Package ‘c(NORM’

October 14, 2025

Title Continuous Norming
Version 3.5.1

Description A comprehensive toolkit for generating continuous test norms in
psychometrics and biometrics, and analyzing model fit. The package offers
both distribution-free modeling using Taylor polynomials and parametric
modeling using the beta-binomial and the 'Sinh-Arcsinh' distribution.
Originally developed for achievement tests, it is applicable to a wide
range of mental, physical, or other test scores dependent on continuous or
discrete explanatory variables. The package provides several advantages:
It minimizes deviations from representativeness in subsamples, interpolates
between discrete levels of explanatory variables, and significantly reduces
the required sample size compared to conventional norming per age group.
cNORM enables graphical and analytical evaluation of model fit,
accommodates a wide range of scales including those with negative and
descending values, and even supports conventional norming. It generates
norm tables including confidence intervals. It also includes methods for
addressing representativeness issues through Iterative Proportional Fitting.
Based on Lenhard et al. (2016)
<doi:10.1177/1073191116656437>, Lenhard et al. (2019)
<doi:10.1371/journal.pone.0222279>, Lenhard and Lenhard (2021)
<doi:10.1177/0013164420928457> and Gary et al. (2023)
<doi:10.1007/s00181-023-02456-0>.

License AGPL-3

URL https://www.psychometrica.de/cNorm_en.html,
https://github.com/WLenhard/cNORM

BugReports https://github.com/WLenhard/cNORM/issues
Depends R (>=4.0.0)
Imports ggplot2 (>=3.5.0), leaps (>=3.1)

Suggests foreign, knitr, markdown, readxl, rmarkdown, shiny,
shinycssloaders, testthat (>= 3.0.0)

VignetteBuilder knitr
Config/testthat/edition 3

https://doi.org/10.1177/1073191116656437
https://doi.org/10.1371/journal.pone.0222279
https://doi.org/10.1177/0013164420928457
https://doi.org/10.1007/s00181-023-02456-0
https://www.psychometrica.de/cNorm_en.html
https://github.com/WLenhard/cNORM
https://github.com/WLenhard/cNORM/issues

2 Contents

Encoding UTF-8
Language en-US
LazyData true
LazyDataCompression xz
RoxygenNote 7.3.3
NeedsCompilation no

Author Alexandra Lenhard [aut] (ORCID:
<https://orcid.org/0000-0001-8680-4381>),
Wolfgang Lenhard [cre, aut] (ORCID:
<https://orcid.org/0000-0002-8184-6889>),
Sebastian Gary [aut],
WPS Publisher [fnd] (https://www.wpspublish.com/)

Maintainer Wolfgang Lenhard <wolfgang.lenhard@uni-wuerzburg.de>
Repository CRAN
Date/Publication 2025-10-14 14:30:08 UTC

Contents
bestModel 4
betaCoefficients L 5
buildCnormObject L e 6
buildFunction 7
calcPolyInL o 8
calcPolyInLBase2 8
CDC . . . 9
checkConsiStency e 10
checkWeights L 11
check_monotonicity e 12
CNOTIIL .+ v v v e vt e 12
cnorm.betabinomial 15
CNOTIILCV « v v v v v e it e 17
cNORM.GUI 19
cnorm.shash L 20
COMPAIE . « . v v v v e e e e e e e et e e e e e e e e e e e e 24
computePowers L 25
computeWeights 27
derivationTable 28
derive 29
diagnostics.betabinomial 30
elfe . . .o 31
GetGIOUPS e e e 32
getNormCurve oL e e 33
getNormScoreSE oL 34
modelSummary e 35

normTable e 35

https://orcid.org/0000-0001-8680-4381
https://orcid.org/0000-0002-8184-6889

Contents

3
normTable.betabinomialo oL 37
normTable.shasho oo 38
plotecnorm 39
plot.cnormBetaBinomial oL 40
plot.cnormBetaBinomial2 L Lo 41
plotcnormShasho 42
plotCnorm 42
plotDensity e e e e e e e 43
plotDerivative e e e e e 44
plotNorm e 46
plotNormCurves e 47
plotPercentiles L e e 49
plotPercentileSeries Lo 50
plotRaw e 51
plotSubset L e e e e 52
PPVEL . o e 53
predict.cnormBetaBinomial oL 55
predict.cnormBetaBinomial2 L L L Lo 56
predict.cnormShash L. 57
predictNorm e e 58
predictRaw 59
prepareData L. e e e e e 60
prettyPrinto 62
PriNL.CIOIM o o ottt s e e e e e e e e e e 62
print.cnormShash L 63
printSubset L e e e 63
rangeCheck L 64
rankByGroup 65
rankBySlidingWindow 67
rawTable L 69
regressionFunction L L Lol 71
shash e 71
simMean L e e e e 74
SImSD . . . 74
simulateRasch 75
standardize 76
standardizeRakingWeights L L 77
subsample_Im 77
SUMMATY.CIIOTIN .+« & v v v v v e e v e 78
summary.cnormBetaBinomial00 0oL 79
summary.cnormBetaBinomial2 oL oo 80
summary.cnormShash L 81
taylorSwift e 82
weighted.quantile 85
weighted.quantile.harrell.davis oL o 86
weighted.quantile.inflation L L 87
weighted.quantile.type7o 87

weighted.orank oL 88

4 bestModel
Index 89
bestModel Determine Regression Model
Description
Computes Taylor polynomial regression models by evaluating a series of models with increasing
predictors. It aims to find a consistent model that effectively captures the variance in the data.
It draws on the regsubsets function from the leaps package and builds up to 20 models for each
number of predictors, evaluates these models regarding model consistency and selects consistent
model with the highest R*2. This automatic model selection should usually be accompanied with
visual inspection of the percentile plots and assessment of fit statistics. Set R*2 or number of terms
manually to retrieve a more parsimonious model, if desired.
Usage
bestModel (
data,
raw = NULL,
R2 = NULL,
k = NULL,
t = NULL,
predictors = NULL,
terms = 0,
weights = NULL,
force.in = NULL,
plot = TRUE,
extensive = TRUE,
subsampling = TRUE
)
Arguments
data Preprocessed dataset with 'raw’ scores, powers, interactions, and usually an ex-
planatory variable (like age).
raw Name of the raw score variable (default: 'raw’).
R2 Adjusted R"2 stopping criterion for model building.
k Power constant influencing model complexity (default: 4, max: 6).
t Age power parameter. If unset, defaults to ‘k*.
predictors List of predictors or regression formula for model selection. Overrides 'k’ and
can include additional variables.
terms Desired number of terms in the model.
weights Optional case weights. If set to FALSE, default weights (if any) are ignored.
force.in Variables forcibly included in the regression.

betaCoefficients 5

plot If TRUE (default), displays a percentile plot of the model and information about
the regression object. FALSE turns off plotting and report.

extensive If TRUE (default), screen models for consistency and - if possible, exclude in-
consistent ones

subsampling If TRUE (default), model coefficients are calculated using 10-folds and averaged
across the folds. This produces more robust estimates with a slight increase in
bias.

Details
The functions rankByS1lidingWindow, rankByGroup, bestModel, computePowers and prepareData
are usually not called directly, but accessed through other functions like cnorm.

Additional functions like plotSubset(model) and cnorm.cv can aid in model evaluation.

Value

The model. Further exploration can be done using plotSubset (model) and plotPercentiles(data,
model).

See Also

plotSubset, plotPercentiles, plotPercentileSeries, checkConsistency

Other model: checkConsistency(), cnorm.cv(), derive(), modelSummary(), print.cnorm(),
printSubset(), rangeCheck(), regressionFunction(), summary.cnorm()

Examples

Example with sample data

Not run:

It is not recommende to use this function. Rather use 'cnorm' instead.
normData <- prepareData(elfe)

model <- bestModel(normData)

plotSubset(model)

plotPercentiles(buildCnormObject(normData, model))

Specifying variables explicitly
preselectedModel <- bestModel(normData, predictors = c("L1", "L3", "L1A3", "A2", "A3"))

print(regressionFunction(preselectedModel))

End(Not run)

betaCoefficients Compute Parameters of a Beta Binomial Distribution

Description

This function calculates the « (a) and 3 (b) parameters of a beta binomial distribution, along with
the mean (m), variance (var) based on the input vector ‘x‘ and the maximum number ‘n‘.

6 buildCnormObject

Usage
betaCoefficients(x, n = NULL)

Arguments
X A numeric vector of non-negative integers representing observed counts.
n The maximum number or the maximum possible value of ‘x‘. If not specified,
uses max(x) instead.
Details

The beta-binomial distribution is a discrete probability distribution that models the number of suc-
cesses in a fixed number of trials, where the probability of success varies from trial to trial. This
variability in success probability is modeled by a beta distribution. Such a calculation is particu-
larly relevant in scenarios where there is heterogeneity in success probabilities across trials, which is
common in real-world situations, as for example the number of correct solutions in a psychometric
test, where the test has a fixed number of items.

Value
A numeric vector containing the calculated parameters in the following order: alpha (a), beta (b),
mean (m), standard deviation (sd), and the maximum number (n).

Examples

x <- c(1, 2, 3, 4, 5)
n<-5

betaCoefficients(x, n) # or, to set n to max(x)
betaCoefficients(x)

buildCnormObject Build cnorm object from data and bestModel model object

Description
Helper function to build a cnorm object from a data object and a model object from the bestModel
function for compatibility reasons.

Usage
buildCnormObject(data, model)

Arguments

data A data object from ’prepareData’, or from 'rankByGroup’ and ’computePower’
model Object obtained from the bestModel function

buildFunction

Value

A cnorm object

Examples

Not run:
data <- prepareData(elfe)
model <- bestModel(data, k = 4)
model.cnorm <- buildCnormObject(data, model)

End(Not run)

buildFunction Build regression function for bestModel

Description

Build regression function for bestModel

Usage

buildFunction(raw, k, t, age)

Arguments
raw name of the raw score variable
k the power degree for location
t the power degree for age
age use age

Value

regression function

8 calcPolyInLBase2

calcPolyInL Internal function for retrieving regression function coefficients at spe-
cific age

Description
The function is an inline for searching zeros in the inverse regression function. It collapses the
regression function at a specific age and simplifies the coefficients.

Usage
calcPolyInL(raw, age, model)

Arguments
raw The raw value (subtracted from the intercept)
age The age
model The cNORM regression model

Value

The coefficients

calcPolyInLBase2 Internal function for retrieving regression function coefficients at spe-
cific age

Description
The function is an inline for searching zeros in the inverse regression function. It collapses the
regression function at a specific age and simplifies the coefficients. Optimized version of the prior
’calcPolyInLBase’

Usage
calcPolyInlLBase2(raw, age, coeff, k)

Arguments
raw The raw value (subtracted from the intercept)
age The age
coeff The cNORM regression model coefficients
k The cNORM regression model power parameter
Value

The coefficients

CDC 9

cbC BMI growth curves from age 2 to 25

Description

By the courtesy of the Center of Disease Control (CDC), cNORM includes human growth data for
children and adolescents age 2 to 25 that can be used to model trajectories of the body mass index
and to estimate percentiles for clinical definitions of under- and overweight. The data stems from
the NHANES surveys in the US and was published in 2012 as public domain. The data was cleaned
by removing missing values and it includes the following variables from or based on the original
dataset.

Usage

CcDC

Format

A data frame with 45053 rows and 7 variables:

age continuous age in years, based on the month variable

group age group; chronological age in years at the time of examination
month chronological age in month at the time of examination

sex sex of the participant, 1 = male, 2 = female

height height of the participants in cm

weight weight of the participants in kg

bmi the body mass index, computed by (weight in kg)/(height in m)"2

A data frame with 45035 rows and 7 columns

Source

https://www.cdc.gov/nchs/nhanes/

References

CDC (2012). National Health and Nutrition Examination Survey: Questionnaires, Datasets and Re-
lated Documentation. available https://www.cdc.gov/nchs/nhanes/ (date of retrieval: 25/08/2018)

https://www.cdc.gov/nchs/nhanes/
https://www.cdc.gov/nchs/nhanes/

10

checkConsistency

checkConsistency

Check the consistency of the norm data model

Description

While abilities increase and decline over age, within one age group, the norm scores always have
to show a monotonic increase or decrease with increasing raw scores. Violations of this assumption
are an indication for problems in modeling the relationship between raw and norm scores. There
are several reasons, why this might occur:

1. Vertical extrapolation: Choosing extreme norm scores, . g. values -3 <= x and x >= 3 In

order to model these extreme values, a large sample dataset is necessary.

2. Horizontal extrapolation: Taylor polynomials converge in a certain radius. Using the model
values outside the original dataset may lead to inconsistent results.

3. The data cannot be modeled with Taylor polynomials, or you need another power parameter
(k) or R2 for the model.

Usage

checkConsistency(

model,

minAge = NULL,
maxAge = NULL,
minNorm = NULL,
maxNorm = NULL,
minRaw = NULL,
maxRaw = NULL,
stepAge = NULL,
stepNorm = 1,
warn = FALSE,
silent = FALSE

Arguments
model The model from the bestModel function or a cnorm object
minAge Age to start with checking
maxAge Upper end of the age check
minNorm Lower end of the norm value range
maxNorm Upper end of the norm value range
minRaw clipping parameter for the lower bound of raw scores
maxRaw clipping parameter for the upper bound of raw scores
stepAge Stepping parameter for the age check. values indicate higher precision / closer

checks

checkWeights 11

stepNorm Stepping parameter for the norm table check within age with lower scores indi-
cating a higher precision. The choice depends of the norm scale used. With T
scores a stepping parameter of 1 is suitable

warn If set to TRUE, already minor violations of the model assumptions are displayed
(default = FALSE)
silent turn off messages
Details

In general, extrapolation (point 1 and 2) can carefully be done to a certain degree outside the original
sample, but it should in general be handled with caution. Please note that at extreme values, the
models most likely become independent and it is thus recommended to restrict the norm score range
to the relevant range of abilities, e.g. +/- 2.5 SD via the minNorm and maxNorm parameter.

Value

Boolean, indicating model violations (TRUE) or no problems (FALSE)

See Also

Other model: bestModel (), cnorm.cv(), derive(), modelSummary (), print.cnorm(), printSubset(),
rangeCheck(), regressionFunction(), summary.cnorm()

Examples

model <- cnorm(raw = elfe$raw, group = elfe$group, plot = FALSE)
modelViolations <- checkConsistency(model, minNorm = 25, maxNorm = 75)
plotDerivative(model, minNorm = 25, maxNorm = 75)

checkWeights Check, if NA or values <= 0 occur and issue warning

Description

Check, if NA or values <= 0 occur and issue warning

Usage

checkWeights(weights)

Arguments

weights Raking weights

12 cnorm

check_monotonicity Check Monotonicity of Predicted Values

Description

This function checks if the predicted values from a linear model are monotonically increasing or
decreasing across a range of L values for multiple age points.

Usage

check_monotonicity(lm_model, pred_data, minRaw, maxRaw)

Arguments
1m_model An object of class "Im’ representing the fitted linear model.
pred_data Matrix with prediction values
minRaw lowest raw score in prediction
maxRaw highest raw score in prediction
Details

The function creates a prediction data frame using all combinations of the provided L values and age
points. It then generates predictions using the provided linear model and checks if these predictions
are monotonically increasing or decreasing for each age point across the range of L values.

Value

A named character vector where each element corresponds to an age point. Possible values for
each element are 1 for "Monotonically increasing" -1 for "Monotonically decreasing", or 0 for "Not
monotonic".

cnorm Continuous Norming

Description

Conducts continuous norming in one step and returns an object including ranked raw data and the
continuous norming model. Please consult the function description ’ of "rankByGroup’, ‘rankBySlid-
ingWindow’ and *bestModel’ for specifics of the steps in the data preparation and modeling process.
In addition to the raw scores, either provide

* anumeric vector for the grouping information (group)

* anumeric age vector and the width of the sliding window (age, width)

cnorm

13

for the ranking of the raw scores. You can adjust the grade of smoothing of the regression model by
setting the k and terms parameter. In general, increasing k to more than 4 and the number of terms
lead to a higher fit, while lower values lead to more smoothing. The power parameter for the age
trajectory can be specified independently by ’t’. If both parameters are missing, cnorm uses k = 5
and t = 3 by default.

