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2 chisquare

chisquare R function for Chi-square, (N-1) Chi-square, and G-Square test
of independence, power calculation, measures of association, and
standardised/moment-corrected standardised/adjusted standardised
residuals, visualisation of odds ratio in 2xk tables (where k >= 2)

Description

The function performs the chi-square test (both in its original format and in the N-1 version) and the
G-square test of independence on the input contingency table. It also calculates the retrospective
power of the traditional chi-square test and various measures of categorical association for tables
of any size, returns standardised, moment-corrected standardised, adjusted standardised residuals
(with indication of their significance), Quetelet Index, IJ association factor, adjusted standardised
counts, and the chi-square-maximising version of the input table. It also calculates relative and ab-
solute contributions to the chi-square statistic. The p-value associated with the chi-square statistic
is also computed via both permutation-based and Monte Carlo methods, using the exact p-value
calculation method of Phipson & Smyth (2010), which ensures that p-values are never zero and that
Type I error rates are correctly controlled. Nicely-formatted output tables are rendered. Optionally,
in 2xk tables (where k >= 2), a plot of the odds ratios can be rendered.

Visit this LINK to access the package’s vignette.

Usage

chisquare(
data,
B = 1000,
plot.or = FALSE,
reference.level = 1,
row.level = 1,
or.alpha = 0.05,
power.alpha = 0.05,
adj.alpha = FALSE,
marginal.type = "average",
custom.row.totals = NULL,
custom.col.totals = NULL,
format = "short",
render.all.tables = FALSE,
graph = FALSE,
oneplot = TRUE,
tfs = 13

)

Arguments

data Dataframe containing the input contingency table.

https://drive.google.com/file/d/1WxRUOpKUGcHW8OwMJLS_uy5QmLaCplCa/view?usp=sharing
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B Number of resamples for all simulation-based computations. This parameter
controls: (1) the number of permutations for the permutation-based chi-square
test, (2) the number of Monte Carlo simulations for the Monte Carlo chi-square
test, and (3) the number of bootstrap samples for computing confidence intervals
around the W coefficient and PEM values. Default is 999, which gives minimum
p-value = 0.001, p-value resolution = 0.001, and stable bootstrap percentiles. For
publication-quality results, users might want to use B = 9999 (minimum p-value
= 0.0001). P-values are calculated using the exact method of Phipson & Smyth
(2010): p = (B + 1)/(m + 1), where B is the count of simulated statistics at least
as extreme as observed, and m is the number of simulations.

plot.or Takes TRUE or FALSE (default) if the user wants a plot of the odds ratios to be
rendered (only for 2xk tables, where k >= 2).

reference.level

The index of the column reference level for odds ratio calculations (default: 1).
The user must select the column level to serve as the reference level (only for
2xk tables, where k >= 2).

row.level The index of the row category to be used in odds ratio calculations (1 or 2;
default: 1). The user must select the row level to which the calculation of the
odds ratios make reference (only for 2xk tables, where k >= 2).

or.alpha The significance level used for the odds ratios’ confidence intervals (default:
0.05).

power.alpha The significance level used for the calculation of the power of the traditional
chi-square test (default: 0.05).

adj.alpha Takes TRUE or FALSE (default) if the user wants or does not want the signif-
icance level of the residuals (standardised, adjusted standardised, and moment-
corrected) to be corrected using the Sidak’s adjustment method (see Details).

marginal.type Defines the target marginal sums used for table standardisation via Iterative
Proportional Fitting. It takes average (default) to have target row and column
marginals equal to the table’s grand total divided by the number of rows and
columns, respectively; it takes percent to have target marginals equal to frac-
tions of a grand total set to 100. See Details.

custom.row.totals

A vector of numbers indicating the target row marginals to be used for table
standardisation via Iterative Proportional Fitting (NULL by default; see Details).

custom.col.totals

A vector of numbers indicating the target column marginals to be used for table
standardisation via Iterative Proportional Fitting (NULL by default; see Details).

format Takes short (default) if the dataset is a dataframe storing a contingency table;
if the input dataset is a dataframe storing two columns that list the levels of the
two categorical variables, long will preliminarily cross-tabulate the levels of the
categorical variable in the 1st column against the levels of the variable stored in
the 2nd column.

render.all.tables

Takes TRUE or FALSE (default) if the user wants or does not want all the ’gt’
tables to be automatically rendered.
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graph Takes TRUE or FALSE (default) if the user wants or does not want to plot the
permutation and Monte Carlo distribution of the chi-square statistic across the
number of simulated tables set by the B parameter.

oneplot Takes TRUE (default) or FALSE if the user wants or does not want to render of
the permutation and Monte Carlo distribution in the same plot.

tfs Numerical value to set the size of the font used in the main body of the various
output tables (13 by default).

Details

HYPOTHESIS TESTING AND POWER ANALYSIS

Suggestion of a suitable chi-square testing method
The first rendered table includes a suggestion for the applicable chi-squared test method, derived
from an internal analysis of the input contingency table. The decision logic used is as follows:

For 2x2 tables:
- if the grand total is equal to or larger than 5 times the number of cells, the traditional Chi-Square
test is suggested. Permutation or Monte Carlo methods can also be considered.

- if the grand total is smaller than 5 times the number of cells, the minimum expected count is
checked:
(A) if it is equal to or larger than 1, the (N-1)/N adjusted Chi-Square test is suggested, with an
option for Permutation or Monte Carlo methods.
(B) if it is less than 1, the Permutation or Monte Carlo method is recommended.

For tables larger than 2x2:
- the logic is similar to that for 2x2 tables, with the same criteria for suggesting the traditional Chi-
Square test, the (N-1)/N adjusted test, or the Permutation or Monte Carlo methods.

The rationale of a threshold for the applicability of the traditional chi-square test corresponding to
5 times the number of cells is based on the following.

Literature indicates that the traditional chi-squared test’s validity is not as fragile as once thought,
especially when considering the average expected frequency across all cells in the cross-tab, rather
than the minimum expected value in any single cell. An average expected frequency of at least 5
across all cells of the input table should be sufficient for maintaining the chi-square test’s reliability
at the 0.05 significance level.

As a consequence, a table’s grand total equal to or larger than 5 times the number of cells should
ensure the applicability of the traditional chi-square test (at alpha 0.05).

See: Roscoe-Byars 1971; Greenwood-Nikulin 1996; Zar 2014; Alberti 2024.

For the rationale of the use of the (N-1)/N adjusted version of the chi-square test, and for the
permutation and Monte Carlo method, see below.

Chi-square statistics adjusted using the (N-1)/N adjustment
The adjustment is done by multiplying the chi-square statistics by (N-1)/N, where N is the table
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grand total (sample size). The p-value of the corrected statistic is calculated the regular way (i.e.,
using the same degrees of freedom as in the traditional test). The correction seems particularly rel-
evant for tables where N is smaller than 20 and where the expected frequencies are equal or larger
than 1. The corrected chi-square test proves more conservative when the sample size is small. As N
increases, the term (N-1)/N approaches 1, making the adjusted chi-square value virtually equivalent
to the unadjusted value.

