
The Aster Package Tutorial

Charles J. Geyer

October 19, 2025

1 Preliminaries

1.1 Library and Data

> library(aster)
> packageDescription("aster")$Version

[1] "1.3-6"

> data(echinacea)

That’s our package and the dataset for our examples.

1.2 Digression on Data Entry

The simplest way to enter your own data into R is to construct a plain
text file that is a white-space-separated matrix of numbers with column
headings. (Note this means not touched by Microsoft Word or any so-called
word processors that are incapable of not garbaging up plain text with a
lot of unwanted formatting junk: if on Microsoft Windows, use Microsoft
Notepad.)

An example is the file "echinacea.txt" found in the data directory of
the package installation.

This file could read into R as follows

echinacea <- read.table("echinacea.txt", header = TRUE)

In fact that’s what R did when loading the library.
If you have been so foolish as to give your data to Microsoft Excel, you

can ask it to give it back by writing out in CSV (Microsoft comma separated
values format), and it may give you back something usable (or it may not:
dates are expecially problematic, for some reason). If the output is called
echinacea.csv then

1

echinacea <- read.csv("echinacea.csv")

will read it into R.

1.3 Digression on Data Frames

In either case the R object echinacea created by the data statement or
a read.table or read.csv command is what R calls a data frame. It prints
like a matrix but is really a list of vectors of the same length. The command

> names(echinacea)

[1] "hdct02" "hdct03" "hdct04" "pop" "ewloc" "nsloc" "ld02"
[8] "fl02" "ld03" "fl03" "ld04" "fl04"

shows the names of these (vector) variables. The names are the column
headings from the input file. Any variables having character values have
been coerced to what R calls factors. To see what kind of variable each is
we can do

> sapply(echinacea, class)

hdct02 hdct03 hdct04 pop ewloc nsloc ld02
"integer" "integer" "integer" "factor" "integer" "integer" "integer"

fl02 ld03 fl03 ld04 fl04
"integer" "integer" "integer" "integer" "integer"

In the echinacea data set, the variables with numbers in the names are
the columns of the response matrix of the aster model.

• The variables ld0x (where x is a digit) are the survival indicator vari-
ables for year 200x (one for alive, zero for dead).

• The variables fl0x are the flowering indicator variables (one for any
flowers, zero for none).

• The variables hdct0x are the inflorescence (flower head) count variables
(number of flower heads).

The variables without numbers are other predictors.

• The variables ewloc and nsloc are spatial, east-west and north-south
location, respectively.

2

• The variable pop is the remnant population of origin of the plant, so
plants with different values of pop may be more genetically diverse
than those with the same values of pop.

The point of recording the data about flowers in two variables fl0x and
hdct0x for any given x when the single variable hdct0x contains the same
information (because fl0x = 0 if and only if hdct0x = 0) is because there
is no good, simple statistical model for hdct0x by itself.

As we shall see, it makes sense to model the conditional distribution of
fl0x given ld0x = 1 as Bernoulli and it makes sense to model the condi-
tional distribution of hdct0x given fl0x = 1 as Poisson conditioned on being
nonzero. But it would not make sense to model hdct0x given ld0x = 1 as
Poisson. The case of zero flowers is special and must be modeled separately.

1.4 Digression on Reshape

Standard regression-like modeling requires that the “response” be a vec-
tor. The “response” (“data” would be a better name since it plays two roles:
Xip(j) is the sample size for Xij) is a matrix. If we are going to use any of
the R apparatus for doing regression-like modeling, in particular if we are
going to use the R formula mini-language that allows model specifications
like y ~ x1 + x2, then we need to make the response (the y in the formula)
a vector.

There is an R function reshape that does this

> vars <- c("ld02", "ld03", "ld04", "fl02", "fl03", "fl04",
+ "hdct02", "hdct03", "hdct04")
> redata <- reshape(echinacea, varying = list(vars),
+ direction = "long", timevar = "varb", times = as.factor(vars),
+ v.names = "resp")
> names(redata)

[1] "pop" "ewloc" "nsloc" "varb" "resp" "id"

making a new data frame (in this case redata) that has new variables (all
of the same length because they are in the same data frame)

resp which contains all of the data in the variables indicated by the string
vars packed into a single vector, the name resp being given by the
v.names argument of the reshape function (you could make it anything
you like),

3

varb which indicates which original variable the corresponding element of
resp came from, the name being given by the timevar argument of
the reshape function, and

id which indicates which original individual the corresponding element of
resp came from, the name being given by the idvar argument of the
reshape function (which we didn’t specify, accepting the default value
"id").

Warning The variable vars must have the variables listed with parent
nodes before child nodes. This doesn’t make sense now, but is nessary to
satisfy condition (∗) on page 6.

Warning The variable varb in the data frame produced by the reshape
function (here called redata) must be a factor.

> class(redata$varb)

[1] "factor"

> levels(redata$varb)

[1] "fl02" "fl03" "fl04" "hdct02" "hdct03" "hdct04" "ld02"
[8] "ld03" "ld04"

The redata command used above accomplishes this. If the argument

times = as.factor(vars)

of the redata function is omitted in the call, then this will not happen and
all of the following analysis will be wrong.

