
Design Document for Random Effects Aster
Models

Charles J. Geyer

October 19, 2025

Abstract

This design document works out details of approximate maximum
likelihood estimation for aster models with random effects. Fixed and
random effects are estimated by penalized log likelihood. Variance
components are estimated by integrating out the random effects in the
Laplace approximation of the complete data likelihood (this can be
done analytically) and maximizing the resulting approximate missing
data likelihood. A further approximation treats the second derivative
matrix of the cumulant function of the exponential family where it
appears in the approximate missing data log likelihood as a constant
(not a function of parameters). Then first and second derivatives of
the approximate missing data log likelihood can be done analytically.
Minus the second derivative matrix of the approximate missing data
log likelihood is treated as approximate Fisher information and used
to estimate standard errors.

1 Theory

Aster models (Geyer, Wagenius and Shaw, 2007; Shaw, Geyer, Wagenius,
Hangelbroek, and Etterson, 2008) have attracted much recent attention. Sev-
eral researchers have raised the issue of incorporating random effects in aster
models, and we do so here.

1.1 Complete Data Log Likelihood

Although we are particularly interested in aster models (Geyer et al.,
2007), our theory works for any exponential family model. The log likelihood
can be written

l(φ) = yTφ− c(φ),

1



where y is the canonical statistic vector, φ is the canonical parameter vector,
and the cumulant function c satisfies

µ(φ) = Eφ(y) = c′(φ) (1)
W (φ) = varφ(y) = c′′(φ) (2)

where c′(φ) denotes the vector of first partial derivatives and c′′(φ) denotes
the matrix of second partial derivatives.

We assume a canonical affine submodel with random effects determined
by

φ = a+Mα+ Zb, (3)

where a is a known vector, M and Z are known matrices, b is a normal
random vector with mean vector zero and variance matrix D. The vector a
is called the offset vector and the matrices M and Z are called the model
matrices for fixed and random effects, respectively, in the terminology of the
R function glm. (The vector a is called the origin in the terminology of
the R function aster. Design matrix is alternative terminology for model
matrix.) The matrix D is assumed to be diagonal, so the random effects
are independent random variables. The diagonal components of D are called
variance components in the classical terminology of random effects models
(Searle et al., 1992). Typically the components of b are divided into blocks
having the same variance (Searle et al., 1992, Section 6.1), so there are only
a few variance components but many random effects, but nothing in this
document uses this fact.

The unknown parameter vectors are α and ν, where ν is the vector of
variance components. Thus D is a function of ν, although this is not indi-
cated by the notation.

The “complete data log likelihood” (i. e., what the log likelihood would
be if the random effect vector b were observed) is

lc(α, b, ν) = l(a+Mα+ Zb)− 1
2b
TD−1b− 1

2 log det(D) (4)

in case none of the variance components are zero. We deal with the case of
zero variance components in Sections 1.9, 1.10, and 1.11 below.

1.2 Missing Data Likelihood

Ideally, inference about the parameters should be based on the missing
data likelihood, which is the complete data likelihood with random effects b
integrated out

Lm(α, ν) =

∫
elc(α,b,ν) db (5)

2



Maximum likelihood estimates (MLE) of α and ν are the values that max-
imize (5). However MLE are hard to find. The integral in (5) cannot be
done analytically, nor can it be done by numerical integration except in very
simple cases. There does exist a large literature on doing such integrals by or-
dinary or Markov chain Monte Carlo (Thompson and Guo, 1991; Geyer and
Thompson, 1992; Geyer, 1994; Shaw, Promislow, Tatar, Hughes, and Geyer,
1999; Shaw, Geyer and Shaw, 2002; Sung and Geyer, 2007), but these meth-
ods take a great deal of computing time and are difficult for ordinary users
to apply. We wish to avoid that route if at all possible.

1.3 A Digression on Minimization

The theory of constrained optimization (Section 1.10 below) has a bias in
favor of minimization rather than maximization. The explication below will
be simpler if we switch now from maximization to minimization (minimizing
minus the log likelihood) rather than switch later.

