on_phylogeny_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, focal_time = 40, ftype = "off", lwd = 1.2, colors_per_levels = colors_per_states, labels = FALSE, legend = FALSE, par.reset = FALSE) ``` ```{r plot_traits_vs_rates_on_phylogeny_cat_3lvl_eval_dev, fig.height = 7, eval = is_dev_version(), echo = FALSE} # Plot both mapped phylogenies in the present (t = 0) plot_traits_vs_rates_on_phylogeny_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, focal_time = 0, ftype = "off", lwd = 0.7, colors_per_levels = colors_per_states, labels = FALSE, legend = FALSE, par.reset = FALSE) # Plot both mapped phylogenies for time-step n°9 = 40 My plot_traits_vs_rates_on_phylogeny_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, focal_time = 40, ftype = "off", lwd = 1.2, colors_per_levels = colors_per_states, labels = FALSE, legend = FALSE, par.reset = FALSE) ``` ```{r plot_traits_vs_rates_on_phylogeny_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.7_plot_traits_vs_rate_maps_1.PNG") knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.7_plot_traits_vs_rate_maps_2.PNG") ```