Usage

cnorm(
raw = NULL,
group = NULL,
age = NULL,
width = NA,

weights = NULL,

scale = "T",
method = 4,

descend = FALSE,

k = NULL,
t = NULL,
terms = 0,
R2 = NULL,
plot = TRUE,

extensive = TRUE,
subsampling = TRUE

Arguments

raw

group

age

width
weights

scale

method

descend

Numeric vector of raw scores

Numeric vector of grouping variable, e. g. grade. If no group or age variable is
provided, conventional norming is applied

Numeric vector with chronological age, please additionally specify width of
window

Size of the sliding window in case an age vector is used

Vector or variable name in the dataset with weights for each individual case. It
can be used to compensate for moderate imbalances due to insufficient norm
data stratification. Weights should be numerical and positive.

type of norm scale, either T (default), IQ, z or percentile (= no transformation);
a double vector with the mean and standard deviation can as well, be provided
f. e. ¢(10, 3) for Wechsler scale index points

Ranking method in case of bindings, please provide an index, choosing from the
following methods: 1 = Blom (1958), 2 = Tukey (1949), 3 = Van der Warden
(1952), 4 = Rankit (default), 5 = Levenbach (1953), 6 = Filliben (1975), 7 = Yu
& Huang (2001)

ranking order (default descent = FALSE): inverses the ranking order with higher
raw scores getting lower norm scores; relevant for example when norming error
scores, where lower scores mean higher performance

14

cnorm

k The power constant. Higher values result in more detailed approximations but
have the danger of over-fit (max = 6). If not set, it uses t and if both parameters
are NULL, k is set to 5.

t The age power parameter (max = 6). If not set, it uses k and if both parameters
are NULL, k is set to 3, since age trajectories are most often well captured by
cubic polynomials.

terms Selection criterion for model building. The best fitting model with this number
of terms is used

R2 Adjusted R square as a stopping criterion for the model building (default R2 =
0.99)

plot Default TRUE; plots the regression model and prints report

extensive If TRUE, screen models for consistency and - if possible, exclude inconsistent

ones

subsampling If TRUE (default), model coefficients are calculated using 10-folds and averaged

Value

across the folds. This produces more robust estimates with a slight increase in
bias.

cnorm object including the ranked raw data and the regression model

References

1.
2.

See Also

Gary, S. & Lenhard, W. (2021). In norming we trust. Diagnostica.

Gary, S., Lenhard, W. & Lenhard, A. (2021). Modelling Norm Scores with the cNORM
Package in R. Psych, 3(3), 501-521. https://doi.org/10.3390/psych3030033

. Lenhard, A., Lenhard, W., Suggate, S. & Segerer, R. (2016). A continuous solution to the

norming problem. Assessment, Online first, 1-14. doi:10.1177/1073191116656437

. Lenhard, A., Lenhard, W., Gary, S. (2018). Continuous Norming (¢c(NORM). The Comprehen-

sive R Network, Package cNORM, available: https://CRAN.R-project.org/package=cNORM

. Lenhard, A., Lenhard, W., Gary, S. (2019). Continuous norming of psychometric tests: A sim-

ulation study of parametric and semi-parametric approaches. PLoS ONE, 14(9), e0222279.
doi:10.1371/journal.pone.0222279

Lenhard, W., & Lenhard, A. (2020). Improvement of Norm Score Quality via Regression-
Based Continuous Norming. Educational and Psychological Measurement(Online First), 1-
33. https://doi.org/10.1177/0013164420928457

rankByGroup, rankBySlidingWindow, computePowers, bestModel

Examples

Not run:
Using this function with the example dataset 'elfe'

cnorm.betabinomial 15

Conventional norming (no modelling over age)
cnorm(raw=elfe$raw)

Continuous norming

You can use the 'getGroups()' function to set up grouping variable in case,
you have a continuous age variable.

cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)

return norm tables including 90% confidence intervals for a

test with a reliability of r = .85; table are set to mean of quartal

in grade 3 (children completed 2 years of schooling)

normTable(c(2.125, 2.375, 2.625), cnorm.elfe, CI = .90, reliability = .95)

... or instead of raw scores for norm scores, the other way round
rawTable(c(2.125, 2.375, 2.625), cnorm.elfe, CI = .90, reliability = .95)

Using a continuous age variable instead of distinct groups, using a sliding
window for percentile estimation. Please specify continuos variable for age
and the sliding window size.

cnorm.ppvt.continuous <- cnorm(raw = ppvt$raw, age = ppvt$age, width=1)

In case of unbalanced datasets, deviating from the census, the norm data
can be weighted by the means of raking / post stratification. Please generate
the weights with the computeWeights() function and pass them as the weights
parameter. For computing the weights, please specify a data.frame with the
population margins (further information is available in the computeWeights
function). A demonstration based on sex and migration status in vocabulary
development (ppvt dataset):
margins <- data.frame(variables = c("sex"”, "sex",
"migration”, "migration”),

levels = c(1, 2, 0, 1),

share = ¢(.52, .48, .7, .3))
weights <- computeWeights(ppvt, margins)
model <- cnorm(raw = ppvt$raw, group=ppvt$group, weights = weights)

N EE R

End(Not run)

cnorm.betabinomial Fit a beta-binomial regression model for continuous norming

Description

This function fits a beta-binomial regression model where both the o and 3 parameters of the beta-
binomial distribution are modeled as polynomial functions of the predictor variable (typically age).
Setting mode to 1 fits a beta-binomial model on the basis of x and o, setting it to 2 (default) fits a
beta-binomial model directly on the basis of « and S.

16

cnorm.betabinomial

Usage
cnorm.betabinomial(
age,
score,
n = NULL,
weights = NULL,
mode = 2,
alpha = 3,
beta = 3,
control = NULL,
scale = "T",
plot = T
)
Arguments
age A numeric vector of predictor values (e.g., age).
score A numeric vector of response values.
n The maximum score (number of trials in the beta-binomial distribution). If
NULL, max(score) is used.
weights A numeric vector of weights for each observation. Default is NULL (equal
weights).
mode Integer specifying the mode of the model. Default is 2 (direct modelling of ~
and (). If set to 1, the model is fitted on the basis of i and o, the predicted mean
and standard deviation over age.
alpha Integer specifying the degree of the polynomial for the alpha model. Default
is 3. If mode is set to 1, this parameter is used to specify the degree of the
polynomial for the pz model.
beta Integer specifying the degree of the polynomial for the beta model. Default is 3.
If mode is set to 1, this parameter is used to specify the degree of the polynomial
for the o model.
control A list of control parameters to be passed to the ‘optim‘ function. If NULL,
default values are used, namely control = list(reltol = le-8, maxit = 1000) for
mode 1 and control = list(factr = 1e-8, maxit = 1000) for mode 2.
scale Type of norm scale, either "T" (default), "IQ", "z" or a double vector with the
mean and standard deviation.
plot Logical indicating whether to plot the model. Default is TRUE.
Details

The function standardizes the input variables, fits polynomial models for both the alpha and beta pa-
rameters, and uses maximum likelihood estimation to find the optimal parameters. The optimization
is performed using the L-BFGS-B method.

cnorm.cv 17

Value

A list of class "cnormBetaBinomial" or "cnormBetaBinomial2". In case of mode 2 containing:

alpha_est Estimated coefficients for the alpha model
beta_est Estimated coefficients for the beta model
se Standard errors of the estimated coefficients

alpha_degree Degree of the polynomial for the alpha model

beta_degree Degree of the polynomial for the beta model

result Full result from the optimization procedure
Examples

Not run:

Fit a beta-binomial regression model to the PPVT data
model <- cnorm.betabinomial (ppvt$age, ppvt$raw, n = 228)
summary (model)

Use weights for post-stratification

marginals <- data.frame(var = c("sex", "sex", "migration”, "migration"),
level = c(1,2,0,1),
prop = c(0.51, 0.49, 0.65, 0.35))

weights <- computeWeights(ppvt, marginals)

model <- cnorm.betabinomial(ppvt$age, ppvt$raw, n = 228, weights = weights)

End(Not run)

cnhorm.cv Cross-validation for Term Selection in cNORM

Description

Assists in determining the optimal number of terms for the regression model using repeated Monte
Carlo cross-validation. It leverages an 80-20 split between training and validation data, with strati-
fication by norm group or random sample in case of using sliding window ranking.

Usage

cnorm. cv(
data,
formula = NULL,
repetitions = 5,

norms = TRUE,
min = 1,
max = 12,
cv = "full”,

pCutoff = NULL,

18 cnorm.cv

width = NA,
raw = NULL,
group = NULL,
age = NULL,
weights = NULL
)
Arguments
data Data frame of norm sample or a cnorm object. Should have ranking, powers,
and interaction of L and A.
formula Formula from an existing regression model; min/max functions ignored. If using
a cnorm object, this is automatically fetched.
repetitions Number of repetitions for cross-validation.
norms If TRUE, computes norm score crossfit and R*2. Note: Computationally inten-
sive.
min Start with a minimum number of terms (default = 1).
max Maximum terms in model, up to (k+ 1) * (t+ 1) - 1.
cv "full" (default) splits data into training/validation, then ranks. Otherwise, ex-
pects a pre-ranked dataset.
pCutoff Checks stratification for unbalanced data. Performs a t-test per group. Default
set to 0.2 to minimize beta error.
width If provided, ranking done via ‘rankBySlidingWindow*. Otherwise, by group.
raw Name of the raw score variable.
group Name of the grouping variable.
age Name of the age variable.
weights Name of the weighting parameter.
Details

Successive models, with an increasing number of terms, are evaluated, and the RMSE for raw scores
plotted. This encompasses the training, validation, and entire dataset. If ‘norms® is set to TRUE
(default), the function will also calculate the mean norm score reliability and crossfit measures.
Note that due to the computational requirements of norm score calculations, execution can be slow,
especially with numerous repetitions or terms.

When ‘cv* is set to "full" (default), both test and validation datasets are ranked separately, provid-
ing comprehensive cross-validation. For a more streamlined validation process focused only on
modeling, a pre-ranked dataset can be used. The output comprises RMSE for raw score models,
norm score R"2, delta R"2, crossfit, and the norm score SE according to Oosterhuis, van der Ark,
& Sijtsma (2016).

This function is not yet prepared for the "extensive’ search strategy, introduced in version 3.3, but
instead relies on the first model per number of terms, without consistency check.

For assessing overfitting:

CROSSFIT = R(Training; Model)? | R(V alidation; Model)?

c¢cNORM.GUI 19

A CROSSFIT > 1 suggests overfitting, < 1 suggests potential underfitting, and values around 1 are
optimal, given a low raw score RMSE and high norm score validation R"2.

Suggestions for ideal model selection:

* Visual inspection of percentiles with ‘plotPercentiles‘ or ‘plotPercentileSeries*.
* Pair visual inspection with repeated cross-validation (e.g., 10 repetitions).

* Aim for low raw score RMSE and high norm score R"2, avoiding terms with significant overfit
(e.g., crossfit > 1.1).
Value
Table with results per term number: RMSE for raw scores, R*2 for norm scores, and crossfit mea-
sure.
References

Oosterhuis, H. E. M., van der Ark, L. A., & Sijtsma, K. (2016). Sample Size Requirements for Tra-

ditional and Regression-Based Norms. Assessment, 23(2), 191-202. https://doi.org/10.1177/1073191115580638

See Also

Other model: bestModel (), checkConsistency(), derive(), modelSummary(), print.cnorm(),
printSubset(), rangeCheck(), regressionFunction(), summary.cnorm()

Examples

Not run:

Example: Plot cross-validation RMSE by number of terms (up to 9) with three repetitions.
result <- cnorm(raw = elfe$raw, group = elfe$group)

cnorm.cv(result$data, min = 2, max = 9, repetitions = 3)

Using a cnorm object examines the predefined formula.
cnorm.cv(result, repetitions = 1)

End(Not run)

cNORM. GUI Launcher for the graphical user interface of cNORM

Description

Launcher for the graphical user interface of cNORM

Usage

cNORM. GUI (launch.browser = TRUE)

20

Arguments

cnorm.shash

launch.browser Default TRUE; automatically open browser for GUI

Examples

Not run:

Launch graphical user interface

cNORM. GUI ()

End(Not run)

cnorm. shash

Fit a Sinh-Arcsinh (shash) Regression Model for Continuous Norming

Description

This function fits a Sinh-Arcsinh (shash; Jones & Pewsey, 2009) regression model for continuous
norm score modeling, where the distribution parameters vary smoothly as polynomial functions
of age or other predictors. The shash distribution is well-suited for psychometric data as it can
flexibly model skewness and tail weight independently, making it ideal for handling floor effects,
ceiling effects, and varying degrees of individual differences across age groups. In a simulation
study (Lenhard et al, 2019), the shash model demonstrated superior performance compared to other
parametric approaches from the Box Cox family of functions. In contrast to Box Cox, Sinh-Arcsinh
can model distributions including zero and negativ values.

Usage

cnorm. shash(
age,
score,
weights = NULL,
mu_degree = 3,

sigma_degree = 2,
epsilon_degree = 2,
delta_degree = 1,
delta = 1,
control = NULL,
scale = "T",
plot = TRUE

)

Arguments
age A numeric vector of predictor values (typically age, but can be any continuous
predictor).
score A numeric vector of response values (raw test scores). Must be the same length

as age. The value range is unresticted and it can include zeros and negative

values.

cnorm.shash 21

weights An optional numeric vector of weights for each observation. Useful for incor-
porating sampling weights. If NULL (default), all observations are weighted
equally.

mu_degree Integer specifying the degree of the polynomial for modeling the location pa-

rameter mu(age). Default is 3. Higher degrees allow more flexible modeling
of how the central tendency changes with age, but may lead to overfitting with
small samples. Common choices:
* 1: Linear change with age
* 2: Quadratic change (allows one inflection point)
* 3: Cubic change (allows two inflection points, suitable for most develop-
mental curves)
* 4+: Higher-order changes (use cautiously, mainly for large samples)
sigma_degree Integer specifying the degree of the polynomial for modeling the scale parameter
sigma(age). Default is 2. This controls how the variability (spread) of scores
changes with age. Lower degrees are often sufficient as variability typically
changes more smoothly than location.
epsilon_degree Integer specifying the degree of the polynomial for modeling the skewness pa-
rameter epsilon(age). Default is 2. This controls how the asymmetry of the
distribution changes with age.
delta_degree Integer specifying the plynomial for modelling the tail weight parameter delte(age).
Default is 1. The tail weight can be fixed as well in case of numerical instability.
In that case, set 'delta_degree’ to NULL and specify a value for delta instead.
Recommendation: Keep delta_degree low to avoid overfitting.

delta Fixed tail weight parameter (must be > 0). Default is 1. This parameter controls
the heaviness of the distribution tails and is kept constant across all ages in this
implementation. It is only used, if ’delta_degree’ is set to NULL. Common
values:
e delta = 1: Normal-like tail behavior (baseline)
* delta > 1: Heavier tails, higher kurtosis (more extreme scores than normal
distribution)
* delta < 1: Lighter tails, lower kurtosis (fewer extreme scores than normal
distribution)

control An optional list of control parameters passed to the optim function for maxi-
mum likelihood estimation. If NULL, sensible defaults are chosen automatically
based on the model complexity. Common parameters to adjust:
* factr: Controls precision of optimization (default: 1e-8)
* maxit: Maximum number of iterations (default: n_parameters * 200)
e 1mm: Memory limit for L-BFGS-B (default: min(n_parameters, 20))

Increase maxit or decrease factr if optimization fails to converge.

scale Character string or numeric vector specifying the type of norm scale for output.
This affects the scaling of derived norm scores but does not influence model
fitting:
e "T": T-scores (mean = 50, SD = 10) - default
¢ "IQ": 1Q-like scores (mean = 100, SD = 15)

22 cnorm.shash
e "z": z-scores (mean =0, SD = 1)
* ¢c(M, SD): Custom scale with specified mean M and standard deviation SD

plot Logical indicating whether to automatically display a diagnostic plot of the fitted
model. Default is TRUE.

