
Package ‘bigergm’
October 5, 2025

Title Fit, Simulate, and Diagnose Hierarchical Exponential-Family
Models for Big Networks

Version 1.2.5

Description A toolbox for analyzing and simulating large networks based on hierarchical exponential-
family random graph models (HERGMs).'bigergm' implements the estimation for large net-
works efficiently building on the 'lighthergm' and 'hergm' packages. Moreover, the package con-
tains tools for simulating networks with local dependence to assess the goodness-of-fit.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Depends R (>= 3.5.0), ergm (>= 4.5.0), Rcpp

LinkingTo Rcpp, RcppArmadillo (>= 0.10.5)

Imports RcppArmadillo (>= 0.10.5), network (>= 1.16.0), Matrix,
cachem, tidyr, statnet.common, methods, stringr, intergraph,
igraph, parallel, magrittr, purrr, dplyr, glue, readr, foreach,
rlang, memoise, reticulate, ergm.multi

Suggests rmarkdown, knitr, testthat, sna, tibble

VignetteBuilder knitr

NeedsCompilation yes

Author Cornelius Fritz [aut, cre],
Michael Schweinberger [aut],
Shota Komatsu [aut],
Juan Nelson Martínez Dahbura [aut],
Takanori Nishida [aut],
Angelo Mele [aut]

Maintainer Cornelius Fritz <corneliusfritz2010@gmail.com>

Repository CRAN

Date/Publication 2025-10-05 09:30:02 UTC

1

2 ari

Contents
ari . 2
bali . 3
bigergm . 3
bunt . 9
est_between . 10
est_within . 11
get_between_networks . 13
get_within_networks . 13
gof.bigergm . 14
kapferer . 15
plot.bigergm . 16
py_dep . 16
reed . 17
rice . 17
simulate.bigergm . 18
simulate_bigergm . 19
state_twitter . 20
toyNet . 21
yule . 22

Index 23

ari Compute the adjusted rand index (ARI) between two clusterings

Description

This function computes the adjusted rand index (ARI) of the true and estimated block membership
(its definition can be found here https://en.wikipedia.org/wiki/Rand_index). The adjusted
rand index is used as a measure of association between two group membership vectors. The more
similar the two partitions z_star and z are, the closer the ARI is to 1.

Usage

ari(z_star, z)

Arguments

z_star The true block membership

z The estimated block membership

Value

The adjusted rand index

https://en.wikipedia.org/wiki/Rand_index

bali 3

Examples

data(toyNet)
set.seed(123)
ari(z_star = toyNet%v% "block",
z = sample(c(1:4),size = 200,replace = TRUE))

bali Bali terrorist network

Description

The network corresponds to the contacts between the 17 terrorists who carried out the bombing in
Bali, Indonesia in 2002. The network is taken from Koschade (2006).

Format

A statnet’s network class object. data(bali)

References

Koschade, S. (2006). A social network analysis of Jemaah Islamiyah: The applications to counter-
terrorism and intelligence. Studies in Conflict and Terrorism, 29, 559–575.

bigergm bigergm: Exponential-family random graph models for large networks
with local dependence

Description

The function bigergm estimates and simulates three classes of exponential-family random graph
models for large networks under local dependence:

1. The p_1 model of Holland and Leinhardt (1981) in exponential-family form and extensions
by Vu, Hunter, and Schweinberger (2013), Schweinberger, Petrescu-Prahova, and Vu (2014),
Dahbura et al. (2021), and Fritz et al. (2024) to both directed and undirected random graphs
with additional model terms, with and without covariates.

2. The stochastic block model of Snijders and Nowicki (1997) and Nowicki and Snijders (2001)
in exponential-family form.

3. The exponential-family random graph models with local dependence of Schweinberger and
Handcock (2015), with and without covariates. The exponential-family random graph mod-
els with local dependence replace the long-range dependence of conventional exponential-
family random graph models by short-range dependence. Therefore, exponential-family ran-
dom graph models with local dependence replace the strong dependence of conventional
exponential-family random graph models by weak dependence, reducing the problem of model

4 bigergm

degeneracy (Handcock, 2003; Schweinberger, 2011) and improving goodness-of-fit (Schwein-
berger and Handcock, 2015). In addition, exponential-family random graph models with local
dependence satisfy a weak form of self-consistency in the sense that these models are self-
consistent under neighborhood sampling (Schweinberger and Handcock, 2015), which en-
ables consistent estimation of neighborhood-dependent parameters (Schweinberger and Stew-
art, 2017; Schweinberger, 2017).