1.4 Laplace Approximation

Breslow and Clayton (1993) proposed to replace the integrand in (5) by
its Laplace approximation, which is a normal probability density function
so the random effects can be integrated out analytically. Let b∗ denote the
result of maximizing (4) considered as a function of b for fixed α and ν. Then
− logLm(α, ν) is approximated by

q(α, ν) = 1
2 log det[κ

′′(b∗)] + κ(b∗)

where

κ(b) = −lc(a+Mα+ Zb)

κ′(b) = −ZT [y + µ(a+Mα+ Zb)] +D−1b

κ′′(b) = ZTW (a+Mα+ Zb)Z +D−1

Hence

q(α, ν) = −lc(α, b∗, ν) + 1
2 log det

[
κ′′(b∗)

]
= −l(a+Mα+ Zb∗) + 1

2(b
∗)TD−1b∗ + 1

2 log det(D)

+ 1
2 log det

[
ZTW (a+Mα+ Zb∗)Z +D−1

]
= −l(a+Mα+ Zb∗) + 1

2(b
∗)TD−1b∗

+ 1
2 log det

[
ZTW (a+Mα+ Zb∗)ZD + I

]
(6)

3



where I denotes the identity matrix of the appropriate dimension (which
must be the same as the dimension of D for the expression it appears in to
make sense), where b∗ is a function of α and ν and D is a function of ν, al-
though this is not indicated by the notation, and where the last equality uses
the rule sum of logs is log of product and the rule product of determinants
is determinant of matrix product (Harville, 1997, Theorem 13.3.4).

Since minus the log likelihood of an exponential family is a convex func-
tion (Barndorff-Nielsen, 1978, Theorem 9.1) and the middle term on the
right-hand side of (4) is a strictly convex function, it follows that (4) con-
sidered as a function of b for fixed α and ν is a strictly convex function.
Moreover, this function has bounded level sets, because the middle term on
the right-hand side of (4) does. It follows that there is unique global mini-
mizer (Rockafellar and Wets, 2004, Theorems 1.9 and 2.6). Thus b∗(α, ν) is
well defined for all values of α and ν.

The key idea is to use (6) as if it were the log likelihood for the unknown
parameters (α and ν), although it is only an approximation. However, this
is also problematic. In doing likelihood inference using (6) we need first and
second derivatives of it (to calculate Fisher information), but W is already
the second derivative matrix of the cumulant function, so first derivatives
of (6) would involve third derivatives of the cumulant function and second
derivatives of (6) would involve fourth derivatives of the cumulant function.
For aster models there are no published formulas for derivatives higher than
second of the aster model cumulant function nor does software (the R package
aster, Geyer, 2015) provide such — the derivatives do, of course, exist
because every cumulant function of a regular exponential family is infinitely
differentiable at every point of the canonical parameter space (Barndorff-
Nielsen, 1978, Theorem 8.1) — they are just not readily available. Breslow
and Clayton (1993) noted the same problem in the context of GLMM, and
proceeded as if W were a constant function of its argument, so all derivatives
ofW were zero. This is not a bad approximation because “in asymptopia” the
aster model log likelihood is exactly quadratic and W is a constant function,
this being a general property of likelihoods (Geyer, 2013). Hence we adopt
this idea too, more because we are forced to by the difficulty of differentiating
W than by our belief that we are “in asymptopia.”

This leads to the following idea. Rather than basing inference on (6), we
actually use

q(α, ν) = −l(a+Mα+ Zb∗) + 1
2(b

∗)TD−1b∗ + 1
2 log det

[
ZT ŴZD + I

]
(7)

where Ŵ is a constant matrix (not a function of α and ν). This makes sense
for any choice of Ŵ that is symmetric and positive semidefinite, but we will

4



choose Ŵ that are close to W (a +Mα̂ + Zb̂), where α̂ and ν̂ are the joint
minimizers of (6) and b̂ = b∗(α̂, ν̂). Note that (7) is a redefinition of q(α, ν).
Hereafter we will no longer use the definition (6).