See: Upton 1982; Rhoades-Overall 1982; Campbel 2007; Richardson 2011; Alberti 2024.

Permutation-based and Monte Carlo p-value for the chi-square statistic
The p-value of the observed chi-square statistic is also calculated using both a permutation-based
and a Monte Carlo approach. In the first case, the dataset is permuted B times (999 by default),
whereas in the second method B establishes the number of random tables generated under the null
hypothesis of independence (999 by default).

Important: P-values are computed using the method of Phipson & Smyth (2010), which calculates
exact p-values when permutations are randomly drawn. The formula used is p = (B + 1)/(m + 1),
where B is the number of simulated test statistics at least as extreme as the observed statistic, and m
is the total number of simulations. This approach treats the observed data as one valid arrangement
under the null hypothesis, ensuring that:

• P-values are never exactly zero (minimum p-value = 1/(m + 1))

• Type I error rates are correctly controlled

• The test has the proper size, even when the number of simulations is relatively small

The same value of B is also used to generate bootstrap samples for computing confidence intervals
around certain effect size measures (W coefficient and PEM values). This ensures computational
efficiency and consistency across all simulation-based estimates.

As for the permutation method, the function does the following internally:
(1) Converts the input dataset to long format and expands to individual observations;
(2) Calculates the observed chi-squared statistic;
(3) Randomly shuffles (B times) the labels of the levels of one variable, and recalculates chi-squared
statistic for each shuffled dataset;
(4) Computes the p-value based on the distribution of permuted statistics (see below).

For the rationale of the permutation-based approach, see for instance Agresti et al 2022.

For the rationale of the Monte Carlo approach, see for instance the description in Beh-Lombardo
2014: 62-64.

Both distributions can be optionally plotted setting the graph parameter to TRUE.

Retrospective Power of the Traditional Chi-Square Test
The function calculates the (highly controversial) retrospective power of the traditional chi-square
test, which is the probability of correctly rejecting the null hypothesis when it is false. The power
is determined by the observed chi-square statistic, the sample size, and the degrees of freedom,
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without explicitly calculating an effect size, following the method described by Oyeyemi et al.
2010.

The degrees of freedom are calculated as (number of rows - 1) * (number of columns - 1). The alpha
level is set by default at 0.05 and can be customized using the power.alpha parameter. The power
is then estimated using the non-centrality parameter based on the observed chi-square statistic.

The calculation involves determining the critical chi-squared value based on the alpha level and
degrees of freedom, and then computing the probability that the chi-squared distribution with the
given degrees of freedom exceeds this critical value.

The resulting power value indicates how likely the test is to detect an effect if one exists. A power
value close to 1 suggests a high probability of detecting a true effect, while a lower value indicates
a higher risk of a Type II error. Typically, a power value of 0.8 or higher is considered robust in
most research contexts.

DECOMPOSITION OF THE CHI-SQUARE STATISTIC

Cells’ relative contribution (in percent) to the chi-square statistic
The cells’ relative contribution (in percent) to the chi-square statistic is calculated as:

chisq.values/chisq.stat ∗ 100, where

chisq.values and chisq.stat are the chi-square value in each individual cell of the table and the value
of the chi-square statistic, respectively. The average contribution is calculated as 100/(nr ∗ nc),
where nr and nc are the number of rows and columns in the table respectively.

Cells’ absolute contribution (in percent) to the chi-square statistic
The cells’ absolute contribution (in percent) to the chi-square statistic is calculated as:

chisq.values/n ∗ 100, where

chisq.values and n are the chi-square value in each individual cell of the table and the table’s grant
total, respectively. The average contribution is calculated as sum of all the absolute contributions
divided by the number of cells in the table.

For both the relative and absolute contributions to the chi-square, see: Beasley-Schumacker 1995:
90.

TABLE STANDARDISATION

Table standardisation via Iterative Proportional Fitting
The function internally standardises the input contingency table via the Iterative Proportional Fit-
ting (IPF) routine, described for instance in Reynolds 1977: 32-33. The standardised table is re-
turned and rendered by the function.

The standardisation is performed so that the rows feature the same sums, and the columns feature
the same sum, while keeping the table’s grand total unchanged. This removes the effect of skewed
marginal distributions, while preserving the association structure of the original table.
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The rationale for table standardisation is that many association measures, among which Cramer’s V,
are affected by the skewness in the marginal distributions. Coefficients calculated on standardised
tables are comparable across tables because the impact of different marginal distributions is con-
trolled for. Table standardisation thus serves as a preliminary step towards coefficients comparison
across tables.

The target row and column marginals used in the standardisation process are set using the marginal.type,
custom.row.totals, and custom.col.totals parameters.

Specifying target marginals for table standardisation
The parameters marginal.type, custom.row.totals, and custom.col.totals control the target
marginal sums for the Iterative Proportional Fitting algorithm. Users should follow one of two ap-
proaches:

Approach 1: Use a predefined marginal type (recommended for standard analyses)
Set both custom.row.totals = NULL and custom.col.totals = NULL, and specify marginal.type:

• marginal.type = "average" (default): Each row marginal is set to the mean of the observed
row sums, and each column marginal is set to the mean of the observed column sums. For
example, in a 3×4 table with observed row sums [30, 50, 40] and column sums [20, 25, 35,
40], the target row marginals would be [40, 40, 40] and the target column marginals would be
[30, 30, 30, 30].

• marginal.type = "percent": Row and column marginals are set so that the grand total
equals 100, with equal marginals. In a 3×4 table, each row target would be 33.33 and each
column target would be 25. This is particularly useful for interpretability when comparing
across tables.

Approach 2: Specify both custom marginals (for specific analytical requirements)
Provide both custom.row.totals and custom.col.totals as numeric vectors:

• custom.row.totals: Must be a numeric vector with length equal to the number of rows in
the table. Each element specifies the target marginal sum for the corresponding row.

• custom.col.totals: Must be a numeric vector with length equal to the number of columns
in the table. Each element specifies the target marginal sum for the corresponding column.

• When both custom marginals are provided, marginal.type is ignored.

• Ensure that the sum of custom.row.totals equals the sum of custom.col.totals to main-
tain a consistent target grand total.

Important: The function technically allows specifying custom marginals for only one dimension
(with marginal.type determining the other), but this is not recommended as it may result in in-
consistent target grand totals and ambiguous standardisation outcomes.
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It goes without saying that any target marginals can be chosen in the standardisation process. The
choice of target values affects the scale of the standardised counts but not their relative relationships.
By setting all the row and columns sums to unity, the function follows Rosenthal-Rosnow 2008.

