Package ‘babelmixr2’

October 14, 2025
Type Package

Title Use 'nlmixr2' to Interact with Open Source and Commercial
Software

Version 0.1.10

Description Run other estimation and simulation software via the 'nlmixr2' (Fidler et al (2019)
<doi:10.1002/psp4.12445>) interface including 'PKNCA', 'NONMEM' and 'Mono-
lix'. While not required, you can
get/install the 'lixoftConnectors' package in the 'Monolix' installation, as
described at the following url
<https://monolixsuite.slp-software.com/r-functions/2024R1/
installation-and-initialization>. When
'lixoftConnectors' is available, 'Monolix' can be run directly instead of setting up
command line usage.

License GPL (>=3)

URL https://nlmixr2.github.io/babelmixr2/,
https://github.com/nlmixr2/babelmixr2/

NeedsCompilation yes

Encoding UTF-8

Suggests testthat, withr, lixoftConnectors, PKNCA (>= 0.10.0),
rmarkdown, spelling, PopED, units (>= 0.8-6), vdiffr, nlme,
dplyr, devtools, memoise, FME, coda, crayon

Depends R (>=3.5)

Imports checkmate, cli, digest, lotri, nlmixr2data, nlmixr2extra,
nlmixr2plot, magrittr, nlmixr2est (>=4.1.0), nonmem2rx (>=
0.1.5), monolix2rx (>= 0.0.3), methods, gs, rex, rxode2 (>=
4.1.0)

RoxygenNote 7.3.2

Config/testthat/edition 3

LinkingTo Rcpp, rxode2, RcppArmadillo, ReppEigen
Language en-US

https://doi.org/10.1002/psp4.12445
https://monolixsuite.slp-software.com/r-functions/2024R1/installation-and-initialization
https://monolixsuite.slp-software.com/r-functions/2024R1/installation-and-initialization
https://nlmixr2.github.io/babelmixr2/
https://github.com/nlmixr2/babelmixr2/

.setupPopEDdatabase

Author Matthew Fidler [aut, cre] (ORCID:

<https://orcid.org/0000-0001-8538-6691>),

Bill Denney [aut] (ORCID: <https://orcid.org/0000-0002-5759-428X>),
Theodoros Papathanasiou [ctb],
Nook Fulloption [ctb] (goldfish art)

Maintainer Matthew Fidler <matthew.fidler@gmail.com>
Repository CRAN
Date/Publication 2025-10-14 08:00:32 UTC

Contents
setupPopEDdatabaseo L L e 2
as.nlmixr2 3
babel.poped.database 5
babelBpopldx e e 6
bblDatToMonolix e 7
fmeMcmcControl 10
getStandardColNames L 17
modelUnitConversion L e 18
monolixControl 18
nlmixr2Est.pknca oL Lo 22
nonmemControl L e e 23
pkncaControl L e e e 26
popedControl L e e e e 27
popedGetMultipleEndpointModelingTimes 37
popedMultipleEndpointResetTimelndex 39
pseudoOptimControl 39
rxToMonolix 46
rxToNonmem e 46
simplifyUnit e 47
Index 48

.setupPopEDdatabase Setup the poped database

Description

Setup the poped database

Usage

.setupPopEDdatabase(ui, data, control)

https://orcid.org/0000-0001-8538-6691
https://orcid.org/0000-0002-5759-428X

as.nlmixr2 3

Arguments

ui rxode?2 ui function
data babelmixr2 design data
control PopED control

Value

PopED database

Author(s)
Matthew L. Fidler

as.nlmixr2 Convert an object to a nlmixr2 fit object

Description

Convert an object to a nlmixr?2 fit object

Usage

as.nlmixr2(
X!

table = nlmixr2est::tableControl(),
rxControl = rxode2::rxControl(),
ci =0.95

)

as.nlmixr(
X,

table = nlmixr2est::tableControl(),
rxControl = rxode2::rxControl(),

ci = 0.95
)
Arguments
X Object to convert
. Other arguments
table is the nImixr2est: : tableControl() options
rxControl is the rxode2: : rxControl () options, which is generally needed for how addl

doses are handled in the translation

ci is the confidence interval of the residual differences calculated (by default 0.95)

Value

nlmixr2 fit object

Author(s)

Matthew L. Fidler

Examples

First read in the model (but without residuals)
mod <- nonmem2rx(system.file("mods/cpt/runODE@32.ctl"”, package="nonmem2rx"),
determineError=FALSE, lst=".res", save=FALSE)

define the model with residuals (and change the name of the
parameters) In this step you need to be careful to not change the
estimates and make sure the residual estimates are correct (could

have to change var to sd).

mod2 <-function() {

3

now we create another nonmem2rx object that validates the model above:

in

b))

i{

lcl <- 1.37034036528946

lve <- 4.19814911033061

1q <- 1.38003493562413

lvp <- 3.87657341967489

RSV <- c(0, 0.196446108190896, 1)
eta.cl ~ 0.101251418415006

eta.v ~ 0.0993872449483344

eta.q ~ 0.101302674763154

eta.v2 ~ 0.0730497519364148

model ({

b))

cmt (CENTRAL)

cmt (PERI)

cl <- exp(lcl + eta.cl)
v <- exp(lvc + eta.v)

g <- exp(lg + eta.q)

v2 <- exp(lvp + eta.v2)
vl <- v

scalel <- v

k21 <- g/v2

k12 <- qg/v

d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1
d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL

f <- CENTRAL/scalel
f ~ prop(RSVY)

as.nlmixr2

babel.poped.database

new <- as.nonmem2rx(mod2, mod)

once that is done, you can translate to a full nlmixr2 fit (if you wish)

fit <- as.nlmixr2(new)

print(fit)

babel.poped.database Expand a babelmixr2 PopED database

Description

Expand a babelmixr2 PopED database

Usage
babel .poped.database(popedInput, ..., optTime = NA)
Arguments
popedInput The babelmixr2 generated PopED database
other parameters sent to PopED: : create.poped.database()
optTime boolean to indicate if the global time indexer inside of babelmixr2 is reset if
the times are different. By default this is TRUE. If FALSE you can get slightly
better run times and possibly slightly different results. When optTime is FALSE
the global indexer is reset every time the PopED rxode?2 is setup for a problem or
when a poped dataset is created. You can manually reset with popedMultipleEndpointResetTimeIndex
Value

babelmixr2 PopED database (with $babelmixr2 in database)

Author(s)

Matthew L. Fidler

6 babelBpopldx

babelBpopIdx Get the bpop_idx by variable name for a poped database created by
babelmixr2

Description

This may work for other poped databases if the population parameters are named.

Usage
babelBpopIdx(popedInput, var)

Arguments
popedInput The babelmixr2 created database
var variable to query

Value

index of the variable

Author(s)
Matthew L. Fidler

Examples

if (requireNamespace("PopED"”, quietly=TRUE)) {

f <= function() {

ini({
tV <- 72.8
tKa <- 0.25
tCl <- 3.75
tF <- fix(0.9)
pedCL <- 0.8
eta.v ~ 0.09

eta.ka ~ 0.09
eta.cl ~0.25"2

prop.sd <- fix(sqrt(0.04))
add.sd <- fix(sqrt(5e-6))

b))

model ({
V<-tV*xexp(eta.v)
KA<-tKaxexp(eta.ka) * (pedCL*x*isPediatric) # add covariate for pediatrics
CL<-tClxexp(eta.cl)

bblDatToMonolix 7

Favail <- tF

N <- floor(t/TAU)+1
y <- (DOSExFavail/V)*(KA/(KA - CL/V)) *
(exp(-CL/V * (t - (N - 1) * TAU)) =*
(1 - exp(-N x CL/V * TAU))/(1 - exp(-CL/V x TAU)) -
exp(-KA * (t = (N = 1) x TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))

y ~ prop(prop.sd) + add(add.sd)
b))
3

e <- et(c(1,8,10,240,245))

babel.db <- nlmixr2(f, e, "poped”,
popedControl(m = 2,
groupsize=20,
bUseGrouped_xt=TRUE,
a=list(c(DOSE=20,TAU=24,isPediatric = @),
c(DOSE=40, TAU=24,isPediatric = 0))))

babelBpopIdx(babel.db, "pedCL")

