Package ‘clhs’

October 20, 2025

Type Package

Title Conditioned Latin Hypercube Sampling
Version 0.9.2

Date 2025-10-20

Maintainer Pierre Roudier <roudierp@landcareresearch.co.nz>
URL https://github.com/pierreroudier/clhs/

BugReports https://github.com/pierreroudier/clhs/issues

Description Conditioned Latin hypercube sampling, as published by Minasny and McBrat-
ney (2006) <DOI:10.1016/j.cageo.2005.12.009>. This method proposes to stratify sam-
pling in presence of ancillary data. An extension of this method, which propose to asso-
ciate a cost to each individual and take it into account during the optimisation pro-
cess, is also proposed (Roudier et al., 2012, <DOI:10.1201/b12728>).

Depends R (>=2.14.0)

Imports utils, methods, grid, ggplot2, sf, raster, reshape2, plyr,
cluster, Repp

LinkingTo RcppArmadillo, Rcpp

License GPL (>=2)

Encoding UTF-8

LazyLoad yes

Suggests terra, sp, knitr, rmarkdown, testthat
VignetteBuilder knitr

RoxygenNote 7.3.2

Collate 'RcppExports.R' ‘clhs-internal.R' 'clhs-data.frame.R'
'clhs-package.R' 'clhs-raster.R' 'utils.R' 'clhs.R' 'clhs-sf.R’
'clhs-sp.R' ‘clhs-terra.R' 'plot.R' 'similarity.R'

NeedsCompilation yes

Author Pierre Roudier [aut, cre],
Colby Brugnard [ctb],
Dylan Beaudette [ctb],

https://github.com/pierreroudier/clhs/
https://github.com/pierreroudier/clhs/issues
https://doi.org/10.1016/j.cageo.2005.12.009
https://doi.org/10.1201/b12728

2 clhs-package

Benjamin Louis [ctb],

Kiri Daust [ctb],

David Clifford [ctb],

Andrew Brown [ctb] (ORCID: <https://orcid.org/0000-0002-4565-533X>)

Repository CRAN
Date/Publication 2025-10-20 05:10:35 UTC

Contents
clhs-package e 2
clhs . . . e e e 3
cLHS result e 6
CppLHS . . . e 7
plot.cLHS result 8
similarity_buffer 9

Index 11

clhs-package Conditioned Latin Hypercube Sampling
Description

This package implements the conditioned Latin hypercube sampling, as published by Minasny and
McBratney (2006) and the DLHS variant method (Minasny and McBratney, 2010).. This method
proposes to stratify sampling in presence of ancillary data.

Details

An extension of this method, which propose to associate a cost to each individual and take it into
account during the optimisation process, is also proposed (Roudier et al., 2012).

Author(s)

Pierre Roudier

References

* For the initial cLHS method:

Minasny, B. and McBratney, A.B. 2006. A conditioned Latin hypercube method for sampling in
the presence of ancillary information. Computers and Geosciences, 32:1378-1388.

*For the DLHS variant method:

Minasny, B. and A. B. McBratney, A.B.. 2010. Conditioned Latin Hypercube Sampling for Cal-
ibrating Soil Sensor Data to Soil Properties. In: Proximal Soil Sensing, Progress in Soil Science,
pages 111-119.

* For the cost-constrained implementation:

https://orcid.org/0000-0002-4565-533X

clhs

See Also

sample

Roudier, P., Beaudette, D.E. and Hewitt, A.E. 2012. A conditioned Latin hypercube sampling algo-
rithm incorporating operational constraints. In: Digital Soil Assessments and Beyond. Proceedings
of the 5th Global Workshop on Digital Soil Mapping, Sydney, Australia.

* For the similarity buffer prediction:

Brungard, C. and Johanson, J. 2015. The gate’s locked! I can’t get to the exact sampling spot... can
I sample nearby? Pedometron, 37:8-10.

clhs

Conditioned Latin Hypercube Sampling

Description

Usage

clhs(

X,

size,
must.include,
can.include,
cost,

iter,
use.cpp,
temp,
tdecrease,
weights,

eta,
obj.limit,
length.cycle,
simple,
progress,
track,
use.coords,

Implementation of the conditioned Latin hypercube sampling, as published by Minasny and McBrat-
ney (2006) and the DLHS variant method (Minasny and McBratney, 2010). These methods propose
to stratify sampling in presence of ancillary data. An extension of this method, which propose to
associate a cost to each individual and take it into account during the optimisation process, is also
proposed (Roudier et al., 2012).

Arguments

X
size

must.include

can.include

cost

iter

use.cpp

temp
tdecrease

weights

eta

obj.limit
length.cycle
simple

progress
track

use.coords

clhs

A data.frame, SpatialPointsDataFrame, sf, or Raster object.
A non-negative integer giving the total number of items to select

A numeric vector giving the indices of the rows from x that must be included in
the selected items. For the cost-constrained cLHS method, cost of these manda-
tory samples is set to 0. If NULL (default), all data are randomly chosen accord-
ing to the classic cLHS method. If must.include is not NULL, argument size
must include the total size of the final sample i.e. the size of mandatory samples
given by must. include plus the size of the randomly chosen samples to pick.

