Package 'bidask'

October 13, 2025

Type Package

```
Title Efficient Estimation of Bid-Ask Spreads from Open, High, Low,
      and Close Prices
Version 2.1.5
Description
      Implements the efficient estimator of bid-ask spreads from open, high, low, and close prices
      described in Ardia, Guidotti, & Kroencke (JFE, 2024) <doi:10.1016/j.jfineco.2024.103916>.
      It also provides an implementation of the estimators described in
      Roll (JF, 1984) <doi:10.1111/j.1540-6261.1984.tb03897.x>,
      Corwin & Schultz (JF, 2012) <doi:10.1111/j.1540-6261.2012.01729.x>,
      and Abdi & Ranaldo (RFS, 2017) <doi:10.1093/rfs/hhx084>.
License MIT + file LICENSE
URL https://github.com/eguidotti/bidask
BugReports https://github.com/eguidotti/bidask/issues
Encoding UTF-8
Imports data.table
RoxygenNote 7.2.3
Suggests xts, zoo, dplyr, crypto2, quantmod, ggplot2, knitr,
      rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Emanuele Guidotti [aut, cre] (ORCID:
       <https://orcid.org/0000-0002-8961-6623>),
      David Ardia [ctb] (ORCID: <a href="https://orcid.org/0000-0003-2823-782X">https://orcid.org/0000-0003-2823-782X</a>),
      Tim Kroencke [ctb] (ORCID: <a href="https://orcid.org/0000-0001-8700-356X">https://orcid.org/0000-0001-8700-356X</a>)
Maintainer Emanuele Guidotti <emanuele.guidotti@usi.ch>
Repository CRAN
Date/Publication 2025-10-13 13:30:15 UTC
```

2 edge

Contents

	edge edge_expanding edge_rolling spread		 			
Index						9
edge		Efficient Close Pri	tion of	Bid-Ask Spr	reads from Open,	High, Low, and

Description

Implements the efficient estimator of bid-ask spreads from open, high, low, and close prices described in Ardia, Guidotti, & Kroencke (JFE, 2024): doi:10.1016/j.jfineco.2024.103916

Usage

```
edge(open, high, low, close, sign = FALSE)
```

Arguments

open	numeric vector of open prices.
high	numeric vector of high prices.
low	numeric vector of low prices.
close	numeric vector of close prices.
sign	whether to return signed estimates.

Details

Prices must be sorted in ascending order of the timestamp.

Value

The spread estimate. A value of 0.01 corresponds to a spread of 1%.

References

Ardia, D., Guidotti, E., Kroencke, T.A. (2024). Efficient Estimation of Bid-Ask Spreads from Open, High, Low, and Close Prices. Journal of Financial Economics, 161, 103916. doi:10.1016/j.jfineco.2024.103916

edge_expanding 3

Examples

```
# reduce number of threads to pass CRAN checks (you can ignore this)
data.table::setDTthreads(1)

# simulate open, high, low, and close prices with spread 1%
x <- sim(n = 1000, spread = 0.01)

# estimate the spread
edge(x$Open, x$High, x$Low, x$Close)</pre>
```

edge_expanding

Expanding Estimates of Bid-Ask Spreads from Open, High, Low, and Close Prices

Description

Implements an expanding window calculation of the efficient estimator of bid-ask spreads from open, high, low, and close prices described in Ardia, Guidotti, & Kroencke (JFE, 2024): doi:10.1016/j.jfineco.2024.103916.

Usage

```
edge_expanding(open, high, low, close, sign = FALSE, na.rm = TRUE)
```

Arguments

open	numeric vector of open prices.
high	numeric vector of high prices.
low	numeric vector of low prices.
close	numeric vector of close prices.
sign	whether to return signed estimates.
na.rm	whether to ignore missing values.

Details

Prices must be sorted in ascending order of the timestamp.

Value

Vector of spread estimates. A value of 0.01 corresponds to a spread of 1%. This function always returns a result of the same length as the input prices.