3

bblDatToMonolix Convert nlmixr2-compatible data to other formats (if possible)

Description

Convert nlmixr2-compatible data to other formats (if possible)

Usage

bblDatToMonolix(
model,
data,
table = nlmixr2est::tableControl(),
rxControl = rxode2::rxControl(),
env = NULL

bblDatToNonmem(
model,
data,
table = nlmixr2est::tableControl(),
rxControl = rxode2::rxControl(),
env = NULL

8 bblDatToMonolix

bblDatToRxode (
model,
data,
table = nlmixr2est::tableControl(),
rxControl = rxode2::rxControl(),

env = NULL
)
bblDatToMrgsolve(
model,
data,
table = nlmixr2est::tableControl(),
rxControl = rxode2::rxControl(),
env = NULL
)
bblDatToPknca(
model,
data,
table = nlmixr2est::tableControl(),
rxControl = rxode2::rxControl(),
env = NULL
)
Arguments
model rxode2 model for conversion
data Input dataset.
table is the table control; this is mostly to figure out if there are additional columns to
keep.
rxControl is the rxode?2 control options; This is to figure out how to handle the addl dosing
information.
env When NULL (default) nothing is done. When an environment, the function nlmixr2est
env, model, rxControl) is called on the provided environment.
Value

With the function bblDatToMonolix () return a list with:

* Monolix compatible dataset ($monolix)
* Monolix ADM information ($adm)

With the function nImixrDataToNonmem() return a dataset that is compatible with NONMEM.

With the function nlmixrDataToMrgsolve() return a dataset that is compatible with mrgsolve.
Unlike NONMEM, it supports replacement events with evid=8 (note with rxode2 replacement
evidis 5).

With the function nlmixrDataToRxode () this will normalize the dataset to use newer evid defini-
tions that are closer to NONMEM instead of any classic definitions that are used at a lower level

::.foceiPreProce

bblDatToMonolix

Author(s)
Matthew L. Fidler

Examples

pk.turnover.emax3 <- function() {
ini({
tktr <- log(1)
tka <- log(1)
tcl <- log(@.1)
tv <- log(10)

#H#

eta.ktr ~ 1
eta.ka ~ 1
eta.cl ~ 2
eta.v ~ 1

prop.err <- 0.1
pkadd.err <- 0.1
##
temax <- logit(0.8)
tec50 <- log(0.5)
tkout <- log(0.05)
ted <- log(100)
##
eta.emax ~ .5
eta.ec50 ~ .5
eta.kout ~ .5
eta.ed ~ .5
##
pdadd.err <- 10
D)
model ({
ktr <- exp(tktr + eta.ktr)
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
emax = expit(temax+eta.emax)
ec50 = exp(tecb0 + eta.ech0)
kout = exp(tkout + eta.kout)
ed = exp(ted + eta.ed)
##
DCP = center/v
PD=1-emax*DCP/ (ec50+DCP)
##
effect(0) = e0
kin = e@xkout
#i#
d/dt(depot) = -ktr x depot
d/dt(gut) = ktr * depot -ka * gut
d/dt(center) = ka x gut - cl / v x center
d/dt(effect) = kin*PD -koutxeffect
##

10 fmeMcmcControl

cp = center / v
cp ~ prop(prop.err) + add(pkadd.err)
effect ~ add(pdadd.err) | pca
b))
3

bblDatToMonolix(pk.turnover.emax3, nlmixr2data::warfarin)
bblDatToNonmem(pk. turnover.emax3, nlmixr2data::warfarin)
bblDatToMrgsolve(pk.turnover.emax3, nlmixr2data::warfarin)

bblDatToRxode(pk. turnover.emax3, nlmixr2data::warfarin)

fmeMcmcControl Control for fmeMcmc estimation method in nlmixr2

Description

Control for fmeMcmc estimation method in nlmixr2

Usage
fmeMcmcControl (
jump = NULL,
prior = NULL,

niter = 1000L,
outputlength = niter,
burninlength = 0,
updatecov = niter,
covscale = NULL,

ntrydr = 1,

drscale = NULL,

verbose = FALSE,

returnFmeMcmc = FALSE,

stickyRecalcN = 4,

maxOdeRecalc = 5,

odeRecalcFactor = 107(0.5),

useColor = crayon::has_color(),

printNcol = floor((getOption("width") - 23)/12),

print = 1L,
normType = c("rescale2”, "mean"”, "rescale", "std"”, "len"”, "constant"),
scaleType = c("none”, "nlmixr2", "norm”, "mult”, "multAdd"),

scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo =1,

fmeMcmcControl

11

rxControl = NULL,

optExpression

= TRUE,

sumProd = FALSE,

literalFix

TRUE,

literalFixRes = TRUE,

addProp = c("combined2”, "combinedl"),
calcTables = TRUE,

compress = TRUE,

covMethod = c("memc”,

llr,u n H)
’ ’

adjobf = TRUE,

ci = 0.95,
sigdig = 4,
sigdigTable

Arguments

Jump

prior

niter
outputlength
burninlength

updatecov

covscale

ntrydr

drscale

verbose

returnFmeMcmc

stickyRecalcN

maxOdeRecalc

NULL,

jump length, either a number, a vector with length equal to the total number
of parameters, a covariance matrix, or a function that takes as input the current
values of the parameters and produces as output the perturbed parameters. See
details.

-2*log(parameter prior probability), either a function that is called as prior(p)
or NULL; in the latter case a non-informative prior is used (i.e. all parameters are
equally likely, depending on lower and upper within min and max bounds).

number of iterations for the MCMC.
number of iterations kept in the output; should be smaller or equal to niter.
number of initial iterations to be removed from output.

number of iterations after which the parameter covariance matrix is (re)evaluated
based on the parameters kept thus far, and used to update the MCMC jumps.

scale factor for the parameter covariance matrix, used to perform the MCMC
jumps.

maximal number of tries for the delayed rejection procedure. It is generally not
a good idea to set this to a too large value.

for each try during delayed rejection, the cholesky decomposition of the pro-
posal matrix is scaled with this amount; if NULL, it is assumed to be c(@.2,0.25,
0.333,0.333, ...)

if TRUE or 1: prints extra output, if numeric value i > 1, prints status information
every i iterations.

return the fmeMcmc output instead of the nlmixr2 fit

The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

12

odeRecalcFactor

useColor
printNcol

print

normType

fmeMcmcControl

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

Boolean indicating if focei can use ASCII color codes
Number of columns to printout before wrapping parameter estimates/gradient

Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.

With the exception of rescale?2, these come from Feature Scaling. The rescale?2
The rescaling is the same type described in the OptdesX software manual.

In general, all all scaling formula can be described by:

VUscaled
=(
Vunscaled — Cl
)/
Co
Where

The other data normalization approaches follow the following formula

VUscaled

Vunscaled — C1

)
C

* rescale?2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

Gy

= (max(all unscaled values)+min(all unscaled values))/2

Cs

= (max(all unscaled values) - min(all unscaled values))/2

* rescale or min-max normalization. This rescales all parameters from (0
to 1). As in the rescale?2 the relative differences are preserved. In this
approach:

Gy

= min(all unscaled values)

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

fmeMcmcControl

scaleType

13

Cs

= max(all unscaled values) - min(all unscaled values)

* mean or mean normalization. This rescales to center the parameters around
the mean but the parameters are from O to 1. In this approach:

Ch
= mean(all unscaled values)

C

= max(all unscaled values) - min(all unscaled values)

* std or standardization. This standardizes by the mean and standard devia-
tion. In this approach:

Ch

= mean(all unscaled values)

Cy

= sd(all unscaled values)

* len or unit length scaling. This scales the parameters to the unit length. For
this approach we use the Euclidean length, that is:

Gy

Cs
Vi +ul 4+ +0)
* constant which does not perform data normalization. That is

Cq

Cy
=1
The scaling scheme for nlmixr2. The supported types are:

* nlmixr2 In this approach the scaling is performed by the following equa-
tion:

VUscaled

Vcurrent — Vinit

14

scaleCmax
scaleCmin

scaleC

fmeMcmcControl

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

* norm This approach uses the simple scaling provided by the normType ar-
gument.

» mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.

In this case:

VUscaled
Vcurrent
/
Vinit
*scaleTo

* multAdd This approach changes the scaling based on the parameter being
specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

VUscaled

Veurrent — Vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

VUscaled
Vcurrent
/
Vinit
*scaleTo

Maximum value of the scaleC to prevent overflow.
Minimum value of the scaleC to prevent underflow.

The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

 For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

fmeMcmcControl 15

 For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)
* Factorials are scaled by abs(1/digamma(initial_estimate+1))
» parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estir
These parameter scaling coefficients are chose to try to keep similar slopes

among parameters. That is they all follow the slopes approximately on a log-
scale.

While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()*

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-

cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is “TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is “TRUE‘.

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined?2).

The combined! error type can be described by the following equation:

y=f+(a+bx f)xe

The combined?2 error model can be described by the following equation:

y=f+vVa2+bx fxexe

Where:

- y represents the observed value

- f represents the predicted value

- a is the additive standard deviation

- b is the proportional/power standard deviation

- ¢ is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix

of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

16 fmeMcmcControl

¢ "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

e "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

* "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

* "" Does not calculate the covariance step.

adjobf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM'’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

* The tolerance of the inner and outer optimization is 10*-sigdig

¢ The tolerance of the ODE solvers is @.5%x10*(-sigdig-2); For the sensi-
tivity equations and steady-state solutions the defaultis @.5%10* (-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

* The tolerance of the boundary check is 5 * 10 * (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig* is NULL, use
3.

Ignored parameters

Value

fmeMcmc control structure

Author(s)
Matthew L. Fidler

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)

dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-T1+dsn$time)))

mod <- function() {

ini({
E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)
»
model ({

v <- EQ+Em*time~g/(E50*g+time’g)
11(bin) ~ DV * v - log(1 + exp(v))
»
3

getStandardColNames 17

fit2 <- nlmixr(mod, dsn, est="fmeMcmc")
print(fit2)

you can also get the FME modMCMC output with
fit2$fmeMcmc

And use it in the summaries from FME, i.e.
summary (fit2$fmeMcmc)

pairs(fit2$fmeMcmc)

and you can also use the coda package with “as.mcmc()”
coda::raftery.diag(coda: :as.memc(fit2))

getStandardColNames Determine standardized rxode2 column names from data

Description

Determine standardized rxode2 column names from data

Usage

getStandardColNames(data)

Arguments

data A data.frame as the source for column names

Value

A named character vector where the names are the standardized names and the values are either the
name of the column from the data or NA if the column is not present in the data.

Examples

getStandardColNames(data.frame(ID=1, DV=2, Time=3, CmT=4))

18 monolixControl

modelUnitConversion Unit conversion for pharmacokinetic models

Description

Unit conversion for pharmacokinetic models

Usage

modelUnitConversion(
dvu = NA_character_,
amtu = NA_character_,
timeu = NA_character_,
volumeu = NA_character_

Arguments

dvu, amtu, timeu The units for the DV, AMT, and TIME columns in the data

volumeu The units for the volume parameters in the model

Value

A list with names for the units associated with each parameter ("amtu", "clearanceu", "volumeu",
"timeu", "dvu") and the numeric value to multiply the modeled estimate (for example, cp) so that

the model is consistent with the data units.

See Also

Other Unit conversion: simplifyUnit()

Examples
modelUnitConversion(dvu = "ng/mL", amtu = "mg”, timeu = "hr", volumeu = "L")
monolixControl Monolix Controller for nlmixr2
Description

Monolix Controller for nlmixr2

monolixControl 19

Usage

monolixControl(
nbSSDoses = 7,
useLinearization = FALSE,
stiff = FALSE,
addProp = c("combined2", "combinedl"),
exploratoryAutoStop = FALSE,
smoothingAutoStop = FALSE,
burnInlterations = 5,
smoothingIterations = 200,
exploratorylIterations = 250,
simulatedAnnealinglterations = 250,
exploratorylInterval = 200,
exploratoryAlpha = 0,
omegaTau = 0.95,
errorModelTau = 0.95,
variability = c("none”, "firstStage"”, "decreasing"”),
runCommand = getOption(”babelmixr2.monolix", ""),
rxControl = NULL,
sumProd = FALSE,
optExpression = TRUE,
calcTables = TRUE,
compress = TRUE,
ci = 0.95,
sigdigTable = NULL,
absolutePath = FALSE,
modelName = NULL,
muRefCovAlg = TRUE,

run = TRUE,
)
Arguments
nbSSDoses Number of steady state doses (default 7)
useLinearization
Use linearization for log likelihood and fim.
stiff boolean for using the stiff ODE solver
addProp specifies the type of additive plus proportional errors, the one where standard

deviations add (combined1) or the type where the variances add (combined?2).
The combined] error type can be described by the following equation:

y=f+(a+tbx f)xe

The combined?2 error model can be described by the following equation:

y=f+vVa2+b?x fxexe

20

monolixControl

Where:

- y represents the observed value

- f represents the predicted value

- ais the additive standard deviation

- b is the proportional/power standard deviation

- ¢ is the power exponent (in the proportional case c=1)

exploratoryAutoStop

logical to turn on or off exploratory phase auto-stop of SAEM (default 250)

smoothingAutoStop

Boolean indicating if the smoothing should automatically stop (default FALSE)

burnInlterations

Number of burn in iterations

smoothinglterations

Number of smoothing iterations

exploratorylterations

Number of iterations for exploratory phase (default 250)

simulatedAnnealingIterations

Number of simulating annealing iterations

exploratoryInterval

Minimum number of iterations in the exploratory phase (default 200)

exploratoryAlpha

omegaTau
errorModelTau

variability

runCommand

rxControl

sumProd

optExpression

calcTables

compress

ci

Convergence memory in the exploratory phase (only used when exploratoryAutoStop
is TRUE)

Proportional rate on variance for simulated annealing
Proportional rate on error model for simulated annealing

This describes the methodology for parameters without variability. It could be:
- Fixed throughout (none) - Variability in the first stage (firstStage) - Decreasing
until it reaches the fixed value (decreasing)

is a shell command or function to run monolix; You can specify the default by
options("babelmixr2.monolix"="runMonolix"). If it is empty and ’lixoft-
Connectors’ is available, use lixoftConnectors to run monolix. See details for
function usage.

‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()*

Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

Should the object have compressed items

Confidence level for some tables. By default this is 0.95 or 95% confidence.

monolixControl

sigdigTable

absolutePath

modelName

muRefCovAlg

run

Details

21

Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig* is NULL, use
3.

Boolean indicating if the absolute path should be used for the monolix runs

Model name used to generate the NONMEM output. If NULL try to infer from the
model name (could be x if not clear). Otherwise use this character for outputs.

This controls if algebraic expressions that can be mu-referenced are treated as
mu-referenced covariates by:

1. Creating a internal data-variable ‘nlmixrMuDerCov#° for each algebraic mu-
referenced expression

2. Change the algebraic expression to ‘nlmixrMuDerCov# * mu_cov_theta“

3. Use the internal mu-referenced covariate for saem

4. After optimization is completed, replace ‘model()‘ with old ‘model()‘ expres-
sion

5. Remove ‘nlmixrMuDerCov#* from nlmix2 output

In general, these covariates should be more accurate since it changes the system
to a linear compartment model. Therefore, by default this is ‘TRUE".

