
Package ‘datawizard’
October 11, 2025

Type Package

Title Easy Data Wrangling and Statistical Transformations

Version 1.3.0

Maintainer Etienne Bacher <etienne.bacher@protonmail.com>

Description A lightweight package to assist in key steps involved in any data
analysis workflow: (1) wrangling the raw data to get it in the needed form,
(2) applying preprocessing steps and statistical transformations, and
(3) compute statistical summaries of data properties and distributions.
It is also the data wrangling backend for packages in 'easystats' ecosystem.
References: Patil et al. (2022) <doi:10.21105/joss.04684>.

License MIT + file LICENSE

URL https://easystats.github.io/datawizard/

BugReports https://github.com/easystats/datawizard/issues

Depends R (>= 4.0)

Imports insight (>= 1.4.2), stats, utils

Suggests bayestestR, boot, BH, brms, curl, data.table, dplyr (>= 1.1),
effectsize, emmeans, gamm4, ggplot2 (>= 3.5.0), gt, haven,
httr, knitr, lme4, mediation, modelbased, nanoparquet,
parameters (>= 0.21.7), performance (>= 0.14.0), poorman (>=
0.2.7), psych, readxl, readr, rio, rmarkdown, rstanarm, see,
testthat (>= 3.2.1), tibble, tidyr, tinytable (>= 0.13.0),
withr

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Config/testthat/edition 3

Config/testthat/parallel true

Config/Needs/website easystats/easystatstemplate

NeedsCompilation no

1

https://doi.org/10.21105/joss.04684
https://easystats.github.io/datawizard/
https://github.com/easystats/datawizard/issues

2 Contents

Author Indrajeet Patil [aut] (ORCID: <https://orcid.org/0000-0003-1995-6531>),
Etienne Bacher [aut, cre] (ORCID:

<https://orcid.org/0000-0002-9271-5075>),
Dominique Makowski [aut] (ORCID:

<https://orcid.org/0000-0001-5375-9967>),
Daniel Lüdecke [aut] (ORCID: <https://orcid.org/0000-0002-8895-3206>),
Mattan S. Ben-Shachar [aut] (ORCID:

<https://orcid.org/0000-0002-4287-4801>),
Brenton M. Wiernik [aut] (ORCID:

<https://orcid.org/0000-0001-9560-6336>),
Rémi Thériault [ctb] (ORCID: <https://orcid.org/0000-0003-4315-6788>),
Thomas J. Faulkenberry [rev],
Robert Garrett [rev]

Repository CRAN

Date/Publication 2025-10-11 09:40:02 UTC

Contents
adjust . 4
as.prop.table . 7
assign_labels . 9
categorize . 11
center . 16
coef_var . 20
coerce_to_numeric . 22
contr.deviation . 23
convert_na_to . 25
convert_to_na . 28
data_addprefix . 30
data_arrange . 32
data_codebook . 33
data_duplicated . 36
data_extract . 38
data_group . 41
data_match . 43
data_merge . 45
data_modify . 49
data_partition . 52
data_peek . 54
data_read . 56
data_relocate . 58
data_rename . 61
data_replicate . 64
data_restoretype . 66
data_rotate . 67
data_seek . 68
data_select . 69

https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0002-9271-5075
https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0001-9560-6336
https://orcid.org/0000-0003-4315-6788

Contents 3

data_separate . 73
data_summary . 77
data_tabulate . 79
data_to_long . 83
data_to_wide . 88
data_unique . 92
data_unite . 95
demean . 97
describe_distribution . 103
distribution_mode . 106
efc . 107
labels_to_levels . 107
makepredictcall.dw_transformer . 109
means_by_group . 110
mean_sd . 113
nhanes_sample . 114
normalize . 114
ranktransform . 118
recode_into . 120
recode_values . 123
remove_empty . 128
replace_nan_inf . 130
rescale . 130
rescale_weights . 134
reshape_ci . 137
reverse . 138
rownames_as_column . 141
row_count . 142
row_means . 144
row_to_colnames . 147
skewness . 148
slide . 151
smoothness . 154
standardize . 155
standardize.default . 160
text_format . 162
to_factor . 163
to_numeric . 166
visualisation_recipe . 168
weighted_mean . 169
winsorize . 170

Index 173

4 adjust

adjust Adjust data for the effect of other variable(s)

Description

This function can be used to adjust the data for the effect of other variables present in the dataset. It
is based on an underlying fitting of regressions models, allowing for quite some flexibility, such as
including factors as random effects in mixed models (multilevel partialization), continuous variables
as smooth terms in general additive models (non-linear partialization) and/or fitting these models
under a Bayesian framework. The values returned by this function are the residuals of the regression
models. Note that a regular correlation between two "adjusted" variables is equivalent to the partial
correlation between them.

Usage

adjust(
data,
effect = NULL,
select = is.numeric,
exclude = NULL,
multilevel = FALSE,
additive = FALSE,
bayesian = FALSE,
keep_intercept = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE

)

data_adjust(
data,
effect = NULL,
select = is.numeric,
exclude = NULL,
multilevel = FALSE,
additive = FALSE,
bayesian = FALSE,
keep_intercept = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE

)

Arguments

data A data frame.

adjust 5

effect Character vector of column names to be adjusted for (regressed out). If NULL
(the default), all variables will be selected.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

multilevel If TRUE, the factors are included as random factors. Else, if FALSE (default), they
are included as fixed effects in the simple regression model.

additive If TRUE, continuous variables as included as smooth terms in additive models.
The goal is to regress-out potential non-linear effects.

bayesian If TRUE, the models are fitted under the Bayesian framework using rstanarm.
keep_intercept If FALSE (default), the intercept of the model is re-added. This avoids the center-

ing around 0 that happens by default when regressing out another variable (see
the examples below for a visual representation of this).

6 adjust

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

Value

A data frame comparable to data, with adjusted variables.

Examples

adjusted_all <- adjust(attitude)
head(adjusted_all)
adjusted_one <- adjust(attitude, effect = "complaints", select = "rating")
head(adjusted_one)

adjust(attitude, effect = "complaints", select = "rating", bayesian = TRUE)
adjust(attitude, effect = "complaints", select = "rating", additive = TRUE)
attitude$complaints_LMH <- cut(attitude$complaints, 3)
adjust(attitude, effect = "complaints_LMH", select = "rating", multilevel = TRUE)

Generate data
data <- bayestestR::simulate_correlation(n = 100, r = 0.7)
data$V2 <- (5 * data$V2) + 20 # Add intercept

Adjust
adjusted <- adjust(data, effect = "V1", select = "V2")
adjusted_icpt <- adjust(data, effect = "V1", select = "V2", keep_intercept = TRUE)

Visualize
plot(

data$V1, data$V2,
pch = 19, col = "blue",
ylim = c(min(adjusted$V2), max(data$V2)),
main = "Original (blue), adjusted (green), and adjusted - intercept kept (red) data"

)
abline(lm(V2 ~ V1, data = data), col = "blue")
points(adjusted$V1, adjusted$V2, pch = 19, col = "green")
abline(lm(V2 ~ V1, data = adjusted), col = "green")
points(adjusted_icpt$V1, adjusted_icpt$V2, pch = 19, col = "red")
abline(lm(V2 ~ V1, data = adjusted_icpt), col = "red")

as.prop.table 7

as.prop.table Convert a crosstable to a frequency or a propensity table

Description

as.prop.table() is an S3 generic. It can be used on objects of class datawizard_crosstab
created by data_tabulate() when it was run with the arguments by and proportions.

Usage

as.prop.table(x, ...)

S3 method for class 'datawizard_crosstab'
as.prop.table(x, remove_na = TRUE, simplify = FALSE, verbose = TRUE, ...)

S3 method for class 'datawizard_tables'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
...,
stringsAsFactors = FALSE,
add_total = FALSE

)

S3 method for class 'datawizard_table'
as.table(x, remove_na = TRUE, simplify = FALSE, verbose = TRUE, ...)

Arguments

x An object created by data_tabulate(). It must be of class datawizard_crosstab
for as.prop.table().

... not used.

remove_na Logical, if FALSE, missing values are included in the frequency or crosstable,
else missing values are omitted. Note that the default for the as.table()
method is remove_na = TRUE, so that missing values are not included in the
returned table, which makes more sense for post-processing of the table, e.g.
using chisq.test().

simplify Logical, if TRUE, the returned table is simplified to a single table object if there
is only one frequency or contingency table input. Else, always for multiple
table inputs or when simplify = FALSE, a list of tables is returned. This is only
relevant for the as.table() methods. To ensure consistent output, the default
is FALSE.

verbose Toggle warnings and messages.

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

8 as.prop.table

optional logical. If TRUE, setting row names and converting column names (to syntac-
tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment, ba-
sically with the meaning of data.frame(*, check.names = !optional). See
also the make.names argument of the matrix method.

stringsAsFactors

logical: should the character vector be converted to a factor?

add_total For crosstables (i.e. when by is not NULL), a row and column with the total N val-
ues are added to the data frame. add_total has no effect in as.data.frame()
for simple frequency tables.

See Also

data_tabulate

Examples

data(efc)

Some cross tabulation
cross <- data_tabulate(efc, select = "e42dep", by = "c172code", proportions = "row")
cross

Convert to a propensity table
as.prop.table(cross)

Convert to data.frame
result <- data_tabulate(efc, "c172code", by = "e16sex")
as.data.frame(result)
as.data.frame(result)$table
as.data.frame(result, add_total = TRUE)$table

Convert to a table that can be passed to chisq.test()

out <- data_tabulate(efc, "c172code", by = "e16sex")
we need to simplify the output, else we get a list of tables
tbl <- as.table(out, simplify = TRUE)
tbl
suppressWarnings(chisq.test(tbl))

apply chisq.test to each table
out <- data_tabulate(efc, c("c172code", "e16sex"))
suppressWarnings(lapply(as.table(out), chisq.test))

can also handle grouped data frames
d <- data_group(mtcars, "am")
x <- data_tabulate(d, "cyl", by = "gear")
as.table(x)

assign_labels 9

assign_labels Assign variable and value labels

Description

Assign variable and values labels to a variable or variables in a data frame. Labels are stored as
attributes ("label" for variable labels and "labels") for value labels.

Usage

assign_labels(x, ...)

S3 method for class 'numeric'
assign_labels(x, variable = NULL, values = NULL, ...)

S3 method for class 'data.frame'
assign_labels(
x,
select = NULL,
exclude = NULL,
values = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

x A data frame, factor or vector.

... Currently not used.

variable The variable label as string.

values The value labels as (named) character vector. If values is not a named vector,
the length of labels must be equal to the length of unique values. For a named
vector, the left-hand side (LHS) is the value in x, the right-hand side (RHS) the
associated value label. Non-matching labels are omitted.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

10 assign_labels

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),

• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

Value

A labelled variable, or a data frame of labelled variables.

categorize 11

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Examples

x <- 1:3
labelling by providing required number of labels
assign_labels(

x,
variable = "My x",
values = c("one", "two", "three")

)

labelling using named vectors
data(iris)
out <- assign_labels(

iris$Species,
variable = "Labelled Species",
values = c(`setosa` = "Spec1", `versicolor` = "Spec2", `virginica` = "Spec3")

)
str(out)

data frame example
out <- assign_labels(

iris,
select = "Species",
variable = "Labelled Species",
values = c(`setosa` = "Spec1", `versicolor` = "Spec2", `virginica` = "Spec3")

)
str(out$Species)

Partial labelling
x <- 1:5
assign_labels(

x,
variable = "My x",
values = c(`1` = "lowest", `5` = "highest")

)

categorize Recode (or "cut" / "bin") data into groups of values.

12 categorize

Description

This functions divides the range of variables into intervals and recodes the values inside these inter-
vals according to their related interval. It is basically a wrapper around base R’s cut(), providing a
simplified and more accessible way to define the interval breaks (cut-off values).

Usage

categorize(x, ...)

S3 method for class 'numeric'
categorize(
x,
split = "median",
n_groups = NULL,
range = NULL,
lowest = 1,
breaks = "exclusive",
labels = NULL,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
categorize(
x,
select = NULL,
exclude = NULL,
split = "median",
n_groups = NULL,
range = NULL,
lowest = 1,
breaks = "exclusive",
labels = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

x A (grouped) data frame, numeric vector or factor.

... not used.

split Character vector, indicating at which breaks to split variables, or numeric values
with values indicating breaks. If character, may be one of "median", "mean",
"quantile", "equal_length", or "equal_range". "median" or "mean" will
return dichotomous variables, split at their mean or median, respectively. "quantile"

categorize 13

and "equal_length" will split the variable into n_groups groups, where each
group refers to an interval of a specific range of values. Thus, the length of each
interval will be based on the number of groups. "equal_range" also splits the
variable into multiple groups, however, the length of the interval is given, and
the number of resulting groups (and hence, the number of breaks) will be deter-
mined by how many intervals can be generated, based on the full range of the
variable.

n_groups If split is "quantile" or "equal_length", this defines the number of re-
quested groups (i.e. resulting number of levels or values) for the recoded vari-
able(s). "quantile" will define intervals based on the distribution of the vari-
able, while "equal_length" tries to divide the range of the variable into pieces
of equal length.

range If split = "equal_range", this defines the range of values that are recoded into
a new value.

lowest Minimum value of the recoded variable(s). If NULL (the default), for numeric
variables, the minimum of the original input is preserved. For factors, the default
minimum is 1. For split = "equal_range", the default minimum is always 1,
unless specified otherwise in lowest.

breaks Character, indicating whether breaks for categorizing data are "inclusive"
(values indicate the upper bound of the previous group or interval) or "exclusive"
(values indicate the lower bound of the next group or interval to begin). Use
labels = "range" to make this behaviour easier to see.

labels Character vector of value labels. If not NULL, categorize() will returns factors
instead of numeric variables, with labels used for labelling the factor levels.
Can also be "mean", "median", "range" or "observed" for a factor with labels
as the mean/median, the requested range (even if not all values of that range are
present in the data) or observed range (range of the actual recoded values) of
each group. See ’Examples’.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

14 categorize

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Value

x, recoded into groups. By default x is numeric, unless labels is specified. In this case, a factor is
returned, where the factor levels (i.e. recoded groups are labelled accordingly.

Splits and breaks (cut-off values)

Breaks are by default exclusive, this means that these values indicate the lower bound of the next
group or interval to begin. Take a simple example, a numeric variable with values from 1 to 9.

categorize 15

The median would be 5, thus the first interval ranges from 1-4 and is recoded into 1, while 5-9
would turn into 2 (compare cbind(1:9, categorize(1:9))). The same variable, using split =
"quantile" and n_groups = 3 would define breaks at 3.67 and 6.33 (see quantile(1:9, probs
= c(1/3, 2/3))), which means that values from 1 to 3 belong to the first interval and are recoded
into 1 (because the next interval starts at 3.67), 4 to 6 into 2 and 7 to 9 into 3.

The opposite behaviour can be achieved using breaks = "inclusive", in which case

Recoding into groups with equal size or range

split = "equal_length" and split = "equal_range" try to divide the range of x into intervals of
similar (or same) length. The difference is that split = "equal_length" will divide the range of
x into n_groups pieces and thereby defining the intervals used as breaks (hence, it is equivalent to
cut(x, breaks = n_groups)), while split = "equal_range" will cut x into intervals that all have
the length of range, where the first interval by defaults starts at 1. The lowest (or starting) value of
that interval can be defined using the lowest argument.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

Examples

set.seed(123)
x <- sample(1:10, size = 50, replace = TRUE)

table(x)

by default, at median
table(categorize(x))

into 3 groups, based on distribution (quantiles)
table(categorize(x, split = "quantile", n_groups = 3))

16 center

into 3 groups, user-defined break
table(categorize(x, split = c(3, 5)))

set.seed(123)
x <- sample(1:100, size = 500, replace = TRUE)

into 5 groups, try to recode into intervals of similar length,
i.e. the range within groups is the same for all groups
table(categorize(x, split = "equal_length", n_groups = 5))

into 5 groups, try to return same range within groups
i.e. 1-20, 21-40, 41-60, etc. Since the range of "x" is
1-100, and we have a range of 20, this results into 5
groups, and thus is for this particular case identical
to the previous result.
table(categorize(x, split = "equal_range", range = 20))

return factor with value labels instead of numeric value
set.seed(123)
x <- sample(1:10, size = 30, replace = TRUE)
categorize(x, "equal_length", n_groups = 3)
categorize(x, "equal_length", n_groups = 3, labels = c("low", "mid", "high"))

cut numeric into groups with the mean or median as a label name
x <- sample(1:10, size = 30, replace = TRUE)
categorize(x, "equal_length", n_groups = 3, labels = "mean")
categorize(x, "equal_length", n_groups = 3, labels = "median")

cut numeric into groups with the requested range as a label name
each category has the same range, and labels indicate this range
categorize(mtcars$mpg, "equal_length", n_groups = 5, labels = "range")
in this example, each category has the same range, but labels only refer
to the ranges of the actual values (present in the data) inside each group
categorize(mtcars$mpg, "equal_length", n_groups = 5, labels = "observed")

center Centering (Grand-Mean Centering)

Description

Performs a grand-mean centering of data.

Usage

center(x, ...)

centre(x, ...)

S3 method for class 'numeric'

center 17

center(
x,
robust = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
center(
x,
select = NULL,
exclude = NULL,
robust = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
force = FALSE,
remove_na = c("none", "selected", "all"),
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
regex = FALSE,
...

)

Arguments

x A (grouped) data frame, a (numeric or character) vector or a factor.

... Currently not used.

robust Logical, if TRUE, centering is done by subtracting the median from the variables.
If FALSE, variables are centered by subtracting the mean.

weights Can be NULL (for no weighting), or:

• For data frames: a numeric vector of weights, or a character of the name of
a column in the data.frame that contains the weights.

• For numeric vectors: a numeric vector of weights.

reference A data frame or variable from which the centrality and deviation will be com-
puted instead of from the input variable. Useful for standardizing a subset or
new data according to another data frame.

center Numeric value, which can be used as alternative to reference to define a refer-
ence centrality. If center is of length 1, it will be recycled to match the length
of selected variables for centering. Else, center must be of same length as the
number of selected variables. Values in center will be matched to selected vari-
ables in the provided order, unless a named vector is given. In this case, names
are matched against the names of the selected variables.

18 center

verbose Toggle warnings and messages.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

force Logical, if TRUE, forces centering of factors as well. Factors are converted to
numerical values, with the lowest level being the value 1 (unless the factor has
numeric levels, which are converted to the corresponding numeric value).

remove_na How should missing values (NA) be treated: if "none" (default): each col-
umn’s standardization is done separately, ignoring NAs. Else, rows with NA in
the columns selected with select / exclude ("selected") or in all columns
("all") are dropped before standardization, and the resulting data frame does
not include these cases.

center 19

append Logical or string. If TRUE, centered variables get new column names (with the
suffix "_c") and are appended (column bind) to x, thus returning both the orig-
inal and the centered variables. If FALSE, original variables in x will be over-
written by their centered versions. If a character value, centered variables are
appended with new column names (using the defined suffix) to the original data
frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Value

The centered variables.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Note

Difference between centering and standardizing: Standardized variables are computed by sub-
tracting the mean of the variable and then dividing it by the standard deviation, while centering
variables involves only the subtraction.

See Also

If centering within-clusters (instead of grand-mean centering) is required, see demean(). For stan-
dardizing, see standardize(), and makepredictcall.dw_transformer() for use in model for-
mulas.

Examples

data(iris)

entire data frame or a vector
head(iris$Sepal.Width)
head(center(iris$Sepal.Width))
head(center(iris))
head(center(iris, force = TRUE))

20 coef_var

only the selected columns from a data frame
center(anscombe, select = c("x1", "x3"))
center(anscombe, exclude = c("x1", "x3"))

centering with reference center and scale
d <- data.frame(

a = c(-2, -1, 0, 1, 2),
b = c(3, 4, 5, 6, 7)

)

default centering at mean
center(d)

centering, using 0 as mean
center(d, center = 0)

centering, using -5 as mean
center(d, center = -5)

coef_var Compute the coefficient of variation

Description

Compute the coefficient of variation (CV, ratio of the standard deviation to the mean, σ/µ) for a set
of numeric values.

Usage

coef_var(x, ...)

distribution_coef_var(x, ...)

S3 method for class 'numeric'
coef_var(
x,
mu = NULL,
sigma = NULL,
method = c("standard", "unbiased", "median_mad", "qcd"),
trim = 0,
remove_na = FALSE,
n = NULL,
...

)

coef_var 21

Arguments

x A numeric vector of ratio scale (see details), or vector of values than can be
coerced to one.

... Further arguments passed to computation functions.

mu A numeric vector of mean values to use to compute the coefficient of variation.
If supplied, x is not used to compute the mean.

sigma A numeric vector of standard deviation values to use to compute the coefficient
of variation. If supplied, x is not used to compute the SD.

method Method to use to compute the CV. Can be "standard" to compute by divid-
ing the standard deviation by the mean, "unbiased" for the unbiased estimator
for normally distributed data, or one of two robust alternatives: "median_mad"
to divide the median by the stats::mad(), or "qcd" (quartile coefficient of
dispersion, interquartile range divided by the sum of the quartiles [twice the
midhinge]: (Q3 −Q1)/(Q3 +Q1).

trim the fraction (0 to 0.5) of values to be trimmed from each end of x before the
mean and standard deviation (or other measures) are computed. Values of trim
outside the range of (0 to 0.5) are taken as the nearest endpoint.

remove_na Logical. Should NA values be removed before computing (TRUE) or not (FALSE,
default)?

n If method = "unbiased" and both mu and sigma are provided (not computed
from x), what sample size to use to adjust the computed CV for small-sample
bias?

Details

CV is only applicable of values taken on a ratio scale: values that have a fixed meaningfully de-
fined 0 (which is either the lowest or highest possible value), and that ratios between them are
interpretable For example, how many sandwiches have I eaten this week? 0 means "none" and 20
sandwiches is 4 times more than 5 sandwiches. If I were to center the number of sandwiches, it
will no longer be on a ratio scale (0 is no "none" it is the mean, and the ratio between 4 and -2 is
not meaningful). Scaling a ratio scale still results in a ratio scale. So I can re define "how many
half sandwiches did I eat this week (= sandwiches * 0.5) and 0 would still mean "none", and 20
half-sandwiches is still 4 times more than 5 half-sandwiches.

This means that CV is NOT invariant to shifting, but it is to scaling:

sandwiches <- c(0, 4, 15, 0, 0, 5, 2, 7)
coef_var(sandwiches)
#> [1] 1.239094

coef_var(sandwiches / 2) # same
#> [1] 1.239094

coef_var(sandwiches + 4) # different! 0 is no longer meaningful!
#> [1] 0.6290784

22 coerce_to_numeric

Value

The computed coefficient of variation for x.

Examples

coef_var(1:10)
coef_var(c(1:10, 100), method = "median_mad")
coef_var(c(1:10, 100), method = "qcd")
coef_var(mu = 10, sigma = 20)
coef_var(mu = 10, sigma = 20, method = "unbiased", n = 30)

coerce_to_numeric Convert to Numeric (if possible)

Description

Tries to convert vector to numeric if possible (if no warnings or errors). Otherwise, leaves it as is.