Let’s look at an example

> redata[42,]

pop ewloc nsloc varb resp id
42.ld02 SPP -3 7 ld02 1 42

This says that the 42nd row of the data frame redata has response value
1. This is the response for the ld02 original variable (node of the graphical
model) and for individual 42 found in row 42 of the original data frame
echinacea. The other variables pop, ewloc, and nsloc are what they were
in this row of echinacea (for this original individual) and are duplicated as
necessary in other rows of redata.

4

2 Unconditional Aster Models

Now we are ready to begin discussion of Aster models.

2.1 More Preliminaries

Then more details. We must define a few more variables that determine
the structure of the aster model we intend to work with. The variable resp
contains only the random data. There is also the non-random data on the
root nodes of the dependence graph of the model. For reasons having to do
with the way the R formula mini-language works, we usually want this in
the same data frame as resp

> redata <- data.frame(redata, root = 1)
> names(redata)

[1] "pop" "ewloc" "nsloc" "varb" "resp" "id" "root"

This adds a variable root to the data frame and makes all its values one
(including for non-root nodes, but those values are ignored by all aster
package functions).

We also need two vectors of the same length as the number of nodes in
the graph (so they cannot go in the data frame redata), call that length
nnode

> pred <- c(0, 1, 2, 1, 2, 3, 4, 5, 6)
> fam <- c(1, 1, 1, 1, 1, 1, 3, 3, 3)
> sapply(fam.default(), as.character)[fam]

[1] "bernoulli"
[2] "bernoulli"
[3] "bernoulli"
[4] "bernoulli"
[5] "bernoulli"
[6] "bernoulli"
[7] "truncated.poisson(truncation = 0)"
[8] "truncated.poisson(truncation = 0)"
[9] "truncated.poisson(truncation = 0)"

pred specifies the predecessor structure of the graph. With the original
variables indexed from 1 to nnode, in the order that they appear in the
variable vars defined above and supplied as the varying argument

5

to the reshape function, pred[j] gives the index of the predecessor
of node j. In order to make it obvious that pred specifies an acyclic
graph, we require

all(pred < seq(along = pred)) (∗)

hold. If pred[j] == 0 this indicates j indexes a root node (no prede-
cessor).

fam specifies the one-parameter exponential families for the nodes: fam[j]
gives the index of the family for node j, the index being for the list
of family specifications that is supplied to model fitting functions, the
default being the list returned by fam.default().

Comment Using an index vector rather than a character vector for fam is
definitely not the R way. But having decided to make pred an index vector,
the same seemed natural for fam.

The reason for using an index vector for pred is so the condition (∗)
makes sense. The original variables must be related to their order in the
data frame redata in any case.

This may change in the future, but that’s the way it is for now.

2.2 Fitting a Model

We are finally ready to fit a model.

> aout1 <- aster(resp ~ varb + nsloc + ewloc + pop,
+ pred, fam, varb, id, root, data = redata)
> summary(aout1, show.graph = TRUE)

Call:
aster.formula(formula = resp ~ varb + nsloc + ewloc + pop, pred = pred,

fam = fam, varvar = varb, idvar = id, root = root, data = redata)

Graphical Model:
variable predecessor family
ld02 root bernoulli
ld03 ld02 bernoulli
ld04 ld03 bernoulli
fl02 ld02 bernoulli

6

fl03 ld03 bernoulli
fl04 ld04 bernoulli
hdct02 fl02 truncated.poisson(truncation = 0)
hdct03 fl03 truncated.poisson(truncation = 0)
hdct04 fl04 truncated.poisson(truncation = 0)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.888113 0.184006 -4.827 1.39e-06 ***
varbfl03 -0.329497 0.265611 -1.241 0.21478
varbfl04 -0.355326 0.241242 -1.473 0.14078
varbhdct02 1.174051 0.249520 4.705 2.54e-06 ***
varbhdct03 1.191939 0.200166 5.955 2.60e-09 ***
varbhdct04 1.704852 0.185538 9.189 < 2e-16 ***
varbld02 -0.122959 0.311876 -0.394 0.69339
varbld03 1.638747 0.392935 4.171 3.04e-05 ***
varbld04 4.084487 0.330810 12.347 < 2e-16 ***
nsloc 0.013684 0.001733 7.895 2.91e-15 ***
ewloc 0.006003 0.001727 3.475 0.00051 ***
popEriley -0.052273 0.053504 -0.977 0.32857
popLf -0.046125 0.056892 -0.811 0.41751
popNWLF -0.061712 0.051028 -1.209 0.22652
popNessman -0.124857 0.070894 -1.761 0.07821 .
popSPP 0.036007 0.054506 0.661 0.50887
popStevens -0.084581 0.054256 -1.559 0.11901

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The show.graph = TRUE makes the table about the graph structure in the
printout. You always want to look at that carefully once, since it tells you
whether you have gotten it right. But (unless you change redata, pred, or
fam) it won’t change thereafter. Hence the default is to not print it.

Interpretation. From looking at the “signif. stars” it looks like pop is not
significant. But you’re not supposed to use “signif. stars” that way. Any
use of more than one “signif. star” per model fit is multiple testing without
correction and may be highly misleading. Wise users put

> options(show.signif.stars = FALSE)

in their .Rprofile file so they aren’t even tempted to foolishness by them.
The R default is to print them, so that’s what summary.aster does too.