Should monolix be run and the results be imported to nlmixr2? (Default is
TRUE)

Ignored parameters

If runCommand is given as a string, it will be called with the system() command like:

runCommand mlxtran.

For example, if runCommand=""/path/to/monolix/mlxbsub20@21' -p " then the command line
used would look like the following:

'/path/to/monolix/mlxbsub2021' monolix.mlxtran

If runCommand is given as a function, it will be called as FUN(mlxtran, directory, ui) to run
Monolix. This allows you to run Monolix in any way that you may need, as long as you can write
it in R. babelmixr2 will wait for the function to return before proceeding.

If runCommand is NA, nlmixr () will stop after writing the model files and without starting Monolix.

Note that you can get the translated monolix components from a parsed/compiled rxode2 ui object
with ui$monolixModel and ui$mlxtran

Value

A monolix control object

Author(s)
Matthew Fidler

22 nlmixr2Est.pknca

nlmixr2Est.pknca Estimate starting parameters using PKNCA

Description

Estimate starting parameters using PKNCA

Usage
S3 method for class 'pknca'
nlmixr2Est(env, ...)
Arguments
env Environment for the nlmixr2 estimation routines.

This needs to have:
- rxode?2 ui object in ‘$ui’
- data to fit in the estimation routine in ‘$data‘

- control for the estimation routine’s control options in ‘$ui‘

Other arguments provided to ‘nlmixr2Est()‘ provided for flexibility but not cur-
rently used inside nlmixr

Details

Parameters are estimated as follows:

* ka 4 half-lives to Tmax but not higher than 3: log(2)/(tmax/4)
 vc Inverse of dose-normalized Cmax
¢ cl Estimated as the median clearance

* vp,vp22- and 4-fold the vc, respectively by default, controlled by the vpMult and vp2Mult
arguments to pkncaControl

* d,92 0.5- and 0.25-fold the cl1, respectively by default, controlled by the gMult and g2Mult
arguments to pkncaControl

The bounds for the parameter estimates are set to 10% of the first percentile and 10 times the 99th
percentile. (For ka, the lower bound is set to the lower of 10% of the first percentile or 0.03 and the
upper bound is not modified from 10 times the 99th percentile.)

Parameter estimation methods may be changed in a future version.

Value

A model with updated starting parameters. In the model a new element named "nca" will be avail-
able which includes the PKNCA results used for the calculation.

nonmemControl

nonmemControl NONMEM estimation control

Description

NONMEM estimation control

Usage

nonmemControl (
est = c("focei”, "imp", "its", "posthoc"),
advanOde = c("advan13"”, "advan8"”, "advan6"),
cov = c("r,s", "r", "s", ""),
maxeval = 1e+05,
tol = 6,
atol = 12,
sstol = 6,
ssatol = 12,
sigl = 12,
sigdig = 3,
print =1,
extension = getOption("babelmixr2.nmModelExtension”, ".nmctl"),
outputExtension = getOption("babelmixr2.nmOutputExtension”, ".1lst"),
runCommand = getOption(”babelmixr2.nonmem”, ""),
iniSigDig = 5,
protectZeros = FALSE,
muRef = TRUE,
addProp = c("combined2”, "combinedl"),
rxControl = NULL,
sumProd = FALSE,
optExpression = TRUE,
calcTables = TRUE,
compress = TRUE,
ci =0.95,
sigdigTable = NULL,
readRounding = FALSE,
readBadOpt = FALSE,
niter = 100L,
isample = 1000L,
iaccept = 0.4,
iscaleMin = 0.1,
iscaleMax = 10,
df = 4,
seed = 14456,
mapiter = 1,
mapinter = 0,
noabort = TRUE,

24

nonmemControl

modelName = NULL,
muRefCovAlg = TRUE,

run = TRUE,

Arguments

est
advanOde
cov
maxeval
tol
atol
sstol
ssatol
sigl
sigdig
print

extension

outputExtension

runCommand

iniSigDig

protectZeros

muRef

NONMEM estimation method

The ODE solving method for NONMEM

The NONMEM covariance method

NONMEM'’s maxeval (for non posthoc methods)
NONMEM tolerance for ODE solving advan
NONMEM absolute tolerance for ODE solving
NONMEM tolerance for steady state ODE solving
NONMEM absolute tolerance for steady state ODE solving
NONMEM sigl estimation option

the significant digits for NONMEM

The print number for NONMEM

NONMEM file extensions

Extension to use for the NONMEM output listing

Command to run NONMEM (typically the path to "nmfe75") or a function. See
the details for more information.

How many significant digits are printed in STHETA and SOMEGA when the
estimate is zero. Also controls the zero protection numbers

Add methods to protect divide by zero

Automatically mu-reference the control stream

addProp, sumProd, optExpression, calcTables, compress, ci, sigdigTable

rxControl

readRounding

readBadOpt

niter
isample
iaccept
iscaleMin
iscaleMax
df

Passed to nlmixr2est: :foceiControl
Options to pass to rxode2: : rxControl for simulations

Try to read NONMEM output when NONMEM terminated due to rounding
errors

Try to read NONMEM output when NONMEM terminated due to an apparent
failed optimization

number of iterations in NONMEM estimation methods
Isample argument for NONMEM ITS estimation method
Iaccept for NONMEM ITS estimation methods
parameter for IMP NONMEM method ISCALE_MIN)
parameter for IMP NONMEM method ISCALE_MAX)
degrees of freedom for IMP method

nonmemControl 25

seed is the seed for NONMEM methods

mapiter the number of map iterations for IMP method

mapinter is the MAPINTER parameter for the IMP method

noabort Add the NOABORT option for $EST

modelName Model name used to generate the NONMEM output. If NULL try to infer from the

model name (could be x if not clear). Otherwise use this character for outputs.

muRefCovAlg This controls if algebraic expressions that can be mu-referenced are treated as
mu-referenced covariates by:
1. Creating a internal data-variable ‘nlmixrMuDerCov#° for each algebraic mu-
referenced expression
2. Change the algebraic expression to ‘nlmixrMuDerCov# * mu_cov_theta*
3. Use the internal mu-referenced covariate for saem
4. After optimization is completed, replace ‘model()‘ with old ‘model()‘ expres-
sion
5. Remove ‘nlmixrMuDerCov#‘ from nlmix2 output
In general, these covariates should be more accurate since it changes the system
to a linear compartment model. Therefore, by default this is ‘TRUE".

run Should NONMEM be run (and the files imported to nlmixr2); default is TRUE,
but FALSE will simply create the NONMEM control stream and data file.

optional genRxControl argument controlling automatic rxControl generation.

Details

If runCommand is given as a string, it will be called with the system() command like:
runCommand controlFile outputFile.

For example, if runCommand=""/path/to/nmfe75"'" then the command line used would look like
the following:

'/path/to/nmfe75"' one.cmt.nmctl one.cmt.1st

If runCommand is given as a function, it will be called as FUN(ctl, directory, ui) to run NON-
MEM. This allows you to run NONMEM in any way that you may need, as long as you can write
it in R. babelmixr2 will wait for the function to return before proceeding.

If runCommand is NA, nlmixr () will stop after writing the model files and without starting NON-
MEM.