Details

This implementation uses the Jones & Pewsey (2009) parameterization of the Sinh-Arcsinh dis-
tribution. Parameters are estimated using maximum likelihood via the L-BFGS-B algorithm. In
case, optimization fails, try reducing model complexity by reducing polynomial degrees or fixing
the delta parameter.

The Sinh-Arcsinh Distribution: The shash distribution is defined by the transformation:

arcsinh(Y') — ¢ >

X:u—i—a-sinh(5

where Y is a standard normal variable, Y ~ N(0,1).
This transformation provides:
* mu: Location parameter (similar to mean)
 sigma: Scale parameter (similar to standard deviation)
* epsilon: Skewness parameter (epsilon = 0 for symmetry)
e delta: Tail weight parameter (delta = 1 for normal-like tails)

Model Selection: Choose polynomial degrees based on:

» Sample size (higher degrees need more data)

» Theoretical expectations about developmental trajectories

* Model comparison criteria (AIC, BIC)

* Visual inspection of fitted curves
For most applications, mu_degree = 3, sigma_degree = 2, epsilon_degree = 2, delta_degree = 1
provides a good balance of flexibility and parsimony.

Value

An object of class "cnormShash" containing the fitted model results. This is a list with components:

mu_est Numeric vector of estimated coefficients for the location parameter mu(age).
The first coefficient is the intercept, subsequent coefficients correspond to poly-
nomial terms.

sigma_est Numeric vector of estimated coefficients for the scale parameter log(sigma(age)).
Note: These are coefficients for log(sigma) to ensure sigma > 0.

epsilon_est Numeric vector of estimated coefficients for the skewness parameter epsilon(age).

delta The fixed tail weight parameter value used in fitting.

delta_est Numeric vector of estimated coefficients for the tail weight parameter delta(age)

- in case, a degree has been set.

se Numeric vector of standard errors for all estimated coefficients (if Hessian com-
putation succeeds).

cnorm.shash 23

mu_degree, sigma_degree, epsilon_degree
The polynomial degrees used for each parameter.

result Complete output from the optim function, including convergence information,
log-likelihood value, and other optimization details.

Note
* The function requires the input data to have sufficient variability. Very small datasets or
datasets with little age spread may cause convergence problems.
» Polynomial models can exhibit edge effects at the boundaries of the age range. Predictions
outside the observed age range should be made cautiously.
* If convergence fails, try: (1) reducing polynomial degrees, (2) adjusting the delta parameter,
(3) providing custom control parameters, or (4) checking for data quality issues.
» The tail weight parameter delta is fixed across ages by default. For applications where tail
behavior changes substantially with age, consider setting the delta_degree paramerer to 1 or
2.
Author(s)
Wolfgang Lenhard
References

Jones, M. C., & Pewsey, A. (2009). Sinh-arcsinh distributions. *Biometrika*, 96(4), 761-780.

Lenhard, A., Lenhard, W., Gary, S. (2019). Continuous norming of psychometric tests: A sim-
ulation study of parametric and semi-parametric approaches. *PLoS ONE*, 14(9), €0222279.
https://doi.org/10.1371/journal.pone.0222279

See Also

plot for plotting fitted models, predict for generating predictions, cnorm.betabinomial2 for
discrete beta-binomial alternative

Examples

Not run:
Basic usage with default settings
model <- cnorm.shash(age = children$age, score = children$raw_score)

Custom polynomial degrees for complex developmental pattern
model_complex <- cnorm.shash(

age = adolescents$age,

score = adolescents$vocabulary_score,

mu_degree = 4, # Complex mean trajectory
sigma_degree = 3, # Changing variability pattern
epsilon_degree = 2, # Skewness shifts

epsilon_degree = NULL, # set to NULL to activate fixed delta
delta = 1.3 # Slightly heavy tails

24 compare

With sampling weights
model_weighted <- cnorm.shash(
age = survey$age,
score = survey$score,
weights = survey$sample_weight

)

Custom optimization control for difficult convergence
model_robust <- cnorm.shash(

age = mixed$age,

score = mixed$score,

control = list(factr = 1e-6, maxit = 2000),

delta = 1.5
)

Compare model fit
compare(model, model_complex)

End(Not run)

compare Compare Two Norm Models Visually

Description

This function creates a visualization comparing two norm models by displaying their percentile
curves. The first model is shown with solid lines, the second with dashed lines. If age and score
vectors are provided, manifest percentiles are displayed as dots. The function works with regular
cnorm models, beta-binomial models, and shash models, allowing comparison between different
model types.

Usage

compare(
modelT,
model2,
percentiles = c(0.025, 0.1, .25, 0.5, 0.75, 0.9, 0.975),
age = NULL,
score = NULL,
weights = NULL,
title = NULL,

subtitle = NULL

computePowers 25

Arguments
model1 First model object (distribution free, beta-binomial, or shash)
model?2 Second model object (distribution free, beta-binomial, or shash)
percentiles Vector with percentile scores, ranging from 0 to 1 (exclusive)
age Optional vector with manifest age or group values
score Optional vector with manifest raw score values
weights Optional vector with manifest weights
title Custom title for plot (optional)
subtitle Custom subtitle for plot (optional)

Value

A ggplot object showing the comparison of both models

See Also

Other plot: plot.cnorm(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(), plotDensity(),
plotDerivative(), plotNorm(), plotNormCurves(), plotPercentileSeries(), plotPercentiles(),
plotRaw(), plotSubset ()

Examples

Not run:

Compare different types of models

modell <- cnorm(group = elfe$group, raw = elfe$raw)
model2 <- cnorm.betabinomial (elfe$group, elfe$raw)
model3 <- cnorm.shash(elfe$group, elfe$raw)

Compare traditional cnorm with shash
compare(modell, model3, age = elfe$group, score = elfe$raw)

Compare beta-binomial with shash
compare(model2, model3, age = elfe$group, score = elfe$raw)

End(Not run)

computePowers Compute powers of the explanatory variable a as well as of the person
location [(data preparation)

26 computePowers

Description

The function computes powers of the norm variable e. g. T scores (location, L), an explanatory
variable, e. g. age or grade of a data frame (age, A) and the interactions of both (L X A). The k
variable indicates the degree up to which powers and interactions are build. These predictors can
be used later on in the bestModel function to model the norm sample. Higher values of k allow
for modeling the norm sample closer, but might lead to over-fit. In general k = 3 or k = 4 (default)
is sufficient to model human performance data. For example, k = 2 results in the variables L1, L2,
Al, A2, and their interactions L1A1, L2A1, L1A2 and L2A2 (but k = 2 is usually not sufficient for
the modeling). Please note, that you do not need to use a normal rank transformed scale like T r IQ,
but you can as well use the percentiles for the 'normValue’ as well.

Usage

computePowers(data, k = 5, norm = NULL, age = NULL, t = 3, silent = FALSE)

Arguments
data data.frame with the norm data
k degree
norm the variable containing the norm data in the data.frame; might be T scores, 1Q
scores, percentiles ...
age Explanatory variable like age or grade, which was as well used for the grouping.
Can be either the grouping variable itself or a finer grained variable like the
exact age. Other explanatory variables can be used here instead an age variable
as well, as long as the variable is at least ordered metric, e. g. language or
development levels ... The label ’age’ is used, as this is the most common field
of application.
t the age power parameter (default NULL). If not set, cNORM automatically uses
k. The age power parameter can be used to specify the k to produce rectangular
matrices and specify the course of scores per independently from k
silent set to TRUE to suppress messages
Details

The functions rankByS1lidingWindow, rankByGroup, bestModel, computePowers and prepareData
are usually not called directly, but accessed through other functions like cnorm.
Value

data.frame with the powers and interactions of location and explanatory variable / age

See Also

bestModel
Other prepare: prepareData(), rankByGroup(), rankBySlidingWindow()

compute Weights 27

Examples

Dataset with grade levels as grouping
data.elfe <- rankByGroup(elfe)
data.elfe <- computePowers(data.elfe)

Dataset with continuous age variable and k = 5
data.ppvt <- rankByGroup(ppvt)
data.ppvt <- computePowers(data.ppvt, age = "age"”, k = 5)

computeWeights Weighting of cases through iterative proportional fitting (Raking)

Description

Computes and standardizes weights via raking to compensate for non-stratified samples. It is based
on the implementation in the survey R package. It reduces data collection # biases in the norm
data by the means of post stratification, thus reducing the effect of unbalanced data in percentile
estimation and norm data modeling.

Usage

computeWeights(data, population.margins, standardized = TRUE)

Arguments

data data.frame with norm sample data.

population.margins
A data.frame including three columns, specifying the variable name in the orig-
inal dataset used for data stratification, the factor level of the variable and the
according population share. Please ensure, the original data does not include
factor levels, not present in the population.margins. Additionally, summing up
the shares of the different levels of a variable should result in a value near 1.0.
The first column must specify the name of the stratification variable, the second
the level and the third the proportion

standardized If TRUE (default), the raking weights are scaled to weights/min(weights)

Details

This function computes standardized raking weights to overcome biases in norm samples. It gen-
erates weights, by drawing on the information of population shares (e. g. for sex, ethnic group,
region ...) and subsequently reduces the influence of over-represented groups or increases under-
represented cases. The returned weights are either raw or standardized and scaled to be larger than
0.

Raking in general has a number of advantages over post stratification and it additionally allows
cNORM to draw on larger datasets, since less cases have to be removed during stratification. To use
this function, additionally to the data, a data frame with stratification variables has to be specified.
The data frame should include a row with (a) the variable name, (b) the level of the variable and (c)
the according population proportion.

28 derivationTable

Value

a vector with the standardized weights

Examples

cNORM features a dataset on vocabulary development (ppvt)

that includes variables like sex or migration. In order

to weight the data, we have to specify the population shares.

According to census, the population includes 52% boys

(factor level 1 in the ppvt dataset) and 70% / 30% of persons

without / with a a history of migration (= @ / 1 in the dataset).
First we set up the popolation margins with all shares of the

different levels:

n n

margins <- data.frame(variables = c("sex”, "sex",
"migration”, "migration”),
levels = c(1, 2, 0, 1),
share = ¢(.52, .48, .7, .3))
head(margins)

Now we use the population margins to generate weights
through raking

weights <- computeWeights(ppvt, margins)

There are as many different weights as combinations of
factor levels, thus only four in this specific case
unique(weights)

To include the weights in the cNORM modelling, we have
to pass them as weights. They are then used to set up
weighted quantiles and as weights in the regession.
model <- cnorm(raw = ppvt$raw,

group=ppvt$group,
weights = weights)

derivationTable Create a table based on first order derivative of the regression model
for specific age

Description

In order to check model assumptions, a table of the first order derivative of the model coefficients
is created.

derive 29

Usage

derivationTable(A, model, minNorm = NULL, maxNorm = NULL, step = 0.1)

Arguments

A the age

model The regression model or a cnorm object

minNorm The lower bound of the norm value range

maxNorm The upper bound of the norm value range

step Stepping parameter with lower values indicating higher precision
Value

data.frame with norm scores and the predicted scores based on the derived regression function

See Also

plotDerivative, derive

Other predict: getNormCurve(), normTable(), predict.cnormBetaBinomial(), predict.cnormBetaBinomial2(),
predict.cnormShash(), predictNorm(), predictRaw(), rawTable()

Examples

Generate cnorm object from example data
cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)

retrieve function for time point 6
d <- derivationTable(6, cnorm.elfe, step = 0.5)

derive Derivative of regression model

Description

Calculates the derivative of the location / norm value from the regression model with the first deriva-
tive as the default. This is useful for finding violations of model assumptions and problematic dis-
tribution features as f. e. bottom and ceiling effects, non-progressive norm scores within an age
group or in general #* intersecting percentile curves.

Usage

derive(model, order = 1)

30 diagnostics.betabinomial

Arguments
model The regression model or a cnorm object
order The degree of the derivate, default: 1
Value

The derived coefficients

See Also

Other model: bestModel (), checkConsistency(), cnorm.cv(), modelSummary(), print.cnorm(),
printSubset(), rangeCheck(), regressionFunction(), summary.cnorm()

Examples

m <- cnorm(raw = elfe$raw, group = elfe$group)
derivedCoefficients <- derive(m)

diagnostics.betabinomial
Diagnostic Information for Beta-Binomial Model

Description

This function provides diagnostic information for a fitted beta-binomial model from the cnorm.betabinomial
function. It returns various metrics related to model convergence, fit, and complexity. In case, age

and raw scores are provided, the function as well computes R2, rmse and bias for the norm scores

based on the manifest and predicted norm scores.

Usage

diagnostics.betabinomial (model, age = NULL, score = NULL, weights = NULL)

Arguments
model An object of class "cnormBetaBinomial", typically the result of a call to cnorm.betabinomial().
age An optional vector with age values
score An optional vector with raw values
weights An optional vector with weights
Details

The AIC and BIC are calculated as: AIC = 2k - 2In(L) BIC = In(n)k - 2In(L) where k is the number
of parameters, L is the maximum likelihood, and n is the number of observations.

elfe 31

Value

A list containing the following diagnostic information:

» converged: Logical indicating whether the optimization algorithm converged.

* n_evaluations: Number of function evaluations performed during optimization.
* n_gradient: Number of gradient evaluations performed during optimization.

* final_value: Final value of the objective function (negative log-likelihood).

* message: Any message returned by the optimization algorithm.

* AIC: Akaike Information Criterion.

* BIC: Bayesian Information Criterion.

* max_gradient: Maximum absolute gradient at the solution (if available).

Examples

Not run:
Fit a beta-binomial model
model <- cnorm.betabinomial(ppvt$age, ppvt$raw)

Get diagnostic information
diag_info <- diagnostics.betabinomial(model)

Print the diagnostic information
print(diag_info)

Summary the diagnostic information
summary (diag_info)

Check if the model converged
if(diag_info$converged) {

cat("Model converged successfully.\n")
} else {

cat("Warning: Model did not converge.\n")

3

Compare AIC and BIC
cat("AIC:", diag_info$AIC, "\n")
cat("BIC:", diag_info$BIC, "\n")

End(Not run)

elfe Sentence completion test from ELFE 1-6

32 getGroups

Description

A dataset containing the raw data of 1400 students from grade 2 to 5 in the sentence comprehen-
sion test from ELFE 1-6 (Lenhard & Schneider, 2006). In this test, students are presented lists of
sentences with one gap. The student has to fill in the correct solution by selecting from a list of 5
alternatives per sentence. The alternatives include verbs, adjectives, nouns, pronouns and conjunc-
tives. Each item stems from the same word type. The text is speeded, with a time cutoff of 180
seconds. The variables are as follows:

Usage
elfe

Format
A data frame with 1400 rows and 3 variables:

personlID ID of the student

group grade level, with x.5 indicating the end of the school year and x.0 indicating the middle of
the school year

raw the raw score of the student, spanning values from 0 to 28

A data frame with 1400 rows and 3 columns

Source

https://www.psychometrica.de/elfe2.html

References

Lenhard, W. & Schneider, W.(2006). Ein Leseverstaendnistest fuer Erst- bis Sechstklaesser. Goet-
tingen/Germany: Hogrefe.