Usage

bigergm(
object,
add_intercepts = FALSE,
n_blocks = NULL,
n_cores = 1,
blocks = NULL,
estimate_parameters = TRUE,
verbose = 0,
n_MM_step_max = 100,
tol_MM_step = 1e-04,
initialization = "infomap",
use_infomap_python = FALSE,
virtualenv_python = "r-bigergm",
seed_infomap = NULL,
weight_for_initialization = 1000,
seed = NULL,
method_within = "MPLE",
control_within = ergm::control.ergm(),
clustering_with_features = TRUE,
compute_pi = FALSE,
check_alpha_update = FALSE,
check_blocks = FALSE,
cache = NULL,
return_checkpoint = TRUE,
only_use_preprocessed = FALSE,
...

)

Arguments

object An R formula object or bigergm class object. If a formula is given, the function
estimates a new model specified by it. It needs to be of the form y ~ <model
terms>, where y is a network object. For the details on the possible <model
terms>, see ergmTerm and Morris, Handcock and Hunter (2008). All terms
that induce dependence are excluded from the between block model, while the
within block model includes all terms. When you pass a bigergm class object
to the function, you continue from the previous MM step. Note that the block
allocation (which is either provided by parameter blocks or estimated in the
first step) is saved as the vertex.attribute block of the network. This attribute
can also be used in the specified formula. The L-ergmTerm is supported to

bigergm 5

enable size-dependent coefficients for the within-blocks model. Note, however,
that for size-dependent parameters of terms that are included in the between-
blocks model, the intercept in the linear model provided to L-ergmTerm should
not include the intercept. See the second example below for a demonstration.

add_intercepts Boolean value to indicate whether adequate intercepts should be added to the
provided formula so that the model in the first stage of the estimation is a nested
model of the estimated model in the second stage of the estimation.

n_blocks The number of blocks. This must be specified by the user. When you pass a
bigergm class object to the function, you don’t have to specify this argument.

n_cores The number of CPU cores to use.

blocks The pre-specified block memberships for each node. If NULL, the latent commu-
nity structure is estimated, assuming that the number of communities is n_blocks.

estimate_parameters

If TRUE, both clustering and parameter estimation are implemented. If FALSE,
only clustering is executed.

verbose A logical or an integer: if this is TRUE/1, the program will print out additional
information about the progress of estimation and simulation. A higher value
yields lower level information.

n_MM_step_max The maximum number of MM iterations. Currently, no early stopping criteria is
introduced. Thus n_MM_step_max MM iterations are exactly implemented.

tol_MM_step Tolerance regarding the relative change of the lower bound of the likelihood
used to decide on the convergence of the clustering step

initialization How the blocks should be initialized. If infomap (the default), igraph’ or
Python’s infomap is implemented. If random, the initial clusters are randomly
uniformally selected. If spectral, spectral clustering is conducted. If walktrap,
the walktrap clustering algorithm as implemented in cluster_walktrap is con-
ducted. If initialization is a vector of integers of the same length as the
number of nodes in the provided network (in object), then the provided vector
is used as the initial cluster assignment. If initialization is a string relating
to a file path, bigergm will interpret it as block allocations saved in Python’s
infomap .clu format under that path.

use_infomap_python

If TRUE, the cluster initialization is implemented using Pythons’ infomap.
virtualenv_python

Which virtual environment should be used for the infomap algorithm?

seed_infomap seed value (integer) for the infomap algorithm, which can be used to initialize
the estimation of the blocks.

weight_for_initialization

weight value used for cluster initialization. The higher this value, the more
weight is put on the initialized block allocation.

seed seed value (integer) for the random number generator.

method_within If "MPLE" (the default), then the maximum pseudolikelihood estimator is im-
plemented when estimating the within-block network model. If "MLE", then an
approximate maximum likelihood estimator is conducted. If "CD" (EXPERI-
MENTAL), the Monte-Carlo contrastive divergence estimate is returned.