References

Ardia, D., Guidotti, E., Kroencke, T.A. (2024). Efficient Estimation of Bid-Ask Spreads from Open, High, Low, and Close Prices. Journal of Financial Economics, 161, 103916. doi:10.1016/j.jfineco.2024.103916

4 edge_rolling

Examples

```
# reduce number of threads to pass CRAN checks (you can ignore this)
data.table::setDTthreads(1)

# simulate open, high, low, and close prices with spread 1%
x <- sim(n = 1000, spread = 0.01)

# estimate the spread using an expanding window
s <- edge_expanding(x$Open, x$High, x$Low, x$Close)
tail(s)
# equivalent to
s <- edge_rolling(x$Open, x$High, x$Low, x$Close, width = 1:nrow(x), na.rm = TRUE)
tail(s)</pre>
```

edge_rolling Rolling Estimates of Bid-Ask Spreads from Open, High, Low, and Close Prices

Description

Implements a rolling window calculation of the efficient estimator of bid-ask spreads from open, high, low, and close prices described in Ardia, Guidotti, & Kroencke (JFE, 2024): doi:10.1016/j.jfineco.2024.103916.

Usage

```
edge_rolling(open, high, low, close, width, sign = FALSE, na.rm = FALSE)
```

Arguments

open	numeric vector of open prices.
high	numeric vector of high prices.
low	numeric vector of low prices.
close	numeric vector of close prices.
width	if an integer, the width of the rolling window. If a vector with the same length of the input prices, the width of the window corresponding to each observation. Otherwise, a vector of endpoints. See examples.
sign	whether to return signed estimates.
na.rm	whether to ignore missing values.

Details

Prices must be sorted in ascending order of the timestamp.

sim 5

Value

Vector of spread estimates. A value of 0.01 corresponds to a spread of 1%. This function always returns a result of the same length as the input prices.

References

Ardia, D., Guidotti, E., Kroencke, T.A. (2024). Efficient Estimation of Bid-Ask Spreads from Open, High, Low, and Close Prices. Journal of Financial Economics, 161, 103916. doi:10.1016/j.jfineco.2024.103916

Examples

```
# reduce number of threads to pass CRAN checks (you can ignore this)
data.table::setDTthreads(1)
# simulate open, high, low, and close prices with spread 1%
x < - sim(n = 1000, spread = 0.01)
# estimate the spread using a rolling window
s <- edge_rolling(x$Open, x$High, x$Low, x$Close, width = 21)
tail(s)
# estimate the spread using custom endpoints
ep <- c(3, 35, 100)
s <- edge_rolling(x$Open, x$High, x$Low, x$Close, width = ep)</pre>
s[c(35, 100)]
# equivalent to
edge(x$Open[3:35], x$High[3:35], x$Low[3:35], x$Close[3:35])
edge(x$Open[35:100], x$High[35:100], x$Low[35:100], x$Close[35:100])
# estimate the spread using an expanding window
s <- edge_rolling(x$Open, x$High, x$Low, x$Close, width = 1:nrow(x))</pre>
tail(s)
# equivalent to
s <- edge_expanding(x$Open, x$High, x$Low, x$Close, na.rm = FALSE)
```

Simulation of Open, High, Low, and Close Prices

sim

Description

This function performs simulations consisting of n periods and where each period consists of a given number of trades. For each trade, the actual price P_t is simulated as $P_t = P_{t-1}e^{\sigma x}$, where σ is the standard deviation per trade and x is a random draw from a unit normal distribution. The standard deviation per trade equals the volatility divided by the square root of the number of trades. Trades are assumed to be observed with a given probability. The bid (ask) for each trade is defined as P_t multiplied by one minus (plus) half the spread and we assume a 50% chance

6 sim

that a bid (ask) is observed. High and low prices equal the highest and lowest prices observed during the period. Open and Close prices equal the first and the last price observed in the period. If no trade is observed for a period, then the previous Close is used as the Open, High, Low, and Close prices for that period.

Usage

```
sim(
    n = 10000,
    trades = 390,
    prob = 1,
    spread = 0.01,
    volatility = 0.03,
    overnight = 0,
    drift = 0,
    units = 1,
    sign = FALSE
)
```

Arguments

n	the number of periods to simulate.
trades	the number of trades per period.
prob	the probability to observe a trade.
spread	the bid-ask spread.
volatility	the open-to-close volatility.
overnight	the close-to-open volatility.
drift	the expected return per period.
units	the units of the time period. One of: 1, sec, min, hour, day, week, month, year.

Value

sign

A data.frame of open, high, low, and close prices if units=1 (default). Otherwise, an xts object is returned (requires the xts package to be installed).

whether to return positive prices for buys and negative prices for sells.