Value

babelmixr2 control option for generating NONMEM control stream and reading it back into babelmixr2/nlmixr2

Author(s)
Matthew L. Fidler

Examples

nonmemControl ()

26 pkncaControl

pkncaControl PKNCA estimation control

Description

PKNCA estimation control

Usage

pkncaControl(
concu = NA_character_,
doseu = NA_character_,
timeu = NA_character_,
volumeu = NA_character_,

vpMult = 2,
gMult = 1/2,
vp2Mult = 4,
g2Mult = 1/4,
dvParam = "cp”,

groups = character(),

sparse = FALSE,

ncaData = NULL,

ncaResults = NULL,

rxControl = rxode2::rxControl()

Arguments

concu, doseu, timeu
concentration, dose, and time units from the source data (passed to PKNCA: : pknca_units_table()).

volumeu compartment volume for the model (if NULL, simplified units from source data
will be used)

vpMult, gMult, vp2Mult, g2Mult
Multipliers for vc and cl to provide initial estimates for vp, q, vp2, and q2

dvParam The parameter name in the model that should be modified for concentration unit
conversions. It must be assigned on a line by itself, separate from the residual
error model line.

groups Grouping columns for NCA summaries by group (required if sparse = TRUE)

sparse Are the concentration-time data sparse PK (commonly used in small nonclinical
species or with terminal or difficult sampling) or dense PK (commonly used in
clinical studies or larger nonclinical species)?

ncaData Data to use for calculating NCA parameters. Typical use is when a subset of the
original data are informative for NCA.

ncaResults Already computed NCA results (a PKNCAresults object) to bypass automatic
calculations. At least the following parameters must be calculated in the NCA:
tmax, cmax.dn, cl.last

popedControl 27

rxControl Control options sent to rxode2: : rxControl ()

Value

A list of parameters

popedControl Control for a PopED design task

Description

Control for a PopED design task

Usage

popedControl(
stickyRecalcN = 4,
maxQOdeRecalc = 5,
odeRecalcFactor = 107(0.5),
maxn = NULL,
rxControl = NULL,
sigdig = 4,
important = NULL,
unimportant = NULL,
iFIMCalculationType = c("reduced”, "full”, "weighted”, "loc”, "reducedPFIM", "fullABC",
"largeMat"”, "reducedFIMABC"),
iApproximationMethod = c("fo"”, "foce", "focei”, "foi"),
iFOCENumInd = 1000,
prior_fim = matrix(e, o, 1),
d_switch = c("d", "ed"),
ofv_calc_type = c("1nD", "d", "a", "Ds", "inverse"),
strEDPenaltyFile = "",
ofv_fun = NULL,
iEDCalculationType = c("mc"”, "laplace”, "bfgs-laplace”),
ED_samp_size = 45,
bLHS = c("hypercube”, "random"),
bUseRandomSearch = TRUE,
bUseStochasticGradient = TRUE,
bUseLineSearch = TRUE,
bUseExchangeAlgorithm = FALSE,
bUseBFGSMinimizer = FALSE,
bUseGrouped_xt = FALSE,
EACriteria = c("modified”, "fedorov"),
strRunFile = "",
poped_version = NULL,
modtit = "PopED babelmixr2 model”,
output_file = "PopED_output_summary”,

28

output_function_file
striterationFileName
user_data = NULL,
ourzero = le-05,
dSeed = NULL,
line_opta = NULL,
line_optx = NULL,
bShowGraphs = FALSE,
use_logfile = FALSE,
ml_switch = c("central”, "complex", "analytic”, "ad"),
m2_switch = c("central”, "complex", "analytic”, "ad"),
hle_switch = c("central”, "complex", "ad"),

gradff_switch = c("central”, "complex”", "analytic”, "ad"),
gradfg_switch = c("central”, "complex”", "analytic”, "ad"),
grad_all_switch = c("central”, "complex"),

rsit_output = 5,

sgit_output = 1,

"PopED_output_",
"PopED_current.R",

hm1 = 1e-05,
hlf = 1e-05,
hlg = 1e-05,
hm2 = 1e-05,
hgd = 1e-05,
hle = 1e-05,

AbsTol = 1e-06,

RelTol = 1e-06,
iDiffSolverMethod = NULL,
bUseMemorySolver = FALSE,
rsit = 300,

sgit = 150,

intrsit = 250,

intsgit = 50,

maxrsnullit = 50,
convergence_eps = 1e-08,
rslxt = 10,

rsla = 10,

cfaxt = 0.001,

cfaa = 0.001,
bGreedyGroupOpt = FALSE,
EAStepSize = 0.01,
EANumPoints = FALSE,
EAConvergenceCriteria = 1e-20,
bEANoReplicates = FALSE,
BFGSProjectedGradientTol = 1e-04,
BFGSTolerancef = 0.001,
BFGSToleranceg = 0.9,
BFGSTolerancex = 0.1,
ED_diff_it = 30,
ED_diff_percent = 10,

popedControl

popedControl

line_search_it = 50,

Doptim_iter = 1,

iCompileOption = c("none”, "full”, "mcc
compileOnly = FALSE,

iUseParallelMethod = c("mpi”, "matlab"),
MCC_Dep = NULL,

strExecuteName = "calc_fim.exe",
iNumProcesses = 2,

iNumChunkDesignEvals = -2,

Mat_Out_Pre = "parallel_output”,
strExtraRunOptions = "",

dPollResultTime = 0.1,
strFunctionInputName = "function_input”,
bParallelRS = FALSE,

bParallelSG = FALSE,

bParallelMFEA = FALSE,

bParallellLS = FALSE,

groupsize = NULL,

n

time = "time",
timeLow = "low",
timeHi = "high",
id = "id",

m = NULL,

x = NULL,

ni = NULL,

maxni = NULL,
minni = NULL,

maxtotni = NULL,
mintotni = NULL,
maxgroupsize = NULL,
mingroupsize = NULL,
maxtotgroupsize = NULL,
mintotgroupsize = NULL,
xt_space = NULL,

a = NULL,
maxa = NULL,
mina = NULL,

a_space = NULL,

x_space = NULL,
use_grouped_xt = FALSE,
grouped_xt = NULL,
use_grouped_a = FALSE,
grouped_a = NULL,
use_grouped_x = FALSE,
grouped_x = NULL,
our_zero = NULL,
auto_pointer = "",
user_distribution_pointer = "",

n =
’ mpl)y

29

30 popedControl

minxt = NULL,

maxxt = NULL,
discrete_xt = NULL,
discrete_a = NULL,
fixRes = FALSE,
script = NULL,
overwrite = TRUE,
literalFix = TRUE,
opt_xt = FALSE,
opt_a = FALSE,
opt_x = FALSE,
opt_samps = FALSE,
optTime = TRUE,
literalFixRes = FALSE,

Arguments

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

max0deRecalc ~ Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.
odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

maxn Maximum number of design points for optimization; By default this is declared
by the maximum number of design points in the babelmixr2 dataset (when NULL)

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()*

sigdig Optimization significant digits. This controls:

* The tolerance of the inner and outer optimization is 10*-sigdig

* The tolerance of the ODE solvers is 0.5%x10* (-sigdig-2); For the sensi-
tivity equations and steady-state solutions the defaultis @.5*10* (-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

* The tolerance of the boundary check is 5 * 10 * (-sigdig + 1)

important character vector of important parameters or NULL for default. This is used with
Ds-optimality

unimportant character vector of unimportant parameters or NULL for default. This is used
with Ds-optimality

iFIMCalculationType

can be either an integer or a named value of the Fisher Information Matrix type:

e 0/"full" = Full FIM

¢ 1/"reduced" = Reduced FIM

* 2/"weighted" = weighted models
¢ 3/"loc" = Loc models

popedControl 31

* 4/"reducedPFIM" = reduced FIM with derivative of SD of sigma as in PFIM

* 5/"fullABC" = FULL FIM parameterized with A,B,C matrices & derivative
of variance

* 6/"largeMat" = Calculate one model switch at a time, good for large matri-
ces

e 7/"reducedFIMABC" = =Reduced FIM parameterized with A,B,C matrices
& derivative of variance

iApproximationMethod
Approximation method for model, 0=FO, 1=FOCE, 2=FOCEI, 3=FOI
iFOCENumInd integer; number of individuals in focei solve
prior_fim matrix; prior FIM
d_switch integer or character option:

* 0/"ed" = ED design
e 1/"d" = D design
ofv_calc_type objective calculation type:

e 1/"'d" = D-optimality". Determinant of the FIM: det(FIM)
e 2/"a" = "A-optimality". Inverse of the sum of the expected parameter vari-
ances: l/trace_matrix(inv(FIM))
* 4/"InD" = "InD-optimality”. Natural logarithm of the determinant of the
FIM: log(det(FIM))
e 6/"Ds" = "Ds-optimality". Ratio of the Determinant of the FIM and the De-
terminant of the uninteresting rows and columns of the FIM: det(FIM)/det(FIM_u)
* 7/"inverse" = Inverse of the sum of the expected parameter RSE: 1/sum(get_rse(FIM,poped.db,use_pe
strEDPenaltyFile
Penalty function name or path and filename, empty string means no penalty.
User defined criterion can be defined this way.
ofv_fun User defined function used to compute the objective function. The function must
have a poped database object as its first argument and have "..." in its argument
list. Can be referenced as a function or as a file name where the function defined
in the file has the same name as the file. e.g. "cost.txt" has a function named
"cost" in it.
iEDCalculationType
ED Integral Calculation type:

* 0/"mc" = Monte-Carlo-Integration
* 1/"laplace" = Laplace Approximation
* 2/"bfgs-laplace" = BFGS Laplace Approximation

ED_samp_size Sample size for E-family sampling

bLHS How to sample from distributions in E-family calculations. 0=Random Sam-
pling, 1=LatinHyperCube —
bUseRandomSearch

o FrEExESTART OF Optimization algorithm SPECIFICATION OPTIONS s
Use random search (1=TRUE, 0=FALSE)
bUseStochasticGradient
Use Stochastic Gradient search (1=TRUE, 0=FALSE)

32

popedControl

bUselLineSearch Use Line search (I=TRUE, 0=FALSE)
bUseExchangeAlgorithm

Use Exchange algorithm (1=TRUE, 0=FALSE)

bUseBFGSMinimizer

Use BFGS Minimizer (1=TRUE, 0=FALSE)

bUseGrouped_xt Use grouped time points (1I=TRUE, 0=FALSE).

EACriteria

strRunFile

poped_version

modtit
output_file

Exchange Algorithm Criteria:

¢ 1/"modified" = Modified
e 2/"fedorov" = Fedorov

Filename and path, or function name, for a run file that is used instead of the
regular PopED call.

o FHEERESTART OF Labeling and file names SPECIFICATION OPTIQNS s sk ksk sk
The current PopED version

The model title

Filename and path of the output file during search

output_function_file

Filename suffix of the result function file

striterationFileName

user_data

ourzero

dSeed

line_opta
line_optx
bShowGraphs
use_logfile

ml_switch

m2_switch

hle_switch

Filename and path for storage of current optimal design

o ##:::START OF Miscellaneous SPECIFICATION OPTIONS ##:# s

User defined data structure that, for example could be used to send in data to the
model

Value to interpret as zero in design

The seed number used for optimization and sampling — integer or -1 which cre-
ates a random seed as.integer(Sys.time()) or NULL.

Vector for line search on continuous design variables (I=TRUE,0=FALSE)
Vector for line search on discrete design variables (1=TRUE,0=FALSE)
Use graph output during search

If a log file should be used (0=FALSE, 1=TRUE)

Method used to calculate M1:

¢ 1/"central" = Central difference

* 0/"complex" = Complex difference

* 20/"analytic" = Analytic derivative

¢ 30/"ad" = Automatic differentiation

Method used to calculate M2:

¢ 1/"central" = Central difference

* 0/"complex" = Complex difference

* 20/"analytic" = Analytic derivative

¢ 30/"ad" = Automatic differentiation

Method used to calculate linearization of residual error:

popedControl 33

* 1/"central" = Central difference
* 0/"complex" = Complex difference
* 30/"ad" = Automatic differentiation
gradff_switch Method used to calculate the gradient of the model:
* 1/"central" = Central difference
* 0/"complex" = Complex difference
* 20/"analytic" = Analytic derivative
* 30/"ad" = Automatic differentiation
gradfg_switch Method used to calculate the gradient of the parameter vector g:

* 1/"central" = Central difference
* 0/"complex" = Complex difference
* 20/"analytic" = Analytic derivative

e 30/"ad" = Automatic differentiation
grad_all_switch

Method used to calculate all the gradients:
* 1/"central" = Central difference
e 0/"complex" = Complex difference

rsit_output Number of iterations in random search between screen output
sgit_output Number of iterations in stochastic gradient search between screen output
hm1 Step length of derivative of linearized model w.r.t. typical values
h1lf Step length of derivative of model w.r.t. g
hlg Step length of derivative of g w.r.t. b
hm2 Step length of derivative of variance w.r.t. typical values
hgd Step length of derivative of OFV w.r.t. time
hle Step length of derivative of model w.r.t. sigma
AbsTol The absolute tolerance for the diff equation solver
RelTol The relative tolerance for the diff equation solver
iDiffSolverMethod

The diff equation solver method, NULL as default.
bUseMemorySolver

If the differential equation results should be stored in memory (1) or not (0)

rsit Number of Random search iterations

sgit Number of stochastic gradient iterations

intrsit Number of Random search iterations with discrete optimization.

intsgit Number of Stochastic Gradient search iterations with discrete optimization
maxrsnullit Iterations until adaptive narrowing in random search

convergence_eps
Stochastic Gradient convergence value, (difference in OFV for D-optimal, dif-
ference in gradient for ED-optimal)

rslxt Random search locality factor for sample times

34

rsla
cfaxt

cfaa

bGreedyGroupOpt

EAStepSize
EANumPoints

popedControl

Random search locality factor for covariates
Stochastic Gradient search first step factor for sample times

Stochastic Gradient search first step factor for covariates

Use greedy algorithm for group assignment optimization
Exchange Algorithm StepSize
Exchange Algorithm NumPoints

EAConvergenceCriteria

bEANoReplicates

Exchange Algorithm Convergence Limit/Criteria

Avoid replicate samples when using Exchange Algorithm

BFGSProjectedGradientTol

BFGSTolerancef
BFGSToleranceg
BFGSTolerancex
ED_diff_it

ED_diff_percent

line_search_it

Doptim_iter

iCompileOption

BFGS Minimizer Convergence Criteria Normalized Projected Gradient Toler-
ance

BFGS Minimizer Line Search Tolerance f
BFGS Minimizer Line Search Tolerance g
BFGS Minimizer Line Search Tolerance x

Number of iterations in ED-optimal design to calculate convergence criteria

ED-optimal design convergence criteria in percent
Number of grid points in the line search

Number of iterations of full Random search and full Stochastic Gradient if line
search is not used

Compile options for PopED

* "none"/-1 = No compilation

 "full/0 or 3 = Full compilation

* "mcc"/1 or 4 = Only using MCC (shared lib)

* "mpi"/2 or 5 = Only MPI,
When using numbers, option 0,1,2 runs PopED and option 3,4,5 stops after com-
pilation.

When using characters, the option compileOnly determines if the model is only
compiled (and PopED is not run).

compileOnly logical; only compile the model, do not run PopED (in conjunction with iCompileOption)
iUseParallelMethod
Parallel method to use
* 0/"matlab"= Matlab PCT
e 1/"mpi" = MPI
MCC_Dep Additional dependencies used in MCC compilation (mat-files), if several space
separated
strExecuteName Compilation output executable name

popedControl 35

iNumProcesses Number of processes to use when running in parallel (e.g. 3 = 2 workers, 1 job
manager)

iNumChunkDesignEvals
Number of design evaluations that should be evaluated in each process before
getting new work from job manager

Mat_Out_Pre The prefix of the output mat file to communicate with the executable

strExtraRunOptions
Extra options send to e$g. the MPI executable or a batch script, see execute_parallel$m
for more information and options

dPollResultTime
Polling time to check if the parallel execution is finished

strFunctionInputName
The file containing the popedInput structure that should be used to evaluate the
designs

bParallelRS If the random search is going to be executed in parallel

bParallelSG If the stochastic gradient search is going to be executed in parallel

bParallelMFEA If the modified exchange algorithm is going to be executed in parallel

bParallellS If the line search is going to be executed in parallel

groupsize Vector defining the size of the different groups (num individuals in each group).
If only one number then the number will be the same in every group.

time string that represents the time in the dataset (ie xt)

timeLow string that represents the lower design time (ie minxt)

timeHi string that represents the upper design time (ie maxmt)

id The id variable

m Number of groups in the study. Each individual in a group will have the same
design.