6 bigergm

control_within A list of control parameters for the ergm function used to estimate the parameters
of the within model. See control.ergm for details.

clustering_with_features

If TRUE, clustering is implemented using the discrete covariates specified in the
formula. At the moment, we only support the nodematch term and disregard
diff = TRUE if provided.

compute_pi If TRUE, this function keeps track of pi matrices at each MM iteration. If the
network is large, we strongly recommend to set to be FALSE.

check_alpha_update

If TRUE, this function keeps track of alpha matrices at each MM iteration. If the
network is large, we strongly recommend to set to be FALSE.

check_blocks If TRUE, this function keeps track of estimated block memberships at each MM
iteration.

cache a cachem cache object used to store intermediate calculations such as eigenvec-
tor decomposition results.

return_checkpoint

If TRUE, the function returns the checkpoint list. For most applications, this
should be set to TRUE but if memory space needed by the output is an issue, set
to FALSE.

only_use_preprocessed

If TRUE, the function only uses the preprocessed data from a previous fit but
does not continue the estimation from its final iteration, instead the estimation
is started again from the provided initialization.

... Additional arguments, to be passed to lower-level functions (mainly to the ergm
function used for the estimation of within-block connections).

Value

An object of class ’bigergm’ including the results of the fitted model. These include:

call: call of the mode

block: vector of the found block of the nodes into cluster

initial_block: vector of the initial block of the nodes into cluster

sbm_pi: Connection probabilities represented as a n_blocks x n_blocks matrix from the first
stage of the estimation between all clusters

MM_list_z: list of cluster allocation for each node and each iteration

MM_list_alpha: list of posterior distributions of cluster allocations for all nodes for each iteration

MM_change_in_alpha: change in ’alpha’ for each iteration

MM_lower_bound: vector of the evidence lower bounds from the MM algorithm

alpha: matrix representing the converged posterior distributions of cluster allocations for all nodes

counter_e_step: integer number indicating the number of iterations carried out

adjacency_matrix: sparse matrix representing the adjacency matrix used for the estimation

estimation_status: character stating the status of the estimation

bigergm 7

est_within: ergm object of the model for within cluster connections

est_between: ergm object of the model for between cluster connections

checkpoint: list of information to continue the estimation (only returned if return_checkpoint =
TRUE)

membership_before_kmeans: vector of the found blocks of the nodes into cluster before the final
check for bad clusters

estimate_parameters: binary value if the parameters in the second step of the algorithm should be
estimated or not

References

Babkin, S., Stewart, J., Long, X., and M. Schweinberger (2020). Large-scale estimation of random
graph models with local dependence. Computational Statistics and Data Analysis, 152, 1–19.

Dahbura, J. N. M., Komatsu, S., Nishida, T. and Mele, A. (2021), ‘A structural model of business
cards exchange networks’. https://arxiv.org/abs/2105.12704

Fritz C., Georg C., Mele A., and Schweinberger M. (2024). A strategic model of software depen-
dency networks. https://arxiv.org/abs/2402.13375

Handcock, M. S. (2003). Assessing degeneracy in statistical models of social networks. Technical
report, Center for Statistics and the Social Sciences, University of Washington, Seattle.
https://csss.uw.edu/Papers/wp39.pdf

Holland, P. W. and S. Leinhardt (1981). An exponential family of probability distributions for
directed graphs. Journal of the American Statistical Association, Theory & Methods, 76, 33–65.

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24.

Nowicki, K. and T. A. B. Snijders (2001). Estimation and prediction for stochastic blockstructures.
Journal of the American Statistical Association, Theory & Methods, 96, 1077–1087.

Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete exponential families.
Journal of the American Statistical Association, Theory & Methods, 106, 1361–1370.

Schweinberger, M. (2020). Consistent structure estimation of exponential-family random graph
models with block structure. Bernoulli, 26, 1205–1233.

Schweinberger, M. and M. S. Handcock (2015). Local dependence in random graph models: char-
acterization, properties, and statistical inference. Journal of the Royal Statistical Society, Series B
(Statistical Methodology), 7, 647-676.

Schweinberger, M., Krivitsky, P. N., Butts, C.T. and J. Stewart (2020). Exponential-family models
of random graphs: Inference in finite, super, and infinite population scenarios. Statistical Science,
35, 627-662.

Schweinberger, M. and P. Luna (2018). HERGM: Hierarchical exponential-family random graph
models. Journal of Statistical Software, 85, 1–39.