Usage

coerce_to_numeric(x)

Arguments

x A vector to be converted.

Value

Numeric vector (if possible)

Examples

coerce_to_numeric(c("1", "2"))
coerce_to_numeric(c("1", "2", "A"))

contr.deviation 23

contr.deviation Deviation Contrast Matrix

Description

Build a deviation contrast matrix, a type of effects contrast matrix.

Usage

contr.deviation(n, base = 1, contrasts = TRUE, sparse = FALSE)

Arguments

n a vector of levels for a factor, or the number of levels.

base an integer specifying which group is considered the baseline group. Ignored if
contrasts is FALSE.

contrasts a logical indicating whether contrasts should be computed.

sparse logical indicating if the result should be sparse (of class dgCMatrix), using pack-
age Matrix.

Details

In effects coding, unlike treatment/dummy coding (stats::contr.treatment()), each contrast
sums to 0. In regressions models, this results in an intercept that represents the (unweighted) av-
erage of the group means. In ANOVA settings, this also guarantees that lower order effects rep-
resent main effects (and not simple or conditional effects, as is the case when using R’s default
stats::contr.treatment()).

Deviation coding (contr.deviation) is a type of effects coding. With deviation coding, the coef-
ficients for factor variables are interpreted as the difference of each factor level from the base level
(this is the same interpretation as with treatment/dummy coding). For example, for a factor group
with levels "A", "B", and "C", with contr.devation, the intercept represents the overall mean
(average of the group means for the 3 groups), and the coefficients groupB and groupC represent
the differences between the A group mean and the B and C group means, respectively.

Sum coding (stats::contr.sum()) is another type of effects coding. With sum coding, the coef-
ficients for factor variables are interpreted as the difference of each factor level from the grand
(across-groups) mean. For example, for a factor group with levels "A", "B", and "C", with
contr.sum, the intercept represents the overall mean (average of the group means for the 3 groups),
and the coefficients group1 and group2 represent the differences the A and B group means from
the overall mean, respectively.

See Also

stats::contr.sum()

https://CRAN.R-project.org/package=Matrix

24 contr.deviation

Examples

data("mtcars")

mtcars <- data_modify(mtcars, cyl = factor(cyl))

c.treatment <- cbind(Intercept = 1, contrasts(mtcars$cyl))
solve(c.treatment)
#> 4 6 8
#> Intercept 1 0 0 # mean of the 1st level
#> 6 -1 1 0 # 2nd level - 1st level
#> 8 -1 0 1 # 3rd level - 1st level

contrasts(mtcars$cyl) <- contr.sum
c.sum <- cbind(Intercept = 1, contrasts(mtcars$cyl))
solve(c.sum)
#> 4 6 8
#> Intercept 0.333 0.333 0.333 # overall mean
#> 0.667 -0.333 -0.333 # deviation of 1st from overall mean
#> -0.333 0.667 -0.333 # deviation of 2nd from overall mean

contrasts(mtcars$cyl) <- contr.deviation
c.deviation <- cbind(Intercept = 1, contrasts(mtcars$cyl))
solve(c.deviation)
#> 4 6 8
#> Intercept 0.333 0.333 0.333 # overall mean
#> 6 -1.000 1.000 0.000 # 2nd level - 1st level
#> 8 -1.000 0.000 1.000 # 3rd level - 1st level

With Interactions ---
mtcars <- data_modify(mtcars, am = C(am, contr = contr.deviation))
mtcars <- data_arrange(mtcars, select = c("cyl", "am"))

mm <- unique(model.matrix(~ cyl * am, data = mtcars))
rownames(mm) <- c(

"cyl4.am0", "cyl4.am1", "cyl6.am0",
"cyl6.am1", "cyl8.am0", "cyl8.am1"

)

solve(mm)
#> cyl4.am0 cyl4.am1 cyl6.am0 cyl6.am1 cyl8.am0 cyl8.am1
#> (Intercept) 0.167 0.167 0.167 0.167 0.167 0.167 # overall mean
#> cyl6 -0.500 -0.500 0.500 0.500 0.000 0.000 # cyl MAIN eff: 2nd - 1st
#> cyl8 -0.500 -0.500 0.000 0.000 0.500 0.500 # cyl MAIN eff: 2nd - 1st
#> am1 -0.333 0.333 -0.333 0.333 -0.333 0.333 # am MAIN eff
#> cyl6:am1 1.000 -1.000 -1.000 1.000 0.000 0.000
#> cyl8:am1 1.000 -1.000 0.000 0.000 -1.000 1.000

convert_na_to 25

convert_na_to Replace missing values in a variable or a data frame.

Description

Replace missing values in a variable or a data frame.

Usage

convert_na_to(x, ...)

S3 method for class 'numeric'
convert_na_to(x, replacement = NULL, verbose = TRUE, ...)

S3 method for class 'character'
convert_na_to(x, replacement = NULL, verbose = TRUE, ...)

S3 method for class 'data.frame'
convert_na_to(
x,
select = NULL,
exclude = NULL,
replacement = NULL,
replace_num = replacement,
replace_char = replacement,
replace_fac = replacement,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

x A numeric, factor, or character vector, or a data frame.

... Not used.

replacement Numeric or character value that will be used to replace NA.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

26 convert_na_to

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

replace_num Value to replace NA when variable is of type numeric.

replace_char Value to replace NA when variable is of type character.

replace_fac Value to replace NA when variable is of type factor.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Value

x, where NA values are replaced by replacement.

convert_na_to 27

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Examples

Convert NA to 0 in a numeric vector
convert_na_to(

c(9, 3, NA, 2, 3, 1, NA, 8),
replacement = 0

)

Convert NA to "missing" in a character vector
convert_na_to(

c("a", NA, "d", "z", NA, "t"),
replacement = "missing"

)

For data frames

test_df <- data.frame(
x = c(1, 2, NA),
x2 = c(4, 5, NA),
y = c("a", "b", NA)

)

Convert all NA to 0 in numeric variables, and all NA to "missing" in
character variables
convert_na_to(

test_df,
replace_num = 0,
replace_char = "missing"

)

Convert a specific variable in the data frame
convert_na_to(

test_df,
replace_num = 0,
replace_char = "missing",
select = "x"

)

Convert all variables starting with "x"
convert_na_to(

test_df,
replace_num = 0,
replace_char = "missing",
select = starts_with("x")

)

28 convert_to_na

Convert NA to 1 in variable 'x2' and to 0 in all other numeric
variables
convert_na_to(

test_df,
replace_num = 0,
select = list(x2 = 1)

)

convert_to_na Convert non-missing values in a variable into missing values.

Description

Convert non-missing values in a variable into missing values.

Usage

convert_to_na(x, ...)

S3 method for class 'numeric'
convert_to_na(x, na = NULL, verbose = TRUE, ...)

S3 method for class 'factor'
convert_to_na(x, na = NULL, drop_levels = FALSE, verbose = TRUE, ...)

S3 method for class 'data.frame'
convert_to_na(
x,
select = NULL,
exclude = NULL,
na = NULL,
drop_levels = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

x A vector, factor or a data frame.

... Not used.

na Numeric, character vector or logical (or a list of numeric, character vectors or
logicals) with values that should be converted to NA. Numeric values applied to
numeric vectors, character values are used for factors, character vectors or date
variables, and logical values for logical vectors.

convert_to_na 29

verbose Toggle warnings.

drop_levels Logical, for factors, when specific levels are replaced by NA, should unused lev-
els be dropped?

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported

30 data_addprefix

select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Value

x, where all values in na are converted to NA.

Examples

x <- sample(1:6, size = 30, replace = TRUE)
x
values 4 and 5 to NA
convert_to_na(x, na = 4:5)

data frames
set.seed(123)
x <- data.frame(

a = sample(1:6, size = 20, replace = TRUE),
b = sample(letters[1:6], size = 20, replace = TRUE),
c = sample(c(30:33, 99), size = 20, replace = TRUE)

)
for all numerics, convert 5 to NA. Character/factor will be ignored.
convert_to_na(x, na = 5)

for numerics, 5 to NA, for character/factor, "f" to NA
convert_to_na(x, na = list(6, "f"))

select specific variables
convert_to_na(x, select = c("a", "b"), na = list(6, "f"))

data_addprefix Add a prefix or suffix to column names

Description

Add a prefix or suffix to column names

Usage

data_addprefix(
data,
pattern,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,

data_addprefix 31

...
)

data_addsuffix(
data,
pattern,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

data A data frame.

pattern A character string, which will be added as prefix or suffix to the column names.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to

32 data_arrange

exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.
... Other arguments passed to or from other functions.

See Also

data_rename() for more fine-grained column renaming.

Examples

Add prefix / suffix to all columns
head(data_addprefix(iris, "NEW_"))
head(data_addsuffix(iris, "_OLD"))

data_arrange Arrange rows by column values

Description

data_arrange() orders the rows of a data frame by the values of selected columns.

Usage

data_arrange(data, select = NULL, safe = TRUE)

Arguments

data A data frame, or an object that can be coerced to a data frame.
select Character vector of column names. Use a dash just before column name to

arrange in decreasing order, for example "-x1".
safe Do not throw an error if one of the variables specified doesn’t exist.

data_codebook 33

Value

A data frame.

Examples

Arrange using several variables
data_arrange(head(mtcars), c("gear", "carb"))

Arrange in decreasing order
data_arrange(head(mtcars), "-carb")

Throw an error if one of the variables specified doesn't exist
try(data_arrange(head(mtcars), c("gear", "foo"), safe = FALSE))

data_codebook Generate a codebook of a data frame.

Description

data_codebook() generates codebooks from data frames, i.e. overviews of all variables and some
more information about each variable (like labels, values or value range, frequencies, amount of
missing values).

Usage

data_codebook(
data,
select = NULL,
exclude = NULL,
variable_label_width = NULL,
value_label_width = NULL,
max_values = 10,
range_at = 6,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

S3 method for class 'data_codebook'
print_html(
x,
font_size = "100%",
line_padding = 3,
row_color = "#eeeeee",
...

)

34 data_codebook

S3 method for class 'data_codebook'
display(
object,
format = "markdown",
font_size = "100%",
line_padding = 3,
row_color = "#eeeeee",
...

)

Arguments

data A data frame, or an object that can be coerced to a data frame.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will

data_codebook 35

just return "Species".
exclude See select, however, column names matched by the pattern from exclude will

be excluded instead of selected. If NULL (the default), excludes no columns.
variable_label_width

Length of variable labels. Longer labels will be wrapped at variable_label_width
chars. If NULL, longer labels will not be split into multiple lines. Only applies to
labelled data.

value_label_width

Length of value labels. Longer labels will be shortened, where the remaining
part is truncated. Only applies to labelled data or factor levels.

max_values Number of maximum values that should be displayed. Can be used to avoid too
many rows when variables have lots of unique values.

range_at Indicates how many unique values in a numeric vector are needed in order to
print a range for that variable instead of a frequency table for all numeric values.
Can be useful if the data contains numeric variables with only a few unique val-
ues and where full frequency tables instead of value ranges should be displayed.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings and messages on or off.
... Arguments passed to or from other methods.
x A (grouped) data frame, a vector or a statistical model (for unstandardize()

cannot be a model).
font_size For HTML tables, the font size.
line_padding For HTML tables, the distance (in pixel) between lines.
row_color For HTML tables, the fill color for odd rows.
object An object returned by data_tabulate().
format String, indicating the output format. Can be "markdown" "html", or "tt".

format = "html" create an HTML table using the gt package. format = "tt"
creates a tinytable object, which is either printed as markdown or HTML ta-
ble, depending on the environment. See insight::export_table() for details.

Value

A formatted data frame, summarizing the content of the data frame. Returned columns include
the column index of the variables in the original data frame (ID), column name, variable label (if
data is labelled), type of variable, number of missing values, unique values (or value range), value
labels (for labelled data), and a frequency table (N for each value). Most columns are formatted as
character vectors.

36 data_duplicated

Note

There are methods to print() the data frame in a nicer output, as well methods for printing in mark-
down or HTML format (print_md() and print_html()). The print() method for text outputs
passes arguments in ... to insight::export_table().

Examples

data(iris)
data_codebook(iris, select = starts_with("Sepal"))

data(efc)
data_codebook(efc)

shorten labels
data_codebook(efc, variable_label_width = 20, value_label_width = 15)

automatic range for numerics at more than 5 unique values
data(mtcars)
data_codebook(mtcars, select = starts_with("c"))

force all values to be displayed
data_codebook(mtcars, select = starts_with("c"), range_at = 100)

data_duplicated Extract all duplicates

Description

Extract all duplicates, for visual inspection. Note that it also contains the first occurrence of future
duplicates, unlike duplicated() or dplyr::distinct()). Also contains an additional column
reporting the number of missing values for that row, to help in the decision-making when selecting
which duplicates to keep.

Usage

data_duplicated(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE

)

data_duplicated 37

Arguments

data A data frame.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported

38 data_extract

select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

Value

A dataframe, containing all duplicates.

See Also

data_unique()

Examples

df1 <- data.frame(
id = c(1, 2, 3, 1, 3),
year = c(2022, 2022, 2022, 2022, 2000),
item1 = c(NA, 1, 1, 2, 3),
item2 = c(NA, 1, 1, 2, 3),
item3 = c(NA, 1, 1, 2, 3)

)

data_duplicated(df1, select = "id")

data_duplicated(df1, select = c("id", "year"))

Filter to exclude duplicates
df2 <- df1[-c(1, 5),]
df2

data_extract Extract one or more columns or elements from an object

Description

data_extract() (or its alias extract()) is similar to $. It extracts either a single column or
element from an object (e.g., a data frame, list), or multiple columns resp. elements.

Usage

data_extract(data, select, ...)

S3 method for class 'data.frame'
data_extract(
data,
select,

data_extract 39

name = NULL,
extract = "all",
as_data_frame = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

data The object to subset. Methods are currently available for data frames and data
frame extensions (e.g., tibbles).

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

40 data_extract

... For use by future methods.
name An optional argument that specifies the column to be used as names for the

vector elements after extraction. Must be specified either as literal variable name
(e.g., column_name) or as string ("column_name"). name will be ignored when
a data frame is returned.

extract String, indicating which element will be extracted when select matches mul-
tiple variables. Can be "all" (the default) to return all matched variables,
"first" or "last" to return the first or last match, or "odd" and "even" to re-
turn all odd-numbered or even-numbered matches. Note that "first" or "last"
return a vector (unless as_data_frame = TRUE), while "all" can return a vector
(if only one match was found) or a data frame (for more than one match). Type
safe return values are only possible when extract is "first" or "last" (will
always return a vector) or when as_data_frame = TRUE (always returns a data
frame).

as_data_frame Logical, if TRUE, will always return a data frame, even if only one variable was
matched. If FALSE, either returns a vector or a data frame. See extract for
details.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

Details

data_extract() can be used to select multiple variables or pull a single variable from a data frame.
Thus, the return value is by default not type safe - data_extract() either returns a vector or a data
frame.

Extracting single variables (vectors): When select is the name of a single column, or when
select only matches one column, a vector is returned. A single variable is also returned when
extract is either "first or "last". Setting as_data_frame to TRUE overrides this behaviour
and always returns a data frame.

Extracting a data frame of variables: When select is a character vector containing more than
one column name (or a numeric vector with more than one valid column indices), or when select
uses one of the supported select-helpers that match multiple columns, a data frame is returned.
Setting as_data_frame to TRUE always returns a data frame.

Value

A vector (or a data frame) containing the extracted element, or NULL if no matching variable was
found.

data_group 41

Examples

single variable
data_extract(mtcars, cyl, name = gear)
data_extract(mtcars, "cyl", name = gear)
data_extract(mtcars, -1, name = gear)
data_extract(mtcars, cyl, name = 0)
data_extract(mtcars, cyl, name = "row.names")

selecting multiple variables
head(data_extract(iris, starts_with("Sepal")))
head(data_extract(iris, ends_with("Width")))
head(data_extract(iris, 2:4))

select first of multiple variables
data_extract(iris, starts_with("Sepal"), extract = "first")

select first of multiple variables, return as data frame
head(data_extract(iris, starts_with("Sepal"), extract = "first", as_data_frame = TRUE))

data_group Create a grouped data frame

Description

This function is comparable to dplyr::group_by(), but just following the datawizard function
design. data_ungroup() removes the grouping information from a grouped data frame.

Usage

data_group(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

data_ungroup(data, verbose = TRUE, ...)

Arguments

data A data frame

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),

42 data_group

• a string with the variable name (e.g., "column_name"), a character vector of
variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

... Arguments passed down to other functions. Mostly not used yet.

data_match 43

Value

A grouped data frame, i.e. a data frame with additional information about the grouping structure
saved as attributes.

Examples

data(efc)
suppressPackageStartupMessages(library(poorman, quietly = TRUE))

total mean
efc %>%

summarize(mean_hours = mean(c12hour, na.rm = TRUE))

mean by educational level
efc %>%

data_group(c172code) %>%
summarize(mean_hours = mean(c12hour, na.rm = TRUE))

data_match Return filtered or sliced data frame, or row indices

Description

Return a filtered (or sliced) data frame or row indices of a data frame that match a specific condition.
data_filter() works like data_match(), but works with logical expressions or row indices of a
data frame to specify matching conditions.

Usage

data_match(x, to, match = "and", return_indices = FALSE, remove_na = TRUE, ...)

data_filter(x, ...)

Arguments

x A data frame.
to A data frame matching the specified conditions. Note that if match is a value

other than "and", the original row order might be changed. See ’Details’.
match String, indicating with which logical operation matching conditions should be

combined. Can be "and" (or "&"), "or" (or "|") or "not" (or "!").
return_indices Logical, if TRUE, return the vector of rows that can be used to filter the original

data frame. If FALSE (default), returns directly the filtered data frame instead of
the row indices.

remove_na Logical, if TRUE, missing values (NAs) are removed before filtering the data. This
is the default behaviour, however, sometimes when row indices are requested
(i.e. return_indices=TRUE), it might be useful to preserve NA values, so re-
turned row indices match the row indices of the original data frame.

44 data_match

... A sequence of logical expressions indicating which rows to keep, or a numeric
vector indicating the row indices of rows to keep. Can also be a string repre-
sentation of a logical expression (e.g. "x > 4"), a character vector (e.g. c("x
> 4", "y == 2")) or a variable that contains the string representation of a logi-
cal expression. These might be useful when used in packages to avoid defining
undefined global variables.

Details

For data_match(), if match is either "or" or "not", the original row order from x might be
changed. If preserving row order is required, use data_filter() instead.

mimics subset() behaviour, preserving original row order
head(data_filter(mtcars[c("mpg", "vs", "am")], vs == 0 | am == 1))
#> mpg vs am
#> Mazda RX4 21.0 0 1
#> Mazda RX4 Wag 21.0 0 1
#> Datsun 710 22.8 1 1
#> Hornet Sportabout 18.7 0 0
#> Duster 360 14.3 0 0
#> Merc 450SE 16.4 0 0

re-sorting rows
head(data_match(mtcars[c("mpg", "vs", "am")],

data.frame(vs = 0, am = 1),
match = "or"))

#> mpg vs am
#> Mazda RX4 21.0 0 1
#> Mazda RX4 Wag 21.0 0 1
#> Hornet Sportabout 18.7 0 0
#> Duster 360 14.3 0 0
#> Merc 450SE 16.4 0 0
#> Merc 450SL 17.3 0 0

While data_match() works with data frames to match conditions against, data_filter() is ba-
sically a wrapper around subset(subset = <filter>). However, unlike subset(), it preserves
label attributes and is useful when working with labelled data.

Value

A filtered data frame, or the row indices that match the specified configuration.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

data_merge 45

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()
• Functions to find or select columns: data_select(), extract_column_names()
• Functions to filter rows: data_match(), data_filter()

Examples

data_match(mtcars, data.frame(vs = 0, am = 1))
data_match(mtcars, data.frame(vs = 0, am = c(0, 1)))

observations where "vs" is NOT 0 AND "am" is NOT 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "not")
equivalent to
data_filter(mtcars, vs != 0 & am != 1)

observations where EITHER "vs" is 0 OR "am" is 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "or")
equivalent to
data_filter(mtcars, vs == 0 | am == 1)

slice data frame by row indices
data_filter(mtcars, 5:10)

Define a custom function containing data_filter()
my_filter <- function(data, variable) {

data_filter(data, variable)
}
my_filter(mtcars, "cyl == 6")

Pass complete filter-condition as string.
my_filter <- function(data, condition) {

data_filter(data, condition)
}
my_filter(mtcars, "am != 0")

string can also be used directly as argument
data_filter(mtcars, "am != 0")

or as variable
fl <- "am != 0"
data_filter(mtcars, fl)

data_merge Merge (join) two data frames, or a list of data frames

Description

Merge (join) two data frames, or a list of data frames. However, unlike base R’s merge(), data_merge()
offers a few more methods to join data frames, and it does not drop data frame nor column attributes.

46 data_merge

Usage

data_merge(x, ...)

data_join(x, ...)

S3 method for class 'data.frame'
data_merge(x, y, join = "left", by = NULL, id = NULL, verbose = TRUE, ...)

S3 method for class 'list'
data_merge(x, join = "left", by = NULL, id = NULL, verbose = TRUE, ...)

Arguments

x, y A data frame to merge. x may also be a list of data frames that will be merged.
Note that the list-method has no y argument.

... Not used.

join Character vector, indicating the method of joining the data frames. Can be
"full", "left" (default), "right", "inner", "anti", "semi" or "bind". See
details below.

by Specifications of the columns used for merging.

id Optional name for ID column that will be created to indicate the source data
frames for appended rows. Only applies if join = "bind".

verbose Toggle warnings.

Value

A merged data frame.

Merging data frames

Merging data frames is performed by adding rows (cases), columns (variables) or both from the
source data frame (y) to the target data frame (x). This usually requires one or more variables which
are included in both data frames and that are used for merging, typically indicated with the by
argument. When by contains a variable present in both data frames, cases are matched and filtered
by identical values of by in x and y.

Left- and right-joins

Left- and right joins usually don’t add new rows (cases), but only new columns (variables) for
existing cases in x. For join = "left" or join = "right" to work, by must indicate one or more
columns that are included in both data frames. For join = "left", if by is an identifier variable,
which is included in both x and y, all variables from y are copied to x, but only those cases from y
that have matching values in their identifier variable in x (i.e. all cases in x that are also found in
y get the related values from the new columns in y). If there is no match between identifiers in x
and y, the copied variable from y will get a NA value for this particular case. Other variables that
occur both in x and y, but are not used as identifiers (with by), will be renamed to avoid multiple
identical variable names. Cases in y where values from the identifier have no match in x’s identifier

data_merge 47

are removed. join = "right" works in a similar way as join = "left", just that only cases from x
that have matching values in their identifier variable in y are chosen.

In base R, these are equivalent to merge(x, y, all.x = TRUE) and merge(x, y, all.y = TRUE).