1.5 A Key Concept

Introduce

p(α, b, ν) = −l(a+Mα+ Zb) + 1
2b
TD−1b+ 1

2 log det
[
ZT ŴZD + I

]
(8)

where, as the left-hand side says, α, b, and ν are all free variables and, as
usual, D is a function of ν, although the notation does not indicate this.
Since the terms that contain b are the same in both (4) and (8), b∗ can also
be defined at the result of minimizing (8) considered as a function of b for
fixed α and ν. Thus (7) is a profile of (8) and (α̂, b̂, ν̂) is the joint minimizer
of (8).

Since p(α, b, ν) is a much simpler function than q(α, ν), the latter having
no closed form expression and requiring an optimization as part of each
evaluation, it is much simpler to find (α̂, b̂, ν̂) by minimizing the former
rather than the latter.

1.6 A Digression on Partial Derivatives

Let f(α, b, ν) be a scalar-valued function of three vector variables. We
write partial derivative vectors using subscripts: fα(α, b, ν) denotes the vec-
tor of partial derivatives with respect to components of α. Our convention
is that we take this to be a column vector. Similarly for fb(α, b, ν). We also
use this convention for partial derivatives with respect to single variables:
fνk(α, b, ν), which are, of course, scalars. We use this convention for any
scalar-valued function of any number of vector variables.

We continue this convention for second partial derivatives: fαb(α, b, ν)
denotes the matrix of partial derivatives having i, j component that is the
(mixed) second partial derivative of f with respect to αi and bj . Thus the
row dimension of fαb(α, b, ν) is the dimension of α, the column dimension is
the dimension of b, and fbα(α, b, ν) is the transpose of fαb(α, b, ν).

This convention allows easy indication of points at which partial deriva-
tives are evaluated. For example, fαb(α, b∗, ν) indicates that b∗ is plugged in
for b in the expression for fαb(α, b, ν).

We also use this convention of subscripts denoting partial derivatives
with vector-valued functions. If f(α, b, ν) is a column-vector-valued function
of vector variables, then fα(α, b, ν) denotes the matrix of partial derivatives

5



having i, j component that is the partial derivative of the i-th component of
fα(α, b, ν) with respect to αj . Thus the row dimension of fα(α, b, ν) is the
dimension of f(α, b, ν) and the column dimension is the dimension of α.

1.7 First Derivatives

Start with (8). Its derivatives are

pα(α, b, ν) = −MT
[
y − µ(a+Mα+ Zb)

]
(9)

pb(α, b, ν) = −ZT
[
y − µ(a+Mα+ Zb)

]
+D−1b (10)

and

pνk(α, b, ν) = −1
2b
TD−1EkD

−1b+ 1
2 tr
([
ZT ŴZD + I

]−1
ZT ŴZEk

)
(11)

where
Ek = Aνk(ν) (12)

is the diagonal matrix whose components are equal to one if the correspond-
ing components of D are equal to νk by definition (rather than by accident
when some other component of ν also has the same value) and whose compo-
nents are otherwise zero. The formula for the derivative of a matrix inverse
comes from Harville (1997, Chapter 15, Equation 8.15). The formula for the
derivative of the log of a determinant comes from Harville (1997, Chapter 15,
Equation 8.6).

The estimating equation for b∗ can be written

pb
(
α, b∗, ν

)
= 0 (13)

and by the multivariate chain rule (Browder, 1996, Theorem 8.15) we have

qα(α, ν) = pα(α, b
∗, ν) + b∗α(α, ν)

T pb(α, b
∗, ν)

= pα(α, b
∗, ν)

(14)

by (13), and

qνk(α, ν) = b∗νk(α, ν)
T pb(α, b

∗, ν) + pνk(α, b
∗, ν)

= pνk(α, b
∗, ν)

(15)

again by (13).

6



1.8 Second Derivatives

We will proceed in the opposite direction from the preceding section,
calculating abstract derivatives before particular formulas for random effects
aster models, because we need to see what work needs to be done before
doing it (we may not need all second derivatives).