Examples

prepare data, retrieve model and plot percentiles
model <- cnorm(elfe$group, elfe$raw)

getGroups Determine groups and group means

Description
Helps to split the continuous explanatory variable into groups and assigns the group mean. The
groups can be split either into groups of equal size (default) or equal number of observations.
Usage

getGroups(x, n = NULL, equidistant = FALSE)

https://www.psychometrica.de/elfe2.html

getNormCurve 33

Arguments
X The continuous variable to be split
n The number of groups; if NULL then the function determines a number of
groups with usually 100 cases or 3 <=n <= 20.
equidistant If set to TRUE, builds equidistant interval, otherwise (default) with equal num-
ber of observations
Value

vector with group means for each observation

Examples

X <= rnorm(1000, m = 50, sd = 10)
m <- getGroups(x, n = 10)

getNormCurve Computes the curve for a specific T value

Description

As with this continuous norming regression approach, raw scores are modeled as a function of age
and norm score (location), getNormCurve is a straightforward approach to show the raw score de-
velopment over age, while keeping the norm value constant. This way, e. g. academic performance
or intelligence development of a specific ability is shown.

Usage

getNormCurve(
norm,
model,
minAge
maxAge
step =
minRaw
maxRaw

NULL,
NULL,

A,
NULL,
NULL

N o 1

Arguments

norm The specific norm score, e. g. T value
model The model from the regression modeling obtained with the cnorm function
minAge Age to start from

maxAge Age to stop at

34 getNormScoreSE

step Stepping parameter for the precision when retrieving of the values, lower values
indicate higher precision (default 0.1).
minRaw lower bound of the range of raw scores (default = 0)
maxRaw upper bound of raw scores
Value

data.frame of the variables raw, age and norm

See Also

Other predict: derivationTable(), normTable(), predict.cnormBetaBinomial(), predict.cnormBetaBinomial2(),
predict.cnormShash(), predictNorm(), predictRaw(), rawTable()

Examples

Generate cnorm object from example data
cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)
getNormCurve (35, cnorm.elfe)

getNormScoreSE Calculates the standard error (SE) or root mean square error (RMSE)
of the norm scores In case of large datasets, both results should be
almost identical

Description
Calculates the standard error (SE) or root mean square error (RMSE) of the norm scores In case of
large datasets, both results should be almost identical

Usage

getNormScoreSE (model, type = 2)

Arguments
model a cnorm object
type either ’1’ for the standard error senso Oosterhuis et al. (2016) or *2’ for the
RMSE (default)
Value

The standard error (SE) of the norm scores sensu Oosterhuis et al. (2016) or the RMSE

References

Oosterhuis, H. E. M., van der Ark, L. A., & Sijtsma, K. (2016). Sample Size Requirements for Tra-
ditional and Regression-Based Norms. Assessment, 23(2), 191-202. https://doi.org/10.1177/1073191115580638

modelSummary 35

modelSummary Prints the results and regression function of a cnorm model

Description

Prints the results and regression function of a cnorm model

Usage
modelSummary(object, ...)
Arguments
object A regression model or cnorm object
additional parameters
Value

A report on the regression function, weights, R2 and RMSE

See Also

Other model: bestModel (), checkConsistency(), cnorm.cv(),derive(), print.cnorm(), printSubset(),
rangeCheck(), regressionFunction(), summary.cnorm()

normTable Create a norm table based on model for specific age

Description

This function generates a norm table for a specific age based on the regression model by assigning
raw scores to norm scores. Please specify the range of norm scores, you want to cover. A T value of
25 corresponds to a percentile of .6. As a consequence, specifying a range of T =25 to T =75 would
cover 98.4 the population. Please be careful when extrapolating vertically (at the lower and upper
end of the age specific distribution). Depending on the size of your standardization sample, extreme
values with T < 20 or T > 80 might lead to inconsistent results. In case a confidence coefficient
(CI, default .9) and the reliability is specified, confidence intervals are computed for the true score
estimates, including a correction for regression to the mean (Eid & Schmidt, 2012, p. 272).

36 normTable

Usage

normTable(
A,
model,
minNorm = NULL,
maxNorm = NULL,
minRaw = NULL,
maxRaw = NULL,

step = NULL,
monotonuous = TRUE,
CI = 0.9,
reliability = NULL,
pretty = T
)
Arguments
A the age as single value or a vector of age values
model The regression model from the cnorm function
minNorm The lower bound of the norm score range
maxNorm The upper bound of the norm score range
minRaw clipping parameter for the lower bound of raw scores
maxRaw clipping parameter for the upper bound of raw scores
step Stepping parameter with lower values indicating higher precision
monotonuous corrects for decreasing norm scores in case of model inconsistencies (default)
CI confidence coefficient, ranging from O to 1, default .9
reliability coefficient, ranging between 0 to 1
pretty Format table by collapsing intervals and rounding to meaningful precision
Value

either data.frame with norm scores, predicted raw scores and percentiles in case of simple A value
or a list # of norm tables if vector of A values was provided

References

Eid, M. & Schmidt, K. (2012). Testtheorie und Testkonstruktion. Hogrefe.

See Also

rawTable

Other predict: derivationTable(), getNormCurve(), predict.cnormBetaBinomial(), predict.cnormBetaBinomial2(
predict.cnormShash(), predictNorm(), predictRaw(), rawTable()

normTable.betabinomial 37

Examples

Generate cnorm object from example data
cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)

create single norm table
norms <- normTable(3.5, cnorm.elfe, minNorm = 25, maxNorm = 75, step = 0.5)

create list of norm tables

norms <- normTable(c(2.5, 3.5, 4.5), cnorm.elfe,
minNorm = 25, maxNorm = 75,
step = 1, minRaw = @, maxRaw = 26

)

conventional norming, set age to arbitrary value
model <- cnorm(raw=elfe$raw)
normTable(@, model)

normTable.betabinomial

Calculate Cumulative Probabilities, Density, Percentiles, and Z-
Scores for Beta-Binomial Distribution

Description

This function generates a norm table for a specific ages based on the beta binomial regression model.
In case a confidence coefficient (CI, default .9) and the reliability is specified, confidence intervals
are computed for the true score estimates, including a correction for regression to the mean (Eid &
Schmidt, 2012, p. 272).

Usage

normTable.betabinomial(

model,

ages,

n = NULL,

m = NULL,

range = 3,

CI =0.9,

reliability = NULL

Arguments

model The model, which was fitted using the ‘optimized.model* function.
ages A numeric vector of age points at which to make predictions.

n The number of items resp. the maximum score.

38 normTable.shash

m An optional stop criterion in table generation. Positive integer lower than n.

range The range of the norm scores in standard deviations. Default is 3. Thus, scores
in the range of +/- 3 standard deviations are considered.

CI confidence coefficient, ranging from O to 1, default .9
reliability coefficient, ranging between 0 to 1
Value

A list of data frames with columns: x, Px, Pcum, Percentile, z, norm score and possibly confidence
interval

normTable.shash Calculate Norm Tables for Sinh-Arcsinh Distribution

Description

Generates norm tables for specific ages based on a fitted SinH-ArcSinH (shash) regression model.
Computes probabilities, percentiles, z-scores, and norm scores for a specified range of raw scores.
Optionally includes confidence intervals when reliability is provided.

Usage
normTable. shash(
model,
ages,
start = NULL,
end = NULL,
step = 1,
CI = 0.9,
reliability = NULL
)
Arguments
model Fitted shash model object of class "cnormShash"
ages Numeric vector of age points for norm table generation
start Minimum raw score value for the norm table
end Maximum raw score value for the norm table
step Step size between consecutive raw scores (default: 1)
CI Confidence coefficient (0-1, default: 0.9) for confidence intervals

reliability Reliability coefficient (0-1) for true score confidence intervals

plot.cnorm 39

Details

For continuous shash distributions, probability densities are computed and converted to cumulative
probabilities and percentiles. When reliability is specified, confidence intervals include correction
for regression to the mean.

Value

List of data frames (one per age) containing:

X Raw scores

Px Probability density values
Pcum Cumulative probabilities
Percentile Percentile ranks (0-100)

z Standardized z-scores

norm Norm scores in specified scale

lowercCI, upperCI

Confidence intervals (if reliability provided)
lowerCI_PR, upperCI_PR

CI as percentile ranks (if reliability provided)

Examples

Not run:

Basic norm table

model <- cnorm.shash(age, score)

tables <- normTable.shash(model, ages = c(7, 8, 9), start = @, end = 50)

With confidence intervals and finer granularity
tables_ci <- normTable.shash(model, ages = c(8, 9), start = 10, end = 40,
step = 0.5, CI = 0.95, reliability = 0.85)

End(Not run)

plot.cnorm S3 function for plotting cnorm objects

Description

S3 function for plotting cnorm objects

Usage

S3 method for class 'cnorm'
plot(x, vy, ...)

40 plot.cnormBetaBinomial

Arguments
X the cnorm object
y the type of plot as a string, can be one of ‘raw’ (1), norm’ (2), ’curves’ (3),
"percentiles’ (4), ’series’ (5), 'subset’ (6), or ’derivative’ (7), either as a string or
the according index
additional parameters for the specific plotting function
See Also

Other plot: compare(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(), plotDensity(),
plotDerivative(), plotNorm(), plotNormCurves(), plotPercentileSeries(), plotPercentiles(),
plotRaw(), plotSubset ()

plot.cnormBetaBinomial
Plot cnormBetaBinomial Model with Data and Percentile Lines

Description

This function creates a visualization of a fitted cnormBetaBinomial model, including the original
data points manifest percentiles and specified percentile lines.

Usage
S3 method for class 'cnormBetaBinomial'
plot(x, ...)
Arguments
X A fitted model object of class "cnormBetaBinomial" or "cnormBetaBinomial2".
Additional arguments passed to the plot method.
* age A vector the age data.
* A vector of the score data.
» weights An optional numeric vector of weights for each observation.
* percentiles An optional vector with the percentiles to plot.
* points Logical indicating whether to plot the data points. Default is TRUE.
Value
A ggplot object.
See Also

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial2(), plotDensity(), plotDerivative(),
plotNorm(), plotNormCurves(), plotPercentileSeries(), plotPercentiles(), plotRaw(),
plotSubset()

plot.cnormBetaBinomial2 41

Examples

Not run:
Computing beta binomial models already displays plot
model.bb <- cnorm.betabinomial(elfe$group, elfe$raw)

Without data points
plot(model.bb, age = elfe$group, score = elfe$raw, weights=NULL, points=FALSE)

End(Not run)

plot.cnormBetaBinomial2
Plot cnormBetaBinomial Model with Data and Percentile Lines

Description

This function creates a visualization of a fitted cnormBetaBinomial model, including the original
data points manifest percentiles and specified percentile lines.

Usage
S3 method for class 'cnormBetaBinomial2'
plot(x, ...)
Arguments
X A fitted model object of class "cnormBetaBinomial" or "cnormBetaBinomial2".
Additional arguments passed to the plot method.
* age A vector the age data.
* A vector of the score data.
* weights An optional numeric vector of weights for each observation.
* percentiles An optional vector with the percentiles to plot.
* points Logical indicating whether to plot the data points. Default is TRUE.
Value
A ggplot object.
See Also

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial(), plotDensity(), plotDerivative(),
plotNorm(), plotNormCurves(), plotPercentileSeries(), plotPercentiles(), plotRaw(),
plotSubset()

42 plotCnorm

plot.cnormShash Plot SinH-ArcSinH Model with Data and Percentile Lines

Description

Plot SinH-ArcSinH Model with Data and Percentile Lines

Usage
S3 method for class 'cnormShash'
plot(x, ...)

Arguments

X A fitted model object of class "cnormShash"

Additional arguments including age, score, weights, percentiles, points

Value

A ggplot object

plotCnorm General convenience plotting function

Description

General convenience plotting function

Usage
plotCnorm(x, vy, ...)
Arguments
X a cnorm object
y the type of plot as a string, can be one of ‘raw’ (1), norm’ (2), ’curves’ (3),

‘percentiles’ (4), ’series’ (5), 'subset’ (6), or ’derivative’ (7), either as a string or
the according index

additional parameters for the specific plotting function

plotDensity 43

plotDensity Plot the density function per group by raw score

Description

This function plots density curves based on the regression model against the raw scores. It supports
both traditional continuous norming models and beta-binomial models. The function allows for
customization of the plot range and groups to be displayed.

Usage
plotDensity(
model,
minRaw = NULL,

maxRaw = NULL,
minNorm = NULL,
maxNorm = NULL,

group = NULL
)
Arguments
model The model from the bestModel function, a cnorm object, a cnormBetaBinomial,
a cnormBetaBinomial2 or cnormShash object.
minRaw Lower bound of the raw score. If NULL, it’s automatically determined based on
the model type.
maxRaw Upper bound of the raw score. If NULL, it’s automatically determined based on
the model type.
minNorm Lower bound of the norm score. If NULL, it’s automatically determined based
on the model type.
maxNorm Upper bound of the norm score. If NULL, it’s automatically determined based
on the model type.
group Numeric vector specifying the age groups to plot. If NULL, groups are auto-
matically selected.
Details

The function generates density curves for specified age groups, allowing for easy comparison of
score distributions across different ages.

For beta-binomial models, the density is based on the probability mass function, while for traditional
models, it uses a normal distribution based on the norm scores.

Value

A ggplot object representing the density functions.

44 plotDerivative

Note

Please check for inconsistent curves, especially those showing implausible shapes such as violations
of biuniqueness in the cnorm models.

See Also

plotNormCurves, plotPercentiles

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(),
plotDerivative(), plotNorm(), plotNormCurves(), plotPercentileSeries(), plotPercentiles(),
plotRaw(), plotSubset()

Examples

Not run:

For traditional continuous norming model

result <- cnorm(raw = elfe$raw, group = elfe$group)
plotDensity(result, group = c(2, 4, 6))

For beta-binomial model
bb_model <- cnorm.betabinomial(age = ppvt$age, score = ppvt$raw, n = 228)

plotDensity(bb_model)

End(Not run)

plotDerivative Plot first order derivative of regression model

Description

This function plots the scores obtained via the first order derivative of the regression model in
dependence of the norm score.

Usage

plotDerivative(
model,
minAge = NULL,
maxAge = NULL,
minNorm = NULL,

maxNorm = NULL,
stepAge = NULL,
stepNorm = NULL,
order = 1

plotDerivative 45

Arguments
model The model from the bestModel function, a cnorm object.
minAge Minimum age to start checking. If NULL, it’s automatically determined from
the model.
maxAge Maximum age for checking. If NULL, it’s automatically determined from the
model.
minNorm Lower end of the norm score range. If NULL, it’s automatically determined
from the model.
maxNorm Upper end of the norm score range. If NULL, it’s automatically determined
from the model.
stepAge Stepping parameter for the age check, usually 1 or 0.1; lower values indicate
higher precision.
stepNorm Stepping parameter for norm scores.
order Degree of the derivative (default = 1).
Details

The results indicate the progression of the norm scores within each age group. The regression-based
modeling approach relies on the assumption of a linear progression of the norm scores. Negative
scores in the first order derivative indicate a violation of this assumption. Scores near zero are
typical for bottom and ceiling effects in the raw data.

The regression models usually converge within the range of the original values. In case of vertical
and horizontal extrapolation, with increasing distance to the original data, the risk of assumption
violation increases as well.

Value

A ggplot object representing the derivative of the regression function.

Note

This function is currently incompatible with reversed raw score scales ('descent’ option).

See Also

checkConsistency, bestModel, derive

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(),
plotDensity(), plotNorm(), plotNormCurves(), plotPercentileSeries(), plotPercentiles(),
plotRaw(), plotSubset ()

Examples

For traditional continuous norming model
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotDerivative(result, minAge=2, maxAge=5, stepAge=.2, minNorm=25, maxNorm=75, stepNorm=1)

46

plotNorm

plotNorm

Plot manifest and fitted norm scores

Description

This function plots the manifest norm score against the fitted norm score from the inverse regression
model per group. This helps to inspect the precision of the modeling process. The scores should
not deviate too far from the regression line. Applicable for Taylor polynomial models.