Schweinberger, M., Petrescu-Prahova, M. and D. Q. Vu (2014). Disaster response on September
11, 2001 through the lens of statistical network analysis. Social Networks, 37, 42–55.

Schweinberger, M. and J. Stewart (2020). Concentration and consistency results for canonical and
curved exponential-family random graphs. The Annals of Statistics, 48, 374–396.

8 bigergm

Snijders, T. A. B. and K. Nowicki (1997). Estimation and prediction for stochastic blockmodels for
graphs with latent block structure. Journal of Classification, 14, 75–100.

Stewart, J., Schweinberger, M., Bojanowski, M., and M. Morris (2019). Multilevel network data
facilitate statistical inference for curved ERGMs with geometrically weighted terms. Social Net-
works, 59, 98–119.

Vu, D. Q., Hunter, D. R. and M. Schweinberger (2013). Model-based clustering of large networks.
Annals of Applied Statistics, 7, 1010–1039.

Examples

Load an embedded network object.
data(toyNet)

Specify the model that you would like to estimate.
model_formula <- toyNet ~ edges + nodematch("x") + nodematch("y") + triangle
Estimate the model
bigergm_res <- bigergm(

object = model_formula,
The model you would like to estimate
n_blocks = 4,
The number of blocks
n_MM_step_max = 10,
The maximum number of MM algorithm steps
estimate_parameters = TRUE,
Perform parameter estimation after the block recovery step
clustering_with_features = TRUE,
Indicate that clustering must take into account nodematch on characteristics
check_blocks = FALSE)

Example with N() operator

Not run:
set.seed(1)
Prepare ingredients for simulating a network
N <- 500
K <- 10

list_within_params <- c(1, 2, 2,-0.5)
list_between_params <- c(-8, 0.5, -0.5)
formula <- g ~ edges + nodematch("x") + nodematch("y") + N(~edges,~log(n)-1)

memb <- sample(1:K,prob = c(0.1,0.2,0.05,0.05,0.10,0.1,0.1,0.1,0.1,0.1),
size = N, replace = TRUE)

vertex_id <- as.character(11:(11 + N - 1))

x <- sample(1:2, size = N, replace = TRUE)
y <- sample(1:2, size = N, replace = TRUE)

df <- tibble::tibble(
id = vertex_id,
memb = memb,

bunt 9

x = x,
y = y

)
g <- network::network.initialize(n = N, directed = FALSE)
g %v% "vertex.names" <- df$id
g %v% "block" <- df$memb
g %v% "x" <- df$x
g %v% "y" <- df$y

Simulate a network
g_sim <-

simulate_bigergm(
formula = formula,
coef_within = list_within_params,
coef_between = list_between_params,
nsim = 1,
control_within = control.simulate.formula(MCMC.burnin = 200000))

estimation <- bigergm(update(formula,new = g_sim~.), n_blocks = 10,
verbose = T)

summary(estimation)

End(Not run)

bunt Van de Bunt friendship network

Description

Van de Bunt (1999) and Van de Bunt et al. (1999) collected data on friendships between 32 freshmen
at a European university at 7 time points. Here, the last time point is used. A directed edge from
student i to j indicates that student i considers student j to be a friend" or best friend".

Format

A statnet’s network class object. data(bunt)

References

Van de Bunt, G. G. (1999). Friends by choice. An Actor-Oriented Statistical Network Model for
Friendship Networks through Time. Thesis Publishers, Amsterdam.

Van de Bunt, G. G., Van Duijn, M. A. J., and T. A. B. Snijders (1999). Friendship Networks
Through Time: An Actor-Oriented Statistical Network Model. Computational and Mathematical
Organization Theory, 5, 167–192.

10 est_between

est_between Estimate between-block parameters

Description

Function to estimate the between-block model by relying on the maximum likelihood estimator.

Usage

est_between(
formula,
network,
add_intercepts = TRUE,
clustering_with_features = FALSE

)

Arguments

formula An R formula object of the form y ~ <model terms>, where y is a network ob-
ject. The network object must contain block information as a vertex attribute
with the name ’block’. For the details on the possible <model terms>, see
ergmTerm and Morris, Handcock and Hunter (2008). All terms that induce de-
pendence are excluded from the between block model.

network a network object with one vertex attribute called ’block’ representing which
node belongs to which block

add_intercepts Boolean value to indicate whether adequate intercepts should be added to the
provided formula so that the model in the first stage of the estimation is a nested
model of the estimated model in the second stage of the estimation

clustering_with_features

Boolean value to indicate if the clustering was carried out making use of the
covariates or not (only important if add_intercepts = TRUE)

Value

’ergm’ object of the estimated model.