By the multivariate chain rule (Browder, 1996, Theorem 8.15)

qαα(α, ν) = pαα(α, b
∗, ν) + pαb(α, b

∗, ν)b∗α(α, ν)

qαν(α, ν) = pαν(α, b
∗, ν) + pαb(α, b

∗, ν)b∗ν(α, ν)

qνν(α, ν) = pνν(α, b
∗, ν) + pνb(α, b

∗, ν)b∗ν(α, ν)

The estimating equation (13) defines b∗ implicitly. Thus derivatives of b∗

are computed using the implicit function theorem (Browder, 1996, Theo-
rem 8.29)

b∗α(α, ν) = −pbb(α, b∗, ν)−1pbα(α, b
∗, ν) (16)

b∗ν(α, ν) = −pbb(α, b∗, ν)−1pbν(α, b
∗, ν) (17)

This theorem requires that pbb(α, b∗, ν) be invertible, and we shall see below
that it is. Then the second derivatives above can be rewritten

qαα(α, ν) = pαα(α, b
∗, ν)− pαb(α, b

∗, ν)pbb(α, b
∗, ν)−1pbα(α, b

∗, ν)

qαν(α, ν) = pαν(α, b
∗, ν)− pαb(α, b

∗, ν)pbb(α, b
∗, ν)−1pbν(α, b

∗, ν)

qνν(α, ν) = pνν(α, b
∗, ν)− pνb(α, b

∗, ν)pbb(α, b
∗, ν)−1pbν(α, b

∗, ν)

a particularly simple and symmetric form. If we combine all the parameters
in one vector ψ = (α, ν) and write p(ψ, b) instead of p(α, b, ν) we have

qψψ(ψ) = pψψ(ψ, b
∗)− pψb

(
ψ, b∗

)
pbb
(
ψ, b∗

)−1
pbψ
(
ψ, b∗

)
(18)

This form is familiar from the conditional variance formula for normal dis-
tributions if (

Σ11 Σ12

Σ21 Σ22

)
(19)

is the partitioned variance matrix of a partitioned normal random vector
with components X1 and X2, then the variance matrix of the conditional
distribution of X1 given X2 is

Σ11 − Σ12Σ
−1
22 Σ21 (20)

7



assuming that X2 is nondegenerate (Anderson, 2003, Theorem 2.5.1). More-
over, if the conditional distribution is degenerate, that is, if there exists a
nonrandom vector v such that var(vTX1 | X2) = 0, then

vTX1 = vTΣ12Σ
−1
22 X2

with probability one, assuming X1 and X2 have mean zero (also by An-
derson, 2003, Theorem 2.5.1), and the joint distribution of X1 and X2 is
also degenerate. Thus we conclude that if the (joint) Hessian matrix of p is
nonsingular, then so is the (joint) Hessian matrix of q given by (18).

The remaining work for this section is deriving the second derivatives of
p that we need (it has turned out that we need all of them)

pαα(α, b, ν) =MTW (a+Mα+ Zb)M

pαb(α, b, ν) =MTW (a+Mα+ Zb)Z

pbb(α, b, ν) = ZTW (a+Mα+ Zb)Z +D−1

pανk(α, b, ν) = 0

pbνk(α, b, ν) = −D−1EkD
−1b

pνjνk(α, b, ν) = bTD−1EjD
−1EkD

−1b

− 1
2 tr
([
ZT ŴZD + I

]−1
ZT ŴZEj[

ZT ŴZD + I
]−1

ZT ŴZEk

)
This finishes the derivation of all the derivatives we need. Recall that in our
use of the implicit function theorem we needed pbb(α, b∗, ν) to be invertible.
From the explicit form given above we see that it is actually negative definite,
because W (a+Mα+ Zb) is positive semidefinite by (2).