In the iterative procedure, the convergence to the established marginals is reached when the counts
obtained in a given iteration do not differ from the ones obtained in the previous iteration by more
than a threshold internally set to 0.001. The maximum number of iterations is internally set to
10,000 to prevent infinite loop; after that, the convergence is deemed as failed.

The standardised table is used as the basis for computing Cramer’s V standardised (see below under
Measures of Categorical Association) and for the adjusted standardised counts (see below under
Post-Hoc Analysis).

For table standardisation as a preliminary step towards coefficients comparison across tables, see
for example Smith 1976; Reynolds 1977; Liu 1980.

See also: Fienberg 1971; Rosenthal-Rosnow 2008.

CHI-SQUARE-MAXIMISING TABLE

Chi-square-maximising table
The chi-square-maximising table is the version of the input cross-tab that, while preserving the
marginal configuration, produces the largest divergence between the observed and the expected
counts and, therefore, the maximum chi-squared value achievable given the observed marginals.

The table is worked out using the routine described by Berry and colleagues. This allocation routine
effectively maximises the chi-square statistic by concentrating (to the maximum extent possible
given the marginals) the levels of one variable into specific levels of the other.

As Berry and colleagues have noted, there can be alternative positions for the zeros in the chi-
square-maximising table, but the obtained non-zero counts are the only ones that allow the maximi-
sation of the chi-squared statistic.

The chi-square-maximising table is used to compute Cramer’s V max and C max, which are in turn
used to compute Cramer’s V corrected (equal to phi-corrected for 2x2 tables) and C corrected. For
the latter two, see further below.

On the chi-square-maximising table, see Berry et al. 2018.

POST-HOC ANALYSIS

Standardised residuals
The standardised residuals are calculated as follows:

(observed− expected)/sqrt(expected), where

observed and expected are the observed and expected frequencies for each cell. The standardised
residuals follow approximately a standard normal distribution under the null hypothesis of indepen-
dence. However, they are not truly standardised because they have a non-unit variance, which is
why the adjusted standardised residuals (see below) should be preferred for formal inference.

Adjusted standardised residuals
The adjusted standardised residuals are calculated as follows:



chisquare 9

stand.res[i, j]/sqrt((1− sr[i]/n) ∗ (1− sc[j]/n)), where

stand.res is the standardised residual for cell ij, sr is the row sum for row i, sc is the column sum
for column j, and n is the table grand total. The adjusted standardised residuals should be used in
place of the standardised residuals since the latter are not truly standardised because they have a
non-unit variance. The standardised residuals therefore underestimate the divergence between the
observed and the expected counts. The adjusted standardised residuals (and the moment-corrected
ones) correct that deficiency.

See: Haberman 1973.

Moment-corrected standardised residuals
The moment-corrected standardised residuals are calculated as follows:

stand.res/(sqrt((nr − 1) ∗ (nc− 1)/(nr ∗ nc))), where

stand.res is each cell’s standardised residual, nr and nc are the number of rows and columns respec-
tively.

See Garcia-Perez-Nunez-Anton 2003: 827.

Significance of the residuals
The significance of the residuals (standardised, moment-corrected standardised, and adjusted stan-
dardised) is assessed using alpha 0.05 or, optionally (by setting the parameter adj.alpha to TRUE),
using an adjusted alpha calculated using the Sidak’s method:

alpha.adj = 1− (1− 0.05)(1/(nr ∗ nc)), where

nr and nc are the number of rows and columns in the table respectively. The adjusted alpha is then
converted into a critical two-tailed z value.

See: Beasley-Schumacker 1995: 86, 89.

Standardised median polish residuals
These residuals are calculated by applying median polish to the log-transformed counts, which
generates a resistant fit that is less affected by outliers than traditional methods. The (Pearson)
residuals are standardised by dividing the difference between observed and robustly fitted values
by the square root of the fitted values. This approach addresses the problems of "masking" and
"swamping" that can occur with traditional residuals (Simonoff 2003). Masking occurs when two
or more outliers effectively "hide" each other so they are not identified, while swamping occurs
when outliers draw the model fit towards themselves enough that non-outlying cells are mistakenly
identified as outliers. The median polish method is resistant to both these effects.

Importantly, unlike traditional standardised residuals, these median polish residuals should not be
interpreted with reference to the normal distribution. Instead, as recommended by Simonoff (2003),
values with absolute magnitude greater than 3 are generally considered extreme. In the rendered
output table, cells with residuals greater than 3 are highlighted in red, while those with residuals
less than -3 are highlighted in blue.
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See: Mosteller-Parunak 1985; Simonoff 2003.

Adjusted standardised median polish residuals
These residuals are computed in the same manner as the standardised ones, but they are adjusted by
dividing the standardised median polish residuals by adjustment factors calculated as sqrt((1-row
prop)*(1-col prop)) for each cell (Haberman 1973), where row prop and col prop are the row and
column proportions of the observed counts. This adjustment improves the comparison of residuals
across different cells by taking into account their varying variances due to different positions in the
table, while maintaining the resistance to outliers provided by the median polish approach.

As with the (un-adjusted) standardised median polish residuals, these adjusted residuals are not
interpreted with reference to the normal distribution. The same threshold of absolute values greater
than 3 is used to identify extreme values, which are highlighted in red (>3) or blue (<-3) in the
output table.

See: Mosteller-Parunak 1985.

Quetelet Index and IJ association factor
The Quetelet Index expresses the relative change in probability in one variable when considering
the association with the other. The sign indicates the direction of the change, that is, whether the
probability increases or decreases, compared to the probability expected under the hypothesis of
independence. The IJ association factor is centred around 1.0 and represents the factor by which
the probability in one variable changes when considering the association with the other. A decrease
in probability is indicated by a factor smaller than 1.

The Quetelet index is computes as:

(observedfreq/expectedfreq)− 1

The IJ association factor is computed as:

observedfreq/expectedfreq

The thresholds for an IJ factor indicating a noteworthy change in probability, based on Agresti
2013, are: "larger than 2.0" and "smaller than 0.5". The thresholds for the Quetelet Index are based
on those, and translate into "larger than 1.0" and "smaller than -0.50". For example, a Quetelet
index greater than 1.0 indicates that the observed probability is more than double the expected
probability under independence, corresponding to an increase of over 100 percent. Similarly, a
Quetelet index less than -0.5 indicates that the observed probability is less than half the expected
probability, corresponding to a substantial decrease of over 50 percent.

For the Quetelet Index, see: Mirkin 2023.

For the IJ association factor, see: Agresti 2013; Fagerland et al 2017. Note that the IJ association
factor is called ’Pearson ratio’ by Goodman 1996.