Usage

plotNorm(

model,

age = NULL,
score = NULL,
width = NULL,
weights = NULL,
group = FALSE,
minNorm = NULL,
maxNorm = NULL,

type

Arguments

model

age
score

width

weights

group

minNorm

maxNorm

type

Value

The regression model, usually from the cnorm’ or ’cnorm.betabinomial’ func-
tion

In case of beta binomial model, please provide the age vector
In case of beta binomial model, please provide the score vector

In case of beta binomial model, please provide the width for the sliding window.
If null, the function tries to determine a sensible setting.

Vector or variable name in the dataset with weights for each individual case. If
NULL, no weights are used.

On optional grouping variable, use empty string for no group, the variable name
for Taylor polynomial models or a vector with the groups for beta binomial
models

lower bound of fitted norm scores
upper bound of fitted norm scores

Type of display: 0 = plot manifest against fitted values, 1 = plot manifest against
difference values

A ggplot object representing the norm scores plot.

plotNormCurves 47

See Also

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(),
plotDensity(), plotDerivative(), plotNormCurves(), plotPercentileSeries(), plotPercentiles(),
plotRaw(), plotSubset ()

Examples

Not run:
Load example data set, compute model and plot results

Taylor polynomial model
model <- cnorm(raw = elfe$raw, group = elfe$group)
plot(model, "norm")

Beta binomial models; maximum number of items in elfe is n = 28
model.bb <- cnorm.betabinomial(elfe$group, elfe$raw, n = 28)

plotNorm(model.bb, age = elfe$group, score = elfe$raw)

End(Not run)

plotNormCurves Plot norm curves

Description

This function plots the norm curves based on the regression model. It supports both Taylor polyno-
mial models and beta-binomial models.

Usage

plotNormCurves(
model,
normList = NULL,
minAge = NULL,

maxAge = NULL,
step = 0.1,
minRaw = NULL,
maxRaw = NULL
)
Arguments
model The model from the bestModel function, a cnorm object, or a cnormBetaBino-
mial / cnormBetaBinomial2 object.
normList Vector with norm scores to display. If NULL, default values are used.
minAge Age to start with checking. If NULL, it’s automatically determined from the

model.

48 plotNormCurves

maxAge Upper end of the age check. If NULL, it’s automatically determined from the
model.
step Stepping parameter for the age check, usually 1 or 0.1; lower scores indicate

higher precision.

minRaw Lower end of the raw score range, used for clipping implausible results. If
NULL, it’s automatically determined from the model.

maxRaw Upper end of the raw score range, used for clipping implausible results. If
NULL, it’s automatically determined from the model.

Details

Please check the function for inconsistent curves: The different curves should not intersect. Viola-
tions of this assumption are a strong indication of violations of model assumptions in modeling the
relationship between raw and norm scores.

Common reasons for inconsistencies include: 1. Vertical extrapolation: Choosing extreme norm
scores (e.g., scores <= -3 or >= 3). 2. Horizontal extrapolation: Using the model scores outside
the original dataset. 3. The data cannot be modeled with the current approach, or you need another
power parameter (k) or R2 for the model.

Value

A ggplot object representing the norm curves.

See Also

checkConsistency, plotDerivative, plotPercentiles

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(),
plotDensity(), plotDerivative(), plotNorm(), plotPercentileSeries(), plotPercentiles(),
plotRaw(), plotSubset ()

Examples

Not run:

For Taylor continuous norming model

m <- cnorm(raw = ppvt$raw, group = ppvt$group)
plotNormCurves(m, minAge=2, maxAge=5)

For beta-binomial model
bb_model <- cnorm.betabinomial(age = ppvt$age, score = ppvt$raw, n = 228)

plotNormCurves(bb_model)

End(Not run)

plotPercentiles 49

plotPercentiles Plot norm curves against actual percentiles

Description

The function plots the norm curves based on the regression model against the actual percentiles from
the raw data. As in *plotNormCurves’, please check for inconsistent curves, especially intersections.
Violations of this assumption are a strong indication for problems in modeling the relationship
between raw and norm scores. In general, extrapolation (point 1 and 2) can carefully be done
to a certain degree outside the original sample, but it should in general be handled with caution.
The original percentiles are displayed as distinct points in the according color, the model based
projection of percentiles are drawn as lines. Please note, that the estimation of the percentiles of the
raw data is done with the quantile function with the default settings. In case, you get ’jagged’ or
disorganized percentile curve, try to reduce the ’k’ and/or ’t’ parameter in modeling.

Usage

plotPercentiles(
model,
minRaw = NULL,
maxRaw = NULL,
minAge = NULL,
maxAge = NULL,
raw = NULL,
group = NULL,
percentiles = c(0.025, 0.1, .25, 0.5, 0.75, 0.9, 0.975),
scale = NULL,
title = NULL,
subtitle = NULL,
points = FALSE

)
Arguments
model The Taylor polynomial regression model object from the cNORM
minRaw Lower bound of the raw score (default = 0)
maxRaw Upper bound of the raw score
minAge Variable to restrict the lower bound of the plot to a specific age
maxAge Variable to restrict the upper bound of the plot to a specific age
raw The name of the raw variable
group The name of the grouping variable; the distinct groups are automatically deter-

mined

percentiles Vector with percentile scores, ranging from O to 1 (exclusive)

50 plotPercentileSeries

scale The norm scale, either *T’, ’1Q’, ’z’, *percentile’ or self defined with a double
vector with the mean and standard deviation, f. e. ¢(10, 3) for Wechsler scale
index points; if NULL, scale information from the data preparation is used (de-

fault)
title custom title for plot
subtitle custom title for plot
points Logical indicating whether to plot the data points. Default is TRUE.

See Also

plotNormCurves, plotPercentileSeries

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(),
plotDensity(), plotDerivative(), plotNorm(), plotNormCurves(), plotPercentileSeries(),
plotRaw(), plotSubset ()

Examples

Load example data set, compute model and plot results
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotPercentiles(result)

plotPercentileSeries Generates a series of plots with number curves by percentile for dif-
ferent models

Description

This functions makes use of ’plotPercentiles’ to generate a series of plots with different number of
predictors. It draws on the information provided by the model object to determine the bounds of the
modeling (age and standard score range). It can be used as an additional model check to determine
the best fitting model. Please have a look at the * plotPercentiles’ function for further information.

Usage

plotPercentileSeries(
model,
start =1,
end = NULL,
group = NULL,
percentiles = c(0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975),
filename = NULL

plotRaw 51

Arguments
model The Taylor polynomial regression model object from the cNORM
start Number of predictors to start with
end Number of predictors to end with
group The name of the grouping variable; the distinct groups are automatically deter-
mined
percentiles Vector with percentile scores, ranging from 0 to 1 (exclusive)
filename Prefix of the filename. If specified, the plots are saves as png files in the directory
of the workspace, instead of displaying them
Value

the complete list of plots

See Also

plotPercentiles

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(),
plotDensity(), plotDerivative(), plotNorm(), plotNormCurves(), plotPercentiles(), plotRaw(),
plotSubset()

Examples

Load example data set, compute model and plot results
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotPercentileSeries(result, start=4, end=6)

plotRaw Plot manifest and fitted raw scores

Description

The function plots the raw data against the fitted scores from the regression model per group. This
helps to inspect the precision of the modeling process. The scores should not deviate too far from
regression line.

Usage

plotRaw(model, group = FALSE, raw = NULL, type = 0)

52 plotSubset

Arguments
model The regression model from the ’cnorm’ function
group Should the fit be displayed by group?
raw Vector of the observed raw data
type Type of display: 0 = plot manifest against fitted values, 1 = plot manifest against
difference values
See Also

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(),
plotDensity(), plotDerivative(), plotNorm(), plotNormCurves(), plotPercentileSeries(),
plotPercentiles(), plotSubset()

Examples

Compute model with example dataset and plot results
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotRaw(result)

plotSubset Evaluate information criteria for regression model

Description

This function plots various information criteria and model fit statistics against the number of pre-
dictors or adjusted R-squared, depending on the type of plot selected. It helps in model selection by
visualizing different aspects of model performance. Models, which did not pass the initial consis-
tency check are depicted with an empty circle.

Usage

plotSubset(model, type = 0)

Arguments
model The regression model from the bestModel function or a cnorm object.
type Integer specifying the type of plot to generate:

* 0: Adjusted R2 by number of predictors (default)
: Log-transformed Mallow’s Cp by adjusted R2

: Bayesian Information Criterion (BIC) by adjusted R2

: Root Mean Square Error (RMSE) by number of predictors

: Residual Sum of Squares (RSS) by number of predictors

: F-test statistic for consecutive models by number of predictors

.
AN L AW N =

: p-value for model tests by number of predictors

ppvt 53

Details

The function generates different plots to help in model selection:

- For types 1 and 2 (Mallow’s Cp and BIC), look for the "elbow" in the curve where the information
criterion begins to drop. This often indicates a good balance between model fit and complexity. -
For type 0 (Adjusted R2), higher values indicate better fit, but be cautious of overfitting with values
approaching 1. - For types 3 and 4 (RMSE and RSS), lower values indicate better fit. - For type
5 (F-test), higher values suggest significant improvement with added predictors. - For type 6 (p-
values), values below the significance level (typically 0.05) suggest significant improvement with
added predictors.

Value

A ggplot object representing the selected information criterion plot.

Note

It’s important to balance statistical measures with practical considerations and to visually inspect
the model fit using functions like plotPercentiles.

See Also

bestModel, plotPercentiles, printSubset

Other plot: compare(), plot.cnorm(), plot.cnormBetaBinomial(), plot.cnormBetaBinomial2(),
plotDensity(), plotDerivative(), plotNorm(), plotNormCurves(), plotPercentileSeries(),
plotPercentiles(), plotRaw()

Examples

Compute model with example data and plot information function
cnorm.model <- cnorm(raw = elfe$raw, group = elfe$group)
plotSubset(cnorm.model)

Plot BIC against adjusted R-squared
plotSubset(cnorm.model, type = 2)

Plot RMSE against number of predictors
plotSubset(cnorm.model, type = 3)

ppvt Vocabulary development from 2.5 to 17

54 ppvt

Description

A dataset based on an unstratified sample of PPVT4 data (German adaption). The PPVT4 consists
of blocks of items with 12 items each. Each item consists of 4 pictures. The test taker is given a
word orally and he or she has to point out the picture matching the oral word. Bottom and ceiling
blocks of items are determined according to age and performance. For instance, when a student
knows less than 4 word from a block of 12 items, the testing stops. The sample is not identical with
the norm sample and includes doublets of cases in order to align the sample size per age group. It
is primarily intended for running the cNORM analyses with regard to modeling and stratification.

Usage

ppvt

Format

A data frame with 4542 rows and 6 variables:

age the chronological age of the child
sex the sex of the test taker, 1=male, 2=female
migration migration status of the family, O=no, 1=yes

region factor specifying the region, the data were collected; grouped into south, north, east and
west

raw the raw score of the student, spanning values from 0 to 228
group age group of the child, determined by the getGroups()-function with 12 equidistant age
groups

A data frame with 5600 rows and 9 columns

Source

https://www.psychometrica.de/ppvt4.html

References

Lenhard, A., Lenhard, W., Segerer, R. & Suggate, S. (2015). Peabody Picture Vocabulary Test -
Revision IV (Deutsche Adaption). Frankfurt a. M./Germany: Pearson Assessment.

Examples

Not run:
Example with continuous age variable, ranked with sliding window
model.ppvt.sliding <- cnorm(age=ppvt$age, raw=ppvt$raw, width=1)

Example with age groups; you might first want to experiment with

the granularity of the groups via the 'getGroups()' function

model.ppvt.group <- cnorm(group=ppvt$group, raw=ppvt$raw) # with predefined groups

model.ppvt.group <- cnorm(group=getGroups(ppvt$age, n=15, equidistant = T),
raw=ppvt$raw) # groups built 'on the fly'

https://www.psychometrica.de/ppvt4.html

predict.cnormBetaBinomial 55

plot information function
plot(model.ppvt.group, "subset”)

check model consistency
checkConsistency(model.ppvt.group)

plot percentiles
plot(model.ppvt.group, "percentiles"”)

End(Not run)

predict.cnormBetaBinomial
Predict Norm Scores from Raw Scores

Description

This function calculates norm scores based on raw scores, age, and a fitted cnormBetaBinomial

model.
Usage
S3 method for class 'cnormBetaBinomial'
predict(object, ...)
Arguments
object A fitted model object of class ’cnormBetaBinomial” or cnormBetaBinomial2’.

Additional arguments passed to the prediction method:

* age A numeric vector of ages, same length as raw.
* score A numeric vector of raw scores.

* range The range of the norm scores in standard deviations. Default is 3.
Thus, scores in the range of +/- 3 standard deviations are considered.

Details

The function first predicts the alpha and beta parameters of the beta-binomial distribution for each
age using the provided model. It then calculates the cumulative probability for each raw score given
these parameters. Finally, it converts these probabilities to the norm scale specified in the model.

Value

A numeric vector of norm scores.

See Also

Other predict: derivationTable(), getNormCurve(), normTable(), predict.cnormBetaBinomial2(),
predict.cnormShash(), predictNorm(), predictRaw(), rawTable()

56 predict.cnormBetaBinomial2

Examples

Not run:

Assuming you have a fitted model named 'bb_model':
model <- cnorm.betabinomial (ppvt$age, ppvt$raw)

raw <- c(100, 121, 97, 180)

ages <- c(7, 8, 9, 10)

norm_scores <- predict(model, ages, raw)

End(Not run)

predict.cnormBetaBinomial?2
Predict Norm Scores from Raw Scores

Description

This function calculates norm scores based on raw scores, age, and a fitted cnormBetaBinomial

model.
Usage
S3 method for class 'cnormBetaBinomial2'
predict(object, ...)
Arguments
object A fitted model object of class ’cnormBetaBinomial’ or ’cnormBetaBinomial2’.

Additional arguments passed to the prediction method:

* age A numeric vector of ages, same length as raw.
* score A numeric vector of raw scores.

* range The range of the norm scores in standard deviations. Default is 3.
Thus, scores in the range of +/- 3 standard deviations are considered.

Details

The function first predicts the alpha and beta parameters of the beta-binomial distribution for each
age using the provided model. It then calculates the cumulative probability for each raw score given
these parameters. Finally, it converts these probabilities to the norm scale specified in the model.

Value

A numeric vector of norm scores.

See Also

Other predict: derivationTable(), getNormCurve(), normTable(), predict.cnormBetaBinomial (),
predict.cnormShash(), predictNorm(), predictRaw(), rawTable()

predict.cnormShash 57

Examples

Not run:

Assuming you have a fitted model named 'bb_model':
model <- cnorm.betabinomial(ppvt$age, ppvt$raw)

raw <- c(100, 121, 97, 180)

ages <- c(7, 8, 9, 10)

norm_scores <- predict(model, ages, raw)

End(Not run)

predict.cnormShash Predict Norm Scores from Raw Scores

Description

This function calculates norm scores based on raw scores, age, and a fitted cnormShash model.

Usage
S3 method for class 'cnormShash'
predict(object, ...)
Arguments
object A fitted model object of class ’cnormShash’.

Additional arguments passed to the prediction method:

* age A numeric vector of ages, same length as score.
* score A numeric vector of raw scores.
* range The range of the norm scores in standard deviations. Default is 3.

Thus, scores in the range of +/- 3 standard deviations are considered.
Details

The function predicts the SinH-ArcSinH (shash) distribution parameters (mu, sigma, epsilon, delta)
for each age using the provided model. It then calculates the cumulative probability for each raw
score given these parameters using the continuous shash distribution. Finally, it converts these
probabilities to the norm scale specified in the model.

Value

A numeric vector of norm scores.