Full joins

Full joins copy all cases from y to x. For matching cases in both data frames, values for new
variables are copied from y to x. For cases in y not present in x, these will be added as new rows to
x. Thus, full joins not only add new columns (variables), but also might add new rows (cases).

In base R, this is equivalent to merge(x, y, all = TRUE).

Inner joins

Inner joins merge two data frames, however, only those rows (cases) are kept that are present in both
data frames. Thus, inner joins usually add new columns (variables), but also remove rows (cases)
that only occur in one data frame.

In base R, this is equivalent to merge(x, y).

Binds

join = "bind" row-binds the complete second data frame y to x. Unlike simple rbind(), which
requires the same columns for both data frames, join = "bind" will bind shared columns from y to
x, and add new columns from y to x.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

Examples

x <- data.frame(a = 1:3, b = c("a", "b", "c"), c = 5:7, id = 1:3)
y <- data.frame(c = 6:8, d = c("f", "g", "h"), e = 100:102, id = 2:4)

x
y

"by" will default to all shared columns, i.e. "c" and "id". new columns
"d" and "e" will be copied from "y" to "x", but there are only two cases
in "x" that have the same values for "c" and "id" in "y". only those cases

48 data_merge

have values in the copied columns, the other case gets "NA".
data_merge(x, y, join = "left")

we change the id-value here
x <- data.frame(a = 1:3, b = c("a", "b", "c"), c = 5:7, id = 1:3)
y <- data.frame(c = 6:8, d = c("f", "g", "h"), e = 100:102, id = 3:5)

x
y

no cases in "y" have the same matching "c" and "id" as in "x", thus
copied variables from "y" to "x" copy no values, all get NA.
data_merge(x, y, join = "left")

one case in "y" has a match in "id" with "x", thus values for this
case from the remaining variables in "y" are copied to "x", all other
values (cases) in those remaining variables get NA
data_merge(x, y, join = "left", by = "id")

data(mtcars)
x <- mtcars[1:5, 1:3]
y <- mtcars[28:32, 4:6]

add ID common column
x$id <- 1:5
y$id <- 3:7

left-join, add new variables and copy values from y to x,
where "id" values match
data_merge(x, y)

right-join, add new variables and copy values from x to y,
where "id" values match
data_merge(x, y, join = "right")

full-join
data_merge(x, y, join = "full")

data(mtcars)
x <- mtcars[1:5, 1:3]
y <- mtcars[28:32, c(1, 4:5)]

add ID common column
x$id <- 1:5
y$id <- 3:7

left-join, no matching rows (because columns "id" and "disp" are used)
new variables get all NA values
data_merge(x, y)

one common value in "mpg", so one row from y is copied to x
data_merge(x, y, by = "mpg")

data_modify 49

only keep rows with matching values in by-column
data_merge(x, y, join = "semi", by = "mpg")

only keep rows with non-matching values in by-column
data_merge(x, y, join = "anti", by = "mpg")

merge list of data frames. can be of different rows
x <- mtcars[1:5, 1:3]
y <- mtcars[28:31, 3:5]
z <- mtcars[11:18, c(1, 3:4, 6:8)]
x$id <- 1:5
y$id <- 4:7
z$id <- 3:10
data_merge(list(x, y, z), join = "bind", by = "id", id = "source")

data_modify Create new variables in a data frame

Description

Create new variables or modify existing variables in a data frame. Unlike base::transform(),
data_modify() can be used on grouped data frames, and newly created variables can be directly
used.

Usage

data_modify(data, ...)

S3 method for class 'data.frame'
data_modify(data, ..., .if = NULL, .at = NULL, .modify = NULL)

Arguments

data A data frame

... One or more expressions that define the new variable name and the values or
recoding of those new variables. These expressions can be one of:

• A sequence of named, literal expressions, where the left-hand side refers to
the name of the new variable, while the right-hand side represent the values
of the new variable. Example: Sepal.Width = center(Sepal.Width).

• A vector of length 1 (which will be recycled to match the number of rows
in the data), or of same length as the data.

• A variable that contains a value to be used. Example:
a <- "abc"
data_modify(iris, var_abc = a) # var_abc contains "abc"

• An expression can also be provided as string and wrapped in as_expr().
Example:

50 data_modify

data_modify(iris, as_expr("Sepal.Width = center(Sepal.Width)"))
or
a <- "center(Sepal.Width)"
data_modify(iris, Sepal.Width = as_expr(a))
or
a <- "Sepal.Width = center(Sepal.Width)"
data_modify(iris, as_expr(a))

Note that as_expr() is no real function, which cannot be used outside of
data_modify(), and hence it is not exported nor documented. Rather, it is
only used for internally processing expressions.

• Using NULL as right-hand side removes a variable from the data frame. Ex-
ample: Petal.Width = NULL.

• For data frames (including grouped ones), the function n() can be used
to count the number of observations and thereby, for instance, create in-
dex values by using id = 1:n() or id = 3:(n()+2) and similar. Note that,
like as_expr(), n() is also no true function and cannot be used outside of
data_modify().

Note that newly created variables can be used in subsequent expressions, includ-
ing .at or .if. See also ’Examples’.

.if A function that returns TRUE for columns in the data frame where .if applies.
This argument is used in combination with the .modify argument. Note that
only one of .at or .if can be provided, but not both at the same time. Newly
created variables in ... can also be selected, see ’Examples’.

.at A character vector of variable names that should be modified. This argument is
used in combination with the .modify argument. Note that only one of .at or
.if can be provided, but not both at the same time. Newly created variables in
... can also be selected, see ’Examples’.

.modify A function that modifies the variables defined in .at or .if. This argument
is used in combination with either the .at or the .if argument. Note that the
modified variable (i.e. the result from .modify) must be either of length 1 or of
same length as the input variable.

Note

data_modify() can also be used inside functions. However, it is recommended to pass the recode-
expression as character vector or list of characters.

Examples

data(efc)
new_efc <- data_modify(

efc,
c12hour_c = center(c12hour),
c12hour_z = c12hour_c / sd(c12hour, na.rm = TRUE),
c12hour_z2 = standardize(c12hour)

)
head(new_efc)

data_modify 51

using strings instead of literal expressions
new_efc <- data_modify(

efc,
as_expr("c12hour_c = center(c12hour)"),
as_expr("c12hour_z = c12hour_c / sd(c12hour, na.rm = TRUE)"),
as_expr("c12hour_z2 = standardize(c12hour)")

)
head(new_efc)

using a character vector, provided a variable
xpr <- c(

"c12hour_c = center(c12hour)",
"c12hour_z = c12hour_c / sd(c12hour, na.rm = TRUE)",
"c12hour_z2 = standardize(c12hour)"

)
new_efc <- data_modify(efc, as_expr(xpr))
head(new_efc)

using character strings, provided as variable
stand <- "c12hour_c / sd(c12hour, na.rm = TRUE)"
new_efc <- data_modify(

efc,
c12hour_c = center(c12hour),
c12hour_z = as_expr(stand)

)
head(new_efc)

attributes - in this case, value and variable labels - are preserved
str(new_efc)

using `paste()` to build a string-expression
to_standardize <- c("Petal.Length", "Sepal.Length")
out <- data_modify(

iris,
as_expr(
paste0(to_standardize, "_stand = standardize(", to_standardize, ")")

)
)
head(out)

overwrite existing variable, remove old variable
out <- data_modify(iris, Petal.Length = 1 / Sepal.Length, Sepal.Length = NULL)
head(out)

works on grouped data
grouped_efc <- data_group(efc, "c172code")
new_efc <- data_modify(

grouped_efc,
c12hour_c = center(c12hour),
c12hour_z = c12hour_c / sd(c12hour, na.rm = TRUE),
c12hour_z2 = standardize(c12hour),
id = 1:n()

)

52 data_partition

head(new_efc)

works from inside functions
foo1 <- function(data, ...) {

head(data_modify(data, ...))
}
foo1(iris, SW_fraction = Sepal.Width / 10)
or
foo1(iris, as_expr("SW_fraction = Sepal.Width / 10"))

also with string arguments, using `as_expr()`
foo2 <- function(data, modification) {

head(data_modify(data, as_expr(modification)))
}
foo2(iris, "SW_fraction = Sepal.Width / 10")

modify at specific positions or if condition is met
d <- iris[1:5,]
data_modify(d, .at = "Species", .modify = as.numeric)
data_modify(d, .if = is.factor, .modify = as.numeric)

can be combined with dots
data_modify(d, new_length = Petal.Length * 2, .at = "Species", .modify = as.numeric)

new variables used in `.at` or `.if`
data_modify(

d,
new_length = Petal.Length * 2,
.at = c("Petal.Length", "new_length"),
.modify = round

)

combine "extract_column_names()" and ".at" argument
out <- data_modify(

d,
.at = extract_column_names(d, select = starts_with("Sepal")),
.modify = as.factor

)
"Sepal.Length" and "Sepal.Width" are now factors
str(out)

data_partition Partition data

Description

Creates data partitions (for instance, a training and a test set) based on a data frame that can also be
stratified (i.e., evenly spread a given factor) using the by argument.

data_partition 53

Usage

data_partition(
data,
proportion = 0.7,
by = NULL,
seed = NULL,
row_id = ".row_id",
verbose = TRUE,
...

)

Arguments

data A data frame.

proportion Scalar (between 0 and 1) or numeric vector, indicating the proportion(s) of the
training set(s). The sum of proportion must not be greater than 1. The remain-
ing part will be used for the test set.

by A character vector indicating the name(s) of the column(s) used for stratified
partitioning.

seed A random number generator seed. Enter an integer (e.g. 123) so that the random
sampling will be the same each time you run the function.

row_id Character string, indicating the name of the column that contains the row-id’s.

verbose Toggle messages and warnings.

... Other arguments passed to or from other functions.

Value

A list of data frames. The list includes one training set per given proportion and the remaining data
as test set. List elements of training sets are named after the given proportions (e.g., $p_0.7), the
test set is named $test.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

54 data_peek

Examples

data(iris)
out <- data_partition(iris, proportion = 0.9)
out$test
nrow(out$p_0.9)

Stratify by group (equal proportions of each species)
out <- data_partition(iris, proportion = 0.9, by = "Species")
out$test

Create multiple partitions
out <- data_partition(iris, proportion = c(0.3, 0.3))
lapply(out, head)

Create multiple partitions, stratified by group - 30% equally sampled
from species in first training set, 50% in second training set and
remaining 20% equally sampled from each species in test set.
out <- data_partition(iris, proportion = c(0.3, 0.5), by = "Species")
lapply(out, function(i) table(i$Species))

data_peek Peek at values and type of variables in a data frame

Description

This function creates a table a data frame, showing all column names, variable types and the first
values (as many as fit into the screen).

Usage

data_peek(x, ...)

S3 method for class 'data.frame'
data_peek(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
width = NULL,
verbose = TRUE,
...

)

data_peek 55

Arguments

x A data frame.

... not used.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported

56 data_read

select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

width Maximum width of line length to display. If NULL, width will be determined
using options()$width.

verbose Toggle warnings.

Value

A data frame with three columns, containing information about the name, type and first values of
the input data frame.

Note

To show only specific or a limited number of variables, use the select argument, e.g. select =
1:5 to show only the first five variables.

Examples

data(efc)
data_peek(efc)
show variables two to four
data_peek(efc, select = 2:4)

data_read Read (import) data files from various sources

Description

This functions imports data from various file types. It is a small wrapper around haven::read_spss(),
haven::read_stata(), haven::read_sas(), readxl::read_excel() and data.table::fread()
resp. readr::read_delim() (the latter if package data.table is not installed). Thus, supported file
types for importing data are data files from SPSS, SAS or Stata, Excel files or text files (like ’.csv’
files). All other file types are passed to rio::import(). data_write() works in a similar way.

Usage

data_read(
path,
path_catalog = NULL,
encoding = NULL,
convert_factors = TRUE,
verbose = TRUE,
...

)

data_read 57

data_write(
data,
path,
delimiter = ",",
convert_factors = FALSE,
save_labels = FALSE,
verbose = TRUE,
...

)

Arguments

path Character string, the file path to the data file.
path_catalog Character string, path to the catalog file. Only relevant for SAS data files.
encoding The character encoding used for the file. Usually not needed.
convert_factors

If TRUE (default), numeric variables, where all values have a value label, are as-
sumed to be categorical and converted into factors. If FALSE, no variable types
are guessed and no conversion of numeric variables into factors will be per-
formed. For data_read(), this argument only applies to file types with labelled
data, e.g. files from SPSS, SAS or Stata. See also section ’Differences to other
packages’. For data_write(), this argument only applies to the text (e.g. .txt
or .csv) or spreadsheet file formats (like .xlsx). Converting to factors might be
useful for these formats because labelled numeric variables are then converted
into factors and exported as character columns - else, value labels would be lost
and only numeric values are written to the file.

verbose Toggle warnings and messages.
... Arguments passed to the related read_*() or write_*() functions.
data The data frame that should be written to a file.
delimiter For CSV-files, specifies the delimiter. Defaults to ",", but in particular in Euro-

pean regions, ";" might be a useful alternative, especially when exported CSV-
files should be opened in Excel.

save_labels Only applies to CSV files. If TRUE, value and variable labels (if any) will
be saved as additional CSV file. This file has the same file name as the ex-
ported CSV file, but includes a "_labels" suffix (i.e. when the file name
is "mydat.csv", the additional file with value and variable labels is named
"mydat_labels.csv").

Value

A data frame.

Supported file types

• data_read() is a wrapper around the haven, data.table, readr readxl, nanoparquet and
rio packages. Currently supported file types are .txt, .csv, .xls, .xlsx, .sav, .por, .dta,
.sas, .rda, .parquet, .rdata, and .rds (and related files). All other file types are passed to
rio::import().

58 data_relocate

• data_write() is a wrapper around haven, readr, nanoparquet, and rio packages, and sup-
ports writing files into all formats supported by these packages.

Compressed files (zip) and URLs

data_read() can also read the above mentioned files from URLs or from inside zip-compressed
files. Thus, path can also be a URL to a file like "http://www.url.com/file.csv". When path
points to a zip-compressed file, and there are multiple files inside the zip-archive, then the first
supported file is extracted and loaded.

General behaviour

data_read() detects the appropriate read_*() function based on the file-extension of the data file.
Thus, in most cases it should be enough to only specify the path argument. However, if more
control is needed, all arguments in ... are passed down to the related read_*() function. The
same applies to data_write(), i.e. based on the file extension provided in path, the appropriate
write_*() function is used automatically.

SPSS specific behaviour

data_read() does not import user-defined ("tagged") NA values from SPSS, i.e. argument user_na
is always set to FALSE when importing SPSS data with the haven package. Use convert_to_na()
to define missing values in the imported data, if necessary. Furthermore, data_write() compresses
SPSS files by default. If this causes problems with (older) SPSS versions, use compress = "none",
for example data_write(data, "myfile.sav", compress = "none").

Differences to other packages that read foreign data formats

data_read() is most comparable to rio::import(). For data files from SPSS, SAS or Stata,
which support labelled data, variables are converted into their most appropriate type. The major
difference to rio::import() is for data files from SPSS, SAS, or Stata, i.e. file types that support
labelled data. data_read() automatically converts fully labelled numeric variables into factors,
where imported value labels will be set as factor levels. If a numeric variable has no value labels
or less value labels than values, it is not converted to factor. In this case, value labels are preserved
as "labels" attribute. Character vectors are preserved. Use convert_factors = FALSE to remove
the automatic conversion of numeric variables to factors.

data_relocate Relocate (reorder) columns of a data frame

Description

data_relocate() will reorder columns to specific positions, indicated by before or after. data_reorder()
will instead move selected columns to the beginning of a data frame. Finally, data_remove() re-
moves columns from a data frame. All functions support select-helpers that allow flexible specifi-
cation of a search pattern to find matching columns, which should be reordered or removed.

data_relocate 59

Usage

data_relocate(
data,
select,
before = NULL,
after = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

data_reorder(
data,
select,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

data_remove(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE,
...

)

Arguments

data A data frame.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),

60 data_relocate

• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

before, after Destination of columns. Supplying neither will move columns to the left-hand
side; specifying both is an error. Can be a character vector, indicating the name
of the destination column, or a numeric value, indicating the index number of
the destination column. If -1, will be added before or after the last column.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

... Arguments passed down to other functions. Mostly not used yet.

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

Value

A data frame with reordered columns.

data_rename 61

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

Examples

Reorder columns
head(data_relocate(iris, select = "Species", before = "Sepal.Length"))
head(data_relocate(iris, select = "Species", before = "Sepal.Width"))
head(data_relocate(iris, select = "Sepal.Width", after = "Species"))
which is same as
head(data_relocate(iris, select = "Sepal.Width", after = -1))

Reorder multiple columns
head(data_relocate(iris, select = c("Species", "Petal.Length"), after = "Sepal.Width"))
which is same as
head(data_relocate(iris, select = c("Species", "Petal.Length"), after = 2))

Reorder columns
head(data_reorder(iris, c("Species", "Sepal.Length")))

Remove columns
head(data_remove(iris, "Sepal.Length"))
head(data_remove(iris, starts_with("Sepal")))

data_rename Rename columns and variable names

Description

Safe and intuitive functions to rename variables or rows in data frames. data_rename() will rename
column names, i.e. it facilitates renaming variables. data_rename_rows() is a convenient shortcut
to add or rename row names of a data frame, but unlike row.names(), its input and output is a data
frame, thus, integrating smoothly into a possible pipe-workflow.

Usage

data_rename(data, select = NULL, replacement = NULL, ...)

data_rename_rows(data, rows = NULL)

62 data_rename

Arguments

data A data frame.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

replacement Character vector. Can be one of the following:

• A character vector that indicates the new names of the columns selected in
select. select and replacement must be of the same length.

• A string (i.e. character vector of length 1) with a "glue" styled pattern.
Currently supported tokens are:

– {col} which will be replaced by the column name, i.e. the correspond-
ing value in select.

– {n} will be replaced by the number of the variable that is replaced.

data_rename 63

– {letter} will be replaced by alphabetical letters in sequential order. If
more than 26 letters are required, letters are repeated, but have sequen-
tial numeric indices (e.g., a1 to z1, followed by a2 to z2).

– Finally, the name of a user-defined object that is available in the envi-
ronment can be used. Note that the object’s name is not allowed to be
one of the pre-defined tokens, "col", "n" and "letter".

An example for the use of tokens is...
data_rename(
mtcars,
select = c("am", "vs"),
replacement = "new_name_from_{col}"

)

... which would return new column names new_name_from_am and new_name_from_vs.
See ’Examples’.

If select is a named vector, replacement is ignored.

... Other arguments passed to or from other functions.

rows Vector of row names.

Details

select can also be a named character vector. In this case, the names are used to rename the columns
in the output data frame. If you have a named list, use unlist() to convert it to a named vector.
See ’Examples’.

Value

A modified data frame.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

Examples

Rename columns
head(data_rename(iris, "Sepal.Length", "length"))

Use named vector to rename

64 data_replicate

head(data_rename(iris, c(length = "Sepal.Length", width = "Sepal.Width")))

Change all
head(data_rename(iris, replacement = paste0("Var", 1:5)))

Use glue-styled patterns
head(data_rename(mtcars[1:3], c("mpg", "cyl", "disp"), "formerly_{col}"))
head(data_rename(mtcars[1:3], c("mpg", "cyl", "disp"), "{col}_is_column_{n}"))
head(data_rename(mtcars[1:3], c("mpg", "cyl", "disp"), "new_{letter}"))

User-defined glue-styled patterns from objects in environment
x <- c("hi", "there", "!")
head(data_rename(mtcars[1:3], c("mpg", "cyl", "disp"), "col_{x}"))

data_replicate Expand (i.e. replicate rows) a data frame

Description

Expand a data frame by replicating rows based on another variable that contains the counts of
replications per row.

Usage

data_replicate(
data,
expand = NULL,
select = NULL,
exclude = NULL,
remove_na = FALSE,
ignore_case = FALSE,
verbose = TRUE,
regex = FALSE,
...

)

Arguments

data A data frame.

expand The name of the column that contains the counts of replications for each row.
Can also be a numeric value, indicating the position of that column. Note that
the variable indicated by expand must be an integer vector.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),

data_replicate 65

• a string with the variable name (e.g., "column_name"), a character vector of
variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

remove_na Logical. If TRUE, missing values in the column provided in expand are removed
from the data frame. If FALSE and expand contains missing values, the function
will throw an error.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

verbose Toggle warnings.
regex Logical, if TRUE, the search pattern from select will be treated as regular ex-

pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

66 data_restoretype

... Currently not used.

Value

A dataframe with each row replicated as many times as defined in expand.

Examples

data(mtcars)
data_replicate(head(mtcars), "carb")

data_restoretype Restore the type of columns according to a reference data frame

Description

Restore the type of columns according to a reference data frame

Usage

data_restoretype(data, reference = NULL, ...)

Arguments

data A data frame for which to restore the column types.

reference A reference data frame from which to find the correct column types. If NULL,
each column is converted to numeric if it doesn’t generate NAs. For example,
c("1", "2") can be converted to numeric but not c("Sepal.Length").

... Currently not used.

Value

A data frame with columns whose types have been restored based on the reference data frame.

Examples

data <- data.frame(
Sepal.Length = c("1", "3", "2"),
Species = c("setosa", "versicolor", "setosa"),
New = c("1", "3", "4")

)

fixed <- data_restoretype(data, reference = iris)
summary(fixed)

data_rotate 67

data_rotate Rotate a data frame

Description

This function rotates a data frame, i.e. columns become rows and vice versa. It’s the equivalent of
using t() but restores the data.frame class, preserves attributes and prints a warning if the data
type is modified (see example).

Usage

data_rotate(data, rownames = NULL, colnames = FALSE, verbose = TRUE)

data_transpose(data, rownames = NULL, colnames = FALSE, verbose = TRUE)

Arguments

data A data frame.

rownames Character vector (optional). If not NULL, the data frame’s rownames will be
added as (first) column to the output, with rownames being the name of this
column.

colnames Logical or character vector (optional). If TRUE, the values of the first column in
x will be used as column names in the rotated data frame. If a character vector,
values from that column are used as column names.

verbose Toggle warnings.

Value

A (rotated) data frame.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

68 data_seek

Examples

x <- mtcars[1:3, 1:4]

x

data_rotate(x)
data_rotate(x, rownames = "property")

use values in 1. column as column name
data_rotate(x, colnames = TRUE)
data_rotate(x, rownames = "property", colnames = TRUE)

use either first column or specific column for column names
x <- data.frame(a = 1:5, b = 11:15, c = 21:25)
data_rotate(x, colnames = TRUE)
data_rotate(x, colnames = "c")

data_seek Find variables by their names, variable or value labels

Description

This functions seeks variables in a data frame, based on patterns that either match the variable name
(column name), variable labels, value labels or factor levels. Matching variable and value labels
only works for "labelled" data, i.e. when the variables either have a label attribute or labels
attribute.

data_seek() is particular useful for larger data frames with labelled data - finding the correct
variable name can be a challenge. This function helps to find the required variables, when only
certain patterns of variable names or labels are known.