References

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24.

Examples

adj <- c(
c(0, 1, 0, 0, 1, 0),
c(1, 0, 1, 0, 0, 1),
c(0, 1, 0, 1, 1, 0),

est_within 11

c(0, 0, 1, 0, 1, 1),
c(1, 0, 1, 1, 0, 1),
c(0, 1, 0, 1, 1, 0)
)
adj <- matrix(data = adj, nrow = 6, ncol = 6)
rownames(adj) <- as.character(1001:1006)
colnames(adj) <- as.character(1001:1006)

Use non-consecutive block names
block <- c(50, 70, 95, 50, 95, 70)
g <- network::network(adj, matrix.type = "adjacency")
g %v% "block" <- block
est <- est_between(

formula = g ~ edges,network = g,
add_intercepts = FALSE, clustering_with_features = FALSE

)

est_within Estimate a within-block network model.

Description

Function to estimate the within-block model. Both pseudo-maximum likelihood and monte carlo
approximate maximum likelihood estimators are implemented.

Usage

est_within(
formula,
network,
seed = NULL,
method = "MPLE",
add_intercepts = TRUE,
clustering_with_features = FALSE,
return_network = FALSE,
...

)

Arguments

formula An R formula object of the form y ~ <model terms>, where y is a network ob-
ject. The network object must contain block information as a vertex attribute
with the name ’block’. For the details on the possible <model terms>, see
ergmTerm and Morris, Handcock and Hunter (2008). The L-ergmTerm is sup-
ported to enable size-dependent coefficients.

network a network object with one vertex attribute called ’block’ representing which
node belongs to which block

seed seed value (integer) for the random number generator

12 est_within

method If "MPLE" (the default), then the maximum pseudolikelihood estimator is re-
turned. If "MLE", then an approximate maximum likelihood estimator is re-
turned.

add_intercepts Boolean value to indicate whether adequate intercepts should be added to the
provided formula so that the model in the first stage of the estimation is a nested
model of the estimated model in the second stage of the estimation

clustering_with_features

Boolean value to indicate if the clustering was carried out making use of the
covariates or not (only important if add_intercepts = TRUE)

return_network Boolean value to indicate if the network object should be returned in the output.
This is needed if the user wants to use, e.g., the gof function as opposed to the
gof.bigergm function.

... Additional arguments, to be passed to the ergm function

Value

’ergm’ object of the estimated model.

References

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24.

Examples

adj <- c(
c(0, 1, 0, 0, 1, 0),
c(1, 0, 1, 0, 0, 1),
c(0, 1, 0, 1, 1, 0),
c(0, 0, 1, 0, 1, 1),
c(1, 0, 1, 1, 0, 1),
c(0, 1, 0, 1, 1, 0)
)
adj <- matrix(data = adj, nrow = 6, ncol = 6)
rownames(adj) <- as.character(1001:1006)
colnames(adj) <- as.character(1001:1006)

Use non-consecutive block names
block <- c(70, 70, 70, 70, 95, 95)
g <- network::network(adj, matrix.type = "adjacency", directed = FALSE)
g %v% "block" <- block
g %v% "vertex.names" <- 1:length(g %v% "vertex.names")
est <- est_within(
formula = g ~ edges,

network = g,
parallel = FALSE,
verbose = 0,
initial_estimate = NULL,
seed = NULL,
method = "MPLE",

get_between_networks 13

add_intercepts = FALSE,
clustering_with_features = FALSE
)

get_between_networks Obtain the between-block networks defined by the block attribute.

Description

Function to return a list of networks, each network representing the within-block network of a block.

Usage

get_between_networks(network, block)

Arguments

network a network object
block a vector of integers representing the block of each node

Value

a list of networks

Examples

Load an embedded network object.
data(toyNet)
get_within_networks(toyNet, toyNet %v% "block")

get_within_networks Obtain the within-block networks defined by the block attribute.