7

2.3 Model Comparison

The right way to compare models is with a likelihood ratio test. To do
that, you must fit two models. So here’s another.

> aout2 <- aster(resp ~ varb + nsloc + ewloc,
+ pred, fam, varb, id, root, data = redata)

Now we can compare them with

> anova(aout2, aout1)

Analysis of Deviance Table

Model 1: resp ~ varb + nsloc + ewloc
Model 2: resp ~ varb + nsloc + ewloc + pop

Model Df Model Dev Df Deviance P(>|Chi|)
1 11 -2747.9
2 17 -2734.4 6 13.515 0.03554

So much for making inferences from a bunch of signif. stars! Not one of
the signif. stars for the pop dummy variables in the printout for aout1 was
anywhere near as significant as the likelihood ratio test p-value here. See
what we mean?

Warning (copied from the anova.aster help page)

The comparison between two or more models . . . will only be valid
if they are (1) fitted to the same dataset, (2) models are nested,
(3) models are of the same type (all conditional or all uncon-
ditional), (4) have the same dependence graph and exponential
families. None of this is currently checked.

You’re not likely to botch (1) or (4). Just make sure you use the same data
frame and the same pred and fam. If you’re a little careful, you won’t botch
(3). We haven’t done conditional models yet (see Section 4), but when
we do, those models shouldn’t be mixed with unconditional models. It’s
mixing apples and oranges. The hard condition to always obey is (2). One
must be sure that the column space of the model matrix of the big model
(aout1$modmat) contains the column space of the model matrix of the small
model (aout2$modmat), but that is much easier checked by the computer
than by you.

8

Comment So perhaps the computer should check all this, despite none of
the R anova functions doing so. It would take time, enough for one linear
regression per column of the model matrix of the small model, but it would
add safety. The R/C/Unix way (a. k. a., worse is better) is to not check and
let the user worry about it.

Anyway (as the warning says) anova.aster and anova.asterlist cur-
rently do not check. The user must make sure the models are nested (other-
wise the comparison is theoretically rubbish).

2.4 Models Based on Pseudo-Covariates

In a sense the “covariate” variable varb is already a pseudo-covariate. It’s
not a measured variable. It’s an artifice we use to overcome the limitations
of the R formula mini-language insisting that the “response” be a vector,
rather than a matrix with heterogenous columns (like it really is).

In this section we use more artifice. The variables of interest, the best
surrogates of Darwinian fitness, are the hdct variables. We want to look
that the interaction of pop with those variables. So first we have to create
the relevant dummy variable.

> hdct <- grep("hdct", as.character(redata$varb))
> hdct <- is.element(seq(along = redata$varb), hdct)
> redata <- data.frame(redata, hdct = as.integer(hdct))
> names(redata)

[1] "pop" "ewloc" "nsloc" "varb" "resp" "id" "root" "hdct"

This is tricky. The variable redata$varb is a factor, which means it is
really numeric (an index vector) under the hood, even though it prints as a
character string. The expression as.character(redata$varb) turns these
numeric values into strings. Then the grep function returns the indices of
the elements of varb whose string forms contain "hdct". The next statement
converts these to TRUE or FALSE. The third statement converts these to one
and zero, and makes them the variable hdct in the data frame redata. You
might not think of such an R-ish way to do this, but if you want to use such
a variable in modeling, you must create it somehow.

Now we can fit an interaction term.

> aout3 <- aster(resp ~ varb + nsloc + ewloc + pop * hdct,
+ pred, fam, varb, id, root, data = redata)
> summary(aout3)

9

Call:
aster.formula(formula = resp ~ varb + nsloc + ewloc + pop * hdct,

pred = pred, fam = fam, varvar = varb, idvar = id, root = root,
data = redata)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.042324 0.216993 -4.804 1.56e-06
varbfl03 -0.328716 0.264185 -1.244 0.213403
varbfl04 -0.339642 0.239818 -1.416 0.156702
varbhdct02 1.455401 0.323007 4.506 6.61e-06
varbhdct03 1.473010 0.287024 5.132 2.87e-07
varbhdct04 1.984495 0.277131 7.161 8.02e-13
varbld02 -0.126333 0.312215 -0.405 0.685747
varbld03 1.620832 0.393076 4.123 3.73e-05
varbld04 4.049220 0.330949 12.235 < 2e-16
nsloc 0.013538 0.001727 7.838 4.59e-15
ewloc 0.005990 0.001724 3.474 0.000513
popEriley 0.332627 0.152129 2.186 0.028780
popLf 0.318859 0.162391 1.964 0.049584
popNWLF 0.017505 0.142818 0.123 0.902449
popNessman 0.211191 0.187665 1.125 0.260435
popSPP 0.168390 0.156462 1.076 0.281822
popStevens -0.083259 0.150749 -0.552 0.580741
popEriley:hdct -0.717275 0.259529 -2.764 0.005714
popLf:hdct -0.678378 0.278899 -2.432 0.015001
popNWLF:hdct -0.127151 0.241487 -0.527 0.598518
popNessman:hdct -0.673876 0.354761 -1.900 0.057496
popSPP:hdct -0.238292 0.258664 -0.921 0.356924
popStevens:hdct 0.027072 0.256538 0.106 0.915956

Original predictor variables dropped (aliased)
hdct

Comment The dropped (aliased) means just what it says. The R for-
mula mini-language does not deal correctly with pseudo-covariates like this
and thinks it should put (a dummy variable for) hdct in the model, but
that is aliased with the sum of (the dummy variables for) varbhdct02,
varbhdct03, and varbhdct04, so the aster function drops it, but not silently
(so the user is not surprised).