Usage

data_seek(data, pattern, seek = c("names", "labels"), fuzzy = FALSE)

Arguments

data A data frame.

pattern Character string (regular expression) to be matched in data. May also be a char-
acter vector of length > 1. pattern is searched for in column names, variable
label and value labels attributes, or factor levels of variables in data.

seek Character vector, indicating where pattern is sought. Use one or more of the
following options:

• "names": Searches in column names. "column_names" and "columns" are
aliases for "names".

• "labels": Searches in variable labels. Only applies when a label attribute
is set for a variable.

data_select 69

• "values": Searches in value labels or factor levels. Only applies when a
labels attribute is set for a variable, or if a variable is a factor. "levels"
is an alias for "values".

• "all": Searches in all of the above.

fuzzy Logical. If TRUE, "fuzzy matching" (partial and close distance matching) will be
used to find pattern.

Value

A data frame with three columns: the column index, the column name and - if available - the
variable label of all matched variables in data.

Examples

seek variables with "Length" in variable name or labels
data_seek(iris, "Length")

seek variables with "dependency" in names or labels
column "e42dep" has a label-attribute "elder's dependency"
data(efc)
data_seek(efc, "dependency")

"female" only appears as value label attribute - default search is in
variable names and labels only, so no match
data_seek(efc, "female")
when we seek in all sources, we find the variable "e16sex"
data_seek(efc, "female", seek = "all")

typo, no match
data_seek(iris, "Lenght")
typo, fuzzy match
data_seek(iris, "Lenght", fuzzy = TRUE)

data_select Find or get columns in a data frame based on search patterns

Description

extract_column_names() returns column names from a data set that match a certain search pat-
tern, while data_select() returns the found data.

Usage

data_select(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,

70 data_select

regex = FALSE,
verbose = TRUE,
...

)

extract_column_names(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

find_columns(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

data A data frame.
select Variables that will be included when performing the required tasks. Can be

either
• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

data_select 71

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

... Arguments passed down to other functions. Mostly not used yet.

Details

Specifically for data_select(), select can also be a named character vector. In this case, the
names are used to rename the columns in the output data frame. See ’Examples’.

Note that it is possible to either pass an entire select helper or only the pattern inside a select helper
as a function argument:

foo <- function(data, pattern) {
extract_column_names(data, select = starts_with(pattern))

}
foo(iris, pattern = "Sep")

foo2 <- function(data, pattern) {
extract_column_names(data, select = pattern)

}
foo2(iris, pattern = starts_with("Sep"))

This means that it is also possible to use loop values as arguments or patterns:

72 data_select

for (i in c("Sepal", "Sp")) {
head(iris) |>
extract_column_names(select = starts_with(i)) |>
print()

}

However, this behavior is limited to a "single-level function". It will not work in nested functions,
like below:

inner <- function(data, arg) {
extract_column_names(data, select = arg)

}
outer <- function(data, arg) {
inner(data, starts_with(arg))

}
outer(iris, "Sep")

In this case, it is better to pass the whole select helper as the argument of outer():

outer <- function(data, arg) {
inner(data, arg)

}
outer(iris, starts_with("Sep"))

Value

extract_column_names() returns a character vector with column names that matched the pattern
in select and exclude, or NULL if no matching column name was found. data_select() returns
a data frame with matching columns.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

data_separate 73

Examples

Find column names by pattern
extract_column_names(iris, starts_with("Sepal"))
extract_column_names(iris, ends_with("Width"))
extract_column_names(iris, regex("\\."))
extract_column_names(iris, c("Petal.Width", "Sepal.Length"))

starts with "Sepal", but not allowed to end with "width"
extract_column_names(iris, starts_with("Sepal"), exclude = contains("Width"))

find numeric with mean > 3.5
numeric_mean_35 <- function(x) is.numeric(x) && mean(x, na.rm = TRUE) > 3.5
extract_column_names(iris, numeric_mean_35)

find column names, using range
extract_column_names(mtcars, c(cyl:hp, wt))

find range of column names by range, using character vector
extract_column_names(mtcars, c("cyl:hp", "wt"))

rename returned columns for "data_select()"
head(data_select(mtcars, c(`Miles per Gallon` = "mpg", Cylinders = "cyl")))

data_separate Separate single variable into multiple variables

Description

Separates a single variable into multiple new variables.

Usage

data_separate(
data,
select = NULL,
new_columns = NULL,
separator = "[^[:alnum:]]+",
guess_columns = NULL,
merge_multiple = FALSE,
merge_separator = "",
fill = "right",
extra = "drop_right",
convert_na = TRUE,
exclude = NULL,
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
regex = FALSE,

74 data_separate

...
)

Arguments

data A data frame.
select Variables that will be included when performing the required tasks. Can be

either
• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

new_columns The names of the new columns, as character vector. If more than one variable
was selected (in select), the new names are prefixed with the name of the
original column. new_columns can also be a list of (named) character vectors
when multiple variables should be separated. See ’Examples’.

separator Separator between columns. Can be a character vector, which is then treated
as regular expression, or a numeric vector that indicates at which positions the
string values will be split.

data_separate 75

guess_columns If new_columns is not given, the required number of new columns is guessed
based on the results of value splitting. For example, if a variable is split into three
new columns, this will be considered as the required number of new columns,
and columns are named "split_1", "split_2" and "split_3". When values
from a variable are split into different amount of new columns, the guess_column
can be either "mode" (number of new columns is based on the most common
number of splits), "min" or "max" to use the minimum resp. maximum number
of possible splits as required number of columns.

merge_multiple Logical, if TRUE and more than one variable is selected for separating, new
columns can be merged. Value pairs of all split variables are merged.

merge_separator

Separator string when merge_multiple = TRUE. Defines the string that is used
to merge values together.

fill How to deal with values that return fewer new columns after splitting? Can
be "left" (fill missing columns from the left with NA), "right" (fill missing
columns from the right with NA) or "value_left" or "value_right" to fill
missing columns from left or right with the left-most or right-most values.

extra How to deal with values that return too many new columns after splitting? Can
be "drop_left" or "drop_right" to drop the left-most or right-most values,
or "merge_left" or "merge_right" to merge the left- or right-most value to-
gether, and keeping all remaining values as is.

convert_na Logical, if TRUE, character "NA" values are converted into real NA values.

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical, if FALSE (default), removes original columns that were separated. If
TRUE, all columns are preserved and the new columns are appended to the data
frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

verbose Toggle warnings.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

... Currently not used.

Value

A data frame with the newly created variable(s), or - when append = TRUE - data including new
variables.

76 data_separate

See Also

data_unite()

Examples

simple case
d <- data.frame(

x = c("1.a.6", "2.b.7", "3.c.8"),
stringsAsFactors = FALSE

)
d
data_separate(d, new_columns = c("a", "b", "c"))

guess number of columns
d <- data.frame(

x = c("1.a.6", NA, "2.b.6.7", "3.c", "x.y.z"),
stringsAsFactors = FALSE

)
d
data_separate(d, guess_columns = "mode")

data_separate(d, guess_columns = "max")

drop left-most column
data_separate(d, guess_columns = "mode", extra = "drop_left")

merge right-most column
data_separate(d, guess_columns = "mode", extra = "merge_right")

fill columns with fewer values with left-most values
data_separate(d, guess_columns = "mode", fill = "value_left")

fill and merge
data_separate(

d,
guess_columns = "mode",
fill = "value_left",
extra = "merge_right"

)

multiple columns to split
d <- data.frame(

x = c("1.a.6", "2.b.7", "3.c.8"),
y = c("x.y.z", "10.11.12", "m.n.o"),
stringsAsFactors = FALSE

)
d
split two columns, default column names
data_separate(d, guess_columns = "mode")

split into new named columns, repeating column names
data_separate(d, new_columns = c("a", "b", "c"))

data_summary 77

split selected variable new columns
data_separate(d, select = "y", new_columns = c("a", "b", "c"))

merge multiple split columns
data_separate(

d,
new_columns = c("a", "b", "c"),
merge_multiple = TRUE

)

merge multiple split columns
data_separate(

d,
new_columns = c("a", "b", "c"),
merge_multiple = TRUE,
merge_separator = "-"

)

separate multiple columns, give proper column names
d_sep <- data.frame(

x = c("1.a.6", "2.b.7.d", "3.c.8", "5.j"),
y = c("m.n.99.22", "77.f.g.34", "44.9", NA),
stringsAsFactors = FALSE

)

data_separate(
d_sep,
select = c("x", "y"),
new_columns = list(
x = c("A", "B", "C"), # separate "x" into three columns
y = c("EE", "FF", "GG", "HH") # separate "y" into four columns

),
verbose = FALSE

)

data_summary Summarize data

Description

This function can be used to compute summary statistics for a data frame or a matrix.

Usage

data_summary(x, ...)

S3 method for class 'data.frame'
data_summary(x, ..., by = NULL, remove_na = FALSE)

78 data_summary

Arguments

x A (grouped) data frame.

... One or more named expressions that define the new variable name and the
function to compute the summary statistic. Example: mean_sepal_width =
mean(Sepal.Width). The expression can also be provided as a character string,
e.g. "mean_sepal_width = mean(Sepal.Width)". The summary function n()
can be used to count the number of observations.

by Optional character string, indicating the names of one or more variables in the
data frame. If supplied, the data will be split by these variables and summary
statistics will be computed for each group.

remove_na Logical. If TRUE, missing values are omitted from the grouping variable. If
FALSE (default), missing values are included as a level in the grouping variable.

Value

A data frame with the requested summary statistics.

Examples

data(iris)
data_summary(iris, MW = mean(Sepal.Width), SD = sd(Sepal.Width))
data_summary(

iris,
MW = mean(Sepal.Width),
SD = sd(Sepal.Width),
by = "Species"

)

same as
d <- data_group(iris, "Species")
data_summary(d, MW = mean(Sepal.Width), SD = sd(Sepal.Width))

multiple groups
data(mtcars)
data_summary(mtcars, MW = mean(mpg), SD = sd(mpg), by = c("am", "gear"))

expressions can also be supplied as character strings
data_summary(mtcars, "MW = mean(mpg)", "SD = sd(mpg)", by = c("am", "gear"))

count observations within groups
data_summary(mtcars, observations = n(), by = c("am", "gear"))

first and last observations of "mpg" within groups
data_summary(

mtcars,
first = mpg[1],
last = mpg[length(mpg)],
by = c("am", "gear")

)

data_tabulate 79

data_tabulate Create frequency and crosstables of variables

Description

This function creates frequency or crosstables of variables, including the number of levels/values as
well as the distribution of raw, valid and cumulative percentages. For crosstables, row, column and
cell percentages can be calculated.

Usage

data_tabulate(x, ...)

Default S3 method:
data_tabulate(

x,
by = NULL,
drop_levels = FALSE,
weights = NULL,
remove_na = FALSE,
proportions = NULL,
name = NULL,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
data_tabulate(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
by = NULL,
drop_levels = FALSE,
weights = NULL,
remove_na = FALSE,
proportions = NULL,
collapse = FALSE,
verbose = TRUE,
...

)

S3 method for class 'datawizard_table'
print(x, big_mark = NULL, ...)

S3 method for class 'datawizard_table'

80 data_tabulate

display(object, big_mark = NULL, format = "markdown", ...)

Arguments

x A (grouped) data frame, a vector or factor.

... not used.

by Optional vector or factor. If supplied, a crosstable is created. If x is a data frame,
by can also be a character string indicating the name of a variable in x.

drop_levels Logical, if FALSE, factor levels that do not occur in the data are included in the
table (with frequency of zero), else unused factor levels are dropped from the
frequency table.

weights Optional numeric vector of weights. Must be of the same length as x. If weights
is supplied, weighted frequencies are calculated.

remove_na Logical, if FALSE, missing values are included in the frequency or crosstable,
else missing values are omitted. Note that the default for the as.table()
method is remove_na = TRUE, so that missing values are not included in the
returned table, which makes more sense for post-processing of the table, e.g.
using chisq.test().

proportions Optional character string, indicating the type of percentages to be calculated.
Only applies to crosstables, i.e. when by is not NULL. Can be "row" (row per-
centages), "column" (column percentages) or "full" (to calculate relative fre-
quencies for the full table).

name Optional character string, which includes the name that is used for printing.

verbose Toggle warnings and messages.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

data_tabulate 81

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

collapse Logical, if TRUE collapses multiple tables into one larger table for printing. This
affects only printing, not the returned object.

big_mark Optional character string, indicating the big mark that is used for large numbers.
If NULL (default), a big mark is added automatically for large numbers (i.e. num-
bers with more than 5 digits). If you want to remove the big mark, set big_mark
= "".

object An object returned by data_tabulate().
format String, indicating the output format. Can be "markdown" "html", or "tt".

format = "html" create an HTML table using the gt package. format = "tt"
creates a tinytable object, which is either printed as markdown or HTML ta-
ble, depending on the environment. See insight::export_table() for details.

Details

There is an as.data.frame() method, to return the frequency tables as a data frame. The structure
of the returned object is a nested data frame, where the first column contains name of the variable
for which frequencies were calculated, and the second column is a list column that contains the
frequency tables as data frame. See as.table.datawizard_table.

There is also an as.table() method, which returns a table object with the frequencies of the
variable. This is useful for further statistical analysis, e.g. for using chisq.test() on the frequency
table. See as.table.datawizard_table.

82 data_tabulate

Value

A data frame, or a list of data frames, with one frequency table as data frame per variable.

Crosstables

If by is supplied, a crosstable is created. The crosstable includes <NA> (missing) values by default.
The first column indicates values of x, the first row indicates values of by (including missing values).
The last row and column contain the total frequencies for each row and column, respectively. Setting
remove_na = FALSE will omit missing values from the crosstable. Setting proportions to "row"
or "column" will add row or column percentages. Setting proportions to "full" will add relative
frequencies for the full table.

Note

There are print_html() and print_md() methods available for printing frequency or crosstables
in HTML and markdown format, e.g. print_html(data_tabulate(x)). The print() method for
text outputs passes arguments in ... to insight::export_table().

See Also

as.prop.table

Examples

frequency tables -------

data(efc)

vector/factor
data_tabulate(efc$c172code)

drop missing values
data_tabulate(efc$c172code, remove_na = TRUE)

data frame
data_tabulate(efc, c("e42dep", "c172code"))

grouped data frame
suppressPackageStartupMessages(library(poorman, quietly = TRUE))
efc %>%

group_by(c172code) %>%
data_tabulate("e16sex")

collapse tables
efc %>%

group_by(c172code) %>%
data_tabulate("e16sex", collapse = TRUE)

for larger N's (> 100000), a big mark is automatically added
set.seed(123)
x <- sample(1:3, 1e6, TRUE)

data_to_long 83

data_tabulate(x, name = "Large Number")

to remove the big mark, use "print(..., big_mark = "")"
print(data_tabulate(x), big_mark = "")

weighted frequencies
set.seed(123)
efc$weights <- abs(rnorm(n = nrow(efc), mean = 1, sd = 0.5))
data_tabulate(efc$e42dep, weights = efc$weights)

crosstables ------

add some missing values
set.seed(123)
efc$e16sex[sample.int(nrow(efc), 5)] <- NA

data_tabulate(efc, "c172code", by = "e16sex")

add row and column percentages
data_tabulate(efc, "c172code", by = "e16sex", proportions = "row")
data_tabulate(efc, "c172code", by = "e16sex", proportions = "column")

omit missing values
data_tabulate(

efc$c172code,
by = efc$e16sex,
proportions = "column",
remove_na = TRUE

)

round percentages
out <- data_tabulate(efc, "c172code", by = "e16sex", proportions = "column")
print(out, digits = 0)

data_to_long Reshape (pivot) data from wide to long

Description

This function "lengthens" data, increasing the number of rows and decreasing the number of columns.
This is a dependency-free base-R equivalent of tidyr::pivot_longer().

Usage

data_to_long(
data,
select = "all",
names_to = "name",

84 data_to_long

names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols

)

reshape_longer(
data,
select = "all",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols

)

Arguments

data A data frame to convert to long format, so that it has more rows and fewer
columns after the operation.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

data_to_long 85

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

names_to The name of the new column (variable) that will contain the names from columns
in select as values, to identify the source of the values. names_to can be a
character vector with more than one column name, in which case names_sep or
names_pattern must be provided in order to identify which parts of the column
names go into newly created columns. See also ’Examples’.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern
If names_to contains multiple values, this argument controls how the column
name is broken up. names_pattern takes a regular expression containing match-
ing groups, i.e. "()".

values_to The name of the new column that will contain the values of the columns in
select.

values_drop_na If TRUE, will drop rows that contain only NA in the values_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its structure.

rows_to The name of the column that will contain the row names or row numbers from
the original data. If NULL, will be removed.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

86 data_to_long

... Currently not used.

cols Identical to select. This argument is here to ensure compatibility with tidyr::pivot_longer().
If both select and cols are provided, cols is used.

Details

Reshaping data into long format usually means that the input data frame is in wide format, where
multiple measurements taken on the same subject are stored in multiple columns (variables). The
long format stores the same information in a single column, with each measurement per subject
stored in a separate row. The values of all variables that are not in select will be repeated.

The necessary information for data_to_long() is:

• The columns that contain the repeated measurements (select).

• The name of the newly created column that will contain the names of the columns in select
(names_to), to identify the source of the values. names_to can also be a character vector with
more than one column name, in which case names_sep or names_pattern must be provided
to specify which parts of the column names go into the newly created columns.

• The name of the newly created column that contains the values of the columns in select
(values_to).

In other words: repeated measurements that are spread across several columns will be gathered
into a single column (values_to), with the original column names, that identify the source of the
gathered values, stored in one or more new columns (names_to).

Value

If a tibble was provided as input, reshape_longer() also returns a tibble. Otherwise, it returns a
data frame.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

Examples

wide_data <- setNames(
data.frame(replicate(2, rnorm(8))),
c("Time1", "Time2")

)

data_to_long 87

wide_data$ID <- 1:8
wide_data

Default behaviour (equivalent to tidyr::pivot_longer(wide_data, cols = 1:3))
probably doesn't make much sense to mix "time" and "id"
data_to_long(wide_data)

Customizing the names
data_to_long(

wide_data,
select = c("Time1", "Time2"),
names_to = "Timepoint",
values_to = "Score"

)

Reshape multiple columns into long format.
mydat <- data.frame(

age = c(20, 30, 40),
sex = c("Female", "Male", "Male"),
score_t1 = c(30, 35, 32),
score_t2 = c(33, 34, 37),
score_t3 = c(36, 35, 38),
speed_t1 = c(2, 3, 1),
speed_t2 = c(3, 4, 5),
speed_t3 = c(1, 8, 6)

)
The column names are split into two columns: "type" and "time". The
pattern for splitting column names is provided in `names_pattern`. Values
of all "score_*" and "speed_*" columns are gathered into a single column
named "count".
data_to_long(

mydat,
select = 3:8,
names_to = c("type", "time"),
names_pattern = "(score|speed)_t(\\d+)",
values_to = "count"

)

Full example

data <- psych::bfi # Wide format with one row per participant's personality test

Pivot long format
very_long_data <- data_to_long(data,

select = regex("\\d"), # Select all columns that contain a digit
names_to = "Item",
values_to = "Score",
rows_to = "Participant"

)
head(very_long_data)

even_longer_data <- data_to_long(
tidyr::who,

88 data_to_wide

select = new_sp_m014:newrel_f65,
names_to = c("diagnosis", "gender", "age"),
names_pattern = "new_?(.*)_(.)(.*)",
values_to = "count"

)
head(even_longer_data)

data_to_wide Reshape (pivot) data from long to wide

Description

This function "widens" data, increasing the number of columns and decreasing the number of rows.
This is a dependency-free base-R equivalent of tidyr::pivot_wider().

Usage

data_to_wide(
data,
id_cols = NULL,
values_from = "Value",
names_from = "Name",
names_sep = "_",
names_prefix = "",
names_glue = NULL,
values_fill = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

reshape_wider(
data,
id_cols = NULL,
values_from = "Value",
names_from = "Name",
names_sep = "_",
names_prefix = "",
names_glue = NULL,
values_fill = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

data_to_wide 89

Arguments

data A data frame to convert to wide format, so that it has more columns and fewer
rows post-widening than pre-widening.

id_cols The name of the column that identifies the rows in the data by which observa-
tions are grouped and the gathered data is spread into new columns. Usually,
this is a variable containing an ID for observations that have been repeatedly
measured. If NULL, it will use all remaining columns that are not in names_from
or values_from as ID columns. id_cols can also be a character vector with
more than one name of identifier columns. See also ’Details’ and ’Examples’.

values_from The name of the columns in the original data that contains the values used to fill
the new columns created in the widened data. Can also be one of the selection
helpers (see argument select in data_select()).

names_from The name of the column in the original data whose values will be used for nam-
ing the new columns created in the widened data. Each unique value in this col-
umn will become the name of one of these new columns. In case names_prefix
is provided, column names will be concatenated with the string given in names_prefix.
If values_from specifies more than one variable that should be widened, the
new column names are a combination of the old column names in values_from
and the values from names_from, to avoid duplicate column names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns to create custom column names. Note that
the only delimiters supported by names_glue are curly brackets, { and }.

values_fill Defunct argument, which has no function anymore. Will be removed in future
versions.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.
... Not used for now.

Details

Reshaping data into wide format usually means that the input data frame is in long format, where
multiple measurements taken on the same subject are stored in multiple rows. The wide format

https://glue.tidyverse.org/index.html

90 data_to_wide

stores the same information in a single row, with each measurement stored in a separate column.
Thus, the necessary information for data_to_wide() is:

• The name of the column(s) that identify the groups or repeated measurements (id_cols).

• The name of the column whose values will become the new column names (names_from).
Since these values may not necessarily reflect appropriate column names, you can use names_prefix
to add a prefix to each newly created column name.

• The name of the column(s) that contain the values (values_from) for the new columns that
are created by names_from.

In other words: repeated measurements, as indicated by id_cols, that are saved into the col-
umn values_from will be spread into new columns, which will be named after the values in
names_from. See also ’Examples’.

Value

If a tibble was provided as input, data_to_wide() also returns a tibble. Otherwise, it returns a data
frame.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

Examples

data_long <- read.table(header = TRUE, text = "
subject sex condition measurement

1 M control 7.9
1 M cond1 12.3
1 M cond2 10.7
2 F control 6.3
2 F cond1 10.6
2 F cond2 11.1
3 F control 9.5
3 F cond1 13.1
3 F cond2 13.8
4 M control 11.5
4 M cond1 13.4
4 M cond2 12.9")

data_to_wide 91

converting long data into wide format
data_to_wide(

data_long,
id_cols = "subject",
names_from = "condition",
values_from = "measurement"

)

converting long data into wide format with custom column names
data_to_wide(

data_long,
id_cols = "subject",
names_from = "condition",
values_from = "measurement",
names_prefix = "Var.",
names_sep = "."