Description

Function to return a list of networks, each network representing the within-block network of a block.

Usage

get_within_networks(network, block, combined_networks = TRUE)

Arguments

network a network object
block a vector of integers representing the block of each node
combined_networks

a boolean indicating whether the between-block networks should be returned as
a combined_networks object or not (default is TRUE)

14 gof.bigergm

Value

a list of networks

Examples

Load an embedded network object.
data(toyNet)
get_within_networks(toyNet, toyNet %v% "block")

gof.bigergm Conduct Goodness-of-Fit Diagnostics on a Exponential Family Ran-
dom Graph Model for big networks

Description

A sample of graphs is randomly drawn from the specified model. The first argument is typically the
output of a call to bigergm and the model used for that call is the one fit.

By default, the sample consists of 100 simulated networks, but this sample size (and many other
settings) can be changed using the ergm_control argument described above.

Usage

S3 method for class 'bigergm'
gof(
object,
...,
type = "full",
control_within = ergm::control.simulate.formula(),
seed = NULL,
nsim = 100,
compute_geodesic_distance = TRUE,
start_from_observed = TRUE,
simulate_sbm = FALSE

)

Arguments

object An bigergm object.

... Additional arguments, to be passed to simulate_bigergm, which, in turn, passes
the information to simulate_formula. See documentation for bigergm.

type the type of evaluation to perform. Can take the values full or within. full
performs the evaluation on all edges, and within only considers within-block
edges.

control_within MCMC parameters as an instance of control.simulate.formula to be used
for the within-block simulations.

seed the seed to be passed to simulate_bigergm. If NULL, a random seed is used.

kapferer 15

nsim the number of simulations to employ for calculating goodness of fit, default is
100.

compute_geodesic_distance

if TRUE, the distribution of geodesic distances is also computed (considerably
increases computation time on large networks. FALSE by default.)

start_from_observed

if TRUE, MCMC uses the observed network as a starting point. If FALSE, MCMC
starts from a random network.

simulate_sbm if TRUE, the between-block connections are simulated from the estimated stochas-
tic block model from the first stage not the estimated ERGM.

Value

gof.bigergm returns a list with two entries. The first entry ’original’ is another list of the net-
work stats, degree distribution, edgewise-shared partner distribution, and geodesic distance dis-
tribution (if compute_geodesic_distance = TRUE) of the observed network. The second entry is
called ’simulated’ is also list compiling the network stats, degree distribution, edgewise-shared part-
ner distribution, and geodesic distance distribution (if compute_geodesic_distance = TRUE) of all
simulated networks.

Examples

data(toyNet)

Specify the model that you would like to estimate.
data(toyNet)
Specify the model that you would like to estimate.
model_formula <- toyNet ~ edges + nodematch("x") + nodematch("y") + triangle
estimate <- bigergm(model_formula,n_blocks = 4)
gof_res <- gof(estimate,
nsim = 100
)
plot(gof_res)

kapferer Kapferer collaboration network

Description

The network corresponds to collaborations between 39 workers in a tailor shop in Africa: an undi-
rected edge between workers i and j indicates that the workers collaborated. The network is taken
from Kapferer (1972).

Format

A statnet’s network class object. data(kapferer)

16 py_dep

References

Kapferer, B. (1972). Strategy and Transaction in an African Factory. Manchester University Press,
Manchester, U.K.

plot.bigergm Plot the network with the found clusters

Description

This function plots the network with the found clusters. The nodes are colored according to the
found clusters. Note that the function uses the network package for plotting the network and should
therefore not be used for large networks with more than 1-2 K vertices

Usage

S3 method for class 'bigergm'
plot(x, ...)

Arguments

x The output of the bigergm function
... Additional arguments, to be passed to lower-level functions

py_dep Install optional Python dependencies for bigergm

Description

Install Python dependencies needed for using the Python implementation of infomap. The code
uses the reticulate package to install the Python packages infomap and numpy. These packages
are needed for the bigergm function when use_infomap_python = TRUE else the Python imple-
mentation is not needed.

Usage

py_dep(envname = "r-bigergm", method = "auto", ...)