See Also

Other predict: derivationTable(), getNormCurve(), normTable(), predict.cnormBetaBinomial (),
predict.cnormBetaBinomial2(), predictNorm(), predictRaw(), rawTable()

58 predictNorm

Examples

Not run:

Assuming you have a fitted model named 'shash_model':
model <- cnorm.shash(children$age, children$score)
raw_scores <- c(25.5, 30.2, 18.7, 45.3)

ages <- c(7, 8, 9, 10)

norm_scores <- predict(model, ages, raw_scores)

End(Not run)

predictNorm Retrieve norm value for raw score at a specific age

Description

This functions numerically determines the norm score for raw scores depending on the level of the
explanatory variable A, e. g. norm scores for raw scores at given ages.

Usage

predictNorm(
raw,
A,
model,
minNorm = NULL,
maxNorm = NULL,
force = FALSE,
silent = FALSE

)
Arguments
raw The raw value, either single numeric or numeric vector
A the explanatory variable (e. g. age), either single numeric or numeric vector
model The regression model or a cnorm object
minNorm The lower bound of the norm score range
maxNorm The upper bound of the norm score range
force Try to resolve missing norm scores in case of inconsistent models
silent set to TRUE to suppress messages
Value

The predicted norm score for a raw score, either single value or vector

predictRaw 59

See Also

Other predict: derivationTable(), getNormCurve(), normTable(), predict.cnormBetaBinomial(),
predict.cnormBetaBinomial2(), predict.cnormShash(), predictRaw(), rawTable()

Examples

Generate cnorm object from example data
cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)

return norm value for raw value 21 for grade 2, month 9
specificNormValue <- predictNorm(raw = 21, A = 2.75, cnorm.elfe)

predicted norm scores for the elfe dataset
predictNorm(elfe$raw, elfe$group, cnorm.elfe)

predictRaw Predict raw values

Description

Most elementary function to predict raw score based on Location (L, T score), Age (grouping
variable) and the coefficients from a regression model.

Usage
predictRaw(norm, age, coefficients, minRaw = -Inf, maxRaw = Inf)
Arguments
norm The norm score, e. g. a specific T score or a vector of scores
age The age value or a vector of scores

coefficients The a cnorm object or the coefficients from the regression model

minRaw Minimum score for the results; can be used for clipping unrealistic outcomes,
usually set to the lower bound of the range of values of the test (default: 0)

maxRaw Maximum score for the results; can be used for clipping unrealistic outcomes
usually set to the upper bound of the range of values of the test

Value

the predicted raw score or a data.frame of scores in case, lists of norm scores or age is used

See Also

Other predict: derivationTable(), getNormCurve(), normTable(), predict.cnormBetaBinomial(),
predict.cnormBetaBinomial2(), predict.cnormShash(), predictNorm(), rawTable()

60 prepareData

Examples

Prediction of single scores
model <- cnorm(raw = elfe$raw, group = elfe$group)
predictRaw(35, 3.5, model)

prepareData Prepare data for modeling in one step (convenience method)

Description

This is a convenience method to either load the inbuilt sample dataset, or to provide a data frame
with the variables "raw" (for the raw scores) and "group" The function ranks the data within groups,
computes norm values, powers of the norm scores and interactions. Afterwards, you can use these
preprocessed data to determine the best fitting model.

Usage
prepareData(

data = NULL,
group = "group”,
raw = "raw”,
age = "group”,
k = 4,
t = NULL,
width = NA,
weights = NULL,
scale = "T",

descend = FALSE,
silent = FALSE

)
Arguments

data data.frame with a grouping variable named ’group’ and a raw score variable
named ‘raw’.

group grouping variable in the data, e. g. age groups, grades ... Setting group =
FALSE deactivates modeling in dependence of age. Use this in case you do
want conventional norm tables.

raw the raw scores

age the continuous explanatory variable; by default set to "group”

k The power parameter, default = 4

t the age power parameter (default NULL). If not set, cNORM automatically uses

k. The age power parameter can be used to specify the k to produce rectangular
matrices and specify the course of scores per independently from k

prepareData 61

width if a width is provided, the function switches to rankBySlidingWindow to deter-
mine the observed raw scores, otherwise, ranking is done by group (default)

weights Vector or variable name in the dataset with weights for each individual case. It
can be used to compensate for moderate imbalances due to insufficient norm
data stratification. Weights should be numerical and positive. Please use the
’computeWeights’” function for this purpose.

scale type of norm scale, either T (default), IQ, z or percentile (= no transformation);
a double vector with the mean and standard deviation can as well, be provided
f. e. c(10, 3) for Wechsler scale index point

descend ranking order (default descent = FALSE): inverses the ranking order with higher
raw scores getting lower norm scores; relevant for example when norming error
scores, where lower scores mean higher performance

silent set to TRUE to suppress messages

Details

The functions rankByS1lidingWindow, rankByGroup, bestModel, computePowers and prepareData
are usually not called directly, but accessed through other functions like cnorm.

Value

data frame including the norm scores, powers and interactions of the norm score and grouping
variable

See Also

Other prepare: computePowers(), rankByGroup(), rankBySlidingWindow()

Examples

conducts ranking and computation of powers and interactions with the 'elfe' dataset
data.elfe <- prepareData(elfe)

use vectors instead of data frame
data.elfe <- prepareData(raw=elfe$raw, group=elfe$group)

variable names can be specified as well, here with the BMI data included in the package
Not run:
data.bmi <- prepareData(CDC, group = "group”, raw = "bmi"”, age = "age")

End(Not run)

modeling with only one group with the 'elfe' dataset as an example
this results in conventional norming

data.elfe2 <- prepareData(data = elfe, group = FALSE)

m <- bestModel(data.elfe2)

62 print.cnorm

prettyPrint Format raw and norm tables The function takes a raw or norm table,
condenses intervals at the bottom and top and round the numbers to
meaningful interval.

Description

Format raw and norm tables The function takes a raw or norm table, condenses intervals at the
bottom and top and round the numbers to meaningful interval.

Usage

prettyPrint(table)
Arguments

table The table to format
Value

formatted table

print.cnorm S3 method for printing model selection information

Description

After conducting the model fitting procedure on the data set, the best fitting model has to be chosen.
The print function shows the R2 and other information on the different best fitting models with
increasing number of predictors.

Usage
S3 method for class 'cnorm'
print(x, ...)
Arguments
X The model from the *bestModel’ function or a cnorm object
additional parameters
Value

A table with information criteria

print.cnormShash 63

See Also

Other model: bestModel (), checkConsistency(), cnorm.cv(), derive(), modelSummary(),
printSubset(), rangeCheck(), regressionFunction(), summary.cnorm()

print.cnormShash Print method for SinH-ArcSinH objects

Description

Print method for SinH-ArcSinH objects

Usage

S3 method for class 'cnormShash'

print(x, ...)
Arguments

X A cnormShash object

Additional arguments
printSubset Print Model Selection Information

Description

Displays R*2 and other metrics for models with varying predictors, aiding in choosing the best-
fitting model after model fitting.

Usage
printSubset(x, ...)
Arguments
X Model output from *bestModel’ or a cnorm object.
Additional parameters.
Value

Table with model information criteria.

See Also

Other model: bestModel (), checkConsistency(), cnorm.cv(), derive(), modelSummary(),
print.cnorm(), rangeCheck(), regressionFunction(), summary.cnorm()

64 rangeCheck

Examples

Using cnorm object from sample data
result <- cnorm(raw = elfe$raw, group = elfe$group)
printSubset(result)

rangeCheck Check for horizontal and vertical extrapolation

Description

Regression model only work in a specific range and extrapolation horizontally (outside the original
range) or vertically (extreme norm scores) might lead to inconsistent results. The function generates
a message, indicating extrapolation and the range of the original data.

Usage

rangeCheck(
object,
minAge = NULL,
maxAge = NULL,
minNorm = NULL,
maxNorm = NULL,

digits = 3,
)
Arguments
object The regression model or a cnorm object
minAge The lower age bound
maxAge The upper age bound
minNorm The lower norm value bound
maxNorm The upper norm value bound
digits The precision for rounding the norm and age data
additional parameters
Value
the report
See Also

Other model: bestModel (), checkConsistency(), cnorm.cv(), derive(), modelSummary(),
print.cnorm(), printSubset(), regressionFunction(), summary.cnorm()

rankByGroup 65

Examples

m <- cnorm(raw = elfe$raw, group = elfe$group)
rangeCheck(m)

rankByGroup Determine the norm scores of the participants in each subsample

Description

This is the initial step, usually done in all kinds of test norming projects, after the scale is constructed
and the norm sample is established. First, the data is grouped according to a grouping variable
and afterwards, the percentile for each raw value is retrieved. The percentile can be used for the
modeling procedure, but in case, the samples to not deviate too much from normality, T, IQ or
7 scores can be computed via a normal rank procedure based on the inverse cumulative normal
distribution. In case of bindings, we use the medium rank and there are different methods for
estimating the percentiles (default RankIt).

Usage
rankByGroup(
data = NULL,
group = "group”,
raw = "raw”,
weights = NULL,
method = 4,
scale = "T",

descend = FALSE,
descriptives = TRUE,

na.rm = TRUE,
silent = FALSE
)
Arguments
data data.frame with norm sample data. If no data.frame is provided, the raw score
and group vectors are directly used
group name of the grouping variable (default ’group’) or numeric vector, e. g. grade,
setting group to FALSE cancels grouping (data is treated as one group)
raw name of the raw value variable (default 'raw’) or numeric vector
weights Vector or variable name in the dataset with weights for each individual case. It
can be used to compensate for moderate imbalances due to insufficient norm
data stratification. Weights should be numerical and positive. Please use the
’computeWeights’ function for this purpose.
method Ranking method in case of bindings, please provide an index, choosing from the

following methods: 1 = Blom (1958), 2 = Tukey (1949), 3 = Van der Warden
(1952), 4 = Rankit (default), 5 = Levenbach (1953), 6 = Filliben (1975), 7 = Yu
& Huang (2001)

66 rankByGroup

scale type of norm scale, either T (default), IQ, z or percentile (= no transformation);
a double vector with the mean and standard deviation can as well, be provided
f. e. ¢(10, 3) for Wechsler scale index points

descend ranking order (default descent = FALSE): inverses the ranking order with higher
raw scores getting lower norm scores; relevant for example when norming error
scores, where lower scores mean higher performance

descriptives If set to TRUE (default), information in n, mean, median and standard deviation
per group is added to each observation

na.rm remove values, where the percentiles could not be estimated, most likely hap-
pens in the context of weighting
silent set to TRUE to suppress messages
Value

the dataset with the percentiles and norm scales per group

Remarks on using covariates

So far the inclusion of a binary covariate is experimental and far from optimized. The according
variable name has to be specified in the ranking procedure and the modeling includes this in the
further process. At the moment, during ranking the data are split into the according cells group
x covariate, which leads to small sample sizes. Please take care to have enough cases in each
combination. Additionally, covariates can lead to unstable modeling solutions. The question, if it
is really reasonable to include covariates when norming a test is a decision beyond the pure data
modeling. Please use with care or alternatively split the dataset into the two groups beforehand and
model them separately.

The functions rankByS1lidingWindow, rankByGroup, bestModel, computePowers and prepareData
are usually not called directly, but accessed through other functions like cnorm.

See Also

rankBySlidingWindow, computePowers, computeWeights, weighted.rank
Other prepare: computePowers(), prepareData(), rankBySlidingWindow()

Examples

Transformation with default parameters: RankIt and converting to T scores
data.elfe <- rankByGroup(elfe, group = "group”) # using a data frame with vector names
data.elfe2 <- rankByGroup(raw=elfe$raw, group=elfe$group) # use vectors for raw score and group

Transformation into Wechsler scores with Yu & Huang (2001) ranking procedure
data.elfe <- rankByGroup(raw = elfe$raw, group = elfe$group, method = 7, scale = c(10, 3))

cNORM can as well be used for conventional norming, in case no group is given
d <- rankByGroup(raw = elfe$raw)

d <- computePowers(d)

m <- bestModel(d)

rawTable(@, m) # please use an arbitrary value for age when generating the tables

rankBySlidingWindow

67

rankBySlidingWindow

Determine the norm scores of the participants by sliding window

Description

The function retrieves all individuals in the predefined age range (x +/- width/2) around each case
and ranks that individual based on this individually drawn sample. This function can be directly
used with a continuous age variable in order to avoid grouping. When collecting data on the basis
of a continuous age variable, cases located far from the mean age of the group receive distorted
percentiles when building discrete groups and generating percentiles with the traditional approach.
The distortion increases with distance from the group mean and this effect can be avoided by the
sliding window. Nonetheless, please ensure, that the optional grouping variable in fact represents
the correct mean age of the respective age groups, as this variable is later on used for displaying the
manifest data in the percentile plots.

Usage
rankBySlidingWindow(

data = NULL,

age = "age",

raw = "raw”,
weights = NULL,
width,

method = 4,

scale = "T",

descend = FALSE,

descriptives = TRUE,

nGroup = 0,
group = NA,
na.rm = TRUE,

silent = FALSE

Arguments
data data.frame with norm sample data
age the continuous age variable. Setting ’age’ to FALSE inhibits computation of
powers of age and the interactions
raw name of the raw value variable (default ‘raw’)
weights Vector or variable name in the dataset with weights for each individual case. It

can be used to compensate for moderate imbalances due to insufficient norm
data stratification. Weights should be numerical and positive. It can be resource
intense when applied to the sliding window. Please use the ’computeWeights’
function for this purpose.

width the width of the sliding window

68 rankBySlidingWindow

method Ranking method in case of bindings, please provide an index, choosing from the
following methods: 1 = Blom (1958), 2 = Tukey (1949), 3 = Van der Warden
(1952), 4 = Rankit (default), 5 = Levenbach (1953), 6 = Filliben (1975), 7 = Yu
& Huang (2001)

scale type of norm scale, either T (default), IQ, z or percentile (= no transformation);
a double vector with the mean and standard deviation can as well, be provided
f. e. ¢(10, 3) for Wechsler scale index points

descend ranking order (default descent = FALSE): inverses the ranking order with higher
raw scores getting lower norm scores; relevant for example when norming error
scores, where lower scores mean higher performance

descriptives If set to TRUE (default), information in n, mean, median and standard deviation
per group is added to each observation

nGroup If set to a positive value, a grouping variable is created with the desired number
of equi distant groups, named by the group mean age of each group. It creates
the column "group’ in the data.frame and in case, there is already one with that
name, overwrites it.

group Optional parameter for providing the name of the grouping variable (if present;
overwritten if ngroups is used)

na.rm remove values, where the percentiles could not be estimated, most likely hap-
pens in the context of weighting

silent set to TRUE to suppress messages

Details

In case of bindings, the function uses the medium rank and applies the algorithms already described
in the rankByGroup function. At the upper and lower end of the data sample, the sliding stops and
the sample is drawn from the interval min + width and max - width, respectively.

Value

the dataset with the individual percentiles and norm scores

Remarks on using covariates

So far the inclusion of a binary covariate is experimental and far from optimized. The according
variable name has to be specified in the ranking procedure and the modeling includes this in the
further process. At the moment, during ranking the data are split into the according degrees of the
covariate and the ranking is done separately. This may lead to small sample sizes. Please take care
to have enough cases in each combination. Additionally, covariates can lead to unstable modeling
solutions. The question, if it is really reasonable to include covariates when norming a test is a
decision beyond the pure data modeling. Please use with care or alternatively split the dataset into
the two groups beforehand and model them separately.