)

converting long data into wide format, combining multiple columns
production <- expand.grid(

product = c("A", "B"),
country = c("AI", "EI"),
year = 2000:2014

)
production <- data_filter(production, (product == "A" & country == "AI") | product == "B")
production$production <- rnorm(nrow(production))

data_to_wide(
production,
names_from = c("product", "country"),
values_from = "production",
names_glue = "prod_{product}_{country}"

)

reshaping multiple long columns into wide format. to avoid duplicate
column names, new names are a combination of the old column names in
`values_from` and the values from `names_from`
data_long <- read.table(header = TRUE, text = "
subject_id time score anxiety test

1 1 10 5 NA
1 2 NA 7 NA
2 1 15 6 NA
2 2 12 NA NA
3 1 18 8 NA
5 2 11 4 NA
4 1 NA 5 NA
4 2 14 NA NA")

data_to_wide(
data_long,
id_cols = "subject_id",
names_from = "time",
values_from = c("score", "anxiety", "test")

92 data_unique

)

using the "sleepstudy" dataset
data(sleepstudy, package = "lme4")

the sleepstudy data contains repeated measurements of average reaction
times for each subjects over multiple days, in a sleep deprivation study.
It is in long-format, i.e. each row corresponds to a single measurement.
The variable "Days" contains the timepoint of the measurement, and
"Reaction" contains the measurement itself. Converting this data to wide
format will create a new column for each day, with the reaction time as the
value.
head(sleepstudy)

data_to_wide(
sleepstudy,
id_cols = "Subject",
names_from = "Days",
values_from = "Reaction"

)

clearer column names
data_to_wide(

sleepstudy,
id_cols = "Subject",
names_from = "Days",
values_from = "Reaction",
names_prefix = "Reaction_Day_"

)

For unequal group sizes, missing information is filled with NA
d <- subset(sleepstudy, Days %in% c(0, 1, 2, 3, 4))[c(1:9, 11:13, 16:17, 21),]

long format, different number of "Subjects"
d

data_to_wide(
d,
id_cols = "Subject",
names_from = "Days",
values_from = "Reaction",
names_prefix = "Reaction_Day_"

)

data_unique Keep only one row from all with duplicated IDs

data_unique 93

Description

From all rows with at least one duplicated ID, keep only one. Methods for selecting the duplicated
row are either the first duplicate, the last duplicate, or the "best" duplicate (default), based on the
duplicate with the smallest number of NA. In case of ties, it picks the first duplicate, as it is the one
most likely to be valid and authentic, given practice effects.

Contrarily to dplyr::distinct(), data_unique() keeps all columns.

Usage

data_unique(
data,
select = NULL,
keep = "best",
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE

)

Arguments

data A data frame.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

94 data_unique

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

keep The method to be used for duplicate selection, either "best" (the default), "first",
or "last".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

Value

A data frame, containing only the chosen duplicates.

See Also

data_duplicated()

Examples

df1 <- data.frame(
id = c(1, 2, 3, 1, 3),
item1 = c(NA, 1, 1, 2, 3),
item2 = c(NA, 1, 1, 2, 3),
item3 = c(NA, 1, 1, 2, 3)

)

data_unique(df1, select = "id")

data_unite 95

data_unite Unite ("merge") multiple variables

Description

Merge values of multiple variables per observation into one new variable.

Usage

data_unite(
data,
new_column = NULL,
select = NULL,
exclude = NULL,
separator = "_",
append = FALSE,
remove_na = FALSE,
ignore_case = FALSE,
verbose = TRUE,
regex = FALSE,
...

)

Arguments

data A data frame.

new_column The name of the new column, as a string.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

96 data_unite

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

separator A character to use between values.

append Logical, if FALSE (default), removes original columns that were united. If TRUE,
all columns are preserved and the new column is appended to the data frame.

remove_na Logical, if TRUE, missing values (NA) are not included in the united values. If
FALSE, missing values are represented as "NA" in the united values.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

verbose Toggle warnings.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

... Currently not used.

Value

data, with a newly created variable.

See Also

data_separate()

demean 97

Examples

d <- data.frame(
x = 1:3,
y = letters[1:3],
z = 6:8

)
d
data_unite(d, new_column = "xyz")
data_unite(d, new_column = "xyz", remove = FALSE)
data_unite(d, new_column = "xyz", select = c("x", "z"))
data_unite(d, new_column = "xyz", select = c("x", "z"), append = TRUE)

demean Compute group-meaned and de-meaned variables

Description

demean() computes group- and de-meaned versions of a variable that can be used in regression
analysis to model the between- and within-subject effect (person-mean centering or centering within
clusters). degroup() is more generic in terms of the centering-operation. While demean() always
uses mean-centering, degroup() can also use the mode or median for centering.

Usage

demean(
x,
select,
by,
nested = FALSE,
suffix_demean = "_within",
suffix_groupmean = "_between",
append = TRUE,
add_attributes = TRUE,
verbose = TRUE

)

degroup(
x,
select,
by,
nested = FALSE,
center = "mean",
suffix_demean = "_within",
suffix_groupmean = "_between",
append = TRUE,
add_attributes = TRUE,
verbose = TRUE

98 demean

)

detrend(
x,
select,
by,
nested = FALSE,
center = "mean",
suffix_demean = "_within",
suffix_groupmean = "_between",
append = TRUE,
add_attributes = TRUE,
verbose = TRUE

)

Arguments

x A data frame.

select Character vector (or formula) with names of variables to select that should be
group- and de-meaned.

by Character vector (or formula) with the name of the variable that indicates the
group- or cluster-ID. For cross-classified or nested designs, by can also identify
two or more variables as group- or cluster-IDs. If the data is nested and should
be treated as such, set nested = TRUE. Else, if by defines two or more variables
and nested = FALSE, a cross-classified design is assumed. Note that demean()
and degroup() can’t handle a mix of nested and cross-classified designs in one
model.
For nested designs, by can be:

• a character vector with the name of the variable that indicates the levels,
ordered from highest level to lowest (e.g. by = c("L4", "L3", "L2").

• a character vector with variable names in the format by = "L4/L3/L2",
where the levels are separated by /.

See also section De-meaning for cross-classified designs and De-meaning for
nested designs below.

nested Logical, if TRUE, the data is treated as nested. If FALSE, the data is treated as
cross-classified. Only applies if by contains more than one variable.

suffix_demean, suffix_groupmean
String value, will be appended to the names of the group-meaned and de-meaned
variables of x. By default, de-meaned variables will be suffixed with "_within"
and grouped-meaned variables with "_between".

append Logical, if TRUE (default), the group- and de-meaned variables will be appended
(column bind) to the original data x, thus returning both the original and the
de-/group-meaned variables.

add_attributes Logical, if TRUE, the returned variables gain attributes to indicate the within- and
between-effects. This is only relevant when printing model_parameters() - in
such cases, the within- and between-effects are printed in separated blocks.

demean 99

verbose Toggle warnings and messages.

center Method for centering. demean() always performs mean-centering, while degroup()
can use center = "median" or center = "mode" for median- or mode-centering,
and also "min" or "max".

Value

A data frame with the group-/de-meaned variables, which get the suffix "_between" (for the group-
meaned variable) and "_within" (for the de-meaned variable) by default. For cross-classified or
nested designs, the name pattern of the group-meaned variables is the name of the centered variable
followed by the name of the variable that indicates the related grouping level, e.g. predictor_L3_between
and predictor_L2_between.

Heterogeneity Bias

Mixed models include different levels of sources of variability, i.e. error terms at each level. When
macro-indicators (or level-2 predictors, or higher-level units, or more general: group-level predic-
tors that vary within and across groups) are included as fixed effects (i.e. treated as covariate at
level-1), the variance that is left unaccounted for this covariate will be absorbed into the error terms
of level-1 and level-2 (Bafumi and Gelman 2006; Gelman and Hill 2007, Chapter 12.6.): "Such co-
variates contain two parts: one that is specific to the higher-level entity that does not vary between
occasions, and one that represents the difference between occasions, within higher-level entities"
(Bell et al. 2015). Hence, the error terms will be correlated with the covariate, which violates
one of the assumptions of mixed models (iid, independent and identically distributed error terms).
This bias is also called the heterogeneity bias (Bell et al. 2015). To resolve this problem, level-2
predictors used as (level-1) covariates should be separated into their "within" and "between" effects
by "de-meaning" and "group-meaning": After demeaning time-varying predictors, "at the higher
level, the mean term is no longer constrained by Level 1 effects, so it is free to account for all the
higher-level variance associated with that variable" (Bell et al. 2015).

Panel data and correlating fixed and group effects

demean() is intended to create group- and de-meaned variables for panel regression models (fixed
effects models), or for complex random-effect-within-between models (see Bell et al. 2015, 2018),
where group-effects (random effects) and fixed effects correlate (see Bafumi and Gelman 2006).
This can happen, for instance, when analyzing panel data, which can lead to Heterogeneity Bias.
To control for correlating predictors and group effects, it is recommended to include the group-
meaned and de-meaned version of time-varying covariates (and group-meaned version of time-
invariant covariates that are on a higher level, e.g. level-2 predictors) in the model. By this, one
can fit complex multilevel models for panel data, including time-varying predictors, time-invariant
predictors and random effects.

Why mixed models are preferred over fixed effects models

A mixed models approach can model the causes of endogeneity explicitly by including the (sepa-
rated) within- and between-effects of time-varying fixed effects and including time-constant fixed
effects. Furthermore, mixed models also include random effects, thus a mixed models approach is
superior to classic fixed-effects models, which lack information of variation in the group-effects or
between-subject effects. Furthermore, fixed effects regression cannot include random slopes, which

100 demean

means that fixed effects regressions are neglecting "cross-cluster differences in the effects of lower-
level controls (which) reduces the precision of estimated context effects, resulting in unnecessarily
wide confidence intervals and low statistical power" (Heisig et al. 2017).

Terminology

The group-meaned variable is simply the mean of an independent variable within each group (or id-
level or cluster) represented by by. It represents the cluster-mean of an independent variable. The
regression coefficient of a group-meaned variable is the between-subject-effect. The de-meaned
variable is then the centered version of the group-meaned variable. De-meaning is sometimes
also called person-mean centering or centering within clusters. The regression coefficient of a
de-meaned variable represents the within-subject-effect.

De-meaning with continuous predictors

For continuous time-varying predictors, the recommendation is to include both their de-meaned and
group-meaned versions as fixed effects, but not the raw (untransformed) time-varying predictors
themselves. The de-meaned predictor should also be included as random effect (random slope). In
regression models, the coefficient of the de-meaned predictors indicates the within-subject effect,
while the coefficient of the group-meaned predictor indicates the between-subject effect.

De-meaning with binary predictors

For binary time-varying predictors, there are two recommendations. First is to include the raw
(untransformed) binary predictor as fixed effect only and the de-meaned variable as random effect
(random slope). The alternative would be to add the de-meaned version(s) of binary time-varying
covariates as additional fixed effect as well (instead of adding it as random slope). Centering time-
varying binary variables to obtain within-effects (level 1) isn’t necessary. They have a sensible
interpretation when left in the typical 0/1 format (Hoffmann 2015, chapter 8-2.I). demean() will
thus coerce categorical time-varying predictors to numeric to compute the de- and group-meaned
versions for these variables, where the raw (untransformed) binary predictor and the de-meaned
version should be added to the model.

De-meaning of factors with more than 2 levels

Factors with more than two levels are demeaned in two ways: first, these are also converted to
numeric and de-meaned; second, dummy variables are created (binary, with 0/1 coding for each
level) and these binary dummy-variables are de-meaned in the same way (as described above).
Packages like panelr internally convert factors to dummies before demeaning, so this behaviour
can be mimicked here.

De-meaning interaction terms

There are multiple ways to deal with interaction terms of within- and between-effects.

• A classical approach is to simply use the product term of the de-meaned variables (i.e. intro-
ducing the de-meaned variables as interaction term in the model formula, e.g. y ~ x_within
* time_within). This approach, however, might be subject to bias (see Giesselmann &
Schmidt-Catran 2020).

demean 101

• Another option is to first calculate the product term and then apply the de-meaning to it.
This approach produces an estimator "that reflects unit-level differences of interacted variables
whose moderators vary within units", which is desirable if no within interaction of two time-
dependent variables is required. This is what demean() does internally when select contains
interaction terms.

• A third option, when the interaction should result in a genuine within estimator, is to "dou-
ble de-mean" the interaction terms (Giesselmann & Schmidt-Catran 2018), however, this is
currently not supported by demean(). If this is required, the wmb() function from the panelr
package should be used.

To de-mean interaction terms for within-between models, simply specify the term as interaction for
the select-argument, e.g. select = "a*b" (see ’Examples’).

De-meaning for cross-classified designs

demean() can handle cross-classified designs, where the data has two or more groups at the higher
(i.e. second) level. In such cases, the by-argument can identify two or more variables that rep-
resent the cross-classified group- or cluster-IDs. The de-meaned variables for cross-classified de-
signs are simply subtracting all group means from each individual value, i.e. fully cluster-mean-
centering (see Guo et al. 2024 for details). Note that de-meaning for cross-classified designs is
not equivalent to de-meaning of nested data structures from models with three or more levels. Set
nested = TRUE to explicitly assume a nested design. For cross-classified designs, de-meaning is
supposed to work for models like y ~ x + (1|level3) + (1|level2), but not for models like y ~
x + (1|level3/level2). Note that demean() and degroup() can’t handle a mix of nested and
cross-classified designs in one model.

De-meaning for nested designs

Brincks et al. (2017) have suggested an algorithm to center variables for nested designs, which is im-
plemented in demean(). For nested designs, set nested = TRUE and specify the variables that indi-
cate the different levels in descending order in the by argument. E.g., by = c("level4", "level3, "level2")
assumes a model like y ~ x + (1|level4/level3/level2). An alternative notation for the by-
argument would be by = "level4/level3/level2", similar to the formula notation.

Analysing panel data with mixed models using lme4

A description of how to translate the formulas described in Bell et al. 2018 into R using lmer()
from lme4 can be found in this vignette.

References

• Bafumi J, Gelman A. 2006. Fitting Multilevel Models When Predictors and Group Effects
Correlate. In. Philadelphia, PA: Annual meeting of the American Political Science Associa-
tion.

• Bell A, Fairbrother M, Jones K. 2019. Fixed and Random Effects Models: Making an In-
formed Choice. Quality & Quantity (53); 1051-1074

• Bell A, Jones K. 2015. Explaining Fixed Effects: Random Effects Modeling of Time-Series
Cross-Sectional and Panel Data. Political Science Research and Methods, 3(1), 133–153.

https://easystats.github.io/parameters/articles/demean.html

102 demean

• Brincks, A. M., Enders, C. K., Llabre, M. M., Bulotsky-Shearer, R. J., Prado, G., and Feaster,
D. J. (2017). Centering Predictor Variables in Three-Level Contextual Models. Multivariate
Behavioral Research, 52(2), 149–163. https://doi.org/10.1080/00273171.2016.1256753

• Gelman A, Hill J. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models.
Analytical Methods for Social Research. Cambridge, New York: Cambridge University Press

• Giesselmann M, Schmidt-Catran, AW. 2020. Interactions in fixed effects regression models.
Sociological Methods & Research, 1–28. https://doi.org/10.1177/0049124120914934

• Guo Y, Dhaliwal J, Rights JD. 2024. Disaggregating level-specific effects in cross-classified
multilevel models. Behavior Research Methods, 56(4), 3023–3057.

• Heisig JP, Schaeffer M, Giesecke J. 2017. The Costs of Simplicity: Why Multilevel Mod-
els May Benefit from Accounting for Cross-Cluster Differences in the Effects of Controls.
American Sociological Review 82 (4): 796–827.

• Hoffman L. 2015. Longitudinal analysis: modeling within-person fluctuation and change.
New York: Routledge

See Also

If grand-mean centering (instead of centering within-clusters) is required, see center(). See
performance::check_group_variation() to check for heterogeneity bias.

Examples

data(iris)
iris$ID <- sample(1:4, nrow(iris), replace = TRUE) # fake-ID
iris$binary <- as.factor(rbinom(150, 1, .35)) # binary variable

x <- demean(iris, select = c("Sepal.Length", "Petal.Length"), by = "ID")
head(x)

x <- demean(iris, select = c("Sepal.Length", "binary", "Species"), by = "ID")
head(x)

demean interaction term x*y
dat <- data.frame(

a = c(1, 2, 3, 4, 1, 2, 3, 4),
x = c(4, 3, 3, 4, 1, 2, 1, 2),
y = c(1, 2, 1, 2, 4, 3, 2, 1),
ID = c(1, 2, 3, 1, 2, 3, 1, 2)

)
demean(dat, select = c("a", "x*y"), by = "ID")

or in formula-notation
demean(dat, select = ~ a + x * y, by = ~ID)

describe_distribution 103

describe_distribution Describe a distribution

Description

This function describes a distribution by a set of indices (e.g., measures of centrality, dispersion,
range, skewness, (excess) kurtosis).

Usage

describe_distribution(x, ...)

S3 method for class 'numeric'
describe_distribution(
x,
centrality = "mean",
dispersion = TRUE,
iqr = TRUE,
range = TRUE,
quartiles = FALSE,
ci = NULL,
iterations = 100,
threshold = 0.1,
verbose = TRUE,
...

)

S3 method for class 'factor'
describe_distribution(x, dispersion = TRUE, range = TRUE, verbose = TRUE, ...)

S3 method for class 'data.frame'
describe_distribution(
x,
select = NULL,
exclude = NULL,
centrality = "mean",
dispersion = TRUE,
iqr = TRUE,
range = TRUE,
quartiles = FALSE,
include_factors = FALSE,
ci = NULL,
iterations = 100,
threshold = 0.1,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,

104 describe_distribution

by = NULL,
...

)

Arguments

x A numeric vector, a character vector, a data frame, or a list. See Details.

... Additional arguments to be passed to or from methods.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" (see map_estimate()),
"trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively). Dispersion is not available for
"MAP" or "mode" centrality indices.

iqr Logical, if TRUE, the interquartile range is calculated (based on stats::IQR(),
using type = 6).

range Return the range (min and max).

quartiles Return the first and third quartiles (25th and 75th percentiles).

ci Confidence Interval (CI) level. Default is NULL, i.e. no confidence intervals are
computed. If not NULL, confidence intervals are based on bootstrap replicates
(see iterations).

iterations The number of bootstrap replicates for computing confidence intervals. Only
applies when ci is not NULL. Defaults to 100. For more stable results, increase
the number of iterations, but note that this can also increase the computation
time significantly.

threshold For centrality = "trimmed" (i.e. trimmed mean), indicates the fraction (0 to
0.5) of observations to be trimmed from each end of the vector before the mean
is computed.

verbose Show or silence warnings and messages.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

describe_distribution 105

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

include_factors

Logical, if TRUE, factors are included in the output, however, only columns for
range (first and last factor levels) as well as n and missing will contain informa-
tion.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

by Column names indicating how to split the data in various groups before de-
scribing the distribution. by groups will be added to potentially existing groups
created by data_group().

Details

If x is a data frame, only numeric variables are kept and will be displayed in the summary by default.

If x is a list, the behavior is different whether x is a stored list. If x is stored (for example,
describe_distribution(mylist) where mylist was created before), artificial variable names
are used in the summary (Var_1, Var_2, etc.). If x is an unstored list (for example, describe_distribution(list(mtcars$mpg))),
then "mtcars$mpg" is used as variable name.

106 distribution_mode

Value

A data frame with columns that describe the properties of the variables.

Note

There is also a plot()-method implemented in the see-package.

See Also

kurtosis() to compute kurtosis (recognized as excess kurtosis).

Examples

describe_distribution(rnorm(100))

data(iris)
describe_distribution(iris)
describe_distribution(iris, include_factors = TRUE, quartiles = TRUE)
describe_distribution(list(mtcars$mpg, mtcars$cyl))

distribution_mode Compute mode for a statistical distribution

Description

Compute mode for a statistical distribution

Usage

distribution_mode(x)

Arguments

x An atomic vector, a list, or a data frame.

Value

The value that appears most frequently in the provided data. The returned data structure will be the
same as the entered one.

See Also

For continuous variables, the Highest Maximum a Posteriori probability estimate (MAP) may be
a more useful way to estimate the most commonly-observed value than the mode. See bayestestR::map_estimate().

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

efc 107

Examples

distribution_mode(c(1, 2, 3, 3, 4, 5))
distribution_mode(c(1.5, 2.3, 3.7, 3.7, 4.0, 5))

efc Sample dataset from the EFC Survey

Description

Selected variables from the EUROFAMCARE survey. Useful when testing on "real-life" data sets,
including random missing values. This data set also has value and variable label attributes.

labels_to_levels Convert value labels into factor levels

Description

Convert value labels into factor levels

Usage

labels_to_levels(x, ...)

S3 method for class 'factor'
labels_to_levels(x, verbose = TRUE, ...)

S3 method for class 'data.frame'
labels_to_levels(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
append = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

108 labels_to_levels

Arguments

x A data frame or factor. Other variable types (e.g. numerics) are not allowed.

... Currently not used.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

makepredictcall.dw_transformer 109

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Details

labels_to_levels() allows to use value labels of factors as their levels.

Value

x, where for all factors former levels are replaced by their value labels.

Examples

data(efc)
create factor
x <- as.factor(efc$c172code)
add value labels - these are not factor levels yet
x <- assign_labels(x, values = c(`1` = "low", `2` = "mid", `3` = "high"))
levels(x)
data_tabulate(x)

x <- labels_to_levels(x)
levels(x)
data_tabulate(x)

makepredictcall.dw_transformer

Utility Function for Safe Prediction with datawizard transformers

Description

This function allows for the use of (some of) datawizard’s transformers inside a model formula.
See examples below.

Currently, center(), standardize(), normalize(), & rescale() are supported.

110 means_by_group

Usage

S3 method for class 'dw_transformer'
makepredictcall(var, call)

Arguments

var A variable.

call The term in the formula, as a call.

Value

A replacement for call for the predvars attribute of the terms.

See Also

stats::makepredictcall()

Examples

data("mtcars")
train <- mtcars[1:30,]
test <- mtcars[31:32,]

m1 <- lm(mpg ~ center(hp), data = train)
predict(m1, newdata = test) # Data is "centered" before the prediction is made,
according to the center of the old data

m2 <- lm(mpg ~ standardize(hp), data = train)
m3 <- lm(mpg ~ scale(hp), data = train) # same as above
predict(m2, newdata = test) # Data is "standardized" before the prediction is made.
predict(m3, newdata = test) # Data is "standardized" before the prediction is made.

m4 <- lm(mpg ~ normalize(hp), data = mtcars)
m5 <- lm(mpg ~ rescale(hp, to = c(-3, 3)), data = mtcars)

(newdata <- data.frame(hp = c(range(mtcars$hp), 400))) # 400 is outside original range!

model.frame(delete.response(terms(m4)), data = newdata)
model.frame(delete.response(terms(m5)), data = newdata)

means_by_group Summary of mean values by group

Description

Computes summary table of means by groups.

means_by_group 111

Usage

means_by_group(x, ...)

S3 method for class 'numeric'
means_by_group(x, by = NULL, ci = 0.95, weights = NULL, digits = NULL, ...)