Percentage of Maximum Deviation (PEM)
The PEM is a standardised measure of local association in contingency tables that is calculated
separately for each cell. For any given cell, it quantifies how far the observed frequency deviates
from the expected frequency under independence, relative to the maximum possible deviation for
that cell given the marginal constraints.
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For each cell, when the observed frequency exceeds the expected (positive association), PEM equals
(observed - expected)/(minimum of row or column total - expected) * 100. When observed is less
than expected (negative association), PEM equals (observed - expected)/expected * 100. Values
range from -100 indicates independence, positive values indicate attraction between categories, and
negative values indicate repulsion.

Following established guidelines, PEM values under 5 values over 10 exceptionally strong relation-
ships. The PEM’s key advantages include its standardised scale enabling comparisons across cells,
its consideration of marginal constraints, and its intuitive percentage interpretation.

Confidence intervals for each cell’s PEM are computed using basic bootstrap resampling. The
procedure generates B resampled contingency tables (with B set by default to 999, but can be
customised by the user) by drawing with replacement from the original data, calculates the PEM
for each cell in each resampled table, and uses the empirical percentiles of the bootstrap distribution
to construct confidence intervals. Specifically, for a 95perc confidence interval, the 2.5th and 97.5th
percentiles of the bootstrap distribution are used as the lower and upper bounds. This approach
provides a measure of the sampling variability in the PEM estimates without making distributional
assumptions.

See: Cibois 1993; Lefèvre-Champely 2009.

Adjusted standardised counts
The function computes adjusted standardised counts for the input contingency table. It first stan-
dardises the counts via Iterative Proportional Fitting (see above under Table Standardisation) so
that all row and column totals equal unity; then adjusts these standardised counts by subtracting the
table’s grand mean (that is, the grand total divided by the number of cells).

The resulting adjusted standardised counts isolate the core association structure of the contingency
table by removing the confounding effects of marginal distributions. This allows for meaningful
comparisons across different tables, even when the original tables have different marginal totals.

In the adjusted standardised counts, a value of 0 indicates independence between the row and col-
umn variables for that cell. Positive values indicate a higher association than expected under inde-
pendence, while negative values indicate a lower association than expected.

Unlike standardised residuals, these adjusted standardised counts can be directly compared across
tables of the same size, making them particularly useful for comparative analyses across different
samples, time periods, or contexts.

Goodman-Kruskal residuals
These residuals help identify how categories of one variable influence the predictability of cate-
gories of the other variable. Essentially, they help understand the association structure in the input
cross-tab in terms of predictability. Two tables are rendered (and also returned): one considering the
column variable as independent, one considering the row variable as independent. These residuals
nicely complement the use of Goodman-Kruskal lambda as global measure of association with a
Proportional Reduction of Error flavour.

For more details on these residuals, see: Kroonenberg-Lombardo 2010; Beh-Lombardo 2021.

MEASURES OF CATEGORICAL ASSOCIATION

The function produces the following measures of categorical association, organised by their under-
lying statistical foundation:

Chi-square-based measures:
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• Phi (with indication of the magnitude of the effect size; only for 2x2 tables)

• Phi max (used to compute Phi corrected; only for 2x2 tables)

• Phi corrected (with indication of the magnitude of the effect size; only for 2x2 tables)

• Phi signed (with indication of the magnitude of the effect size; only for 2x2 tables)

• Adjusted contingency coefficient C (with indication of the magnitude of the effect)

• Maximum-corrected contingency coefficient C (with indication of the magnitude of the effect)

• Cramer’s V (with 95perc confidence interval; includes indication of the magnitude of the
effect)

• Cramer’s V max (used to compute V corrected; for tables of any size)

• Cramer’s V corrected (with indication of the magnitude of the effect)

• Cramer’s V standardised (with indication of the magnitude of the effect)

• Bias-corrected Cramer’s V (with indication of the magnitude of the effect)

• Cohen’s w (with indication of the magnitude of the effect)

• W coefficient (includes 95perc confidence interval and magnitude of the effect)

Margin-free measures:

• Yule’s Q (only for 2x2 tables, includes 95perc confidence interval, p-value, and indication of
the magnitude of the effect)

• Yule’s Y (only for 2x2 tables, includes 95perc confidence interval, p-value and indication of
the magnitude of the effect)

• Odds ratio (for 2x2 tables, includes 95perc confidence interval, p value, and indication of the
magnitude of the effect)

• Independent odds ratios (for tables larger than 2x2)

PRE (Proportional Reduction in Error) measures:

• Goodman-Kruskal’s lambda (both asymmetric and symmetric, with 95perc confidence inter-
val)

• Corrected version of lambda (both asymmetric and symmetric)

• Goodman-Kruskal’s tau (asymmetric, with 95perc confidence interval)

Chi-square-based measures

C corrected
The package computes the (unadjusted) C coefficient as well as its adjusted version (C adj), which
is equal to C divided by sqrt((k − 1)/k), where k is the number of rows or columns, whichever is
smaller (Sheskin 2011). The adjustment factor is equal to the maximum value C can attain on the
basis of the table’s size alone. However, that does not take into account the actual configuration of
the marginals (Berry et al. 2018). Therefore, a ’proper’ correction is based on dividing C by the
value it achieves in the chi-square-maximising table (see above). This maximum-corrected version
of C is computed by the package and reported as C corrected as opposed to C adj, which refers to the
first above-described adjustment. When interpreting the magnitude of the association, (unadjusted)
C is assessed against Cohen’s thresholds adjusted by C’s maximum possible value given the table’s
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marginals, while C adj and C corrected are assessed against the standard Cohen’s thresholds (scaled
by table’s size; see below).

For more details on on maximum-corrected C see: Berry et al. 2018.

Phi corrected
To refine the phi coefficient, scholars have introduced a corrected version. It accounts for the fact
that the original coefficient (1) does not always have a maximum achievable value of unity since
it depends on the marginal configuration, and therefore (2) it is not directly comparable across
tables with different marginals. To calculate phi-corrected, one first computes phi-max, which
represents the maximum possible value of phi under the given marginal totals. Phi-corrected is
equal to phi/phi-max.

For more details see: Cureton 1959; Liu 1980; Davenport et al. 1991; Rash et al. 2011; Alberti
2024.

See also Chi-square-maximising table above.

Cramer’s V and its 95perc confidence interval
The calculation of the 95perc confidence interval around Cramer’s V is based on Smithson 2003: 39-
41, and builds on the R code made available by the author on the web (http://www.michaelsmithson.online/stats/CIstuff/CI.html).

Cramér’s V corrected
Cramér’s V corrected addresses a fundamental limitation of the standard Cramér’s V coefficient: its
maximum achievable value depends on the marginal distribution of the table and rarely reaches 1.0,
even when there is perfect association. This makes direct comparisons of V values across tables
with different marginal configurations problematic.