10

It turns out this is not the model we wanted to fit. We didn’t want pop-
ulation main effects, popEriley and so forth, in addition to the population
interaction effects popEriley:hdct and so forth. We only wanted pop to
have effects at the hdct level. Here’s how we do that

> aout4 <- aster(resp ~ varb + nsloc + ewloc + pop * hdct - pop,
+ pred, fam, varb, id, root, data = redata)
> summary(aout4)

Call:
aster.formula(formula = resp ~ varb + nsloc + ewloc + pop * hdct -

pop, pred = pred, fam = fam, varvar = varb, idvar = id, root = root,
data = redata)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.922313 0.178183 -5.176 2.26e-07
varbfl03 -0.328488 0.265142 -1.239 0.215377
varbfl04 -0.349519 0.240775 -1.452 0.146601
varbhdct02 1.267123 0.258014 4.911 9.06e-07
varbhdct03 1.284265 0.210824 6.092 1.12e-09
varbhdct04 1.797630 0.197099 9.120 < 2e-16
varbld02 -0.144176 0.311742 -0.462 0.643733
varbld03 1.621541 0.392815 4.128 3.66e-05
varbld04 4.070145 0.330729 12.307 < 2e-16
nsloc 0.013600 0.001729 7.867 3.64e-15
ewloc 0.006473 0.001725 3.753 0.000174
popEriley:hdct -0.173902 0.089753 -1.938 0.052676
popLf:hdct -0.157706 0.096580 -1.633 0.102490
popNWLF:hdct -0.109268 0.083325 -1.311 0.189740
popNessman:hdct -0.315681 0.139822 -2.258 0.023962
popSPP:hdct 0.023541 0.086552 0.272 0.785630
popStevens:hdct -0.127403 0.089518 -1.423 0.154677

Original predictor variables dropped (aliased)
hdct

and here’s the ANOVA (analysis of deviance, log likelihood ratio test) table
for these models

> anova(aout2, aout4, aout3)

11

Analysis of Deviance Table

Model 1: resp ~ varb + nsloc + ewloc
Model 2: resp ~ varb + nsloc + ewloc + pop * hdct - pop
Model 3: resp ~ varb + nsloc + ewloc + pop * hdct

Model Df Model Dev Df Deviance P(>|Chi|)
1 11 -2747.9
2 17 -2731.9 6 15.947 0.0140395
3 23 -2707.9 6 24.043 0.0005129

Comment When I did this the first time, I made the mistake of trying to
put model aout1 between aout2 and aout4, but that’s the mistake we were
warned about above! The models aout2 and aout4 are not nested! (This
is obvious when you see they have the same degrees of freedom, and even
more so when you think about the dummy variables they contain.) The only
warning I got was about using zero degrees of freedom in a chi-square, not
a warning about non-nested models. Be careful! (This warning goes for all
uses of anova in R. It’s not only a problem with anova.aster.)

Comment That’s all for modeling of unconditional aster models. Note
that these are not the spatial effects that were judged the best fitting in the
paper. See the tech report (http://www.stat.umn.edu/geyer/aster/) for
details.

3 Prediction

Once you have an aster model, it is a natural question to ask what it
means. The anova tests give some information about this (which models
fit better and which fit worse), but there is a lot more to statistics than
hypothesis tests.

The other standard thing to do with regression-like models is to make
confidence intervals for parameters. For reasons that don’t make any sense
in the context of aster models, the function that does this is a method of
the predict generic function (the reason is that for linear models only, this
function does both confidence intervals and so-called prediction intervals).

With aster models we have a larve variety of parameters to “predict”.
Every aster model comes with five different parameterizations

β the regression coefficient vector,

12

θ the conditional canonical parameter vector,

φ the unconditional canonical parameter vector,

ξ the conditional mean value parameter vector, and

τ the unconditional mean value parameter vector.

3.1 Regression Coefficients

The package provides no special support for confidence intervals about
regression coefficients because of the dictum

Regression coefficients are meaningless. Only probabilities and
expectations are meaningful.

In further support of the meaninglessness of regression coefficients note
that two models specified by different model matrices that have the same
column spaces are essentially the same model. The MLE regression coeffi-
cients will be different, but the MLE of θ, φ, ξ, and τ are identical for both
models, as are predicted probabilities of all events and predicted expecta-
tions of all random variables. Once you understand that, how can you reify
regression coefficients?