1.9 Zero Variance Components

When some variance components are zero, the corresponding diagonal
components of D are zero, and the corresponding components of b are zero
almost surely. The order of the components of b does not matter, so long
as the rows of Z and the rows and columns of D are reordered in the same
way. So suppose these objects are partitioned as

b =

(
b1
b2

)
Z =

(
Z1

Z2

)
D =

(
D1 0
0 D2

)
where D2 = 0 and the diagonal components of D1 are all strictly positive,
so the components of b2 are all zero almost surely and the components of b1

8



are all nonzero almost surely. Since Zb = Z1b1 almost surely, the value of
Z2 is irrelevant. In the expression for D we are using the convention that 0
denotes the zero matrix of the dimension needed for the expression it appears
in to make sense, so the two appearances of 0 in the expression for D as a
partitioned matrix denote different submatrices having all components zero
(they are transposes of each other).

Then the correct expression for the complete data log likelihood is

lc(α, b, ν) = l(a+Mα+ Z1b1)− 1
2b
T
1D

−1
1 b1 − 1

2 log det(D1) (21)

that is, the same as (4) except with subscripts 1 on b, Z, and D. And this
leads to the correct expression for the approximate log likelihood

q(α, ν) = −l(a+Mα+ Z1b
∗
1) +

1
2(b

∗
1)
TD−1

1 b∗1

+ 1
2 log det

[
ZT1 ŴZ1D1 + I

] (22)

where again I denotes the identity matrix of the appropriate dimension
(which now must be the dimension of D1 for the expression it appears in
to make sense) and where b∗1 denotes the maximizer of (21) considered as
a function of b1 with α and ν fixed, so it is actually a function of α and ν
although the notation does not indicate this. Since

ZT ŴZD + I =

(
ZT1 ŴZ1D1 + I ZT1 ŴZ2D2

ZT2 ŴZ1D1 ZT2 ŴZ2D2 + I

)

=

(
ZT1 ŴZ1D1 + I 0

ZT2 ŴZ1D1 I

)
where again we are using the convention that I denotes the identity matrix of
the appropriate dimension and 0 denotes the zero matrix of the appropriate
dimension, so I denotes different identity matrices in different parts of this
equation, having the dimension of D on the left-hand side, the dimension of
D1 in the first column of both partitioned matrices, and the dimension of
D2 in the second column of both partitioned matrices,

det(ZT ŴZD + I) = det(ZT1 ŴZ1D1 + I) det(I)

= det(ZT1 ŴZ1D1 + I)

by the rule that the determinant of a blockwise lower triangular partitioned
matrix is the product of the determinants of the blocks on the diagonal
(Harville, 1997, Theorem 13.3.1). And since Z1b1 = Zb almost surely,

q(α, ν) = −l(a+Mα+ Zb∗) + 1
2(b

∗
1)
TD−1

1 b∗1

+ 1
2 log det

[
ZT ŴZD + I

] (23)

9



that is, the subscripts 1 are only needed in the term where the matrix inverse
appears and are necessary there because D−1 does not exist. Breslow and
Clayton (1993, Section 2.3) suggest using the Moore-Penrose pseudoinverse
(Harville, 1997, Chapter 20)

D+ =

(
D−1

1 0
0 0

)
which gives

q(α, ν) = −l(a+Mα+Zb∗) + 1
2(b

∗)TD+b∗ + 1
2 log det

[
ZT ŴZD+ I

]
(24)

for the approximate log likelihood. This hides but does not eliminate the
partitioning. Although there is no explicit partitioning in (24), it is still
there in the definition of b∗.

Although this proposal (Breslow and Clayton, 1993, Section 2.3) does
deal with the situation where the zero variance components are somehow
known, it does not adequately deal with estimating which variance compo-
nents are zero. That is the subject of the following two sections.

1.10 The Theory of Constrained Optimization

1.10.1 Incorporating Constraints in the Objective Function

When zero variance components arise, optimization of (8) puts us in the
realm of constrained optimization. The theory of constrained optimization
(Rockafellar and Wets, 2004) has a notational bias towards minimization
(Rockafellar and Wets, 2004, p. 5). One can, of course, straightforwardly
translate every result in Rockafellar and Wets (2004) from the context of min-
imization to the context of maximization, because for any objective function
f , maximizing f is the same as minimizing −f , and Rockafellar and Wets give
infrequent hints and discussions of alternative terminology in aid of this. But
since the theory of constrained optimization is strange to most statisticians,
especially the abstract theory that is needed here (Karush-Kuhn-Tucker the-
ory is not helpful here, as we shall see), it is much simpler to switch from
maximization to minimization so we can use all of the theory in Rockafellar
and Wets (2004) without modification. And we have done so.