To compute V corrected, the function first calculates V max, which represents the maximum possi-
ble value of Cramér’s V that could be achieved given the observed marginal totals. V max is derived
from the chi-square statistic computed on the chi-square-maximising table (see above), which rep-
resents the theoretical upper bound of association given the constraints imposed by the marginals.
V corrected is then calculated as the ratio V / V max.

This correction serves two important purposes:

• It scales V relative to its theoretically achievable maximum, allowing V corrected to range
from 0 to 1 under any marginal configuration. A value of 1.0 indicates that the observed asso-
ciation is as strong as is possible given the marginal constraints.

• It enables meaningful comparisons of association strength across tables with different marginal
distributions. Two tables may have identical uncorrected V values, but if one has more skewed
marginals (and thus a lower V max), its V corrected will be higher, appropriately reflecting
that the observed association represents a larger proportion of what is theoretically possible in
that table.

The interpretation of V corrected follows standard Cohen thresholds scaled for table size (see below
under Indication of the magnitude of the association), since the correction ensures the coefficient is
already scaled relative to its maximum achievable value.
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For theoretical background, see: Berry et al. 2018.

See also Chi-square-maximising table and Phi corrected above.

Cramer’s V standardised
This version of the coefficient is computed on the standardised table (see above under Table Stan-
dardisation), which is returned and rendered by the function. Since a number of association mea-
sures, among which Cramer’s V, are affected by the skewness in the marginal distributions, the
original table is first standardised and then Cramer’s V is computed.

The rationale of the use of standardised tables as basis to compute Cramer’s V is that coefficients
calculated on standardised tables are comparable across tables because the impact of different
marginal distributions is controlled for.

The value obtained by subtracting the ratio Cramer’s V to Cramer’s V standardised from 1 gives an
idea of the reduction of the magnitude of V due to the skewness of the marginal sums (multiplied
by 100 can be interpreted as percentage reduction).

Bias-corrected Cramer’s V
The bias-corrected Cramer’s V is based on Bergsma 2013: 323–328.

W-hat coefficient
It addresses some limitations of Cramer’s V. When the marginal probabilities are unevenly dis-
tributed, V may overstate the strength of the association, proving pretty high even when the overall
association is weak. W is based on the distance between observed and expected frequencies. It
uses the squared distance to adjust for the unevenness of the marginal distributions in the table. The
indication of the magnitude of the association is based on Cohen 1988 (see above). Unlike Kvalseth
2018a, the calculation of the 95 percent confidence interval is based on a bootstrap approach, em-
ploying B resampled tables, and the 2.5th and 97.5th percentiles of the bootstrap distribution. B is
set by default to 1000, but can be customised by the user.

For more details see: Kvalseth 2018a.

Indication of the magnitude of the association as indicated by the chi-squared-based coeffi-
cients
The function provides indication of the magnitude of the association (effect size) for the phi, phi
signed, phi corrected, C, C adj, C corrected, Cramer’s V, V corrected, V standardised, V bias-
corrected, Cohen’s w, and W-hat.

The verbal articulation of the effect size is based on Cohen 1988, with an enhanced approach (build-
ing on Olivier-Bell 2013) to account for the maximum achievable values of certain measures.

For all measures, the classification follows these principles:

1. For uncorrected measures (Phi, Phi signed, C, Cramer’s V), Cohen’s thresholds are adjusted
(Olivier-Bell 2013) by multiplying them by the maximum achievable value of the coefficient given
the marginal distribution of the table (Phi max, C max given table’s marginals, V max). This
accounts for the fact that, in these measures, the maximum achievable value is 1.0 only under
specific marginal configurations.

2. For corrected measures (Phi corrected, C adj, C corrected, V corrected, V standardised), the stan-
dard Cohen’s thresholds are used, as these measures are already scaled relative to their maximum
values.
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3. For measures using standard Cohen thresholds (V bias-corrected, W), the original thresholds
scaled for table size are used without additional adjustment. These measures are not explicitly
maximum-corrected but benefit from the table size scaling.

4. Cohen’s w uses fixed thresholds (small 0.1, medium 0.3, large 0.5) regardless of table size.

For measures in groups 1-3 with input cross-tabs larger than 2x2, the Cohen’s thresholds are scaled
based on the table’s df, which (as per Cohen 1988) correspond to the smaller between the rows and
columns number, minus 1. On the basis of the table’s df, the thresholds are calculated as follows:

small effect: 0.100 / sqrt(min(nr,nc)-1)
medium effect: 0.300 / sqrt(min(nr,nc)-1)
large effect: 0.500 / sqrt(min(nr,nc)-1)

where nr and nc are the number of rows and number of columns respectively, and min(nr,nc)-1
corresponds to the table’s df. Essentially, the thresholds for a small, medium, and large effect are
computed by dividing the Cohen’s thresholds for a 2x2 table (df=1) by the square root of the input
table’s df.

This approach provides a nuanced interpretation of effect sizes that accounts for both table dimen-
sions and marginal configurations. For example:

- An uncorrected V of 0.25 in a 3x4 table with V max = 0.6 would be compared to thresholds that
are both scaled for the table’s df (2) and adjusted by V max. The adjusted large threshold would be
(0.500/sqrt(2)) × 0.6 = 0.212, making 0.25 a "large effect".

- A V corrected of 0.25 in the same table would be compared only to thresholds scaled for the
table’s df: 0.071 (small), 0.212 (medium), and 0.354 (large). Since 0.25 is between 0.212 and
0.354, it would be classified as a "medium effect".

- V bias-corrected and W would use the same thresholds as V corrected, without adjustment for
maximum values.

The function also returns and render a detailed summary table of all thresholds used for interpreting
effect sizes, providing transparency about the methodology and facilitating accurate reporting of
results.

See: Cohen 1988; Sheskin 2011; Olivier and Bell 2013; Alberti 2024.

Margin-free measures

Yule’s Q and Yule’s Y
Yule’s Q has a probabilistic interpretation. It tells us how much more likely is to draw pairs of
individuals who share the same characteristics (concordant pairs) as opposed to drawing pairs who
do not (discordant pairs).

Yule’s Y represents the difference between the probabilities in the diagonal and off-diagonal cells,
in the equivalent symmetric tables with equal marginals. In other words, Y measures the extent
to which the probability of falling in the diagonal cells exceeds the probability of falling in the
off-diagonal cells, in the standardised version of the table.

Note that, if either cross-tab’s diagonal features 0, the Haldane-Anscombe correction is applied to
both Q and Y. This results in a coefficient approaching, but not reaching, 1 in such circumstances,
with the exact value depending on the table’s frequencies. For more info on the correction, see the
Odds Ratio section below.

On Yule’s Q and Y, see Yule 1912.
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On Yule’s Y, see also Reynolds 1977.

On the probabilistic interpretation of Q, see: Davis 1971; Goodman-Kruskal 1979.

On the sensitivity of Yule’s Q and Pearson’s phi to different types of associations, see Alberti 2024.