3.2 Using the Summary

Nevertheless, now that we have had our tendentious rant, we do tell you
how to make confidence intervals for betas. The summary function gives
standard errors, so one way is

> conf.level <- 0.95
> crit <- qnorm((1 + conf.level) / 2)

> fred <- summary(aout4)
> dimnames(fred$coef)

[[1]]
[1] "(Intercept)" "varbfl03" "varbfl04"
[4] "varbhdct02" "varbhdct03" "varbhdct04"
[7] "varbld02" "varbld03" "varbld04"

[10] "nsloc" "ewloc" "popEriley:hdct"
[13] "popLf:hdct" "popNWLF:hdct" "popNessman:hdct"
[16] "popSPP:hdct" "popStevens:hdct"

13

[[2]]
[1] "Estimate" "Std. Error" "z value" "Pr(>|z|)"

> fred$coef["popEriley:hdct", "Estimate"] +
+ c(-1, 1) * crit * fred$coef["popEriley:hdct", "Std. Error"]

[1] -0.349813543 0.002010091

This gives an asymptotic (large sample) 95% confidence interval for the un-
known true regression coefficient for the dummy variable popEriley:hdct
(assuming this model is correct!)

3.3 Using Fisher Information

Those who know master’s level theoretical statistics, know the standard
error here is based on inverse Fisher information, which is found in the output
of aster. So another way to do the same interval is

> aout4$coef[12] + c(-1, 1) * crit * sqrt(solve(aout4$fish)[12, 12])

[1] -0.349813543 0.002010091

3.4 Using Fisher Information (Continued)

The reason for even mentioning Fisher information is that it is essen-
tial if you want to make any other intervals for betas other than the ones
summary.aster helps with. For example, suppose you want an interval for
β12 − β13. How do you do that?

> inv.fish.info <- solve(aout4$fish)
> (aout4$coef[12] - aout4$coef[13]) + c(-1, 1) * crit *
+ sqrt(inv.fish.info[12, 12] + inv.fish.info[13, 13] - 2 * inv.fish.info[12, 13])

[1] -0.1726329 0.1402422

If that doesn’t make sense, you’ll have to review your master’s level theory
notes. We can’t explain everything. But fortunately, if you understand
the meaninglessness of regression coefficients, you’ll never want to do that
anyway.

14

3.5 Canonical Parameters

Canonical parameters are only slightly less meaningless than regression
coefficients. They still aren’t probabilities and expectations that have real
world meaning. However, predict.aster does give support for “predicting”
canonical parameters.

There are, however a huge number of canonical parameters, one for each
individual and node of the graphical model (same goes for mean value pa-
rameters). There are two ways we simplify the situation (both are standard
in doing regression “predictions”)

• predict only for one (or a few) hypothetical or real “new” individuals
and

• predict a linear functional of the parameter.

For the former we “predict” using a new model matrix whose entries refer
to the “new” individuals rather than the “old” ones we used to fit the data.
For the latter we predict A′ζ where A is a fixed, known matrix and ζ is the
parameter we want to estimate (any of θ, φ, ξ, or τ).

3.5.1 New Data

We construct new data for “typical” individuals (having zero-zero geom-
etry) in each population.

> newdata <- data.frame(pop = levels(echinacea$pop))
> for (v in vars)
+ newdata[[v]] <- 1
> newdata$root <- 1
> newdata$ewloc <- 0
> newdata$nsloc <- 0

We are using bogus data xij = 1 for all i and j. The predictions for θ
and φ do not depend on new data anyway. Predictions for τ depend only
on the new root data but not on the other data variables.

Predictions for ξ do depend only on all the new data, but for hypothetical
individuals we have no data to give them! This is an odd aspect of aster
models, that data xij plays the role of the response and also of a predictor
when it appears as xip(j). The prediction section of the paper explains why
we usually want this hypothetical data to be all ones.

15

> renewdata <- reshape(newdata, varying = list(vars),
+ direction = "long", timevar = "varb", times = as.factor(vars),
+ v.names = "resp")
> hdct <- grep("hdct", as.character(renewdata$varb))
> hdct <- is.element(seq(along = renewdata$varb), hdct)
> renewdata <- data.frame(renewdata, hdct = as.integer(hdct))
> names(redata)

[1] "pop" "ewloc" "nsloc" "varb" "resp" "id" "root" "hdct"

> names(renewdata)

[1] "pop" "root" "ewloc" "nsloc" "varb" "resp" "id" "hdct"

3.5.2 Linear Functional Matrix

The functional of mean value parameters we want is total head count,
since this has the biological interpretation of the best surrogate of fitness
measured in this data set. A biologist (at least an evolutionary biologist) is
interested in the “predecessor variables” of head count only insofar as they
contribute to head count. Two sets of parameter values that “predict” the
same expected total head count (over the three years the data were collected)
have the same contribution to fitness. So that is the “prediction” (really
functional of mean value parameters) we “predict.”

> nind <- nrow(newdata)
> nnode <- length(vars)
> amat <- array(0, c(nind, nnode, nind))
> for (i in 1:nind)
+ amat[i , grep("hdct", vars), i] <- 1

This says that the i-th component of the predicted linear functional is the
sum of the variables having "hdct" in their names for the i-th individual (in
the new hypothetical data newdata). The linear functional is a simple sum
because the elements of amat are all zero or one.

This is a little tricky, so let’s take it one step at a time. We are trying to
form the linear functional A′τ , which written out in full is the vector with
k-th component ∑

i∈Inew

∑
j∈J

aijkτij

where aijk are the elements of the array A and τij are the elements of the
matrix of unconditional mean value parameters τ and where Inew is the index

16

set for the “new hypothetical” individuals in newdata. Since there is one such
“new hypothetical” individual for each population, Inew indexes populations
in this particular example.