Arguments

envname The name, or full path, of the environment in which Python packages are to
be installed. When NULL (the default), the active environment as set by the
RETICULATE_PYTHON_ENV variable will be used; if that is unset, then the
r-reticulate environment will be used.

method Installation method. By default, "auto" automatically finds a method that will
work in the local environment. Change the default to force a specific installation
method. Note that the "virtualenv" method is not available on Windows.

... Additional arguments, to be passed to lower-level functions

reed 17

Value

No return value, called for installing the Python dependencies ’infomap’ and ’numpy’

reed A network of friendships between students at Reed College.

Description

The data was collected by Facebook and provided as part of Traud et al. (2012)

Format

A statnet’s network class object. It has three nodal features.

doorm anonymized dorm in which each node lives.
gender gender of each node.
high.school anonymized highschool to which each node went to.
year year of graduation of each node. ...

data(reed)

References

Traud, Mucha, Porter (2012). Social Structure of Facebook Network. Physica A: Statistical Me-
chanics and its Applications, 391, 4165-4180

rice A network of friendships between students at Rice University.

Description

The data was collected by Facebook and provided as part of Traud et al. (2012)

Format

A statnet’s network class object. It has three nodal features.

doorm anonymized dorm in which each node lives.
gender gender of each node.
high.school anonymized highschool to which each node went to.
year year of graduation of each node.

data(rice)

References

Traud, Mucha, Porter (2012). Social Structure of Facebook Network. Physica A: Statistical Me-
chanics and its Applications, 391, 4165-4180

18 simulate.bigergm

simulate.bigergm Simulate networks under Exponential Random Graph Models
(ERGMs) under local dependence

Description

This function simulates networks under the Exponential Random Graph Model (ERGM) with local
dependence with all parameters set according to the estimated model (object). See simulate_bigergm
for details of the simulation process

Usage

S3 method for class 'bigergm'
simulate(
object,
nsim = 1,
seed = NULL,
...,
output = "network",
control_within = ergm::control.simulate.formula(),
only_within = FALSE,
verbose = 0

)

Arguments

object an object of class bigergm

nsim number of networks to be randomly drawn from the given distribution on the set
of all networks.

seed seed value (integer) for network simulation.

... Additional arguments, passed to simulate_formula.

output Normally character, one of "network" (default), "stats", "edgelist", to determine
the output of the function.

control_within control.simulate.formula object for fine-tuning ERGM simulation of within-
block networks.

only_within If this is TRUE, only within-block networks are simulated.

verbose If this is TRUE/1, the program will print out additional information about the
progress of simulation.

Value

Simulated networks, the output form depends on the parameter output (default is a list of net-
works).

simulate_bigergm 19

simulate_bigergm Simulate networks under Exponential Random Graph Models
(ERGMs) under local dependence

Description

This function simulates networks under Exponential Random Graph Models (ERGMs) with local
dependence. There is also an option to simulate only within-block networks and a S3 method for
the class bigergm.

Usage

simulate_bigergm(
formula,
coef_within,
coef_between,
network = ergm.getnetwork(formula),
control_within = ergm::control.simulate.formula(),
only_within = FALSE,
seed = NULL,
nsim = 1,
output = "network",
verbose = 0,
...

)

Arguments

formula An R formula object of the form y ~ <model terms>, where y is a network
object. The network object must contain block information as a vertex at-
tribute with the name ’block’. For the details on the possible <model terms>,
see ergmTerm and Morris, Handcock and Hunter (2008). All terms that in-
duce dependence are excluded from the between block model, while the within
block model includes all terms. The L-ergmTerm is supported to enable size-
dependent coefficients for the within-blocks model. Note, however, that for size-
dependent parameters of terms that are included in the between-blocks model,
the intercept in the linear model provided to L-ergmTerm should not include the
intercept. See the second example of bigergm for a demonstration.

coef_within a vector of within-block parameters. The order of the parameters should match
that of the formula.

coef_between a vector of between-block parameters. The order of the parameters should match
that of the formula without externality terms.

network a network object to be used as a seed network for the simulation (if none is
provided, the network on the lhs of the formula is used).

control_within auxiliary function as user interface for fine-tuning ERGM simulation for within-
block networks.

20 state_twitter

only_within If this is TRUE, only within-block networks are simulated.

seed seed value (integer) for network simulation.

nsim number of networks generated.

output Normally character, one of "network" (default), "stats", "edgelist", to determine
the output format.

verbose If this is TRUE/1, the program will print out additional information about the
progress of simulation.