X A matrix defining the initial discrete values for the model Each row is a group/individual.

ni Vector defining the number of samples for each group.

maxni o #EFFEEXSTART OF DESIGN SPACE OPTIONS* sk ksdskskek
Max number of samples per group/individual

minni Min number of samples per group/individual

maxtotni Number defining the maximum number of samples allowed in the experiment.

mintotni Number defining the minimum number of samples allowed in the experiment.

maxgroupsize Vector defining the max size of the different groups (max number of individuals
in each group)

mingroupsize Vector defining the min size of the different groups (min num individuals in each
group) —

maxtotgroupsize
The total maximal groupsize over all groups

mintotgroupsize

The total minimal groupsize over all groups

36

xt_space

Mmaxa

mina

a_space

X_space

use_grouped_xt

grouped_xt

use_grouped_a

grouped_a

use_grouped_x

grouped_x

our_zero

auto_pointer

popedControl

Cell array cell defining the discrete variables allowed for each xt value. Can
also be a vector of values c(1:10) (same values allowed for all xt), or a list of
lists 1ist(1:10@, 2:23, 4:6) (one for each value in xt in row major order or
just for one row in xt, and all other rows will be duplicated).

Matrix defining the initial continuous covariate values. n_rows=number of groups,
n_cols=number of covariates. If the number of rows is one and the number of
groups > 1 then all groups are assigned the same values.

Vector defining the max value for each covariate. If a single value is supplied
then all a values are given the same max value

Vector defining the min value for each covariate. If a single value is supplied
then all a values are given the same max value

Cell array cell defining the discrete variables allowed for each a value. Can
also be a list of values 1ist(1:10) (same values allowed for all a), or a list of
lists 1ist(1:10, 2:23, 4:6) (one for each value in a).

Cell array cell defining the discrete variables for each x value.

Group sampling times between groups so that each group has the same values
(TRUE or FALSE).

Matrix defining the grouping of sample points. Matching integers mean that the
points are matched. Allows for finer control than use_grouped_xt

Group continuous design variables between groups so that each group has the
same values (TRUE or FALSE).

Matrix defining the grouping of continuous design variables. Matching integers
mean that the values are matched. Allows for finer control than use_grouped_a.

Group discrete design variables between groups so that each group has the same
values (TRUE or FALSE).

Matrix defining the grouping of discrete design variables. Matching integers
mean that the values are matched. Allows for finer control than use_grouped_x.

Value to interpret as zero in design.

Filename and path, or function name, for the Autocorrelation function, empty
string means no autocorrelation

user_distribution_pointer

minxt

maxxt

discrete_xt

discrete_a

Filename and path, or function name, for user defined distributions for E-family
designs

Matrix or single value defining the minimum value for each xt sample. If a
single value is supplied then all xt values are given the same minimum value

Matrix or single value defining the maximum value for each xt sample. If a
single value is supplied then all xt values are given the same maximum value.

Cell array cell defining the discrete variables allowed for each xt value. Can
also be a list of values 1ist(1:10) (same values allowed for all xt), or a list
of lists 1list(1:10, 2:23, 4:6) (one for each value in xt). See examples in
create_design_space.

Cell array cell defining the discrete variables allowed for each a value. Can
also be a list of values 1ist(1:10) (same values allowed for all a), or a list
of lists 1list(1:10, 2:23, 4:6) (one for each value in a). See examples in
create_design_space.

popedGetMultipleEndpointModeling Times 37

fixRes boolean; Fix the residuals to what is specified by the model
script write a PopED/rxode2 script that can be modified for more fine control. The
default is NULL.

When script is TRUE, the script is returned as a lines that would be written to
a file and with the class babelmixr2popedScript. This allows it to be printed
as the script on screen.

When script is a file name (with an R extension), the script is written to that
file.

overwrite [logical(1)]
If TRUE, an existing file in place is allowed if it it is both readable and writable.
Default is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is “TRUE".

opt_xt boolean to indicate if this is meant for optimizing times

opt_a boolean to indicate if this is meant for optimizing covariates

opt_x boolean to indicate if the discrete design variables be optimized

opt_samps boolean to indicate if the sample optimizer is used (not implemented yet in
PopED)

optTime boolean to indicate if the global time indexer inside of babelmixr2 is reset if

the times are different. By default this is TRUE. If FALSE you can get slightly
better run times and possibly slightly different results. When optTime is FALSE
the global indexer is reset every time the PopED rxode?2 is setup for a problem or
when a poped dataset is created. You can manually reset with popedMultipleEndpointResetTimeIndex

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is “TRUE".

other parameters for PopED control

Value

popedControl object

Author(s)

Matthew L. Fidler

popedGetMultipleEndpointModelingTimes
Get Multiple Endpoint Modeling Times

38 popedGetMultipleEndpointModeling Times

Description

This function takes a vector of times and a corresponding vector of IDs, groups the times by their
IDs, initializes an internal C++ global Timelndexer, that is used to efficiently lookup the final output
from the rxode2 solve and then returns the sorted unique times.

The popedMultipleEndpointIndexDataFrame() function can be used to visualize the internal
data structure inside R, but it does not show all the indexes in the case of time ties for a given ID.
Rather it shows one of the indexs and the total number of indexes in the data.frame

Usage

popedGetMultipleEndpointModelingTimes(times, modelSwitch, sorted = FALSE)

popedMultipleEndpointIndexDataFrame(print = FALSE)

Arguments
times A numeric vector of times.
modelSwitch An integer vector of model switch indicator corresponding to the times
sorted A boolean indicating if the returned times should be sorted
print boolean for popedMultipleEndpointIndexDataFrame() when TRUE show each
id/index per time even though it may not reflect in the returned data.frame
Value

A numeric vector of unique times.

Examples

times <- c(1.1, 1.2, 1.3, 2.1, 2.2, 3.1)

modelSwitch <- c¢(1, 1, 1, 2, 2, 3)

sortedTimes <- popedGetMultipleEndpointModelingTimes(times, modelSwitch, TRUE)
print(sortedTimes)

now show the output of the data frame representing the model
switch to endpoint index

popedMultipleEndpointIndexDataFrame()

now show a more complex example with overlaps etc.

times <- ¢(1.1, 1.2, 1.3, 0.5, 2.2, 1.1, 0.75,0.75)

modelSwitch <- c¢(1, 1, 1, 2, 2, 2, 3, 3)

sortedTimes <- popedGetMultipleEndpointModelingTimes(times, modelSwitch, TRUE)

print(sortedTimes)

popedMultipleEndpointIndexDataFrame(TRUE) # Print to show individual matching

popedMultipleEndpointResetTimelndex

39

popedMultipleEndpointResetTimeIndex
Reset the Global Time Indexer for Multiple Endpoint Modeling

Description

This clears the memory and resets the global time indexer used for multiple endpoint modeling.