Magnitude of the association as indicated by Yule’s Q and Yule’s Y
Given the relationship between Q and Y and the odds ratio, the magnitude of the association in-
dicated by Q and Y is based on the thresholds proposed by Ferguson 2009 for the odds ratio (see
below). Specifically, the thresholds for Q (in terms of absolute value) are:

• |Q| < 0.330 - Negligible
• 0.330 <= |Q| < 0.500 - Small
• 0.500 <= |Q| < 0.600 - Medium
• |Q| >= 0.600 - Large

For Yule’s Y (absolute value):

• |Y| < 0.171 - Negligible
• 0.171 <= |Y| < 0.268 - Small
• 0.268 <= |Y| < 0.333 - Medium
• |Y| >= 0.333 - Large

As noted earlier, the effect size magnitude for Yule’s Q and Yule’s Y is based on the above odds
ratio’s thresholds.

Odds Ratio
For 2x2 tables, a single odds ratio is computed.

For tables larger than 2x2, independent odds ratios are computed for adjacent rows and columns, so
representing the minimal set of ORs needed to describe all pairwise relationships in the contingency
table.

For tables of size 2xk (where k >= 2), pairwise odds ratios can be plotted (along with their confi-
dence interval) by setting the plor.or parameter to TRUE (see the Odd Ratios plot section further
down).

In all three scenarios, the Haldane-Anscombe correction is applied when zeros are present along
any of the table’s diagonals. This correction consists of adding 0.5 to every cell of the relevant 2x2
subtable before calculating the odds ratio. This ensures:

- For 2x2 tables: The correction is applied to the entire table if either diagonal contains a zero.
- For larger tables: The correction is applied to each 2x2 subtable used to calculate an independent
odds ratio, if that subtable has a zero in either diagonal.
- For 2xk tables: The correction is applied to each pairwise comparison that involves a zero in either
diagonal.

Note that, the Haldane-Anscombe correction results in a finite (rather than infinite) odds ratio, with
the exact value depending on the table’s frequencies.

On the Haldane-Anscombe correction, see: Fleiss et al 2003.

Odds Ratio effect size magnitude
The magnitude of the association indicated by the odds ratio is based on the thresholds (and corre-
sponding reciprocals) suggested by Ferguson 2009 (for other thresholds, see for instance Chen et al
2010):
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• OR < 2.0 - Negligible

• 2.0 <= OR < 3.0 - Small

• 3.0 <= OR < 4.0 - Medium

• OR >= 4.0 - Large

Odd Ratios plot
For 2xk table, where k >= 2:
by setting the plor.or parameter to TRUE, a plot showing the odds ratios and their 95percent confi-
dence interval will be rendered. The confidence level can be modified via the or.alpha parameter.

The odds ratios are calculated for the column levels, and one of them is to be selected by the user
as a reference for comparison via the reference.level parameter (set to 1 by default). Also, the
user may want to select the row category to which the calculation of the odds ratios makes reference
(using the row.level parameter, which is set to 1 by default).

As mentioned earlier, if any of the 2x2 subtables on which the odds ratio is calculated features zeros
along any of the diagonal, the Haldane-Anscombe correction is applied.

To better understand the rationale of plotting the odds ratios, consider the following example, which
uses on the famous Titanic data:

Create a 2x3 contingency table:
mytable <- matrix(c(123, 158, 528, 200, 119, 181), nrow = 2, byrow = TRUE)
colnames(mytable) <- c("1st", "2nd", "3rd")
rownames(mytable) <- c("Died", "Survived")

Now, we perform the test and visualise the odds ratios:
chisquare(mytable, plot.or=TRUE, reference.level=1, row.level=1)

In the rendered plot, we can see the odds ratios and confidence intervals for the second and third
column level (i.e., 2nd class and 3rd class) because the first column level has been selected as
reference level. The odds ratios are calculated making reference to the first row category (i.e.,
Died). From the plot, we can see that, compared to the 1st class, passengers on the 2nd class have
2.16 times larger odds of dying; passengers on the 3rd class have 4.74 times larger odds of dying
compared to the 1st class.

Note that if we set the row.level parameter to 2, we make reference to the second row category,
i.e. Survived:
chisquare(mytable, plot.or=TRUE, reference.level=1, row.level=2)

In the plot, we can see that passengers in the 2nd class have 0.46 times the odds of surviving
of passengers in the 1st class, while passengers from the 3rd class have 0.21 times the odds of
surviving of those travelling in the 1st class.

PRE (Proportional Reduction in Error) measures

Confidence Interval around Goodman-Kruskal’s Lambda

Confidence Interval Calculation
The 95 percent confidence interval around lambda uses the asymptotic variance formula (see, e.g.,
Reynolds 1977:50, equation 2.32) and is not truncated at zero, even though lambda itself ranges
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from 0 to 1. This approach correctly reflects sampling uncertainty. The variance formula assumes
multinomial sampling (simple random sample). For tables with fixed marginals (e.g. experimental
designs with fixed row or column totals), a different variance formula is needed (see Goodman-
Kruskal 1972 for details).

Special Properties of Lambda’s Sampling Distribution
Lambda has a degenerate sampling distribution at its boundaries. Specifically:

• If the population lambda = 0, then the sample lambda will always equal exactly 0

• If the population lambda = 1, then the sample lambda will always equal exactly 1

Inference Rules
Because of this degeneracy, hypothesis testing operates differently from standard measures:

1. If sample lambda = 0 exactly: We cannot reject the hypothesis that the population lambda =
0, regardless of confidence interval width. The observed value is consistent with no associa-
tion.

2. If sample lambda different from 0 (even by a tiny amount): We can definitively rule out
that the population lambda equals exactly zero, because a true zero would have produced a
sample estimate of exactly 0. However, confidence intervals extending below zero indicate
the population lambda might be very close to (but not equal to) zero.

Practical Interpretation Example
Suppose lambda = 0.033 with 95 percent CI [-0.004, 0.060]:

• Conclusion: The population lambda is not exactly zero (because we observed lambda =
0.033), but it could be very small (close to zero).

• Substantive meaning: There is statistically detectable predictive association, but it may be
trivially small in magnitude.

• Recommendation: Always report both the point estimate and the confidence interval. Focus
on the lower confidence interval bound to assess the minimum plausible association strength.

When Confidence Intervals Include Zero
A confidence interval that includes zero does not mean "no association" in the usual sense. Instead,
it indicates:

• The population lambda is definitely not exactly zero (if sample lambda different from 0)

• But the population lambda could be negligibly small (close to zero)

• The width of the confidence interval below zero indicates imprecision in estimating a small
non-zero parameter

For symmetric lambda and tau, similar logic applies, though their distributions are less degenerate
than asymmetric lambda.

For more details see: Reynolds 1977:48-51; Goodman-Kruskal 1972; Bishop et al. 2007:388-392.