A numeric vector giving indices of the rows from x that are allowed to be sam-
pled from. The algorithm will use all of x as the reference distribution, but will
only select samples from possible.sample. The option is only available in the
C++ version; if use. cpp == FALSE, this parameter will be ignored.

A character giving the name or an integer giving the index of the attribute in
x that gives a cost that can be use to constrain the cLHS sampling. If NULL
(default), the cost-constrained implementation is not used.

A positive number, giving the number of iterations for the Metropolis-Hastings
annealing process. Defaults to 10000.

TRUE or FALSE. If set to TRUE, annealing process uses C++ code. This is
~ 150 times faster than the R version, but is less stable and currently doesn’t
accept track or obj.limit parameters. Default to TRUE.

The initial temperature at which the simulated annealing begins. Defaults to 1.

A number between 0 and 1, giving the rate at which temperature decreases in
the simulated annealing process. Defaults to 0.95.

A list a length 3, giving the relative weights for continuous data, categorical data,
and correlation between variables. Defaults to 1ist (numeric =1, factor=1,
correlation=1).

Either a number equal 1 to perform a classic cLHS or a constrained cLHS or
a matrix to perform a cLHS that samples more on the edge of the distibutions
(DLHS, see details)

The minimal value at which the optimisation is stopped. Defaults to -Inf.

The duration (number of iterations) of the isotemperature steps. Defaults to 10.
TRUE or FALSE. If set to TRUE, only the indices of the selected samples are
returned, as a numeric vector. If set to FALSE, a cLHS_result object is returned
(takes more memory but allows to make use of cLHS_results methods such as
plot.cLHS_result).

TRUE or FALSE, displays a progress bar.

A character giving the name or an integer giving the index of the attribute in x
that gives a cost associated with each individual. However, this method will only
track the cost - the sampling process will not be constrained by this attribute. If
NULL (default), this option is not used.

Logical, if TRUE the spatial coordinates of supported spatial objects (either a
‘SpatialPointsDataFrame* object if using ‘sp‘, or a ‘sf* object if using ‘sf*) are
included in the Latin hypercube calculations. Defaults to FALSE.

additional parameters passed to clhs

clhs 5

Details

For the DLHS method, the original paper defines parameter b as the importance of the edge of the
distributions. A matrix eta (size N x K, where N is the size of the final sample and K the number
of continuous variables) is defined, to compute the objective function of the algorithm, where each
column equal the vector (b, 1, ..., 1, b) in order to give the edge of the distribution a probability b
times higher to be sampled. In our function, instead of define the b parameter, users can defined
their own eta matrix so that they can give more complex probability design of sampling each strata
of the distribution instead of just be able to give more importance to both edges of the distribution.

Value

* If the simple option is set to TRUE (default behaviour): A numeric vector containing the indices
of the selected samples is returned

* If the simple option is set to FALSE: An object of class cLHS_result, with the following ele-
ments:

index_samples a vector giving the indices of the chosen samples.

sampled_data the sampled data.frame.

obj a vector giving the evolution of the objective function throughout the Metropolis-
Hastings iterations.

cost a vector giving the evolution of the cost function throughout the Metropolis-
Hastings iterations (if available).

Author(s)

Pierre Roudier

References

*For the initial cLHS method:

Minasny, B. and McBratney, A.B. 2006. A conditioned Latin hypercube method for sampling in
the presence of ancillary information. Computers and Geosciences, 32:1378-1388.

*For the DLHS method:

Minasny, B. and A. B. McBratney, A.B.. 2010. Conditioned Latin Hypercube Sampling for Cal-
ibrating Soil Sensor Data to Soil Properties. In: Proximal Soil Sensing, Progress in Soil Science,
pages 111-119.

*For the cost-constrained implementation:
Roudier, P., Beaudette, D.E. and Hewitt, A.E. 2012. A conditioned Latin hypercube sampling algo-
rithm incorporating operational constraints. In: Digital Soil Assessments and Beyond. Proceedings
of the 5th Global Workshop on Digital Soil Mapping, Sydney, Australia.

See Also

plot.cLHS_result

6 cLHS result

Examples

df <- data.frame(

a = runif(1000),

b = rnorm(1000),

c = sample(LETTERS[1:5], size = 1000, replace = TRUE)
)

Returning the indices of the sampled points
res <- clhs(df, size = 50, progress = FALSE, simple = TRUE)
str(res)

Returning a cLHS_result object for plotting using C++

res <- clhs(df, size = 50, use.cpp = TRUE, iter = 5000, progress = FALSE, simple = FALSE)
str(res)

plot(res)

Method DLHS with a linear increase of the strata weight (i.e. probability to be sampled)
from 1 for the middle starta to 3 for the edge of the distribution

linear_increase <- 1+(2/24)*0:24

eta <- matrix(c(rev(linear_increase), linear_increase), ncol = 2, nrow = 50)

set.seed(1)

res <- clhs(df, size = 50, iter = 100, eta = eta, progress = FALSE, simple = FALSE)
str(res)

plot(res)

cLHS_result Conditioned Latin Hypercube Sampling result

Description

A S3 class describing a cLHS result.