S3 method for class 'data.frame'
means_by_group(
x,
select = NULL,
by = NULL,
ci = 0.95,
weights = NULL,
digits = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

x A vector or a data frame.

... Currently not used

by If x is a numeric vector, by should be a factor that indicates the group-classifying
categories. If x is a data frame, by should be a character string, naming the
variable in x that is used for grouping. Numeric vectors are coerced to factors.
Not that by should only refer to a single variable.

ci Level of confidence interval for mean estimates. Default is 0.95. Use ci = NA
to suppress confidence intervals.

weights If x is a numeric vector, weights should be a vector of weights that will be
applied to weight all observations. If x is a data frame, weights can also be a
character string indicating the name of the variable in x that should be used for
weighting. Default is NULL, so no weights are used.

digits Optional scalar, indicating the amount of digits after decimal point when round-
ing estimates and values.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the

112 means_by_group

columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

Details

This function is comparable to aggregate(x, by, mean), but provides some further information,
including summary statistics from a One-Way-ANOVA using x as dependent and by as independent
variable. emmeans::contrast() is used to get p-values for each sub-group. P-values indicate
whether each group-mean is significantly different from the total mean.

mean_sd 113

Value

A data frame with information on mean and further summary statistics for each sub-group.

Examples

data(efc)
means_by_group(efc, "c12hour", "e42dep")

data(iris)
means_by_group(iris, "Sepal.Width", "Species")

weighting
efc$weight <- abs(rnorm(n = nrow(efc), mean = 1, sd = .5))
means_by_group(efc, "c12hour", "e42dep", weights = "weight")

mean_sd Summary Helpers

Description

Summary Helpers

Usage

mean_sd(x, times = 1L, remove_na = TRUE, named = TRUE, ...)

median_mad(
x,
times = 1L,
remove_na = TRUE,
constant = 1.4826,
named = TRUE,
...

)

Arguments

x A numeric vector (or one that can be coerced to one via as.numeric()) to be
summarized.

times How many SDs above and below the Mean (or MADs around the Median)

remove_na Logical. Should NA values be removed before computing (TRUE) or not (FALSE,
default)?

named Should the vector be named? (E.g., c("-SD" = -1, Mean = 1, "+SD" = 2).)

... Not used.

constant scale factor.

114 normalize

Value

A (possibly named) numeric vector of length 2*times + 1 of SDs below the mean, the mean, and
SDs above the mean (or median and MAD).

Examples

mean_sd(mtcars$mpg)

mean_sd(mtcars$mpg, times = 2L)

median_mad(mtcars$mpg)

nhanes_sample Sample dataset from the National Health and Nutrition Examination
Survey

Description

Selected variables from the National Health and Nutrition Examination Survey that are used in the
example from Lumley (2010), Appendix E.

References

Lumley T (2010). Complex Surveys: a guide to analysis using R. Wiley

normalize Normalize numeric variable to 0-1 range

Description

Performs a normalization of data, i.e., it scales variables in the range 0 - 1. This is a special case
of rescale(). unnormalize() is the counterpart, but only works for variables that have been
normalized with normalize().

Usage

normalize(x, ...)

S3 method for class 'numeric'
normalize(x, include_bounds = TRUE, verbose = TRUE, ...)

S3 method for class 'data.frame'
normalize(
x,
select = NULL,

normalize 115

exclude = NULL,
include_bounds = TRUE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

unnormalize(x, ...)

S3 method for class 'numeric'
unnormalize(x, verbose = TRUE, ...)

S3 method for class 'data.frame'
unnormalize(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

S3 method for class 'grouped_df'
unnormalize(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

x A numeric vector, (grouped) data frame, or matrix. See ’Details’.

... Arguments passed to or from other methods.

include_bounds Numeric or logical. Using this can be useful in case of beta-regression, where
the response variable is not allowed to include zeros and ones. If TRUE, the
input is normalized to a range that includes zero and one. If FALSE, the re-
turn value is compressed, using Smithson and Verkuilen’s (2006) formula (x *
(n - 1) + 0.5) / n, to avoid zeros and ones in the normalized variables. Else,
if numeric (e.g., 0.001), include_bounds defines the "distance" to the lower
and upper bound, i.e. the normalized vectors are rescaled to a range from 0 +
include_bounds to 1 - include_bounds.

116 normalize

verbose Toggle warnings and messages on or off.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical or string. If TRUE, standardized variables get new column names (with
the suffix "_z") and are appended (column bind) to x, thus returning both the
original and the standardized variables. If FALSE, original variables in x will
be overwritten by their standardized versions. If a character value, standardized
variables are appended with new column names (using the defined suffix) to the
original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

normalize 117

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Details

• If x is a matrix, normalization is performed across all values (not column- or row-wise). For
column-wise normalization, convert the matrix to a data.frame.

• If x is a grouped data frame (grouped_df), normalization is performed separately for each
group.

Value

A normalized object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

References

Smithson M, Verkuilen J (2006). A Better Lemon Squeezer? Maximum-Likelihood Regression
with Beta-Distributed Dependent Variables. Psychological Methods, 11(1), 54–71.

See Also

See makepredictcall.dw_transformer() for use in model formulas.

Other transform utilities: ranktransform(), rescale(), reverse(), standardize()

Examples

normalize(c(0, 1, 5, -5, -2))
normalize(c(0, 1, 5, -5, -2), include_bounds = FALSE)
use a value defining the bounds
normalize(c(0, 1, 5, -5, -2), include_bounds = .001)

head(normalize(trees))

118 ranktransform

ranktransform (Signed) rank transformation

Description

Transform numeric values with the integers of their rank (i.e., 1st smallest, 2nd smallest, 3rd small-
est, etc.). Setting the sign argument to TRUE will give you signed ranks, where the ranking is done
according to absolute size but where the sign is preserved (i.e., 2, 1, -3, 4).

Usage

ranktransform(x, ...)

S3 method for class 'numeric'
ranktransform(
x,
sign = FALSE,
method = "average",
zeros = "na",
verbose = TRUE,
...

)

S3 method for class 'data.frame'
ranktransform(
x,
select = NULL,
exclude = NULL,
sign = FALSE,
method = "average",
ignore_case = FALSE,
regex = FALSE,
zeros = "na",
verbose = TRUE,
...

)

Arguments

x Object.

... Arguments passed to or from other methods.

sign Logical, if TRUE, return signed ranks.

method Treatment of ties. Can be one of "average" (default), "first", "last", "random",
"max" or "min". See rank() for details.

ranktransform 119

zeros How to handle zeros. If "na" (default), they are marked as NA. If "signrank",
they are kept during the ranking and marked as zeros. This is only used when
sign = TRUE.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable

120 recode_into

containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Value

A rank-transformed object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

Other transform utilities: normalize(), rescale(), reverse(), standardize()

Examples

ranktransform(c(0, 1, 5, -5, -2))

By default, zeros are converted to NA
suppressWarnings(

ranktransform(c(0, 1, 5, -5, -2), sign = TRUE)
)
ranktransform(c(0, 1, 5, -5, -2), sign = TRUE, zeros = "signrank")

head(ranktransform(trees))

recode_into Recode values from one or more variables into a new variable

Description

This functions recodes values from one or more variables into a new variable. It is a convenient
function to avoid nested ifelse() statements, which is similar to dplyr::case_when().

Usage

recode_into(
...,
data = NULL,
default = NA,
overwrite = TRUE,

recode_into 121

preserve_na = FALSE,
verbose = TRUE

)

Arguments

... A sequence of two-sided formulas, where the left hand side (LHS) is a logical
matching condition that determines which values match this case. The LHS of
this formula is also called "recode pattern" (e.g., in messages). The right hand
side (RHS) indicates the replacement value.

data Optional, name of a data frame. This can be used to avoid writing the data name
multiple times in See ’Examples’.

default Indicates the default value that is chosen when no match in the formulas in ...
is found. If not provided, NA is used as default value.

overwrite Logical, if TRUE (default) and more than one recode pattern apply to the same
case, already recoded values will be overwritten by subsequent recode patterns.
If FALSE, former recoded cases will not be altered by later recode patterns that
would apply to those cases again. A warning message is printed to alert such
situations and to avoid unintentional recodings.

preserve_na Logical, if TRUE and default is not NA, missing values in the original variable
will be set back to NA in the recoded variable (unless overwritten by other recode
patterns). If FALSE, missing values in the original variable will be recoded to
default. Setting preserve_na = TRUE prevents unintentional overwriting of
missing values with default, which means that you won’t find valid values
where the original data only had missing values. See ’Examples’.

verbose Toggle warnings.

Value

A vector with recoded values.

Examples

x <- 1:30
recode_into(

x > 15 ~ "a",
x > 10 & x <= 15 ~ "b",
default = "c"

)

x <- 1:10
default behaviour: second recode pattern "x > 5" overwrites
some of the formerly recoded cases from pattern "x >= 3 & x <= 7"
recode_into(

x >= 3 & x <= 7 ~ 1,
x > 5 ~ 2,
default = 0,
verbose = FALSE

)

122 recode_into

setting "overwrite = FALSE" will not alter formerly recoded cases
recode_into(

x >= 3 & x <= 7 ~ 1,
x > 5 ~ 2,
default = 0,
overwrite = FALSE,
verbose = FALSE

)

set.seed(123)
d <- data.frame(

x = sample(1:5, 30, TRUE),
y = sample(letters[1:5], 30, TRUE),
stringsAsFactors = FALSE

)

from different variables into new vector
recode_into(

d$x %in% 1:3 & d$y %in% c("a", "b") ~ 1,
d$x > 3 ~ 2,
default = 0

)

no need to write name of data frame each time
recode_into(

x %in% 1:3 & y %in% c("a", "b") ~ 1,
x > 3 ~ 2,
data = d,
default = 0

)

handling of missing values
d <- data.frame(

x = c(1, NA, 2, NA, 3, 4),
y = c(1, 11, 3, NA, 5, 6)

)
first NA in x is overwritten by valid value from y
we have no known value for second NA in x and y,
thus we get one NA in the result
recode_into(

x <= 3 ~ 1,
y > 5 ~ 2,
data = d,
default = 0,
preserve_na = TRUE

)
first NA in x is overwritten by valid value from y
default value is used for second NA
recode_into(

x <= 3 ~ 1,
y > 5 ~ 2,
data = d,

recode_values 123

default = 0,
preserve_na = FALSE

)

recode_values Recode old values of variables into new values

Description

This functions recodes old values into new values and can be used to to recode numeric or character
vectors, or factors.

Usage

recode_values(x, ...)

S3 method for class 'numeric'
recode_values(
x,
recode = NULL,
default = NULL,
preserve_na = TRUE,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
recode_values(
x,
select = NULL,
exclude = NULL,
recode = NULL,
default = NULL,
preserve_na = TRUE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

x A data frame, numeric or character vector, or factor.

... not used.

124 recode_values

recode A list of named vectors, which indicate the recode pairs. The names of the list-
elements (i.e. the left-hand side) represent the new values, while the values of the
list-elements indicate the original (old) values that should be replaced. When re-
coding numeric vectors, element names have to be surrounded in backticks. For
example, recode=list(`0`=1) would recode all 1 into 0 in a numeric vector.
See also ’Examples’ and ’Details’.

default Defines the default value for all values that have no match in the recode-pairs.
Note that, if preserve_na=FALSE, missing values (NA) are also captured by the
default argument, and thus will also be recoded into the specified value. See
’Examples’ and ’Details’.

preserve_na Logical, if TRUE, NA (missing values) are preserved. This overrides any other
arguments, including default. Hence, if preserve_na=TRUE, default will no
longer convert NA into the specified default value.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

recode_values 125

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Details

This section describes the pattern of the recode arguments, which also provides some shortcuts, in
particular when recoding numeric values.

• Single values
Single values either need to be wrapped in backticks (in case of numeric values) or "as is"
(for character or factor levels). Example: recode=list(`0`=1,`1`=2) would recode 1 into
0, and 2 into 1. For factors or character vectors, an example is: recode=list(x="a",y="b")
(recode "a" into "x" and "b" into "y").

• Multiple values
Multiple values that should be recoded into a new value can be separated with comma. Ex-
ample: recode=list(`1`=c(1,4),`2`=c(2,3)) would recode the values 1 and 4 into 1,
and 2 and 3 into 2. It is also possible to define the old values as a character string, like:
recode=list(`1`="1,4",`2`="2,3") For factors or character vectors, an example is: recode=list(x=c("a","b"),y=c("c","d")).

• Value range
Numeric value ranges can be defined using the :. Example: recode=list(`1`=1:3,`2`=4:6)
would recode all values from 1 to 3 into 1, and 4 to 6 into 2.

• min and max

placeholder to use the minimum or maximum value of the (numeric) variable. Useful, e.g.,
when recoding ranges of values. Example: recode=list(`1`="min:10",`2`="11:max").

• default values

126 recode_values

The default argument defines the default value for all values that have no match in the recode-
pairs. For example, recode=list(`1`=c(1,2),`2`=c(3,4)), default=9 would recode
values 1 and 2 into 1, 3 and 4 into 2, and all other values into 9. If preserve_na is set to
FALSE, NA (missing values) will also be recoded into the specified default value.

• Reversing and rescaling
See reverse() and rescale().

Value

x, where old values are replaced by new values.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Note

You can use options(data_recode_pattern = "old=new") to switch the behaviour of the recode-
argument, i.e. recode-pairs are now following the pattern old values = new values, e.g. if
getOption("data_recode_pattern") is set to "old=new", then recode(`1`=0) would recode
all 1 into 0. The default for recode(`1`=0) is to recode all 0 into 1.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

Examples

numeric ----------
set.seed(123)
x <- sample(c(1:4, NA), 15, TRUE)
table(x, useNA = "always")

out <- recode_values(x, list(`0` = 1, `1` = 2:3, `2` = 4))
out
table(out, useNA = "always")

recode_values 127

to recode NA values, set preserve_na to FALSE
out <- recode_values(

x,
list(`0` = 1, `1` = 2:3, `2` = 4, `9` = NA),
preserve_na = FALSE

)
out
table(out, useNA = "always")

preserve na ----------
out <- recode_values(x, list(`0` = 1, `1` = 2:3), default = 77)
out
table(out, useNA = "always")

recode na into default ----------
out <- recode_values(

x,
list(`0` = 1, `1` = 2:3),
default = 77,
preserve_na = FALSE

)
out
table(out, useNA = "always")

factors (character vectors are similar) ----------
set.seed(123)
x <- as.factor(sample(c("a", "b", "c"), 15, TRUE))
table(x)

out <- recode_values(x, list(x = "a", y = c("b", "c")))
out
table(out)

out <- recode_values(x, list(x = "a", y = "b", z = "c"))
out
table(out)

out <- recode_values(x, list(y = "b,c"), default = 77)
same as
recode_values(x, list(y = c("b", "c")), default = 77)
out
table(out)

data frames ----------
set.seed(123)
d <- data.frame(

x = sample(c(1:4, NA), 12, TRUE),
y = as.factor(sample(c("a", "b", "c"), 12, TRUE)),
stringsAsFactors = FALSE

)

128 remove_empty

recode_values(
d,
recode = list(`0` = 1, `1` = 2:3, `2` = 4, x = "a", y = c("b", "c")),
append = TRUE

)

switch recode pattern to "old=new" ----------
options(data_recode_pattern = "old=new")

numeric
set.seed(123)
x <- sample(c(1:4, NA), 15, TRUE)
table(x, useNA = "always")

out <- recode_values(x, list(`1` = 0, `2:3` = 1, `4` = 2))
table(out, useNA = "always")

factors (character vectors are similar)
set.seed(123)
x <- as.factor(sample(c("a", "b", "c"), 15, TRUE))
table(x)

out <- recode_values(x, list(a = "x", `b, c` = "y"))
table(out)

reset options
options(data_recode_pattern = NULL)

remove_empty Return or remove variables or observations that are completely miss-
ing

Description

These functions check which rows or columns of a data frame completely contain missing values,
i.e. which observations or variables completely have missing values, and either (1) returns their
indices; or (2) removes them from the data frame.

Usage

empty_columns(x)

empty_rows(x)

remove_empty_columns(x)

remove_empty_rows(x)

remove_empty(x)

remove_empty 129

Arguments

x A data frame.

Details

For character vectors, empty string values (i.e. "") are also considered as missing value. Thus, if
a character vector only contains NA and "", it is considered as empty variable and will be removed.
Same applies to observations (rows) that only contain NA or "".

Value

• For empty_columns() and empty_rows(), a numeric (named) vector with row or column
indices of those variables that completely have missing values.

• For remove_empty_columns() and remove_empty_rows(), a data frame with "empty" columns
or rows removed, respectively.

• For remove_empty(), both empty rows and columns will be removed.

Examples

tmp <- data.frame(
a = c(1, 2, 3, NA, 5),
b = c(1, NA, 3, NA, 5),
c = c(NA, NA, NA, NA, NA),
d = c(1, NA, 3, NA, 5)

)

tmp

indices of empty columns or rows
empty_columns(tmp)
empty_rows(tmp)

remove empty columns or rows
remove_empty_columns(tmp)
remove_empty_rows(tmp)

remove empty columns and rows
remove_empty(tmp)

also remove "empty" character vectors
tmp <- data.frame(

a = c(1, 2, 3, NA, 5),
b = c(1, NA, 3, NA, 5),
c = c("", "", "", "", ""),
stringsAsFactors = FALSE

)
empty_columns(tmp)

130 rescale

replace_nan_inf Convert infinite or NaN values into NA

Description

Replaces all infinite (Inf and -Inf) or NaN values with NA.

Usage

replace_nan_inf(x, ...)

Arguments

x A vector or a dataframe

... Currently not used.

Value

Data with Inf, -Inf, and NaN converted to NA.

Examples

a vector
x <- c(1, 2, NA, 3, NaN, 4, NA, 5, Inf, -Inf, 6, 7)
replace_nan_inf(x)

a data frame
df <- data.frame(

x = c(1, NA, 5, Inf, 2, NA),
y = c(3, NaN, 4, -Inf, 6, 7),
stringsAsFactors = FALSE

)
replace_nan_inf(df)

rescale Rescale Variables to a New Range

Description

Rescale variables to a new range. Can also be used to reverse-score variables (change the key-
ing/scoring direction), or to expand a range.

rescale 131

Usage

rescale(x, ...)

change_scale(x, ...)

S3 method for class 'numeric'
rescale(
x,
to = c(0, 100),
multiply = NULL,
add = NULL,
range = NULL,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
rescale(
x,
select = NULL,
exclude = NULL,
to = c(0, 100),
multiply = NULL,
add = NULL,
range = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE,
...

)

Arguments

x A (grouped) data frame, numeric vector or factor.

... Arguments passed to or from other methods.

to Numeric vector of length 2 giving the new range that the variable will have
after rescaling. To reverse-score a variable, the range should be given with the
maximum value first. See examples.

multiply If not NULL, to is ignored and multiply will be used, giving the factor by which
the actual range of x should be expanded. For example, if a vector ranges from
5 to 15 and multiply = 1.1, the current range of 10 will be expanded by the
factor of 1.1, giving a new range of 11. Thus, the rescaled vector would range
from 4.5 to 15.5.

add A vector of length 1 or 2. If not NULL, to is ignored and add will be used, giving
the amount by which the minimum and maximum of the actual range of x should
be expanded. For example, if a vector ranges from 5 to 15 and add = 1, the range

132 rescale

will be expanded from 4 to 16. If add is of length 2, then the first value is used
for the lower bound and the second value for the upper bound.

range Initial (old) range of values. If NULL, will take the range of the input vector
(range(x)).

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or

rescale 133

"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Value

A rescaled object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

See makepredictcall.dw_transformer() for use in model formulas.

Other transform utilities: normalize(), ranktransform(), reverse(), standardize()

Examples

rescale(c(0, 1, 5, -5, -2))
rescale(c(0, 1, 5, -5, -2), to = c(-5, 5))
rescale(c(1, 2, 3, 4, 5), to = c(-2, 2))

Specify the "theoretical" range of the input vector
rescale(c(1, 3, 4), to = c(0, 40), range = c(0, 4))

Reverse-score a variable
rescale(c(1, 2, 3, 4, 5), to = c(5, 1))
rescale(c(1, 2, 3, 4, 5), to = c(2, -2))

Data frames
head(rescale(iris, to = c(0, 1)))
head(rescale(iris, to = c(0, 1), select = "Sepal.Length"))

One can specify a list of ranges
head(rescale(iris, to = list(

134 rescale_weights

"Sepal.Length" = c(0, 1),
"Petal.Length" = c(-1, 0)

)))

"expand" ranges by a factor or a given value
x <- 5:15
x
both will expand the range by 10%
rescale(x, multiply = 1.1)
rescale(x, add = 0.5)

expand range by different values
rescale(x, add = c(1, 3))

Specify list of multipliers
d <- data.frame(x = 5:15, y = 5:15)
rescale(d, multiply = list(x = 1.1, y = 0.5))

rescale_weights Rescale design weights for multilevel analysis

Description

Most functions to fit multilevel and mixed effects models only allow the user to specify frequency
weights, but not design (i.e., sampling or probability) weights, which should be used when analyz-
ing complex samples (e.g., probability samples). rescale_weights() implements two algorithms,
one proposed by Asparouhov (2006) and Carle (2009), to rescale design weights in survey data to
account for the grouping structure of multilevel models, and one based on the design effect pro-
posed by Kish (1965), to rescale weights by the design effect to account for additional sampling
error introduced by weighting.

Usage

rescale_weights(
data,
probability_weights = NULL,
by = NULL,
nest = FALSE,
method = "carle"

)

Arguments

data A data frame.
probability_weights

Variable indicating the probability (design or sampling) weights of the survey
data (level-1-weight), provided as character string or formula.

rescale_weights 135

by Variable names (as character vector, or as formula), indicating the grouping
structure (strata) of the survey data (level-2-cluster variable). It is also possi-
ble to create weights for multiple group variables; in such cases, each created
weighting variable will be suffixed by the name of the group variable. This
argument is required for method = "carle", but optional for method = "kish".

nest Logical, if TRUE and by indicates at least two group variables, then groups are
"nested", i.e. groups are now a combination from each group level of the vari-
ables in by. This argument is not used when method = "kish".

method String, indicating which rescale-method is used for rescaling weights. Can be
either "carle" (default) or "kish". See ’Details’. If method = "carle", the by
argument is required.

Details

• method = "carle"

Rescaling is based on two methods: For rescaled_weights_a, the sample weights probability_weights
are adjusted by a factor that represents the proportion of group size divided by the sum of sam-
pling weights within each group. The adjustment factor for rescaled_weights_b is the sum
of sample weights within each group divided by the sum of squared sample weights within
each group (see Carle (2009), Appendix B). In other words, rescaled_weights_a "scales the
weights so that the new weights sum to the cluster sample size" while rescaled_weights_b
"scales the weights so that the new weights sum to the effective cluster size".
Regarding the choice between scaling methods A and B, Carle suggests that "analysts who
wish to discuss point estimates should report results based on weighting method A. For an-
alysts more interested in residual between-group variance, method B may generally provide
the least biased estimates". In general, it is recommended to fit a non-weighted model and
weighted models with both scaling methods and when comparing the models, see whether the
"inferential decisions converge", to gain confidence in the results.
Though the bias of scaled weights decreases with increasing group size, method A is preferred
when insufficient or low group size is a concern.
The group ID and probably PSU may be used as random effects (e.g. nested design, or group
and PSU as varying intercepts), depending on the survey design that should be mimicked.