Corrected Goodman-Kruskal’s lambda
The corrected Goodman-Kruskal’s lambda adeptly addresses skewed or unbalanced marginal prob-
abilities which create problems to the traditional lambda. By emphasizing categories with higher
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probabilities through a process of squaring maximum probabilities and normalizing with marginal
probabilities, this refined coefficient addresses inherent limitations of lambda.

For more details see: Kvalseth 2018b.

ADDITIONAL NOTES ON CALCULATIONS

Additional notes on calculations:

• the Phi coefficient is based on the chi-square statistic as per Sheskin 2011’s equation 16.21,
whereas the Phi signed is after Sheskin’s equation 16.20;

• the 2-sided p value of Yule’s Q is calculated following Sheskin 2011’s equation 16.24;

• Cohen’s w is calculated as V ∗ sqrt(min(nr, nc)− 1), where V is Cramer’s V, and nr and nc
are the number of rows and columns respectively; see Sheskin 2011: 679;

• the 95perc confidence interval around Goodman-Kruskal’s lambda is calculated as per
Reynolds 1977: 50;

• the symmetric version of Goodman-Kruskal’s lambda is calculated as per Reynolds 1984:
55-57;

• Goodman-Kruskal’s tau is calculated as per Reynolds 1984: 57-60;

• the 95perc confidence interval around Goodman-Kruskal’s tau is calculated as per Bishop
et al. 2007: 391-392.

Value

The function produces optional charts (distribution of the permuted chi-square statistic and a plot
of the odds ratios between a reference column level and the other ones, the latter only for 2xk
tables where k >= 2), and a number of output tables that are nicely formatted with the help of the
gt package. Note that these tables are all automatically rendered when the render.all.tables
parameter is set to TRUE (default is FALSE). The tables are returned in a list (see further down) so
that they can be separately and/or individually rendered.

The output ’gt’ tables are listed below:

• Input contingency table (with some essential analytical results annotated at the bottom)

• Expected frequencies

• Cells’ chi-square value

• Cells’ relative contribution (in percent) to the chi-square statistic (cells in RED feature a larger-
than-average contribution)

• Cells’ absolute contribution (in percent) to the chi-square statistic (colour same as above)

• Chi-square-maximising table (with indication of the associated chi-square value, that is, the
maximum value of the chi-square statistic achievable given the table margins)

• Standardised residuals (RED for large significant residuals, BLUE for small significant resid-
uals)

• Moment-corrected standardised residuals (colour same as above)

• Adjusted standardised residuals (colour same as above)

• Standardised median polish residuals
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• Adjusted standardised median polish residuals

• Quetelet Indices

• IJ association factors

• PEM (Percentage of Maximum Deviation from Independence)

• Adjusted standardised counts

• Goodman-Kruskal residuals (column variable as independent)

• Goodman-Kruskal residuals (row variable as independent)

• Input contingency table standardised via Iterative Proportional Fitting

• Table of independent odds ratios (for tables larger than 2x2)

• Effect Size Interpretation Thresholds (Chi-Square-Based Measures)

• Table of output statistics, p values, and association measures

Also, the function returns a list containing the following elements:

• input.table:

– crosstab: input contingency table.

• chi.sq.maxim.table:

– chi.sq.maximising.table: chi-square-maximising table.

• standardised.table:

– standard.table: standardised table on which Cramer’s V standardised is computed.

• chi.sq.related.results:

– exp.freq: table of expected frequencies.
– smallest.exp.freq: smallest expected frequency.
– avrg.exp.freq: average expected frequency.
– chisq.values: cells’ chi-square value.
– chisq.relat.contrib: cells’ relative contribution (in percent) to the chi-square statistic.
– chisq.abs.contrib: cells’ absolute contribution (in percent) to the chi-square statistic.
– chisq.statistic: observed chi-square value.
– chisq.p.value: p value of the chi-square statistic.
– chisq.max: chi-square value computed on the chi-square-maximising table.
– chi.sq.power: retrospective power of the traditional chi-square test.
– chisq.adj: chi-square statistic adjusted using the (N-1)/N correction.
– chisq.adj.p.value: p value of the adjusted chi-square statistic.
– chisq.p.value.perm: permutation-based p value, based on B permuted tables (see Details).
– chisq.p.value.MC: Monte Carlo p value, based on B random tables (see Details.

• G.square:

– Gsq.statistic: observed G-square value.
– Gsq.p.value: p value of the G-square statistic.

• post.hoc:

– stand.resid: table of chi-square standardised residuals.
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– mom.corr.stand.resid: table of moment-corrected standardised residuals.
– adj.stand.resid: table of adjusted standardised residuals.
– stand.med.pol.resid: table of standardised median polish residuals.
– adj.stand.med.pol.resid: table of adjusted standardised median polish residuals.
– Quetelet.Index: table of Quetelet indices.
– IJ.assoc.fact.: table of IJ association factors.
– PEM: table of PEM values plus bootstrap 95perc CI.
– adj.stand.counts: table of adjusted standardised counts.
– GK.residuals.col: table of Goodman-Kruskal residuals (column variable as independent)
– GK.residuals.row: table of Goodman-Kruskal residuals (row variable as independent)

• margin.free.assoc.measures:

– Yule’s Q: Q coefficient (only for 2x2 tables).
– Yule’s Q CI lower boundary: lower boundary of the 95perc CI.
– Yule’s Q CI upper boundary: upper boundary of the 95perc CI.
– Yule’s Q p.value: 2-tailed p value of Yule’s Q.
– Yule’s Y: Y coefficient (only for 2x2 tables).
– Yule’s Y CI lower boundary: lower boundary of the 95perc CI.
– Yule’s Y CI upper boundary: upper boundary of the 95perc CI.
– Yule’s Y p.value: 2-tailed p value of Yule’s Y.
– Odds ratio: odds ratio (for 2x2 tables).
– Odds ratio CI lower boundary: lower boundary of the 95perc CI.
– Odds ratio CI upper boundary: upper boundary of the 95perc CI.
– Odds ratio p.value: p value of the odds ratio.
– ORs: table of independent odds ratios (for tables larger than 2x2).