Value

An object of class cLHS_result contains the following slots:

index_samples a vector giving the indices of the chosen samples.
sampled_data the sampled data.frame.

obj a vector giving the evolution of the objective function throughout the Metropolis-
Hastings iterations.

cost a vector giving the evolution of the cost function throughout the Meropolis-
Hastings iterations, if available, otherwise NULL.

Author(s)

Pierre Roudier

CppLHS 7
See Also
clhs
CppLHS This is the internal Cpp function used to run the metropolis hasting
algorithm if use.cpp = T. In general, it shouldn’t be used as a stand
alone function, because some preprocessing is done in R
Description

This is the internal Cpp function used to run the metropolis hasting algorithm if use.cpp = T. In
general, it shouldn’t be used as a stand alone function, because some preprocessing is done in R

Arguments

XA

cost
strata
include
idx
factors
i_fact
nsample
cost_mode
iter
wCont
wFact
wCorr
etaMat
temperature
tdecrease

length_cycle

Value

matrix of data - must be numeric (factors are converted to numeric in R)
cost vector (0 if no cost)

matrix of continuous strata

matrix of included data

integer vector of rows from which sampling is allowed
boolean factor flag

indices of factors in XA

number of samples

bool cost flag

number of iterations

continuous weight

factor weights

correlation weights

eta matrix - either all 1, or user input

initial temperature

temperature decrease every length_cycle iterations

number of iterations between temperature decrease

list with sampled data, indices, objective values, cost value, and final continuous weights for each

sample

8 plot.cLHS_result
plot.cLHS_result Plot cLHS results

Description
Produces a plot illustrating the result of a cLHS sampling procedure.

Usage
S3 method for class 'cLHS_result'
plot(x, modes = "obj", ...)

Arguments
X Object of class “cLHS_result”.
modes A character vector describing the plot to produce (see Details)

Other ggplot2 plotting parameters.

Details
The subplots to be included in the final illustration are controlled by the mode option: - "obj" adds
the evolution of the objective function over the iterations - "cost” adds the evolution of the cost
function over the iterations (if available in x) - "hist" adds the comparison of the distributions of
each variables in both the original object and the sampled result using histogram plots (for contin-
uous variables). - "dens” adds the comparison of the distributions of each variables in both the
original object and the sampled result using density plots (for continuous variables). - "box" adds
the comparison of the distributions of each variables in both the original object and the sampled
result using boxplots (for continuous variables).

Author(s)
Pierre Roudier

See Also
clhs

Examples

df <- data.frame(
a = runif(1000),
b = rnorm(1000),
c = sample(LETTERS[1:5], size = 1000, replace = TRUE)

res <- clhs(df, size = 50, iter = 1000, use.cpp = FALSE, progress = FALSE, simple = FALSE)

You can plot only the objective function

similarity_buffer 9

plot(res, mode = "obj")

Or you can compare the distribution in the original object
and in the sampled result
plot(res, mode = c("obj", "box"))

similarity_buffer Gower similarity analysis

Description

Calculates Gower’s similarity index for every pixel within an given radius buffer of each sampling
point

Usage

similarity_buffer(
covs,
pts,
buffer,
fac = NA,
metric = "gower",
stand = FALSE,

)
Arguments
covs raster stack of environmental covariates
pts sampling points, object of class SpatialPointsDataframe
buffer Radius of the disk around each point that similarity will be calculated
fac numeric, can be > 1, (e.g., fac = ¢(2,3)). Raster layer(s) which are categorical
variables. Set to NA if no factor is present
metric character string specifying the similarity metric to be used. The currently avail-
able options are "euclidean", "manhattan” and "gower" (the default). See daisy
from the cluster package for more details
stand logical flag: if TRUE, then the measurements in x are standardized before cal-
culating the dissimilarities.
passed to plyr::1lply
Value

a RasterStack

10 similarity_buffer

Author(s)

Colby Brungard

References

Brungard, C. and Johanson, J. 2015. The gate’s locked! I can’t get to the exact sampling spot... can
I sample nearby? Pedometron, 37:8—10.

Examples

library(raster)
library(sp)

data(meuse.grid)

coordinates(meuse.grid) = ~x+y
proj4string(meuse.grid) <- CRS("EPSG:28992")
gridded(meuse.grid) = TRUE

ms <- stack(meuse.grid)

suppressWarnings(RNGversion("”3.5.0"))

set.seed(1)

pts <- clhs(ms, size = 3, iter = 100, progress = FALSE, simple = FALSE)
gw <- similarity_buffer(ms, pts$sampled_data, buffer = 500)

plot(gw)

Index

* sampling
clhs-package, 2

clhs, 3,8
clhs-package, 2
cLHS_result, 6
CppLHS, 7

plot.cLHS_result, 5, 8

similarity_buffer, 9

11

	clhs-package
	clhs
	cLHS_result
	CppLHS
	plot.cLHS_result
	similarity_buffer
	Index