References

Ardia, D., Guidotti, E., Kroencke, T.A. (2024). Efficient Estimation of Bid-Ask Spreads from Open, High, Low, and Close Prices. Journal of Financial Economics, 161, 103916. doi:10.1016/j.jfineco.2024.103916

Examples

```
# reduce number of threads to pass CRAN checks (you can ignore this)
data.table::setDTthreads(1)
```

spread 7

```
# simulate 10 open, high, low, and close prices with spread 1% sim(n = 10, spread = 0.01)
```

spread	Estimation of Bid-Ask Spreads from Open, High, Low, and Close Prices

Description

This function implements several methods to estimate bid-ask spreads from open, high, low, and close prices and it is optimized for fast calculations over rolling and expanding windows.

Usage

```
spread(x, width = nrow(x), method = "EDGE", sign = FALSE, na.rm = FALSE)
```

Arguments

X	tabular data with columns named open, high, low, close (case-insensitive).
width	if an integer, the width of the rolling window. If a vector with the same length of the input prices, the width of the window corresponding to each observation. Otherwise, a vector of endpoints. By default, the full sample is used to compute a single spread estimate. See examples.
method	the estimators to use. See details.
sign	whether to return signed estimates.
na.rm	whether to ignore missing values.

Details

The method EDGE implements the Efficient Discrete Generalized Estimator described in Ardia, Guidotti, & Kroencke (JFE, 2024).

The methods OHL, OHLC, CHLO implement the generalized estimators described in Ardia, Guidotti, & Kroencke (JFE, 2024). They can be combined by concatenating their identifiers, e.g., OHLC. CHLO uses an average of the OHLC and CHLO estimators.

The method AR implements the estimator described in Abdi & Ranaldo (RFS, 2017). AR2 implements their 2-period version.

The method CS implements the estimator described in Corwin & Schultz (JF, 2012). CS2 implements their 2-period version. Both versions are adjusted for overnight (close-to-open) returns as described in the paper.

The method ROLL implements the estimator described in Roll (JF, 1984).

Value

A data frame of spread estimates, or an xts object if x is of class xts. A value of 0.01 corresponds to a spread of 1%.

8 spread

References

Ardia, D., Guidotti, E., Kroencke, T.A. (2024). Efficient Estimation of Bid-Ask Spreads from Open, High, Low, and Close Prices. Journal of Financial Economics, 161, 103916. doi:10.1016/j.jfineco.2024.103916

Abdi, F., & Ranaldo, A. (2017). A simple estimation of bid-ask spreads from daily close, high, and low prices. Review of Financial Studies, 30 (12), 4437-4480. doi:10.1093/rfs/hhx084

Corwin, S. A., & Schultz, P. (2012). A simple way to estimate bid-ask spreads from daily high and low prices. Journal of Finance, 67 (2), 719-760. doi:10.1111/j.15406261.2012.01729.x

Roll, R. (1984). A simple implicit measure of the effective bid-ask spread in an efficient market. Journal of Finance, 39 (4), 1127-1139. doi:10.1111/j.15406261.1984.tb03897.x

Examples

```
# reduce number of threads to pass CRAN checks (you can ignore this)
data.table::setDTthreads(1)
# simulate open, high, low, and close prices with spread 1%
x <- sim(n = 1000, spread = 0.01)
# estimate the spread
spread(x)
# equivalent to
edge(x$Open, x$High, x$Low, x$Close)
# estimate the spread using a rolling window of 21 periods
s \leftarrow spread(x, width = 21)
tail(s)
# equivalent to
s <- edge_rolling(x$Open, x$High, x$Low, x$Close, width = 21)
# estimate the spread using an expanding window
s \leftarrow spread(x, width = 1:nrow(x))
tail(s)
# equivalent to
s <- edge_expanding(x$Open, x$High, x$Low, x$Close, na.rm = FALSE)</pre>
tail(s)
# estimate the spread using custom endpoints
ep <- c(3, 35, 100)
spread(x, width = ep)
# equivalent to
edge(x$Open[3:35], x$High[3:35], x$Low[3:35], x$Close[3:35])
edge(x$Open[35:100], x$High[35:100], x$Low[35:100], x$Close[35:100])
# use multiple estimators
spread(x, method = c("EDGE", "AR", "CS", "ROLL", "OHLC", "OHL.CHL"))
```

Index

```
edge, 2
edge_expanding, 3
edge_rolling, 4

sim, 5
spread, 7
```