• chi.sq.based.assoc.measures:

– Phi.signed: signed Phi coefficient (only for 2x2 tables).
– Phi: Phi coefficient (only for 2x2 tables).
– Phi.max: maximum value of Phi given the marginals (only for 2x2 tables).
– Phi.corr: maximum-corrected Phi coefficient (equal to Phi/Phi max; only for 2x2 tables).
– C: contingency coefficient.
– C max given table’s size: maximum value of C given the size of the table.
– C.adj: adjusted contingency coefficient C (equal to C/Cmax given table’s size).
– C.max given table’s marginals: maximum value of C given the marginals.
– C.corr: maximum-corrected C coefficient (equal to C/Cmax given table’s marginals)
– Cramer’s V: Cramer’s V coefficient.
– Cramer’s V CI lower boundary: lower boundary of the 95perc CI.
– Cramer’s V CI upper boundary: upper boundary of the 95perc CI.
– Cramer’s V max: Maximum value of Cramer’s V given the marginals.
– Cramer’s V corr: corrected V coefficient (equal to V/Vmax).
– Cramer’s V standard.: Cramer’s V computed on the standardised table.
– 1-(Cramer’s V/V standard.): value indicating the reduction of the magnitude of V due to

the skewness of the marginal sums.
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– Cramer’s Vbc: bias-corrected Cramer’s V coefficient.
– w: Cohen’s w.
– W: W coefficient.
– W CI lower boundary: lower boundary of the bootstrap 95perc CI.
– W CI upper boundary: upper boundary of the bootstrap 95perc CI.

• PRE.assoc.measures:

– lambda (rows dep.): Goodman-Kruskal’s lambda coefficient (considering the rows being
the dependent variable).

– lambda (rows dep.) CI lower boundary: lower boundary of the 95perc CI.
– lambda (rows dep.) CI upper boundary: upper boundary of the 95perc CI.
– lambda (cols dep.): Goodman-Kruskal’s lambda coefficient (considering the columns

being the dependent variable).
– lambda (cols dep.) CI lower boundary: lower boundary of the 95perc CI.
– lambda (cols dep.) CI upper boundary: upper boundary of the 95perc CI.
– lambda (symmetric): Goodman-Kruskal’s symmetric lambda coefficient.
– lambda (symmetric) CI lower boundary: lower boundary of the 95perc CI.
– lambda (symmetric) CI upper boundary: upper boundary of the 95perc CI.
– lambda corrected (rows dep.): corrected version of the lambda coefficient (considering

the rows being the dependent variable).
– lambda corrected (cols dep.): corrected version of the lambda coefficient (considering

the columns being the dependent variable).
– lambda corrected (symmetric): corrected version of the symmetric lambda coefficient.
– tau (rows dep.): Goodman-Kruskal’s tau coefficient (considering the rows being the de-

pendent variable).
– tau (rows dep.) CI lower boundary: lower boundary of the 95perc CI.
– tau (rows dep.) CI upper boundary: upper boundary of the 95perc CI.
– tau (cols dep.): Goodman-Kruskal’s tau coefficient (considering the columns being the

dependent variable).
– tau (cols dep.) CI lower boundary: lower boundary of the 95perc CI.
– tau (cols dep.) CI upper boundary: upper boundary of the 95perc CI.

• gt.tables:

– input.table: gt table of input contingency table
– expected.frequencies: gt table of expected frequencies
– chisq.values: gt table of cells’ chi-square values
– relative.contributions: gt table of cells’ relative contribution to chi-square
– absolute.contributions: gt table of cells’ absolute contribution to chi-square
– chisq.max.table: gt table of chi-square-maximising table
– standardised.residuals: gt table of standardised residuals
– moment.corrected.residuals: gt table of moment-corrected standardised residuals
– adjusted.standardised.residuals: gt table of adjusted standardised residuals
– stand.med.pol.residuals: gt table of standardised median polish residuals
– adj.stand.med.pol.residuals: gt table of adjusted standardised median polish residuals
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– quetelet.index: gt table of Quetelet indices
– ij.association: gt table of IJ association factors
– PEM: gt table of PEM values and bootstrap 95perc CI
– adjusted.stand.counts: gt table of adjusted standardised counts
– gk.residuals.col: gt table of Goodman-Kruskal residuals (column variable as dependent)
– gk.residuals.row: gt table of Goodman-Kruskal residuals (row variable as dependent)
– standardised.table: gt table of standardised input contingency table
– odds.ratios: gt table of independent odds ratios (only for tables larger than 2x2)
– effect.size.thresholds: gt table of effect size interpretation thresholds (for chi-square-

based measures)
– analysis.report: gt table of output statistics

These gt tables can be accessed and re-rendered at any time using the standard print method
(e.g., print(results$gt.tables$input.table)). They can also be exported to various
formats using gt’s gtsave function. For example:

– HTML: gtsave(results$gt.tables$input.table, "mytable.html")

– PDF/PNG: gtsave(results$gt.tables$input.table, "mytable.pdf") or "mytable.png"
(requires the ’webshot2’ package)

– Word: gtsave(results$gt.tables$input.table, "mytable.docx") (requires the ’rmark-
down’ package)

– RTF: gtsave(results$gt.tables$input.table, "mytable.rtf")

– LaTeX: gtsave(results$gt.tables$input.table, "mytable.tex")

Note that the p-values returned in the above list are expressed in scientific notation, whereas the ones
reported in the output table featuring the tests’ result and measures of association are reported as
broken down into classes (e.g., <0.05, or <0.01, etc), with the exception of the Monte Carlo p-value.

The following examples, which use in-built datasets, can be run to familiarise with the function:

-perform the test on the in-built ’social_class’ dataset:
result <- chisquare(social_class)

-perform the test on a 2x2 subset of the ’diseases’ dataset:
mytable <- diseases[3:4,1:2]
result <- chisquare(mytable)

-perform the test on a 2x2 subset of the ’safety’ dataset:
mytable <- safety[c(4,1),c(1,6)]
result <- chisquare(mytable)

-build a toy dataset in ’long’ format (gender vs. opinion about death sentence):
mytable <- data.frame(GENDER=c(rep("F", 360), rep("M", 340)),OPINION=c(rep("oppose",
235), rep("favour", 125), rep("oppose", 160), rep("favour", 180)))

-perform the test specifying that the input table is in ’long’ format:
result <- chisquare(mytable, format="long")
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Examples

# Perform the analysis on a 2x2 subset of the in-built 'social_class' dataset
result <- chisquare(social_class[c(1:2), c(1:2)], B=9)

diseases Dataset: Cross-tabulation of quantity of tobacco smoked daily vs.
cause of death

Description

Cross-tabulation (15x4) of the amount of tobacco smoked on a daily basis (in gramms) against
cause of death.
After: Velleman P F, Hoaglin D C, Applications, Basics, and Computing of Exploratory Data Anal-
ysis, Wadsworth Pub Co 1984 (Exhibit 8-1)

Usage

data(diseases)
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Format

dataframe

safety Dataset: Cross-tabulation of people’s feeling of safety vs. town size

Description

Cross-tabulation (4x6).

Usage

data(safety)

Format

dataframe

social_class Dataset: Cross-tabulation of social class vs. diagnostic category for a
sample of psychiatric patients

Description

Cross-tabulation (3x4) after: Everitt B.S (1992), The Analysis of Contingency Tables, Chapman&Hall/CRC,
second edition, table 3.13.

Usage

data(social_class)

Format

dataframe
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