• method = "kish"

Rescaling is based on scaling the sample weights so the mean value is 1, which means the sum
of all weights equals the sample size. Next, the design effect (Kish 1965) is calculated, which
is the mean of the squared weights divided by the squared mean of the weights. The scaled
sample weights are then divided by the design effect. This method is most appropriate when
weights are based on additional variables beyond the grouping variables in the model (e.g.,
other demographic characteristics), but may also be useful in other contexts.
Some tests on real-world survey-data suggest that, in comparison to the Carle-method, the
Kish-method comes closer to estimates from a regular survey-design using the survey pack-
age. Note that these tests are not representative and it is recommended to check your results
against a standard survey-design.

Value

data, including the new weighting variable(s). For method = "carle", new columns rescaled_weights_a
and rescaled_weights_b are returned, and for method = "kish", the returned data contains a col-

136 rescale_weights

umn rescaled_weights. These represent the rescaled design weights to use in multilevel models
(use these variables for the weights argument).

References

• Asparouhov T. (2006). General Multi-Level Modeling with Sampling Weights. Communica-
tions in Statistics - Theory and Methods 35: 439-460

• Carle A.C. (2009). Fitting multilevel models in complex survey data with design weights:
Recommendations. BMC Medical Research Methodology 9(49): 1-13

• Kish, L. (1965) Survey Sampling. London: Wiley.

Examples

data(nhanes_sample)
head(rescale_weights(nhanes_sample, "WTINT2YR", "SDMVSTRA"))

also works with multiple group-variables
head(rescale_weights(nhanes_sample, "WTINT2YR", c("SDMVSTRA", "SDMVPSU")))

or nested structures.
x <- rescale_weights(

data = nhanes_sample,
probability_weights = "WTINT2YR",
by = c("SDMVSTRA", "SDMVPSU"),
nest = TRUE

)
head(x)

compare different methods, using multilevel-Poisson regression

d <- rescale_weights(nhanes_sample, "WTINT2YR", "SDMVSTRA")
result1 <- lme4::glmer(

total ~ factor(RIAGENDR) + log(age) + factor(RIDRETH1) + (1 | SDMVPSU),
family = poisson(),
data = d,
weights = rescaled_weights_a

)
result2 <- lme4::glmer(

total ~ factor(RIAGENDR) + log(age) + factor(RIDRETH1) + (1 | SDMVPSU),
family = poisson(),
data = d,
weights = rescaled_weights_b

)

d <- rescale_weights(
nhanes_sample,
"WTINT2YR",
method = "kish"

)
result3 <- lme4::glmer(

total ~ factor(RIAGENDR) + log(age) + factor(RIDRETH1) + (1 | SDMVPSU),

reshape_ci 137

family = poisson(),
data = d,
weights = rescaled_weights

)
d <- rescale_weights(

nhanes_sample,
"WTINT2YR",
"SDMVSTRA",
method = "kish"

)
result4 <- lme4::glmer(

total ~ factor(RIAGENDR) + log(age) + factor(RIDRETH1) + (1 | SDMVPSU),
family = poisson(),
data = d,
weights = rescaled_weights

)
parameters::compare_parameters(

list(result1, result2, result3, result4),
exponentiate = TRUE,
column_names = c("Carle (A)", "Carle (B)", "Kish", "Kish (grouped)")

)

reshape_ci Reshape CI between wide/long formats

Description

Reshape CI between wide/long formats.

Usage

reshape_ci(x, ci_type = "CI")

Arguments

x A data frame containing columns named CI_low and CI_high (or similar, see
ci_type).

ci_type String indicating the "type" (i.e. prefix) of the interval columns. Per easystats
convention, confidence or credible intervals are named CI_low and CI_high,
and the related ci_type would be "CI". If column names for other intervals
differ, ci_type can be used to indicate the name, e.g. ci_type = "SI" can be
used for support intervals, where the column names in the data frame would be
SI_low and SI_high.

Value

A data frame with columns corresponding to confidence intervals reshaped either to wide or long
format.

138 reverse

Examples

x <- data.frame(
Parameter = c("Term 1", "Term 2", "Term 1", "Term 2"),
CI = c(.8, .8, .9, .9),
CI_low = c(.2, .3, .1, .15),
CI_high = c(.5, .6, .8, .85),
stringsAsFactors = FALSE

)

reshape_ci(x)
reshape_ci(reshape_ci(x))

reverse Reverse-Score Variables

Description

Reverse-score variables (change the keying/scoring direction).

Usage

reverse(x, ...)

reverse_scale(x, ...)

S3 method for class 'numeric'
reverse(x, range = NULL, verbose = TRUE, ...)

S3 method for class 'data.frame'
reverse(
x,
select = NULL,
exclude = NULL,
range = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE,
...

)

Arguments

x A (grouped) data frame, numeric vector or factor.

... Arguments passed to or from other methods.

reverse 139

range Range of values that is used as reference for reversing the scale. For numeric
variables, can be NULL or a numeric vector of length two, indicating the lowest
and highest value of the reference range. If NULL, will take the range of the input
vector (range(x)). For factors, range can be NULL, a numeric vector of length
two, or a (numeric) vector of at least the same length as factor levels (i.e. must
be equal to or larger than nlevels(x)). Note that providing a range for factors
usually only makes sense when factor levels are numeric, not characters.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the

140 reverse

recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Value

A reverse-scored object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

Other transform utilities: normalize(), ranktransform(), rescale(), standardize()

Examples

reverse(c(1, 2, 3, 4, 5))
reverse(c(-2, -1, 0, 2, 1))

Specify the "theoretical" range of the input vector
reverse(c(1, 3, 4), range = c(0, 4))

Factor variables
reverse(factor(c(1, 2, 3, 4, 5)))
reverse(factor(c(1, 2, 3, 4, 5)), range = 0:10)

Data frames
head(reverse(iris))
head(reverse(iris, select = "Sepal.Length"))

rownames_as_column 141

rownames_as_column Tools for working with row names or row ids

Description

Tools for working with row names or row ids

Usage

rownames_as_column(x, var = "rowname")

column_as_rownames(x, var = "rowname")

rowid_as_column(x, var = "rowid")

Arguments

x A data frame.

var Name of column to use for row names/ids. For column_as_rownames(), this ar-
gument can be the variable name or the column number. For rownames_as_column()
and rowid_as_column(), the column name must not already exist in the data.

Details

These are similar to tibble’s functions column_to_rownames(), rownames_to_column() and
rowid_to_column(). Note that the behavior of rowid_as_column() is different for grouped
dataframe: instead of making the rowid unique across the full dataframe, it creates rowid per group.
Therefore, there can be several rows with the same rowid if they belong to different groups.

If you are familiar with dplyr, this is similar to doing the following:

data |>
group_by(grp) |>
mutate(id = row_number()) |>
ungroup()

Value

A data frame.

Examples

Convert between row names and column --------------------------------
test <- rownames_as_column(mtcars, var = "car")
test
head(column_as_rownames(test, var = "car"))

test_data <- head(iris)

142 row_count

rowid_as_column(test_data)
rowid_as_column(test_data, var = "my_id")

row_count Count specific values row-wise

Description

row_count() mimics base R’s rowSums(), with sums for a specific value indicated by count.
Hence, it is similar to rowSums(x == count, na.rm = TRUE), but offers some more options, includ-
ing strict comparisons. Comparisons using == coerce values to atomic vectors, thus both 2 == 2 and
"2" == 2 are TRUE. In row_count(), it is also possible to make "type safe" comparisons using the
allow_coercion argument, where "2" == 2 is not true.

Usage

row_count(
data,
select = NULL,
exclude = NULL,
count = NULL,
allow_coercion = TRUE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE

)

Arguments

data A data frame with at least two columns, where number of specific values are
counted row-wise.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

row_count 143

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

count The value for which the row sum should be computed. May be a numeric value,
a character string (for factors or character vectors), NA or Inf.

allow_coercion Logical. If FALSE, count matches only values of same class (i.e. when count =
2, the value "2" is not counted and vice versa). By default, when allow_coercion
= TRUE, count = 2 also matches "2". In order to count factor levels in the data,
use count = factor("level"). See ’Examples’.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

Value

A vector with row-wise counts of values specified in count.

Examples

dat <- data.frame(

144 row_means

c1 = c(1, 2, NA, 4),
c2 = c(NA, 2, NA, 5),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, 8)

)

count all 4s per row
row_count(dat, count = 4)
count all missing values per row
row_count(dat, count = NA)

dat <- data.frame(
c1 = c("1", "2", NA, "3"),
c2 = c(NA, "2", NA, "3"),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, Inf)

)
count all 2s and "2"s per row
row_count(dat, count = 2)
only count 2s, but not "2"s
row_count(dat, count = 2, allow_coercion = FALSE)

dat <- data.frame(
c1 = factor(c("1", "2", NA, "3")),
c2 = c("2", "1", NA, "3"),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, Inf)

)
find only character "2"s
row_count(dat, count = "2", allow_coercion = FALSE)
find only factor level "2"s
row_count(dat, count = factor("2"), allow_coercion = FALSE)

row_means Row means or sums (optionally with minimum amount of valid values)

Description

This function is similar to the SPSS MEAN.n or SUM.n function and computes row means or row
sums from a data frame or matrix if at least min_valid values of a row are valid (and not NA).

Usage

row_means(
data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,

row_means 145

ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE

)

row_sums(
data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,
ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE

)

Arguments

data A data frame with at least two columns, where row means or row sums are
applied.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or

146 row_means

-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

min_valid Optional, a numeric value of length 1. May either be

• a numeric value that indicates the amount of valid values per row to calcu-
late the row mean or row sum;

• or a value between 0 and 1, indicating a proportion of valid values per row
to calculate the row mean or row sum (see ’Details’).

• NULL (default), in which all cases are considered.

If a row’s sum of valid values is less than min_valid, NA will be returned.

digits Numeric value indicating the number of decimal places to be used for rounding
mean values. Negative values are allowed (see ’Details’). By default, digits =
NULL and no rounding is used.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

remove_na Logical, if TRUE (default), removes missing (NA) values before calculating row
means or row sums. Only applies if min_valid is not specified.

verbose Toggle warnings.

Details

Rounding to a negative number of digits means rounding to a power of ten, for example row_means(df,
3, digits = -2) rounds to the nearest hundred. For min_valid, if not NULL, min_valid must be
a numeric value from 0 to ncol(data). If a row in the data frame has at least min_valid non-
missing values, the row mean or row sum is returned. If min_valid is a non-integer value from 0
to 1, min_valid is considered to indicate the proportion of required non-missing values per row.
E.g., if min_valid = 0.75, a row must have at least ncol(data) * min_valid non-missing values
for the row mean or row sum to be calculated. See ’Examples’.

row_to_colnames 147

Value

A vector with row means (for row_means()) or row sums (for row_sums()) for those rows with at
least n valid values.

Examples

dat <- data.frame(
c1 = c(1, 2, NA, 4),
c2 = c(NA, 2, NA, 5),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, 8)

)

default, all means are shown, if no NA values are present
row_means(dat)

remove all NA before computing row means
row_means(dat, remove_na = TRUE)

needs at least 4 non-missing values per row
row_means(dat, min_valid = 4) # 1 valid return value
row_sums(dat, min_valid = 4) # 1 valid return value

needs at least 3 non-missing values per row
row_means(dat, min_valid = 3) # 2 valid return values

needs at least 2 non-missing values per row
row_means(dat, min_valid = 2)

needs at least 1 non-missing value per row, for two selected variables
row_means(dat, select = c("c1", "c3"), min_valid = 1)

needs at least 50% of non-missing values per row
row_means(dat, min_valid = 0.5) # 3 valid return values
row_sums(dat, min_valid = 0.5)

needs at least 75% of non-missing values per row
row_means(dat, min_valid = 0.75) # 2 valid return values

row_to_colnames Tools for working with column names

Description

Tools for working with column names

148 skewness

Usage

row_to_colnames(x, row = 1, na_prefix = "x", verbose = TRUE)

colnames_to_row(x, prefix = "x")

Arguments

x A data frame.

row Row to use as column names.

na_prefix Prefix to give to the column name if the row has an NA. Default is ’x’, and it will
be incremented at each NA (x1, x2, etc.).

verbose Toggle warnings.

prefix Prefix to give to the column name. Default is ’x’, and it will be incremented at
each column (x1, x2, etc.).

Value

row_to_colnames() and colnames_to_row() both return a data frame.

Examples

Convert a row to column names --------------------------------
test <- data.frame(

a = c("iso", 2, 5),
b = c("year", 3, 6),
c = c("value", 5, 7)

)
test
row_to_colnames(test)

Convert column names to row --------------------------------
test <- data.frame(

ARG = c("BRA", "FRA"),
`1960` = c(1960, 1960),
`2000` = c(2000, 2000)

)
test
colnames_to_row(test)

skewness Compute Skewness and (Excess) Kurtosis

Description

Compute Skewness and (Excess) Kurtosis

skewness 149

Usage

skewness(x, ...)

S3 method for class 'numeric'
skewness(
x,
remove_na = TRUE,
type = "2",
iterations = NULL,
verbose = TRUE,
...

)

kurtosis(x, ...)

S3 method for class 'numeric'
kurtosis(
x,
remove_na = TRUE,
type = "2",
iterations = NULL,
verbose = TRUE,
...

)

S3 method for class 'parameters_kurtosis'
print(x, digits = 3, test = FALSE, ...)

S3 method for class 'parameters_skewness'
print(x, digits = 3, test = FALSE, ...)

S3 method for class 'parameters_skewness'
summary(object, test = FALSE, ...)

S3 method for class 'parameters_kurtosis'
summary(object, test = FALSE, ...)

Arguments

x A numeric vector or data.frame.

... Arguments passed to or from other methods.

remove_na Logical. Should NA values be removed before computing (TRUE) or not (FALSE,
default)?

type Type of algorithm for computing skewness. May be one of 1 (or "1", "I"
or "classic"), 2 (or "2", "II" or "SPSS" or "SAS") or 3 (or "3", "III" or
"Minitab"). See ’Details’.

150 skewness

iterations The number of bootstrap replicates for computing standard errors. If NULL (de-
fault), parametric standard errors are computed.

verbose Toggle warnings and messages.

digits Number of decimal places.

test Logical, if TRUE, tests if skewness or kurtosis is significantly different from zero.

object An object returned by skewness() or kurtosis().

Details

Skewness: Symmetric distributions have a skewness around zero, while a negative skewness
values indicates a "left-skewed" distribution, and a positive skewness values indicates a "right-
skewed" distribution. Examples for the relationship of skewness and distributions are:

• Normal distribution (and other symmetric distribution) has a skewness of 0
• Half-normal distribution has a skewness just below 1
• Exponential distribution has a skewness of 2
• Lognormal distribution can have a skewness of any positive value, depending on its parame-

ters

(https://en.wikipedia.org/wiki/Skewness)

Types of Skewness: skewness() supports three different methods for estimating skewness, as
discussed in Joanes and Gill (1988) :

• Type "1" is the "classical" method, which is g1 = (sum((x - mean(x))^3) / n) / (sum((x -
mean(x))^2) / n)^1.5

• Type "2" first calculates the type-1 skewness, then adjusts the result: G1 = g1 * sqrt(n * (n
- 1)) / (n - 2). This is what SAS and SPSS usually return.

• Type "3" first calculates the type-1 skewness, then adjusts the result: b1 = g1 * ((1 - 1 /
n))^1.5. This is what Minitab usually returns.

Kurtosis: The kurtosis is a measure of "tailedness" of a distribution. A distribution with a
kurtosis values of about zero is called "mesokurtic". A kurtosis value larger than zero indicates a
"leptokurtic" distribution with fatter tails. A kurtosis value below zero indicates a "platykurtic"
distribution with thinner tails (https://en.wikipedia.org/wiki/Kurtosis).

Types of Kurtosis: kurtosis() supports three different methods for estimating kurtosis, as
discussed in Joanes and Gill (1988) :

• Type "1" is the "classical" method, which is g2 = n * sum((x - mean(x))^4) / (sum((x -
mean(x))^2)^2) - 3.

• Type "2" first calculates the type-1 kurtosis, then adjusts the result: G2 = ((n + 1) * g2 + 6)
* (n - 1)/((n - 2) * (n - 3)). This is what SAS and SPSS usually return

• Type "3" first calculates the type-1 kurtosis, then adjusts the result: b2 = (g2 + 3) * (1 - 1 /
n)^2 - 3. This is what Minitab usually returns.

Standard Errors: It is recommended to compute empirical (bootstrapped) standard errors (via
the iterations argument) than relying on analytic standard errors (Wright & Herrington, 2011).

slide 151

Value

Values of skewness or kurtosis.

References

• D. N. Joanes and C. A. Gill (1998). Comparing measures of sample skewness and kurtosis.
The Statistician, 47, 183–189.

• Wright, D. B., & Herrington, J. A. (2011). Problematic standard errors and confidence inter-
vals for skewness and kurtosis. Behavior research methods, 43(1), 8-17.

Examples

skewness(rnorm(1000))
kurtosis(rnorm(1000))

slide Shift numeric value range

Description

This functions shifts the value range of a numeric variable, so that the new range starts at a given
value.

Usage

slide(x, ...)

S3 method for class 'numeric'
slide(x, lowest = 0, ...)

S3 method for class 'data.frame'
slide(
x,
select = NULL,
exclude = NULL,
lowest = 0,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

152 slide

Arguments

x A data frame or numeric vector.

... not used.

lowest Numeric, indicating the lowest (minimum) value when converting factors or
character vectors to numeric values.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or

slide 153

"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

Value

x, where the range of numeric variables starts at a new value.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

Examples

numeric
head(mtcars$gear)
head(slide(mtcars$gear))
head(slide(mtcars$gear, lowest = 10))

data frame

154 smoothness

sapply(slide(mtcars, lowest = 1), min)
sapply(mtcars, min)

smoothness Quantify the smoothness of a vector

Description

Quantify the smoothness of a vector

Usage

smoothness(x, method = "cor", lag = 1, iterations = NULL, ...)

Arguments

x Numeric vector (similar to a time series).

method Can be "diff" (the standard deviation of the standardized differences) or "cor"
(default, lag-one autocorrelation).

lag An integer indicating which lag to use. If less than 1, will be interpreted as
expressed in percentage of the length of the vector.

iterations The number of bootstrap replicates for computing standard errors. If NULL (de-
fault), parametric standard errors are computed.

... Arguments passed to or from other methods.

Value

Value of smoothness.

References

https://stats.stackexchange.com/questions/24607/how-to-measure-smoothness-of-a-time-series-in-r

Examples

x <- (-10:10)^3 + rnorm(21, 0, 100)
plot(x)
smoothness(x, method = "cor")
smoothness(x, method = "diff")

standardize 155

standardize Standardization (Z-scoring)

Description

Performs a standardization of data (z-scoring), i.e., centering and scaling, so that the data is ex-
pressed in terms of standard deviation (i.e., mean = 0, SD = 1) or Median Absolute Deviance
(median = 0, MAD = 1). When applied to a statistical model, this function extracts the dataset,
standardizes it, and refits the model with this standardized version of the dataset. The normalize()
function can also be used to scale all numeric variables within the 0 - 1 range.

For model standardization, see standardize.default().

Usage

standardize(x, ...)

standardise(x, ...)

S3 method for class 'numeric'
standardize(
x,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
scale = NULL,
verbose = TRUE,
...

)

S3 method for class 'factor'
standardize(
x,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
force = FALSE,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
standardize(
x,
select = NULL,

156 standardize

exclude = NULL,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
scale = NULL,
remove_na = c("none", "selected", "all"),
force = FALSE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

unstandardize(x, ...)

unstandardise(x, ...)

S3 method for class 'numeric'
unstandardize(
x,
center = NULL,
scale = NULL,
reference = NULL,
robust = FALSE,
two_sd = FALSE,
...

)

S3 method for class 'data.frame'
unstandardize(
x,
center = NULL,
scale = NULL,
reference = NULL,
robust = FALSE,
two_sd = FALSE,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

standardize 157

Arguments

x A (grouped) data frame, a vector or a statistical model (for unstandardize()
cannot be a model).

... Arguments passed to or from other methods.

robust Logical, if TRUE, centering is done by subtracting the median from the variables
and dividing it by the median absolute deviation (MAD). If FALSE, variables are
standardized by subtracting the mean and dividing it by the standard deviation
(SD).

two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD de-
pending on robust). This method can be useful to obtain model coefficients of
continuous parameters comparable to coefficients related to binary predictors,
when applied to the predictors (not the outcome) (Gelman, 2008).

weights Can be NULL (for no weighting), or:

• For model: if TRUE (default), a weighted-standardization is carried out.
• For data.frames: a numeric vector of weights, or a character of the name

of a column in the data.frame that contains the weights.
• For numeric vectors: a numeric vector of weights.

reference A data frame or variable from which the centrality and deviation will be com-
puted instead of from the input variable. Useful for standardizing a subset or
new data according to another data frame.

center, scale • For standardize():
Numeric values, which can be used as alternative to reference to define
a reference centrality and deviation. If scale and center are of length 1,
they will be recycled to match the length of selected variables for standard-
ization. Else, center and scale must be of same length as the number of
selected variables. Values in center and scale will be matched to selected
variables in the provided order, unless a named vector is given. In this case,
names are matched against the names of the selected variables.

• For unstandardize():
center and scale correspond to the center (the mean / median) and the
scale (SD / MAD) of the original non-standardized data (for data frames,
should be named, or have column order correspond to the numeric col-
umn). However, one can also directly provide the original data through
reference, from which the center and the scale will be computed (accord-
ing to robust and two_sd). Alternatively, if the input contains the attributes
center and scale (as does the output of standardize()), it will take it
from there if the rest of the arguments are absent.

verbose Toggle warnings and messages on or off.

force Logical, if TRUE, forces recoding of factors and character vectors as well.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector

158 standardize

of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

remove_na How should missing values (NA) be treated: if "none" (default): each col-
umn’s standardization is done separately, ignoring NAs. Else, rows with NA in
the columns selected with select / exclude ("selected") or in all columns
("all") are dropped before standardization, and the resulting data frame does
not include these cases.

append Logical or string. If TRUE, standardized variables get new column names (with
the suffix "_z") and are appended (column bind) to x, thus returning both the
original and the standardized variables. If FALSE, original variables in x will
be overwritten by their standardized versions. If a character value, standardized
variables are appended with new column names (using the defined suffix) to the
original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

standardize 159

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Value

The standardized object (either a standardize data frame or a statistical model fitted on standardized
data).

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Note

When x is a vector or a data frame with remove_na = "none"), missing values are preserved, so
the return value has the same length / number of rows as the original input.