The functions rankByS1lidingWindow, rankByGroup, bestModel, computePowers and prepareData
are usually not called directly, but accessed through other functions like cnorm.

rawTable 69

See Also

rankByGroup, computePowers, computeWeights, weighted.rank, weighted.quantile

Other prepare: computePowers(), prepareData(), rankByGroup()

Examples

Not run:
Transformation using a sliding window
data.elfe2 <- rankBySlidingWindow(relfe, raw = "raw”, age = "group”, width = 0.5)

Comparing this to the traditional approach should give us exactly the same
values, since the sample dataset only has a grouping variable for age
data.elfe <- rankByGroup(elfe, group = "group")

mean(data.elfe$normValue - data.elfe2$normValue)

End(Not run)

rawTable Create a table with norm scores assigned to raw scores for a specific
age based on the regression model

Description

This function is comparable to "'normTable’, despite it reverses the assignment: A table with raw
scores and the according norm scores for a specific age based on the regression model is generated.
This way, the inverse function of the regression model is solved numerically with brute force. Please
specify the range of raw values, you want to cover. With higher precision and smaller stepping, this
function becomes computational intensive. In case a confidence coefficient (CI, default .9) and the
reliability is specified, confidence intervals are computed for the true score estimates, including a
correction for regression to the mean (Eid & Schmidt, 2012, p. 272).

Usage

rawTable(
Ar
model,
minRaw = NULL,
maxRaw = NULL,
minNorm = NULL,
maxNorm = NULL,
step = 1,
monotonuous
CI =0.9,
reliability = NULL,
pretty = TRUE

TRUE,

70 rawTable

Arguments

A the age, either single value or vector with age values

model The regression model or a cnorm object

minRaw The lower bound of the raw score range

maxRaw The upper bound of the raw score range

minNorm Clipping parameter for the lower bound of norm scores (default 25)

maxNorm Clipping parameter for the upper bound of norm scores (default 25)

step Stepping parameter for the raw scores (default 1)

monotonuous corrects for decreasing norm scores in case of model inconsistencies (default)

CI confidence coefficient, ranging from O to 1, default .9

reliability coefficient, ranging between 0 to 1

pretty Format table by collapsing intervals and rounding to meaningful precision
Value

either data.frame with raw scores and the predicted norm scores in case of simple A value or a list
of norm tables if vector of A values was provided

References

Eid, M. & Schmidt, K. (2012). Testtheorie und Testkonstruktion. Hogrefe.

See Also

normTable

Other predict: derivationTable(), getNormCurve(), normTable(), predict.cnormBetaBinomial(),
predict.cnormBetaBinomial2(), predict.cnormShash(), predictNorm(), predictRaw()

Examples

Generate cnorm object from example data

cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)

generate a norm table for the raw value range from @ to 28 for the time point month 7 of grade 3
table <- rawTable(3 + 7 / 12, cnorm.elfe, minRaw = @, maxRaw = 28)

generate several raw tables
table <- rawTable(c(2.5, 3.5, 4.5), cnorm.elfe, minRaw = @, maxRaw = 28)

additionally compute confidence intervals
table <- rawTable(c(2.5, 3.5, 4.5), cnorm.elfe, minRaw = @, maxRaw = 28, CI = .9, reliability = .94)

conventional norming, set age to arbitrary value
model <- cnorm(raw=elfe$raw)
rawTable(@, model)

regressionFunction 71

regressionFunction Regression function

Description

The method builds the regression function for the regression model, including the beta weights. It
can be used to predict the raw scores based on age and location.

Usage

regressionFunction(model, raw = NULL, digits = NULL)

Arguments
model The regression model from the bestModel function or a cnorm object
raw The name of the raw value variable (default "raw’)
digits Number of digits for formatting the coefficients

Value

The regression formula as a string

See Also

Other model: bestModel (), checkConsistency(), cnorm.cv(), derive(), modelSummary(),
print.cnorm(), printSubset(), rangeCheck(), summary.cnorm()

Examples

result <- cnorm(raw = elfe$raw, group = elfe$group)
regressionfFunction(result)

shash Sinh-Arcsinh (shash) Distribution

Description

Density, distribution function, quantile function and random generation for the Sinh-Arcsinh distri-
bution with location parameter mu, scale parameter sigma, skewness parameter epsilon, and tail
weight parameter delta.

72 shash

Usage

dshash(x, mu = @, sigma = 1, epsilon = @, delta = 1, log = FALSE)

pshash(
qa,
mu = @,
sigma = 1,
epsilon = 0,
delta = 1,
lower.tail = TRUE,
log.p = FALSE
)
gshash(
p)
mu = 0,
sigma = 1,
epsilon = 0,
delta = 1,
lower.tail = TRUE,
log.p = FALSE
)

rshash(n, mu = @, sigma = 1, epsilon = 0, delta = 1)

Arguments
X, q vector of quantiles
mu location parameter (default: 0)
sigma scale parameter (must be > 0, default: 1)
epsilon skewness parameter (default: 0, symmetric distribution)
delta tail weight parameter (must be > 0, default: 1 for normal-like tails)
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x]
p vector of probabilities
n number of observations. If 1length(n) > 1, the length is taken to be the number
required.
Details

The Sinh-Arcsinh distribution (Jones & Pewsey, 2009) is defined by the transformation:

X = pi+0-sinh (asmh(dz) - 6)

where Z ~ N(0, 1) is a standard normal variable.

The four parameters control:

shash 73

e mu: Location (similar to mean)
e sigma: Scale (similar to standard deviation)

* epsilon: Skewness (epsilon = @ gives symmetry)

delta: Tail weight (delta =1 gives normal-like tails, delta > 1 gives heavier tails, delta <
1 gives lighter tails)

Value

dshash gives the density, pshash gives the distribution function, gshash gives the quantile function,
and rshash generates random deviates.

The length of the result is determined by n for rshash, and is the maximum of the lengths of the
numerical arguments for the other functions.

References

Jones, M. C., & Pewsey, A. (2009). Sinh-arcsinh distributions. Biometrika, 96(4), 761-780.
doi:10.1093/biomet/asp053

See Also

Normal for the normal distribution.

Examples

Generate random samples
X <- rshash(1000, mu = @, sigma = 1, epsilon = 0.5, delta = 1.2)

Density

plot(density(x))

curve(dshash(x, mu = @, sigma = 1, epsilon = 0.5, delta = 1.2),
add = TRUE, col = "red")

Cumulative probability
pshash(@, mu = @, sigma = 1, epsilon = 0.5, delta = 1.2)

Quantiles
gshash(c(0.025, 0.5, ©0.975), mu = @, sigma = 1, epsilon = 0.5, delta = 1.2)

Compare with normal distribution (epsilon = @, delta = 1)

par(mfrow = c(2, 2))

x_vals <- seq(-4, 4, length.out = 200)

plot(x_vals, dshash(x_vals), type = "1", main = "Symmetric (like normal)")
plot(x_vals, dshash(x_vals, epsilon = 1), type = "1", main = "Right skewed”)
plot(x_vals, dshash(x_vals, delta = 2), type = "1", main = "Heavy tails")
plot(x_vals, dshash(x_vals, delta = 0.5), type = "1", main = "Light tails")

https://doi.org/10.1093/biomet/asp053

74 simSD

simMean Simulate mean per age

Description

Simulate mean per age

Usage

simMean(age)

Arguments

age the age variable

Value

return predicted means

Examples

Not run:
X <- simMean(a)

End(Not run)

simSD Simulate sd per age

Description

Simulate sd per age

Usage

simSD(age)

Arguments

age the age variable

Value

return predicted sd

simulateRasch

Examples

Not run:
x <- simSD(a)

75

End(Not run)

simulateRasch Simulate raw test scores based on Rasch model

Description

For testing purposes only: The function simulates raw test scores based on a virtual Rasch based test
with n results per age group, an evenly distributed age variable, items.n test items with a simulated
difficulty and standard deviation. The development trajectories over age group are modeled by
a curve linear function of age, with at first fast progression, which slows down over age, and a
slightly increasing standard deviation in order to model a scissor effects. The item difficulties can
be accessed via $theta and the raw data via $data of the returned object.

Usage
simulateRasch(
data = NULL,
n = 100,
minAge = 1,
maxAge = 7,
items.n = 21,
items.m = 0,
items.sd = 1,
Theta = "random”,
width =1
)
Arguments
data data.frame from previous simulations for recomputation (overrides n, minAge,
maxAge)
n The sample size per age group
minAge The minimum age (default 1)
maxAge The maximum age (default 7)
items.n The number of items of the test
items.m The mean difficulty of the items
items.sd The standard deviation of the item difficulty
Theta irt scales difficulty parameters, either "random" for drawing a random sample,

"even" for evenly distributed or a set of predefined values, which then overrides
the item.n parameters

76 standardize

width The width of the window size for the continuous age per group; +- 1/2 width
around group center on items.m and item.sd; if set to FALSE, the distribution is
not drawn randomly but normally nonetheless

Value
a list containing the simulated data and thetas
data the data.frame with only age, group and raw

sim the complete simulated data with item level results

theta the difficulty of the items

Examples
simulate data for a rather easy test (m = -1.0)
sim <- simulateRasch(n=150, minAge=1,

maxAge=7, items.n = 30, items.m = -1.0,
items.sd = 1, Theta = "random”, width = 1.0)

Show item difficulties
mean(sim$theta)
sd(sim$theta)
hist(sim$theta)

Plot raw scores
boxplot (raw~group, data=sim$data)

Model data

data <- prepareData(sim$data, age="age")
model <- bestModel(data, k = 4)
printSubset(model)

plotSubset(model, type=0)

standardize Standardize a numeric vector

Description

This function standardizes a numeric vector by subtracting the mean and dividing by the standard
deviation. The resulting vector will have a mean of 0 and a standard deviation of 1.

Usage

standardize(x)

Arguments

X A numeric vector to be standardized.

standardizeRakingWeights 77

Value

A numeric vector of the same length as x, containing the standardized values.

Examples

data <- c(1, 2, 3, 4, 5)
standardized_data <- standardize(data)
print(standardized_data)

standardizeRakingWeights
Function for standardizing raking weights Raking weights get divided
by the smallest weight. Thereby, all weights become larger or equal to
1 without changing the ratio of the weights to each other.

Description

Function for standardizing raking weights Raking weights get divided by the smallest weight.
Thereby, all weights become larger or equal to 1 without changing the ratio of the weights to each
other.

Usage
standardizeRakingWeights(weights)

Arguments

weights Raking weights computed by computeWeights()

Value

the standardized weights

subsample_1lm K-fold Resampled Coefficient Estimation for Linear Regression

Description

Performs k-fold resampling to estimate averaged coefficients for linear regression. The coefficients
are averaged across k different subsets of the data to provide more stable estimates. For small
samples (n < 100), returns a standard linear model instead.

Usage

subsample_lm(text, data, weights, k = 10)

78 summary.cnorm

Arguments
text A character string or formula specifying the model to be fitted
data A data frame containing the variables in the model
weights Optional numeric vector of weights. If NULL, unweighted regression is per-
formed
k Integer specifying the number of resampling folds (default = 10)
Details

The function splits the data into k subsets, fits a linear model on k-1 subsets, and stores the coeffi-
cients. This process is repeated k times, and the final coefficients are averaged across all iterations
to provide more stable estimates.

Value

An object of class ’Im’ with averaged coefficients from k-fold resampling. For small samples,
returns a standard Im object.

summary.cnorm S3 method for printing the results and regression function of a cnorm
model

Description

S3 method for printing the results and regression function of a cnorm model

Usage
S3 method for class 'cnorm'
summary (object, ...)
Arguments
object A regression model or cnorm object

additional parameters

Value

A report on the regression function, weights, R2 and RMSE

See Also

Other model: bestModel (), checkConsistency(), cnorm.cv(), derive(), modelSummary(),
print.cnorm(), printSubset(), rangeCheck(), regressionFunction()

summary.cnormBetaBinomial 79

summary.cnormBetaBinomial
Summarize a Beta-Binomial Continuous Norming Model

Description

This function provides a summary of a fitted beta-binomial continuous norming model, including
model fit statistics, convergence information, and parameter estimates.

Usage
S3 method for class 'cnormBetaBinomial'
summary (object, ...)
Arguments
object An object of class "cnormBetaBinomial" or "cnormBetaBinomial2", typically

the result of a call to cnorm.betabinomial.
Additional arguments passed to the summary method:

* age An optional numeric vector of age values corresponding to the raw
scores. If provided along with raw, additional fit statistics (R-squared,
RMSE, bias) will be calculated.

* score An optional numeric vector of raw scores. Must be provided if age is
given.
* weights An optional numeric vector of weights for each observation.

Details
The summary includes:

* Basic model information (type, number of observations, number of parameters)
* Model fit statistics (log-likelihood, AIC, BIC)

* R-squared, RMSE, and bias (if age and raw scores are provided) in comparison to manifest
norm scores

» Convergence information

» Parameter estimates with standard errors, z-values, and p-values

Value

Invisibly returns a list containing detailed diagnostic information about the model. The function
primarily produces printed output summarizing the model.

See Also

cnorm.betabinomial, diagnostics.betabinomial

80 summary.cnormBetaBinomial2

Examples

Not run:
model <- cnorm.betabinomial(ppvt$age, ppvt$raw, n = 228)
summary (model)

Including R-squared, RMSE, and bias in the summary:
summary(model, age = ppvt$age, score = ppvt$raw)

End(Not run)

summary.cnormBetaBinomial2
Summarize a Beta-Binomial Continuous Norming Model

Description

This function provides a summary of a fitted beta-binomial continuous norming model, including
model fit statistics, convergence information, and parameter estimates.

Usage
S3 method for class 'cnormBetaBinomial2'
summary (object, ...)
Arguments
object An object of class "cnormBetaBinomial" or "cnormBetaBinomial2", typically

the result of a call to cnorm.betabinomial.
Additional arguments passed to the summary method:

* age An optional numeric vector of age values corresponding to the raw
scores. If provided along with raw, additional fit statistics (R-squared,
RMSE, bias) will be calculated.

* score An optional numeric vector of raw scores. Must be provided if age is
given.

* weights An optional numeric vector of weights for each observation.

Details
The summary includes:

* Basic model information (type, number of observations, number of parameters)
* Model fit statistics (log-likelihood, AIC, BIC)

* R-squared, RMSE, and bias (if age and raw scores are provided) in comparison to manifest
norm scores

» Convergence information

» Parameter estimates with standard errors, z-values, and p-values

summary.cnormShash 81

Value
Invisibly returns a list containing detailed diagnostic information about the model. The function
primarily produces printed output summarizing the model.

See Also

cnorm.betabinomial, diagnostics.betabinomial

Examples

Not run:
model <- cnorm.betabinomial(ppvt$age, ppvt$raw, n = 228)
summary (model)

Including R-squared, RMSE, and bias in the summary:
summary(model, age = ppvt$age, raw = ppvt$raw)

End(Not run)

summary .cnormShash Summarize a SinH-ArcSinH Continuous Norming Model

Description

This function provides a summary of a fitted SinH-ArcSinH (shash) continuous norming model,
including model fit statistics, convergence information, and parameter estimates.

Usage
S3 method for class 'cnormShash'
summary (object, ...)
Arguments
object An object of class "cnormShash", typically the result of a call to cnorm. shash.

Additional arguments passed to the summary method:

* age An optional numeric vector of age values corresponding to the raw
scores. If provided along with score, additional fit statistics (R-squared,
RMSE, bias) will be calculated.

* score An optional numeric vector of raw scores. Must be provided if age is
given.

» weights An optional numeric vector of weights for each observation.

82 taylorSwift

Details
The summary includes:
* Basic model information (polynomial degrees, delta parameter, number of observations)
* Model fit statistics (log-likelihood, AIC, BIC)
* R-squared, RMSE, and bias (if age and raw scores are provided)

* Convergence information

* Parameter estimates with standard errors, z-values, and p-values

Value

Invisibly returns a list containing detailed diagnostic information about the model. The function
primarily produces printed output summarizing the model.