For such an individual, for an i ∈ Inew, we want the corresponding com-
ponent of A′τ to be that individual’s total flower head count, the sum of
the τij such that j is a head count variable. Hence in this particular example
we want the dimension of A′τ to be the same as the number of individuals
(meaning i and k run over the same index set Inew). The way we make A′τ
be this sum is to set the components of ai, · ,i be one for the terms we want in
the sum and zero for the terms we don’t want in the sum, and that’s exactly
what the R code above does.

Note, that in general i and k will run over different index sets and that
in general there is no reason why the components aijk must be zero or one.
How one constructs aijk varies a great deal from application to application.
This example only illustrates one very particular special case.

3.5.3 Prediction

So we are finally ready to make a “prediction”

> foo <- predict(aout4, varvar = varb, idvar = id, root = root,
+ newdata = renewdata, se.fit = TRUE, amat = amat,
+ parm.type = "canon")
> bar <- cbind(foofit, foose.fit)
> dimnames(bar) <- list(as.character(newdata$pop), c("Estimate", "Std. Error"))
> print(bar)

Estimate Std. Error
AA 1.5820795 0.2478499
Eriley 1.0603744 0.1972253
Lf 1.1089604 0.2239097
NWLF 1.2542756 0.1679685
Nessman 0.6350351 0.3800243
SPP 1.6527033 0.1746258
Stevens 1.1998709 0.1945909

Since the default model.type is "unconditional", these are (linear func-
tionals of) the unconditional canonical parameters φ.

And for our next trick (neither of these are motivated by a particular
scientific question—we’re just illustrating the use of predict.aster).

17

> foo <- predict(aout4, varvar = varb, idvar = id, root = root,
+ newdata = renewdata, se.fit = TRUE, amat = amat,
+ parm.type = "canon", model.type = "cond")
> bar <- cbind(foofit, foose.fit)
> dimnames(bar) <- list(as.character(newdata$pop), c("Estimate", "Std. Error"))
> print(bar)

Estimate Std. Error
AA 1.5820795 0.2478499
Eriley 1.0603744 0.1972253
Lf 1.1089604 0.2239097
NWLF 1.2542756 0.1679685
Nessman 0.6350351 0.3800243
SPP 1.6527033 0.1746258
Stevens 1.1998709 0.1945909

These are (linear functionals of) the conditional canonical parameters θ.
Woof! When I saw this the first time, I spent over an hour trying to

track down the bug in predict.aster that gives the same predictions for two
different types of parameters. But it’s not a bug. The canonical parameters
for “leaf” nodes (no successors) are the same!

Let’s try the "ld" level (mortality)

> bmat <- array(0, c(nind, nnode, nind))
> for (i in 1:nind)
+ bmat[i , grep("ld", vars), i] <- 1

> foo <- predict(aout4, varvar = varb, idvar = id, root = root,
+ newdata = renewdata, se.fit = TRUE, amat = bmat,
+ parm.type = "canon")
> bar <- cbind(foofit, foose.fit)
> dimnames(bar) <- list(as.character(newdata$pop), c("Estimate", "Std. Error"))
> print(bar)

Estimate Std. Error
AA -0.6851641 0.1271524
Eriley -0.6851641 0.1271524
Lf -0.6851641 0.1271524
NWLF -0.6851641 0.1271524
Nessman -0.6851641 0.1271524
SPP -0.6851641 0.1271524
Stevens -0.6851641 0.1271524

18

> foo <- predict(aout4, varvar = varb, idvar = id, root = root,
+ newdata = renewdata, se.fit = TRUE, amat = bmat,
+ parm.type = "canon", model.type = "cond")
> bar <- cbind(foofit, foose.fit)
> dimnames(bar) <- list(as.character(newdata$pop), c("Estimate", "Std. Error"))
> print(bar)

Estimate Std. Error
AA 7.944257 0.6177680
Eriley 6.928158 0.4348137
Lf 7.009798 0.4758742
NWLF 7.268865 0.4173700
Nessman 6.307471 0.5759345
SPP 8.108078 0.4831169
Stevens 7.169185 0.4481993

Now quite different! And we have another puzzle. Why, according to
aster model theory is it the right thing that all of the ξij are the same where
j is for an "ld" node? Just look at the model: we don’t have an interaction
of ld and pop.

> foo <- predict(aout3, varvar = varb, idvar = id, root = root,
+ newdata = renewdata, se.fit = TRUE, amat = bmat,
+ parm.type = "canon")
> bar <- cbind(foofit, foose.fit)
> dimnames(bar) <- list(as.character(newdata$pop), c("Estimate", "Std. Error"))
> print(bar)

Estimate Std. Error
AA -1.04898992 0.4036746
Eriley -0.05110772 0.2496746
Lf -0.09241159 0.3025186
NWLF -0.99647496 0.1949520
Nessman -0.41541594 0.4080958
SPP -0.54382117 0.2825132
Stevens -1.29876764 0.2422731

If instead we use the model aout3, which does have such an interaction (the
interaction is with non-hdct, but that includes ld), then the ξij are different.

What this all proves other than that aster models are complicated, I don’t
know. The point is just to give some examples. We don’t think scientists

19

should want to “predict” canonical parameters much (except perhaps just to
see what’s going on under the hood of some model).