See Also

See center() for grand-mean centering of variables, and makepredictcall.dw_transformer()
for use in model formulas.

Other transform utilities: normalize(), ranktransform(), rescale(), reverse()

Other standardize: standardize.default()

Examples

d <- iris[1:4,]

vectors
standardise(d$Petal.Length)

Data frames
overwrite
standardise(d, select = c("Sepal.Length", "Sepal.Width"))

append
standardise(d, select = c("Sepal.Length", "Sepal.Width"), append = TRUE)

append, suffix
standardise(d, select = c("Sepal.Length", "Sepal.Width"), append = "_std")

160 standardize.default

standardizing with reference center and scale
d <- data.frame(

a = c(-2, -1, 0, 1, 2),
b = c(3, 4, 5, 6, 7)

)

default standardization, based on mean and sd of each variable
standardize(d) # means are 0 and 5, sd ~ 1.581139

standardization, based on mean and sd set to the same values
standardize(d, center = c(0, 5), scale = c(1.581, 1.581))

standardization, mean and sd for each variable newly defined
standardize(d, center = c(3, 4), scale = c(2, 4))

standardization, taking same mean and sd for each variable
standardize(d, center = 1, scale = 3)

standardize.default Re-fit a model with standardized data

Description

Performs a standardization of data (z-scoring) using standardize() and then re-fits the model to
the standardized data.

Standardization is done by completely refitting the model on the standardized data. Hence, this
approach is equal to standardizing the variables before fitting the model and will return a new model
object. This method is particularly recommended for complex models that include interactions or
transformations (e.g., polynomial or spline terms). The robust (default to FALSE) argument enables
a robust standardization of data, based on the median and the MAD instead of the mean and the SD.

Usage

Default S3 method:
standardize(
x,
robust = FALSE,
two_sd = FALSE,
weights = TRUE,
verbose = TRUE,
include_response = TRUE,
...

)

Arguments

x A statistical model.

standardize.default 161

robust Logical, if TRUE, centering is done by subtracting the median from the variables
and dividing it by the median absolute deviation (MAD). If FALSE, variables are
standardized by subtracting the mean and dividing it by the standard deviation
(SD).

two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD de-
pending on robust). This method can be useful to obtain model coefficients of
continuous parameters comparable to coefficients related to binary predictors,
when applied to the predictors (not the outcome) (Gelman, 2008).

weights If TRUE (default), a weighted-standardization is carried out.

verbose Toggle warnings and messages on or off.
include_response

If TRUE (default), the response value will also be standardized. If FALSE, only
the predictors will be standardized.

• Note that for GLMs and models with non-linear link functions, the response
value will not be standardized, to make re-fitting the model work.

• If the model contains an stats::offset(), the offset variable(s) will be
standardized only if the response is standardized. If two_sd = TRUE, offsets
are standardized by one-sd (similar to the response).

• (For mediate models, the include_response refers to the outcome in the
y model; m model’s response will always be standardized when possible).

... Arguments passed to or from other methods.

Value

A statistical model fitted on standardized data

Generalized Linear Models

Standardization for generalized linear models (GLM, GLMM, etc) is done only with respect to the
predictors (while the outcome remains as-is, unstandardized) - maintaining the interpretability of
the coefficients (e.g., in a binomial model: the exponent of the standardized parameter is the OR of
a change of 1 SD in the predictor, etc.)

Dealing with Factors

standardize(model) or standardize_parameters(model, method = "refit") do not standard-
ize categorical predictors (i.e. factors) / their dummy-variables, which may be a different behaviour
compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic
such behaviours, either use standardize_parameters(model, method = "basic") to obtain post-
hoc standardized parameters, or standardize the data with standardize(data, force = TRUE) be-
fore fitting the model.

Transformed Variables

When the model’s formula contains transformations (e.g. y ~ exp(X)) the transformation effectively
takes place after standardization (e.g., exp(scale(X))). Since some transformations are undefined
for none positive values, such as log() and sqrt(), the relevel variables are shifted (post standard-
ization) by Z - min(Z) + 1 or Z - min(Z) (respectively).

162 text_format

See Also

Other standardize: standardize()

Examples

model <- lm(Infant.Mortality ~ Education * Fertility, data = swiss)
coef(standardize(model))

text_format Convenient text formatting functionalities

Description

Convenience functions to manipulate and format text.

Usage

text_format(
text,
sep = ", ",
last = " and ",
width = NULL,
enclose = NULL,
...

)

text_fullstop(text)

text_lastchar(text, n = 1)

text_concatenate(text, sep = ", ", last = " and ", enclose = NULL)

text_paste(text, text2 = NULL, sep = ", ", enclose = NULL, ...)

text_remove(text, pattern = "", ...)

text_wrap(text, width = NULL, ...)

Arguments

text, text2 A character string.

sep Separator.

last Last separator.

width Positive integer giving the target column width for wrapping lines in the output.
Can be "auto", in which case it will select 90\ default width.

to_factor 163

enclose Character that will be used to wrap elements of text, so these can be, e.g.,
enclosed with quotes or backticks. If NULL (default), text elements will not be
enclosed.

... Other arguments to be passed to or from other functions.

n The number of characters to find.

pattern Regex pattern to remove from text.

Value

A character string.

Examples

Add full stop if missing
text_fullstop(c("something", "something else."))

Find last characters
text_lastchar(c("ABC", "DEF"), n = 2)

Smart concatenation
text_concatenate(c("First", "Second", "Last"))
text_concatenate(c("First", "Second", "Last"), last = " or ", enclose = "`")

Remove parts of string
text_remove(c("one!", "two", "three!"), "!")

Wrap text
long_text <- paste(rep("abc ", 100), collapse = "")
cat(text_wrap(long_text, width = 50))

Paste with optional separator
text_paste(c("A", "", "B"), c("42", "42", "42"))

to_factor Convert data to factors

Description

Convert data to factors

Usage

to_factor(x, ...)

S3 method for class 'numeric'
to_factor(x, labels_to_levels = TRUE, verbose = TRUE, ...)

S3 method for class 'data.frame'

164 to_factor

to_factor(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
append = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

x A data frame or vector.

... Arguments passed to or from other methods.
labels_to_levels

Logical, if TRUE, value labels are used as factor levels after x was converted
to factor. Else, factor levels are based on the values of x (i.e. as if using
as.factor()).

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or

to_factor 165

-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

Details

Convert variables or data into factors. If the data is labelled, value labels will be used as factor
levels. The counterpart to convert variables into numeric is to_numeric().

Value

A factor, or a data frame of factors.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Note

Factors are ignored and returned as is. If you want to use value labels as levels for factors, use
labels_to_levels() instead.

166 to_numeric

Examples

str(to_factor(iris))

use labels as levels
data(efc)
str(efc$c172code)
head(to_factor(efc$c172code))

to_numeric Convert data to numeric

Description

Convert data to numeric by converting characters to factors and factors to either numeric levels or
dummy variables. The "counterpart" to convert variables into factors is to_factor().

Usage

to_numeric(x, ...)

S3 method for class 'data.frame'
to_numeric(
x,
select = NULL,
exclude = NULL,
dummy_factors = FALSE,
preserve_levels = FALSE,
lowest = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

x A data frame, factor or vector.

... Arguments passed to or from other methods.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), a character vector of

variable names (e.g., c("col1", "col2", "col3")), or a character vector
of variable names including ranges specified via : (e.g., c("col1:col3",
"col5")),

to_numeric 167

• for some functions, like data_select() or data_rename(), select can
be a named character vector. In this case, the names are used to rename the
columns in the output data frame. See ’Details’ in the related functions to
see where this option applies.

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using :, or regex(). starts_with(), ends_with(), and contains()
accept several patterns, e.g starts_with("Sep", "Petal"). regex() can
be used to define regular expression patterns.

• a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(), -is.numeric or
-(Sepal.Width:Petal.Length). Note: Negation means that matches
are excluded, and thus, the exclude argument can be used alternatively.
For instance, select=-ends_with("Length") (with -) is equivalent to
exclude=ends_with("Length") (no -). In case negation should not work
as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. extract_column_names(iris, select = c("Species", "Test")) will
just return "Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

dummy_factors Transform factors to dummy factors (all factor levels as different columns filled
with a binary 0-1 value).

preserve_levels

Logical, only applies if x is a factor. If TRUE, and x has numeric factor levels,
these will be converted into the related numeric values. If this is not possible,
the converted numeric values will start from 1 to number of levels.

lowest Numeric, indicating the lowest (minimum) value when converting factors or
character vectors to numeric values.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

168 visualisation_recipe

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains() or select =
regex(), however, since the select-helpers may not work when called from in-
side other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

Value

A data frame of numeric variables.

Selection of variables - select argument

For most functions that have a select argument the complete input data frame is returned, even
when select only selects a range of variables. However, for to_numeric(), factors might be
converted into dummies, thus, the number of variables of the returned data frame no longer match
the input data frame. Hence, when select is used, only those variables (or their dummies) specified
in select will be returned. Use append=TRUE to also include the original variables in the returned
data frame.

Note

When factors should be converted into multiple "binary" dummies, i.e. each factor level is converted
into a separate column filled with a binary 0-1 value, set dummy_factors = TRUE. If you want to
preserve the original factor levels (in case these represent numeric values), use preserve_levels
= TRUE.

Examples

to_numeric(head(ToothGrowth))
to_numeric(head(ToothGrowth), dummy_factors = TRUE)

factors
x <- as.factor(mtcars$gear)
to_numeric(x)
to_numeric(x, preserve_levels = TRUE)
same as:
coerce_to_numeric(x)

visualisation_recipe Prepare objects for visualisation

weighted_mean 169

Description

This function prepares objects for visualisation by returning a list of layers with data and geoms
that can be easily plotted using for instance ggplot2.

If the see package is installed, the call to visualization_recipe() can be replaced by plot(),
which will internally call the former and then plot it using ggplot. The resulting plot can be cus-
tomized ad-hoc (by adding ggplot’s geoms, theme or specifications), or via some of the arguments
of visualisation_recipe() that control the aesthetic parameters.

See the specific documentation page for your object’s class:

• modelbased: https://easystats.github.io/modelbased/reference/visualisation_recipe.
estimate_predicted.html

• correlation: https://easystats.github.io/correlation/reference/visualisation_recipe.
easycormatrix.html

Usage

visualisation_recipe(x, ...)

Arguments

x An easystats object.

... Other arguments passed to other functions.

weighted_mean Weighted Mean, Median, SD, and MAD

Description

Weighted Mean, Median, SD, and MAD

Usage

weighted_mean(x, weights = NULL, remove_na = TRUE, verbose = TRUE, ...)

weighted_median(x, weights = NULL, remove_na = TRUE, verbose = TRUE, ...)

weighted_sd(x, weights = NULL, remove_na = TRUE, verbose = TRUE, ...)

weighted_mad(
x,
weights = NULL,
constant = 1.4826,
remove_na = TRUE,
verbose = TRUE,
...

)

https://easystats.github.io/modelbased/reference/visualisation_recipe.estimate_predicted.html
https://easystats.github.io/modelbased/reference/visualisation_recipe.estimate_predicted.html
https://easystats.github.io/correlation/reference/visualisation_recipe.easycormatrix.html
https://easystats.github.io/correlation/reference/visualisation_recipe.easycormatrix.html

170 winsorize

Arguments

x an object containing the values whose weighted mean is to be computed.

weights A numerical vector of weights the same length as x giving the weights to use for
elements of x. If weights = NULL, x is passed to the non-weighted function.

remove_na Logical, if TRUE (default), removes missing (NA) and infinite values from x and
weights.

verbose Show warning when weights are negative?

... arguments to be passed to or from methods.

constant scale factor.

Examples

GPA from Siegel 1994
x <- c(3.7, 3.3, 3.5, 2.8)
wt <- c(5, 5, 4, 1) / 15

weighted_mean(x, wt)
weighted_median(x, wt)

weighted_sd(x, wt)
weighted_mad(x, wt)

winsorize Winsorize data

Description

Winsorize data

Usage

winsorize(data, ...)

S3 method for class 'numeric'
winsorize(
data,
threshold = 0.2,
method = "percentile",
robust = FALSE,
verbose = TRUE,
...

)

winsorize 171

Arguments

data data frame or vector.

... Currently not used.

threshold The amount of winsorization, depends on the value of method:

• For method = "percentile": the amount to winsorize from each tail. The
value of threshold must be between 0 and 0.5 and of length 1.

• For method = "zscore": the number of SD/MAD-deviations from the mean/median
(see robust). The value of threshold must be greater than 0 and of length
1.

• For method = "raw": a vector of length 2 with the lower and upper bound
for winsorization.

method One of "percentile" (default), "zscore", or "raw".

robust Logical, if TRUE, winsorizing through the "zscore" method is done via the me-
dian and the median absolute deviation (MAD); if FALSE, via the mean and the
standard deviation.

verbose Not used anymore since datawizard 0.6.6.

Details

Winsorizing or winsorization is the transformation of statistics by limiting extreme values in the
statistical data to reduce the effect of possibly spurious outliers. The distribution of many statistics
can be heavily influenced by outliers. A typical strategy is to set all outliers (values beyond a certain
threshold) to a specified percentile of the data; for example, a 90% winsorization would see all data
below the 5th percentile set to the 5th percentile, and data above the 95th percentile set to the
95th percentile. Winsorized estimators are usually more robust to outliers than their more standard
forms.

Value

A data frame with winsorized columns or a winsorized vector.

See Also

• Add a prefix or suffix to column names: data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), extract_column_names()

• Functions to filter rows: data_match(), data_filter()

172 winsorize

Examples

hist(iris$Sepal.Length, main = "Original data")

hist(winsorize(iris$Sepal.Length, threshold = 0.2),
xlim = c(4, 8), main = "Percentile Winsorization"

)

hist(winsorize(iris$Sepal.Length, threshold = 1.5, method = "zscore"),
xlim = c(4, 8), main = "Mean (+/- SD) Winsorization"

)

hist(winsorize(iris$Sepal.Length, threshold = 1.5, method = "zscore", robust = TRUE),
xlim = c(4, 8), main = "Median (+/- MAD) Winsorization"

)

hist(winsorize(iris$Sepal.Length, threshold = c(5, 7.5), method = "raw"),
xlim = c(4, 8), main = "Raw Thresholds"

)

Also works on a data frame:
winsorize(iris, threshold = 0.2)

Index

∗ datawizard-transformers
makepredictcall.dw_transformer,

109
∗ data

efc, 107
nhanes_sample, 114

∗ duplicates
data_duplicated, 36

∗ standardize
standardize, 155
standardize.default, 160

∗ transform utilities
normalize, 114
ranktransform, 118
rescale, 130
reverse, 138
standardize, 155

adjust, 4
as.data.frame.datawizard_tables

(as.prop.table), 7
as.prop.table, 7, 82
as.table.datawizard_table, 81
as.table.datawizard_table

(as.prop.table), 7
assign_labels, 9

bayestestR::map_estimate(), 106

categorize, 11
categorize(), 15, 44, 47, 53, 61, 63, 67, 72,

86, 90, 126, 153, 171
center, 16
center(), 15, 45, 47, 53, 61, 63, 67, 72, 86,

90, 102, 109, 126, 153, 159, 171
centre (center), 16
change_scale (rescale), 130
coef_var, 20
coerce_to_numeric, 22
colnames_to_row (row_to_colnames), 147

column_as_rownames
(rownames_as_column), 141

contr.deviation, 23
convert_na_to, 25
convert_to_na, 28

data.frame, 8
data_addprefix, 30
data_addprefix(), 15, 44, 47, 53, 61, 63, 67,

72, 86, 90, 126, 153, 171
data_addsuffix (data_addprefix), 30
data_addsuffix(), 15, 44, 47, 53, 61, 63, 67,

72, 86, 90, 126, 153, 171
data_adjust (adjust), 4
data_arrange, 32
data_codebook, 33
data_duplicated, 36
data_duplicated(), 94
data_extract, 38
data_filter (data_match), 43
data_filter(), 15, 45, 47, 53, 61, 63, 67, 72,

86, 90, 126, 153, 171
data_group, 41
data_join (data_merge), 45
data_match, 43
data_match(), 15, 45, 47, 53, 61, 63, 67, 72,

86, 90, 126, 153, 171
data_merge, 45
data_merge(), 15, 45, 47, 53, 61, 63, 67, 72,

86, 90, 126, 153, 171
data_modify, 49
data_partition, 52
data_partition(), 15, 45, 47, 53, 61, 63, 67,

72, 86, 90, 126, 153, 171
data_peek, 54
data_read, 56
data_relocate, 58
data_relocate(), 15, 44, 47, 53, 61, 63, 67,

72, 86, 90, 126, 153, 171
data_remove (data_relocate), 58

173

174 INDEX

data_remove(), 15, 44, 47, 53, 61, 63, 67, 72,
86, 90, 126, 153, 171

data_rename, 61
data_rename(), 32
data_rename_rows (data_rename), 61
data_reorder (data_relocate), 58
data_reorder(), 15, 44, 47, 53, 61, 63, 67,

72, 86, 90, 126, 153, 171
data_replicate, 64
data_restoretype, 66
data_rotate, 67
data_rotate(), 15, 44, 47, 53, 61, 63, 67, 72,

86, 90, 126, 153, 171
data_seek, 68
data_select, 69
data_select(), 15, 45, 47, 53, 61, 63, 67, 72,

86, 89, 90, 126, 153, 171
data_separate, 73
data_separate(), 96
data_summary, 77
data_tabulate, 8, 79
data_to_long, 83
data_to_long(), 15, 44, 47, 53, 61, 63, 67,

72, 86, 90, 126, 153, 171
data_to_wide, 88
data_to_wide(), 15, 44, 47, 53, 61, 63, 67,

72, 86, 90, 126, 153, 171
data_transpose (data_rotate), 67
data_ungroup (data_group), 41
data_unique, 92
data_unique(), 38
data_unite, 95
data_unite(), 76
data_write (data_read), 56
degroup (demean), 97
demean, 97
demean(), 19
describe_distribution, 103
detrend (demean), 97
dgCMatrix, 23
display.data_codebook (data_codebook),

33
display.datawizard_table

(data_tabulate), 79
distribution_coef_var (coef_var), 20
distribution_cv (coef_var), 20
distribution_mode, 106
dplyr::distinct(), 36

duplicated(), 36

efc, 107
emmeans::contrast(), 112
empty_columns (remove_empty), 128
empty_rows (remove_empty), 128
extract_column_names (data_select), 69
extract_column_names(), 15, 45, 47, 53, 61,

63, 67, 72, 86, 90, 126, 153, 171

find_columns (data_select), 69

ifelse(), 120
insight::export_table(), 35, 36, 81, 82

kurtosis (skewness), 148
kurtosis(), 106

labels_to_levels, 107
labels_to_levels(), 165

make.names, 8
makepredictcall.dw_transformer, 109
makepredictcall.dw_transformer(), 19,

117, 133, 159
map_estimate(), 104
mean_sd, 113
means_by_group, 110
median_mad (mean_sd), 113

nhanes_sample, 114
normalize, 114, 120, 133, 140, 159
normalize(), 15, 45, 47, 53, 61, 63, 67, 72,

86, 90, 109, 126, 153, 155, 171

performance::check_group_variation(),
102

print.datawizard_table (data_tabulate),
79

print.parameters_kurtosis (skewness),
148

print.parameters_skewness (skewness),
148

print_html.data_codebook
(data_codebook), 33

rank(), 118
ranktransform, 117, 118, 133, 140, 159
ranktransform(), 15, 45, 47, 53, 61, 63, 67,

72, 86, 90, 126, 153, 171

INDEX 175

recode_into, 120
recode_values, 123
recode_values(), 15, 44, 47, 53, 61, 63, 67,

72, 86, 90, 126, 153, 171
remove_empty, 128
remove_empty_columns (remove_empty), 128
remove_empty_rows (remove_empty), 128
replace_nan_inf, 130
rescale, 117, 120, 130, 140, 159
rescale(), 15, 44, 47, 53, 61, 63, 67, 72, 86,

90, 109, 114, 126, 153, 171
rescale_weights, 134
reshape_ci, 137
reshape_longer (data_to_long), 83
reshape_wider (data_to_wide), 88
reverse, 117, 120, 133, 138, 159
reverse(), 15, 44, 47, 53, 61, 63, 67, 72, 86,

90, 126, 153, 171
reverse_scale (reverse), 138
row_count, 142
row_means, 144
row_sums (row_means), 144
row_to_colnames, 147
rowid_as_column (rownames_as_column),

141
rownames_as_column, 141

skewness, 148
slide, 151
slide(), 15, 44, 47, 53, 61, 63, 67, 72, 86, 90,

126, 153, 171
smoothness, 154
standardise (standardize), 155
standardize, 117, 120, 133, 140, 155, 162
standardize(), 15, 19, 45, 47, 53, 61, 63, 67,

72, 86, 90, 109, 126, 153, 160, 171
standardize.default, 159, 160
standardize.default(), 155
standardize_models

(standardize.default), 160
stats::contr.sum(), 23
stats::contr.treatment(), 23
stats::IQR(), 104
stats::mad(), 21
stats::makepredictcall(), 110
stats::offset(), 161
summary.parameters_kurtosis (skewness),

148

summary.parameters_skewness (skewness),
148

text_concatenate (text_format), 162
text_format, 162
text_fullstop (text_format), 162
text_lastchar (text_format), 162
text_paste (text_format), 162
text_remove (text_format), 162
text_wrap (text_format), 162
to_factor, 163
to_numeric, 166

unnormalize (normalize), 114
unstandardise (standardize), 155
unstandardize (standardize), 155

visualisation_recipe, 168

weighted_mad (weighted_mean), 169
weighted_mean, 169
weighted_median (weighted_mean), 169
weighted_sd (weighted_mean), 169
winsorize, 170
winsorize(), 15, 45, 47, 53, 61, 63, 67, 72,

86, 90, 126, 153, 171

	adjust
	as.prop.table
	assign_labels
	categorize
	center
	coef_var
	coerce_to_numeric
	contr.deviation
	convert_na_to
	convert_to_na
	data_addprefix
	data_arrange
	data_codebook
	data_duplicated
	data_extract
	data_group
	data_match
	data_merge
	data_modify
	data_partition
	data_peek
	data_read
	data_relocate
	data_rename
	data_replicate
	data_restoretype
	data_rotate
	data_seek
	data_select
	data_separate
	data_summary
	data_tabulate
	data_to_long
	data_to_wide
	data_unique
	data_unite
	demean
	describe_distribution
	distribution_mode
	efc
	labels_to_levels
	makepredictcall.dw_transformer
	means_by_group
	mean_sd
	nhanes_sample
	normalize
	ranktransform
	recode_into
	recode_values
	remove_empty
	replace_nan_inf
	rescale
	rescale_weights
	reshape_ci
	reverse
	rownames_as_column
	row_count
	row_means
	row_to_colnames
	skewness
	slide
	smoothness
	standardize
	standardize.default
	text_format
	to_factor
	to_numeric
	visualisation_recipe
	weighted_mean
	winsorize
	Index