Usage

popedMultipleEndpointResetTimeIndex ()

Value

NULL, called for side effects

Examples

popedMultipleEndpointResetTimeIndex ()

pseudoOptimControl Control for fmeMcmc estimation method in nlmixr2

Description

Control for fmeMcmc estimation method in nlmixr2

Usage

pseudoOptimControl
npop = NULL,
numiter = 10000,
centroid = 3,
varleft = 1e-08,
verbose = FALSE,
returnPseudoOptim = FALSE,
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 107(0.5),

40 pseudoOptimControl
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2”, "mean"”, "rescale", "std”, "len”, "constant"),
scaleType = c("none”, "nlmixr2", "norm”, "mult”, "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,

scaleC = NULL,

scaleTo =

1’

rxControl = NULL,

optExpression

= TRUE,

sumProd = FALSE,

literalFix
literalFixRes

TRUE,

= TRUE,

addProp = c("combined2", "combinedl"),

calcTables

TRUE,

compress = TRUE,
covMethod = c("r", ""),
adjobf = TRUE,

ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
)
Arguments
npop Number of elements in the population. Defaults to max(5*length(p),50) which
is calculated from the number of parameters in the model
numiter Number of iterations to run the optimization. Defaults to 10000. The algorithm
either stops when numiter iterations has been performed or when the remaining
variation is less than varleft.
centroid Number of elements from which to estimate a new parameter vector. The default
is 3.
varleft relative variation remaining; if below this value, the algorithm stops. Defaults
to le-8.
verbose If TRUE, print information about the optimization from FME: : pseudoOptim.
Default is FALSE.
returnPseudoOptim
return the pseudoOptim output instead of the nlmixr?2 fit
stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.
maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.
odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

pseudoOptimControl

useColor
printNcol

print

normType

41

Boolean indicating if focei can use ASCII color codes
Number of columns to printout before wrapping parameter estimates/gradient

Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.

With the exception of rescale?2, these come from Feature Scaling. The rescale?2
The rescaling is the same type described in the OptdesX software manual.

In general, all all scaling formula can be described by:

Uscaled
=(
Vunscaled — C1
)
Co
Where

The other data normalization approaches follow the following formula

VUscaled

Vynscaled — Cl

)
C

* rescale?2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

Cy
= (max(all unscaled values)+min(all unscaled values))/2

Cs

= (max(all unscaled values) - min(all unscaled values))/2

* rescale or min-max normalization. This rescales all parameters from (0
to 1). As in the rescale?2 the relative differences are preserved. In this
approach:

Gy

= min(all unscaled values)

Cs

= max(all unscaled values) - min(all unscaled values)

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

42

scaleType

pseudoOptimControl

* mean or mean normalization. This rescales to center the parameters around
the mean but the parameters are from O to 1. In this approach:

C1
= mean(all unscaled values)

Cs

= max(all unscaled values) - min(all unscaled values)

* std or standardization. This standardizes by the mean and standard devia-
tion. In this approach:

Ch

= mean(all unscaled values)

Cs

= sd(all unscaled values)

* len or unit length scaling. This scales the parameters to the unit length. For
this approach we use the Euclidean length, that is:

Cy

Cy

V(0 3+ +02)

* constant which does not perform data normalization. That is

Ch

Cs
=1

The scaling scheme for nlmixr2. The supported types are:

* nlmixr2 In this approach the scaling is performed by the following equa-
tion:

VUscaled

Vcurrent — Vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

pseudoOptimControl 43

* norm This approach uses the simple scaling provided by the normType ar-
gument.

» mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.

In this case:

VUscaled
Vcurrent
/
Vinit
*scaleTo

* multAdd This approach changes the scaling based on the parameter being
specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

VUscaled

Vcurrent — Vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

Uscaled
Ucurrent
/
Vinit
*scaleTo
scaleCmax Maximum value of the scaleC to prevent overflow.
scaleCmin Minimum value of the scaleC to prevent underflow.
scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is

based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

* For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

 For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

* Factorials are scaled by abs(1/digamma(initial_estimate+1))

 parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estir

44

scaleTo

rxControl

optExpression

sumProd

literalFix

literalFixRes

addProp

calcTables

compress

covMethod

pseudoOptimControl

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.

While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()*

Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is “TRUE‘.

boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is “TRUE".

specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined! error type can be described by the following equation:

y=f+(a+bx f°) xe

The combined?2 error model can be described by the following equation:

y=f+va2+b?x f2xexe
Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- ¢ is the power exponent (in the proportional case c=1)

This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

Should the object have compressed items

Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

¢ "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

e "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

* "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

* "" Does not calculate the covariance step.

pseudoOptimControl 45

adjobf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

* The tolerance of the inner and outer optimization is 10*-sigdig

* The tolerance of the ODE solvers is 0.5%x10* (-sigdig-2); For the sensi-
tivity equations and steady-state solutions the defaultis @.5*10* (-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

* The tolerance of the boundary check is 5 x 10 * (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig* is NULL, use
3.

Ignored parameters

Value

pseudoOptim control structure

Author(s)
Matthew L. Fidler

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-T1+dsn$time)))

mod <- function() {
ini({
This estimation method requires all parameters
to be bounded:
EQ <- c(-100, 0.5, 100)
Em <- c(0, 0.5, 10)
E50 <- c(0, 2, 20)
g <- fix(c(0.1, 2, 10))
»
model ({
v <- EQ+Em*time~g/(E50*gt+time*g)
11(bin) ~ DV * v - log(1 + exp(v))
»
3

fit2 <- nlmixr(mod, dsn, est="pseudoOptim")

print(fit2)

46

rxToNonmem

rxToMonolix Convert RxODE syntax to monolix syntax

Description

Convert RXODE syntax to monolix syntax

Usage

rxToMonolix(x, ui)

Arguments
X Expression
ui rxode2 ui
Value

Monolix syntax

Author(s)
Matthew Fidler

rxToNonmem Convert RxODE syntax to NONMEM syntax

Description

Convert RXODE syntax to NONMEM syntax

Usage

rxToNonmem(x, ui)

Arguments
X Expression
ui rxode?2 ui
Value

NONMEM syntax

simplifyUnit 47

Author(s)
Matthew Fidler
simplifyUnit Simplify units by removing repeated units from the numerator and de-
nominator
Description

Simplify units by removing repeated units from the numerator and denominator

Usage
simplifyUnit(numerator = "", denominator = "")
Arguments
numerator The numerator of the units (or the whole unit specification)
denominator The denominator of the units (or NULL if numerator is the whole unit specifi-
cation)
Details

NA or "" for numerator and denominator are considered unitless.

Value

The units specified with units that are in both the numerator and denominator cancelled.

See Also

Other Unit conversion: modelUnitConversion()

Examples

simplifyUnit("kg", "kg/mL")
units that don't match exactly are not cancelled
simplifyUnit("kg", "g/mL")

Index

+ Unit conversion
modelUnitConversion, 18
simplifyUnit, 47

.setupPopEDdatabase, 2

as.nlmixr (as.nlmixr2), 3
as.nlmixr2, 3

babel.poped.database, 5
babelBpopIdx, 6

bblDatToMonolix, 7

bblDatToMrgsolve (bblDatToMonolix), 7
bblDatToNonmem (bblDatToMonolix), 7
bblDatToPknca (bblDatToMonolix), 7
bblDatToRxode (bblDatToMonolix), 7

cell, 36
create_design_space, 36

fmeMcmcControl, 10
getStandardColNames, 17

modelUnitConversion, 18, 47
monolixControl, 18

nlmixr2Est.pknca, 22
nonmemControl, 23

pkncaControl, 26

popedControl, 27

popedGetMultipleEndpointModelingTimes,
37

popedMultipleEndpointIndexDataFrame
(popedGetMultipleEndpointModelingTimes),
37

popedMultipleEndpointResetTimeIndex,
39

pseudoOptimControl, 39

rxToMonolix, 46
rxToNonmem, 46

simplifyUnit, I8, 47

48

	.setupPopEDdatabase
	as.nlmixr2
	babel.poped.database
	babelBpopIdx
	bblDatToMonolix
	fmeMcmcControl
	getStandardColNames
	modelUnitConversion
	monolixControl
	nlmixr2Est.pknca
	nonmemControl
	pkncaControl
	popedControl
	popedGetMultipleEndpointModelingTimes
	popedMultipleEndpointResetTimeIndex
	pseudoOptimControl
	rxToMonolix
	rxToNonmem
	simplifyUnit
	Index