3.6 Mean Value Parameters

To repeat our mantra

Only probabilities and expectations are meaningful.

The parameters that predict.aster can predict and that are meaningful
(according to our mantra) are mean value parameters. As with everything
else, there are two kinds, conditional and unconditional (ξ and τ , respec-
tively).

Let’s try that.

> pout3 <- predict(aout3, varvar = varb, idvar = id, root = root,
+ newdata = renewdata, se.fit = TRUE, amat = amat)
> pout4 <- predict(aout4, varvar = varb, idvar = id, root = root,
+ newdata = renewdata, se.fit = TRUE, amat = amat)

Figure 1 is produced by the following code

> popnames <- as.character(newdata$pop)
> fit3 <- pout3$fit
> fit4 <- pout4$fit
> i <- seq(along = popnames)
> foo <- 0.1
> y4top <- fit4 + crit * pout4$se.fit
> y4bot <- fit4 - crit * pout4$se.fit
> y3top <- fit3 + crit * pout3$se.fit
> y3bot <- fit3 - crit * pout3$se.fit
> plot(c(i - 1.5 * foo, i - 1.5 * foo, i + 1.5 * foo, i + 1.5 * foo),
+ c(y4top, y4bot, y3top, y3bot), type = "n", axes = FALSE,
+ xlab = "", ylab = "")
> segments(i - 1.5 * foo, y4bot, i - 1.5 * foo, y4top)
> segments(i - 2.5 * foo, y4bot, i - 0.5 * foo, y4bot)
> segments(i - 2.5 * foo, y4top, i - 0.5 * foo, y4top)
> segments(i - 2.5 * foo, fit4, i - 0.5 * foo, fit4)
> segments(i + 1.5 * foo, y3bot, i + 1.5 * foo, y3top, lty = 2)
> segments(i + 2.5 * foo, y3bot, i + 0.5 * foo, y3bot)
> segments(i + 2.5 * foo, y3top, i + 0.5 * foo, y3top)
> segments(i + 2.5 * foo, fit3, i + 0.5 * foo, fit3)

20

> axis(side = 2)
> title(ylab = "unconditional mean value parameter")
> axis(side = 1, at = i, labels = popnames)
> title(xlab = "population")

and appears on p. 22.
Figure 1 looks pretty much like the plot in the paper. It’s a little different

because the spatial part of the model (involving ewloc and nsloc is simpler).
These confidence intervals have real-world meaning. The parameters

predicted are expected flower head count over the course of the experiment
for “typical” individuals (“typical” spatial location smack dab in the middle
because we centered the spatial coordinates to have median zero) at each
of the populations. (BTW I have no idea why axis leaves off one of the
population labels when there’s plenty of room. To get this plot right for the
paper I just edited the PostScript file and put in the missing label by hand.
If you ask me, it’s a bug. But the axis maintainer would probably say it’s
a feature.)

As we have seen, you can “predict” any kind of parameter (β, θ, φ, ξ, or
τ) for any model. All of the examples so far have been unconditional aster
models (FEF). But we could have done everything above if we had originally
fit conditional aster models (CEF).

4 Conditional Aster Models

We could now repeat everything above mutatis mutandis. The only thing
that would change is an argument type = "conditional" to any call to the
aster function. Then everything else works exactly the same (of course
the actual numerical results are different, but the other function calls to
summary.aster, anova.aster, or predict.aster are meaningful without
change).

Let’s look at one example.

> cout4 <- aster(resp ~ varb + nsloc + ewloc + pop * hdct - pop,
+ pred, fam, varb, id, root, data = redata, type = "cond")
> pcout4 <- predict(cout4, varvar = varb, idvar = id, root = root,
+ newdata = renewdata, se.fit = TRUE, amat = amat)

Note that these are exactly the same as the commands that made pout4
except for the extra argument type = "cond" in the aster function call.
Thus we have fit a conditional aster model (CEF) but predicted exactly the
same A′τ as in pout4.

21

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

un
co

nd
iti

on
al

 m
ea

n
va

lu
e

pa
ra

m
et

er

AA Eriley Lf NWLF SPP Stevens

population

Figure 1: 95% confidence intervals for unconditional mean value parameter
for fitness (sum of head count for all years) at each population for a “typi-
cal” individual having position zero-zero and having the parameterization of
Model 4 (solid bar) or Model 3 (dashed bar). Tick marks in the middle of
the bars are the center (the MLE).

22

Figure 2 compares these two “predictions” and is produced by the follow-
ing code

> popnames <- as.character(newdata$pop)
> fit3 <- pcout4$fit
> fit4 <- pout4$fit
> i <- seq(along = popnames)
> foo <- 0.1
> y4top <- fit4 + crit * pout4$se.fit
> y4bot <- fit4 - crit * pout4$se.fit
> y3top <- fit3 + crit * pcout4$se.fit
> y3bot <- fit3 - crit * pcout4$se.fit
> plot(c(i - 1.5 * foo, i - 1.5 * foo, i + 1.5 * foo, i + 1.5 * foo),
+ c(y4top, y4bot, y3top, y3bot), type = "n", axes = FALSE,
+ xlab = "", ylab = "")
> segments(i - 1.5 * foo, y4bot, i - 1.5 * foo, y4top)
> segments(i - 2.5 * foo, y4bot, i - 0.5 * foo, y4bot)
> segments(i - 2.5 * foo, y4top, i - 0.5 * foo, y4top)
> segments(i - 2.5 * foo, fit4, i - 0.5 * foo, fit4)
> segments(i + 1.5 * foo, y3bot, i + 1.5 * foo, y3top, lty = 2)
> segments(i + 2.5 * foo, y3bot, i + 0.5 * foo, y3bot)
> segments(i + 2.5 * foo, y3top, i + 0.5 * foo, y3top)
> segments(i + 2.5 * foo, fit3, i + 0.5 * foo, fit3)
> axis(side = 2)
> title(ylab = "unconditional mean value parameter")
> axis(side = 1, at = i, labels = popnames)
> title(xlab = "population")