See Also

cnorm. shash, diagnostics. shash

Examples

Not run:
model <- cnorm.shash(children$age, children$score)
summary (model)

Including R-squared, RMSE, and bias in the summary:
summary(model, age = children$age, score = children$score)

End(Not run)

taylorSwift Swiftly compute Taylor regression models for distribution free contin-
uous norming

Description

Conducts distribution free continuous norming and aims to find a fitting model. Raw data are
modelled as a Taylor polynomial of powers of age and location and their interactions. In addition to
the raw scores, either provide a numeric vector for the grouping information (group) for the ranking
of the raw scores. You can adjust the grade of smoothing of the regression model by setting the k, t
and terms parameter. In general, increasing k and t leads to a higher fit, while lower values lead to
more smoothing. If both parameters are missing, taylorSwift uses k = 5 and t = 3 by default.

taylorSwift 83

Usage

taylorSwift(
raw = NULL,
group = NULL,
age = NULL,
width = NA,
weights = NULL,
scale = "T",
method = 4,
descend = FALSE,
k = NULL,
t = NULL,
terms = 0,
R2 = NULL,
plot = TRUE,
extensive = TRUE,
subsampling = TRUE

)
Arguments

raw Numeric vector of raw scores

group Numeric vector of grouping variable, e. g. grade. If no group or age variable is
provided, conventional norming is applied

age Numeric vector with chronological age, please additionally specify width of
window

width Size of the sliding window in case an age vector is used

weights Vector or variable name in the dataset with weights for each individual case. It
can be used to compensate for moderate imbalances due to insufficient norm
data stratification. Weights should be numerical and positive.

scale type of norm scale, either T (default), IQ, z or percentile (= no transformation);
a double vector with the mean and standard deviation can as well, be provided
f. e. ¢(10, 3) for Wechsler scale index points

method Ranking method in case of bindings, please provide an index, choosing from the
following methods: 1 = Blom (1958), 2 = Tukey (1949), 3 = Van der Warden
(1952), 4 = Rankit (default), 5 = Levenbach (1953), 6 = Filliben (1975), 7 = Yu
& Huang (2001)

descend ranking order (default descent = FALSE): inverses the ranking order with higher
raw scores getting lower norm scores; relevant for example when norming error
scores, where lower scores mean higher performance

k The power constant. Higher values result in more detailed approximations but

have the danger of over-fit (max = 6). If not set, it uses t and if both parameters
are NULL, k is set to 5.

t The age power parameter (max = 6). If not set, it uses k and if both parameters
are NULL, k is set to 3, since age trajectories are most often well captured by
cubic polynomials.

84 taylorSwift
terms Selection criterion for model building. The best fitting model with this number
of terms is used
R2 Adjusted R square as a stopping criterion for the model building (default R2 =
0.99)
plot Default TRUE; plots the regression model and prints report
extensive If TRUE, screen models for consistency and - if possible, exclude inconsistent

ones

subsampling If TRUE (default), model coefficients are calculated using 10-folds and averaged

Value

across the folds. This produces more robust estimates with a slight increase in
bias.

cnorm object including the ranked raw data and the regression model

References

1.
2.

See Also

Gary, S. & Lenhard, W. (2021). In norming we trust. Diagnostica.

Gary, S., Lenhard, W. & Lenhard, A. (2021). Modelling Norm Scores with the cNORM
Package in R. Psych, 3(3), 501-521. https://doi.org/10.3390/psych3030033

. Lenhard, A., Lenhard, W., Suggate, S. & Segerer, R. (2016). A continuous solution to the

norming problem. Assessment, Online first, 1-14. doi:10.1177/1073191116656437

. Lenhard, A., Lenhard, W., Gary, S. (2018). Continuous Norming (c(NORM). The Comprehen-

sive R Network, Package cNORM, available: https://CRAN.R-project.org/package=cNORM

. Lenhard, A., Lenhard, W., Gary, S. (2019). Continuous norming of psychometric tests: A sim-

ulation study of parametric and semi-parametric approaches. PLoS ONE, 14(9), €0222279.
doi:10.1371/journal.pone.0222279

. Lenhard, W., & Lenhard, A. (2020). Improvement of Norm Score Quality via Regression-

Based Continuous Norming. Educational and Psychological Measurement(Online First), 1-
33. https://doi.org/10.1177/0013164420928457

rankByGroup, rankBySlidingWindow, computePowers, bestModel

Examples

Not run:

Using this function with the example dataset 'ppvt'

You can use the 'getGroups()' function to set up grouping variable in case,
you have a continuous age variable.

model <- taylorSwift(raw = ppvt$raw, group = ppvt$group)

return norm tables including 90% confidence intervals for a
test with a reliability of r = .85; table are set to mean of quartal

in

grade 3 (children completed 2 years of schooling)

normTable(c(5, 15), model, CI = .90, reliability = .95)

weighted.quantile

85

... or instead of raw scores for norm scores, the other way round

rawTable(c(8, 12)

End(Not run)

, model, CI = .90, reliability = .95)

weighted.quantile

Weighted quantile estimator

Description

Computes weighted quantiles (code from Andrey Akinshin (2023) "Weighted quantile estimators"
arXiv:2304.07265 [stat. ME] Code made available via the CC BY-NC-SA 4.0 license) on the basis of

either the weighted

Harrell-Davis quantile estimator or an adaption of the type 7 quantile estimator

of the generic quantile function in the base package. Please provide a vector with raw values, the
probabilities for the quantiles and an additional vector with the weight of each observation. In case
the weight vector is NULL, a normal quantile estimation is done. The vectors may not include NAs
and the weights should be positive non-zero values. Please draw on the computeWeights() function
for retrieving weights in post stratification.

Usage

weighted.quantile(x, probs, weights = NULL, type = "Harrell-Davis")

Arguments

X
probs
weights

type

Value

A numerical vector
Numerical vector of quantiles
A numerical vector with weights; should have the same length as x

Type of estimator, can either be "inflation", "Harrell-Davis" using a beta function
to approximate the weighted percentiles (Harrell & Davis, 1982) or "Type7"
(default; Hyndman & Fan, 1996), an adaption of the generic quantile function
in R, including weighting. The inflation procedure is essentially a numerical,
non-parametric solution that gives the same results as Harrel-Davis. It requires
less ressources with small datasets and always finds a solution (e. g. 1000 cases
with weights between 1 and 10). If it becomes too resource intense, it switches
to Harrell-Davis automatically. Harrel-Davis and Type7 code is based on the
work of Akinshin (2023).

the weighted quantiles

86 weighted.quantile.harrell.davis

References

1. Harrell, FE. & Davis, C.E. (1982). A new distribution-free quantile estimator. Biometrika,
69(3), 635-640.

2. Hyndman, R. J. & Fan, Y. (1996). Sample quantiles in statistical packages, American Statisti-
cian 50, 361-365.

3. Akinshin, A. (2023). Weighted quantile estimators arXiv:2304.07265 [stat. ME]

See Also

weighted.quantile.inflation, weighted.quantile.harrell.davis, weighted.quantile.type7

weighted.quantile.harrell.davis
Weighted Harrell-Davis quantile estimator

Description

Computes weighted quantiles; code from Andrey Akinshin (2023) "Weighted quantile estimators"
arXiv:2304.07265 [stat. ME] Code made available via the CC BY-NC-SA 4.0 license

Usage

weighted.quantile.harrell.davis(x, probs, weights = NULL)

Arguments
X A numerical vector
probs Numerical vector of quantiles
weights A numerical vector with weights; should have the same length as x. If no
weights are provided (NULL), it falls back to the base quantile function, type 7
Value

the quantiles

weighted.quantile.inflation 87

weighted.quantile.inflation
Weighted quantile estimator through case inflation

Description

Applies weighted ranking numerically by inflating cases according to weight. This function will
be resource intensive, if inflated cases get too high and in this cases, it switches to the parametric
Harrell-Davis estimator.

Usage
weighted.quantile.inflation(
X ’
probs,
weights = NULL,
degree = 3,
cutoff = 1et+@7
)
Arguments
X A numerical vector
probs Numerical vector of quantiles
weights A numerical vector with weights; should have the same length as x.
degree power parameter for case inflation (default = 3, equaling factor 1000) If no
weights are provided (NULL), it falls back to the base quantile function, type 7
cutoff stop criterion for the sum of standardized weights to switch to Harrell-Davis,
default = 1000000
Value

the quantiles

weighted.quantile. type7
Weighted type7 quantile estimator

Description

Computes weighted quantiles; code from Andrey Akinshin (2023) "Weighted quantile estimators"
arXiv:2304.07265 [stat. ME] Code made available via the CC BY-NC-SA 4.0 license

88 weighted.rank

Usage

weighted.quantile.type7(x, probs, weights = NULL)

Arguments
X A numerical vector
probs Numerical vector of quantiles
weights A numerical vector with weights; should have the same length as x. If no
weights are provided (NULL), it falls back to the base quantile function, type 7
Value

the quantiles

weighted.rank Weighted rank estimation

Description

Conducts weighted ranking on the basis of sums of weights per unique raw score. Please provide
a vector with raw values and an additional vector with the weight of each observation. In case the
weight vector is NULL, a normal ranking is done. The vectors may not include NAs and the weights
should be positive non-zero values.

Usage
weighted.rank(x, weights = NULL)

Arguments

X A numerical vector

weights A numerical vector with weights; should have the same length as x
Value

the weighted absolute ranks

Index

+x Body Mass Index growth curves weight
height

CDC, 9

+ datasets
CDC, 9
elfe, 31
ppvt, 53

+* model
bestModel, 4
checkConsistency, 10
cnorm.cv, 17
derive, 29
modelSummary, 35
print.cnorm, 62
printSubset, 63
rangeCheck, 64
regressionFunction, 71
summary.cnorm, 78

* plot
compare, 24
plot.cnorm, 39
plot.cnormBetaBinomial, 40
plot.cnormBetaBinomial2, 41
plotDensity, 43
plotDerivative, 44
plotNorm, 46
plotNormCurves, 47
plotPercentiles, 49
plotPercentileSeries, 50
plotRaw, 51
plotSubset, 52

* predict
derivationTable, 28
getNormCurve, 33
normTable, 35
predict.cnormBetaBinomial, 55
predict.cnormBetaBinomial2, 56
predict.cnormShash, 57
predictNorm, 58

89

predictRaw, 59
rawTable, 69
* prepare
computePowers, 25
prepareData, 60
rankByGroup, 65
rankBySlidingWindow, 67
* reading comprehension
elfe, 31
* vocabulary acquisition development
receptive
ppvt, 53

bestModel, 4, 11, 19, 26, 30, 35, 45, 53, 63,
64,71,78

betaCoefficients, 5

buildCnormObject, 6

buildFunction, 7

calcPolylInL, 8

calcPolyInlLBase2, 8

CDC, 9

check_monotonicity, 12

checkConsistency, 5, 10, 19, 30, 35, 45, 48,
63,64,71,78

checkWeights, 11

cnorm, 12

cnorm.betabinomial, 15, 79-81

cnorm.betabinomial2, 23

cnorm.cv, 5, 11,17, 30, 35, 63, 64,71, 78

cNORM. GUI, 19

cnorm. shash, 20, 81, 82

compare, 24, 40, 41, 44, 45, 47, 48, 50-53

computePowers, 25, 61, 66, 69

computeWeights, 27

derivationTable, 28, 34, 36, 55-57, 59, 70
derive, 5,11, 19,29, 35,45,63, 64,71,78
diagnostics.betabinomial, 30, 79, 81
diagnostics.shash, 82

90

dshash (shash), 71
elfe, 31

getGroups, 32
getNormCurve, 29, 33, 36, 55-57, 59, 70
getNormScoreSE, 34

modelSummary, 5, 11, 19, 30, 35, 63, 64,71, 78

Normal, 73
normTable, 29, 34, 35, 55-57, 59, 70
normTable.betabinomial, 37
normTable.shash, 38

plot, 23
plot.cnorm, 25, 39, 40, 41, 44, 45, 47, 48,
50-53
plot.cnormBetaBinomial, 25, 40, 40, 41, 44,
45,47, 48, 50-53
plot.cnormBetaBinomial2, 25, 40, 41, 44
45,47, 48, 50-53
plot.cnormShash, 42
plotCnorm, 42
plotDensity, 25, 40, 41, 43, 45,47, 48, 50-53
plotDerivative, 25, 40, 41, 44, 44, 47, 48,
50-53
plotNorm, 25, 40, 41, 44, 45, 46, 48, 50-53
plotNormCurves, 25, 40, 41, 44, 45, 47, 47,
50-53
plotPercentiles, 25, 40, 41, 44, 45, 47, 48,
49, 51-53
plotPercentileSeries, 25, 40, 41, 44, 45,
47, 48, 50, 50, 52, 53
plotRaw, 25, 40, 41, 44, 45, 47, 48, 50, 51, 51,
53
plotSubset, 25, 40, 41, 44, 45, 47, 48, 50-52,
52
ppvt, 53
predict, 23
predict.cnormBetaBinomial, 29, 34, 36, 55,
56, 57,59, 70
predict.cnormBetaBinomial2, 29, 34, 36,
55,56,57,59, 70
predict.cnormShash, 29, 34, 36, 55, 56, 57,
59,70
predictNorm, 29, 34, 36, 55-57, 58, 59, 70
predictRaw, 29, 34, 36, 55-57, 59, 59, 70
prepareData, 26, 60, 66, 69

INDEX

prettyPrint, 62

print.cnorm, 5, 11, 19, 30, 35, 62,63, 64, 71,
78

print.cnormShash, 63

printSubset, 5, 11, 19, 30, 35, 53, 63, 63, 64,
71,78

pshash (shash), 71

gshash (shash), 71

rangeCheck, 5, 11, 19, 30, 35, 63,64, 71, 78

rankByGroup, 26, 61, 65, 68, 69

rankBySlidingWindow, 26, 61, 66, 67

rawTable, 29, 34, 36, 55-57, 59, 69

regressionFunction, 5, 11, 19, 30, 35, 63,
64,71,78

rshash (shash), 71

shash, 71

simMean, 74

simSD, 74

simulateRasch, 75

standardize, 76

standardizeRakingWeights, 77

subsample_1m, 77

summary.cnorm, 5, 11, 19, 30, 35, 63, 64, 71,
78

summary.cnormBetaBinomial, 79

summary.cnormBetaBinomial2, 80

summary . cnormShash, 81

taylorSwift, 82

weighted.quantile, 85
weighted.quantile.harrell.davis, 86
weighted.quantile.inflation, 87
weighted.quantile. type7, 87
weighted. rank, 88

	bestModel
	betaCoefficients
	buildCnormObject
	buildFunction
	calcPolyInL
	calcPolyInLBase2
	CDC
	checkConsistency
	checkWeights
	check_monotonicity
	cnorm
	cnorm.betabinomial
	cnorm.cv
	cNORM.GUI
	cnorm.shash
	compare
	computePowers
	computeWeights
	derivationTable
	derive
	diagnostics.betabinomial
	elfe
	getGroups
	getNormCurve
	getNormScoreSE
	modelSummary
	normTable
	normTable.betabinomial
	normTable.shash
	plot.cnorm
	plot.cnormBetaBinomial
	plot.cnormBetaBinomial2
	plot.cnormShash
	plotCnorm
	plotDensity
	plotDerivative
	plotNorm
	plotNormCurves
	plotPercentiles
	plotPercentileSeries
	plotRaw
	plotSubset
	ppvt
	predict.cnormBetaBinomial
	predict.cnormBetaBinomial2
	predict.cnormShash
	predictNorm
	predictRaw
	prepareData
	prettyPrint
	print.cnorm
	print.cnormShash
	printSubset
	rangeCheck
	rankByGroup
	rankBySlidingWindow
	rawTable
	regressionFunction
	shash
	simMean
	simSD
	simulateRasch
	standardize
	standardizeRakingWeights
	subsample_lm
	summary.cnorm
	summary.cnormBetaBinomial
	summary.cnormBetaBinomial2
	summary.cnormShash
	taylorSwift
	weighted.quantile
	weighted.quantile.harrell.davis
	weighted.quantile.inflation
	weighted.quantile.type7
	weighted.rank
	Index