... Additional arguments, passed to simulate_formula.

Value

Simulated networks, the output form depends on the parameter output (default is a list of net-
works).

References

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24.

Examples

data(toyNet)
Specify the model that you would like to estimate.
model_formula <- toyNet ~ edges + nodematch("x") + nodematch("y") + triangle
Simulate network stats
sim_stats <- bigergm::simulate_bigergm(
formula = model_formula,

Formula for the model
coef_between = c(-4.5,0.8, 0.4),
The coefficients for the between connections
coef_within = c(-1.7,0.5,0.6,0.15),
The coefficients for the within connections
nsim = 10,
Number of simulations to return
output = "stats",
Type of output
)

state_twitter Twitter (X) network of U.S. state legislators

toyNet 21

Description

The network includes the Twitter (X) following interactions between U.S. state legislators. The data
was collection by Gopal et al. (2022) and Kim et al. (2022). For this network, we only include
the largest connected component of state legislators that were active on Twitter in the six months
leading up to and including the insurrection at the United States Capitol on January 6, 2021. All
state senate and state representatives for states with a bicameral system are included and all state
legislators for state (Nebraska) with a unicameral system are included.

Usage

data(state_twitter)

Format

A statnet’s network class object. It has the following categorical attributes for each state legislator.

gender factor stating whether the legislator is ’female’ or ’male’.

party party affiliation of the legislator, which is ’Democratic’, ’Independent’ or ’Republican’.

race race with the following levels: ’Asian or Pacific Islander’, ’Black’, ’Latino’, ’MENA(Middle
East and North Africa)’,’Multiracial’, ’Native American’, and ’White’.

state character of the state that the legislator represents.

References

Gopal, Kim, Nakka, Boehmke, Harden, Desmarais. The National Network of U.S. State Legislators
on Twitter. Political Science Research & Methods, Forthcoming.

Kim, Nakka, Gopal, Desmarais,Mancinelli, Harden, Ko, and Boehmke (2022). Attention to the
COVID-19 pandemic on Twitter: Partisan differences among U.S. state legislators. Legislative
Studies Quarterly 47, 1023–1041.

toyNet A toy network to play bigergm with.

Description

This network has a clear cluster structure. The number of clusters is four, and which cluster each
node belongs to is defined in the variable "block".

Usage

data(toyNet)

22 yule

Format

A statnet’s network class object. It has three nodal features.

block block membership of each node

x a covariate. It has 10 labels.

y a covariate. It has 10 labels. ...

1 and 2 are not variables with any particular meaning.

yule Compute Yule’s Phi-coefficient

Description

This function computes Yule’s Phi-coefficient between the true and estimated block membership
(its definition can be found here https://en.wikipedia.org/wiki/Phi_coefficient). In this
context, the Phi Coefficient is a measure of association between two group membership vectors.

Usage

yule(z_star, z)

Arguments

z_star a true block membership

z an estimated block membership

Value

Real value of Yule’s Phi-coefficient between the true and estimated block membership is returned.

Examples

data(toyNet)
yule(z_star = toyNet%v% "block",

z = sample(c(1:4),size = 200,replace = TRUE))

https://en.wikipedia.org/wiki/Phi_coefficient

Index

ari, 2

bali, 3
bigergm, 3, 4, 5, 14, 19
bunt, 9

cluster_walktrap, 5
control.ergm, 6
control.simulate.formula, 18

ergm, 6, 7, 12
ergmTerm, 4, 10, 11, 19
est_between, 10
est_within, 11

formula, 4, 10, 11, 19

get_between_networks, 13
get_within_networks, 13
gof, 12
gof.bigergm, 12, 14, 15

kapferer, 15

network, 4, 10, 11, 19

plot.bigergm, 16
py_dep, 16

reed, 17
rice, 17

simulate.bigergm, 18
simulate_bigergm, 14, 18, 19
simulate_formula, 14, 18, 20
state_twitter, 20

toyNet, 21

yule, 22

23

	ari
	bali
	bigergm
	bunt
	est_between
	est_within
	get_between_networks
	get_within_networks
	gof.bigergm
	kapferer
	plot.bigergm
	py_dep
	reed
	rice
	simulate.bigergm
	simulate_bigergm
	state_twitter
	toyNet
	yule
	Index