and appears on p. 24.
Now note that the two types of intervals (solid and dashed) are wildly

different. Of course, they should be wildy different because the two types
of models, one with φ = Mβ and the other with θ = Mβ, are radically
different. There is no reason for the two types of predictions (of exactly the
same thing) based on two radically different models should be similar. And
they aren’t. So we are only seeing what we should expect to see, and this
doesn’t prove anything about anything (except for the trivial fact that FEF
and CEF aster models are different).

Comment We haven’t really done justice to conditional models. Since
this is a tutorial, we don’t have to. As we said (twice), everything is the
same except for type = "cond" in the appropriate place.

23

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

un
co

nd
iti

on
al

 m
ea

n
va

lu
e

pa
ra

m
et

er

AA Eriley Lf NWLF SPP Stevens

population

Figure 2: 95% confidence intervals for unconditional mean value parameter
for fitness (sum of head count for all years) at each population for a “typ-
ical” individual having position zero-zero and having the parameterization
of Model 4, either an unconditional model (solid bar) or conditional model
(dashed bar). Tick marks in the middle of the bars are the center (the MLE).

24

And this is not the place to explain why one would want to use a condi-
tional or unconditional model. And, to be honest, we don’t know. We know,
and explain in the paper, what each one does and why

Conditional aster models are simple algebraically, but compli-
cated statistically.

Unconditional aster models are complicated algebraically, but
simple statistically.

But we have to admit that these arguments from theoretical statistics
may cut no ice with scientists, even if understood. It all depends on what
particular scientific questions one is trying to answer. Thus we have written
the aster package to be completely even-handed (except for defaults) with
respect to conditional and unconditional (models or parameters). Whatever
can be done with one kind can be done with the other. So use whatever you
think right.

5 Simulation

One function we haven’t covered is raster which simulates aster models.
Let’s check the coverage of some of our so-called 95% confidence intervals.

We start with another use of predict. The raster function wants θ or,
to be more precise, here we use θ̂.

> theta.hat <- predict(aout4, model.type = "cond", parm.type = "canon")
> theta.hat <- matrix(theta.hat, nrow = nrow(aout4$x), ncol = ncol(aout4$x))
> fit.hat <- pout4$fit
> beta.hat <- aout4$coefficients

We also need root data, and it will be simpler if we actually don’t use the
forms of the aster and predict.aster functions that take formulas (because
then we don’t have to cram the simulated data in a data frame and we avoid
a lot of repetitive parsing of the same formulas)

> root <- aout4$root
> modmat <- aout4$modmat
> modmat.pred <- pout4$modmat
> x.pred <- matrix(1, nrow = dim(modmat.pred)[1], ncol = dim(modmat.pred)[2])
> root.pred <- x.pred

Now we’re ready for a simulation

25

> set.seed(42)
> nboot <- 100
> cover <- matrix(0, nboot, length(fit.hat))
> for (iboot in 1:nboot) {
+ xstar <- raster(theta.hat, pred, fam, root)
+ aout4star <- aster(xstar, root, pred, fam, modmat, beta.hat)
+ pout4star <- predict(aout4star, x.pred, root.pred, modmat.pred,
+ amat, se.fit = TRUE)
+ upper <- pout4star$fit + crit * pout4star$se.fit
+ lower <- pout4star$fit - crit * pout4star$se.fit
+ cover[iboot,] <- as.numeric(lower <= fit.hat & fit.hat <= upper)
+ }
> pboot <- apply(cover, 2, mean)
> pboot.se <- sqrt(pboot * (1 - pboot) / nboot)
> cbind(pboot, pboot.se)

pboot pboot.se
[1,] 0.91 0.02861818
[2,] 0.98 0.01400000
[3,] 0.94 0.02374868
[4,] 0.94 0.02374868
[5,] 0.91 0.02861818
[6,] 0.96 0.01959592
[7,] 0.94 0.02374868

Not bad for the small nboot. We won’t try a serious simulation because
it would make this tutorial run too long.

Comment Other optimization options (calling optim are available), but
are slower. See http://www.stat.umn.edu/geyer/trust/time.pdf. Using
method = "nlm" instead of the default method = "trust" takes 3–4 times as
long, and using either method that calls optim (either method = "L-BFGS-B"
or method = "CG") takes about 16 times as long. So whatever problems nlm
and optim is good for, they don’t appear to include strictly convex objective
functions like aster models have. The starting parameter value beta.hat is
supposed to speed things up, giving the optimization a good starting point
(the simulation truth). We haven’t investigated whether it does or not.

26