The theory of constrained optimization incorporates constraints in the
objective function by the simple device of defining the objective function
(for a minimization problem) to have the value +∞ off the constraint set
(Rockafellar and Wets, 2004, Section 1A). Since no point where the objective
function has the value +∞ can minimize it, unless the the objective function

10



has the value +∞ everywhere, which is not the case in any application, the
unconstrained minimizer of this sort of objective function is the same as the
constrained minimizer.

Thus we need to impose constraints on our key function (8), requiring
that each component of ν be nonnegative and when any component of ν is
zero the corresponding components of b are also zero. However, the formula
(8) does not make sense when components of ν are zero, so we will have to
proceed differently.

1.10.2 Lower Semicontinuous Regularization

Since all but the middle term on the right-hand side of (8) are actually
defined on some neighborhood of each point of the constraint set and dif-
ferentiable at each point of the constraint set, we only need to deal with
the middle term. It is the sum of terms of the form b2i /νk, where νk is the
variance of bi. Thus we investigate functions of this form

h(b, ν) = b2/ν (25)

where, temporarily, b and ν are scalars rather than vectors (representing
single components of the vectors). In case ν > 0 we have derivatives

hb(b, ν) = 2b/ν

hν(b, ν) = −b2/ν2

hbb(b, ν) = 2/ν

hbν(b, ν) = −2b/ν2

hνν(b, ν) = 2b2/ν3

The Hessian matrix

h′′(b, ν) =

(
2/ν −2b/ν2

−2b/ν2 2b2/ν3

)
has nonnegative determinants of its principal submatrices, since the diagonal
components are positive and det

(
h′′(b, ν)

)
is zero. Thus the Hessian matrix

is nonnegative definite (Harville, 1997, Theorem 14.9.11), which implies that
h itself is convex (Rockafellar and Wets, 2004, Theorem 2.14) on the set
where ν > 0.

We then extend h to the whole of the constraint set (this just adds the
origin to the points already considered) in two steps. First we define it to

11



have the value +∞ at all points not yet considered (those where any com-
ponent of ν is nonpositive). This gives us an extended-real-valued convex
function defined on all of R2. Second we take it to be the lower semicontinu-
ous (LSC) regularization (Rockafellar and Wets, 2004, p. 14) of the function
just defined. The LSC regularization of a convex function is convex (Rock-
afellar and Wets, 2004, Proposition 2.32). For any sequences bn → b ̸= 0
and νn ↘ 0 we have h(bn, νn) → ∞. Thus the LSC regularization has the
value +∞ for ν = 0 but b ̸= 0. If bn = 0 and νn ↘ 0 we have h(bn, νn) = 0
for all n. Since h(b, ν) ≥ 0 for all b and ν ≥ 0, we conclude

lim inf
b→0
ν↘0

h(b, ν) = 0

Thus the LSC regularization has the value 0 for b = ν = 0. In summary

h(b, ν) =


b2/ν, ν > 0

0, ν = 0 and b = 0

+∞, otherwise
(26)

is an LSC convex function, which agrees with our original definition in case
ν > 0. Note that h(b, 0) considered as a function of b is minimized at b = 0
because that is the only point where this function is finite.

Let k denote the map from indices for b to indices for ν that gives cor-
responding components: νk(i) is the variance of bi. Let dim(b) denote the
number of random effects. Then our objective function can be written

p(α, b, ν) = −l(a+Mα+Zb) + 1
2

dim(b)∑
i=1

h(bi, νk(i)) +
1
2 log det

[
ZT ŴZD+ I

]
(27)

where h is given by (26), provided all of the components of ν are nonnegative.
The proviso is necessary because the third term on the right-hand side is
not defined for all values of ν, only those such that the argument of the
determinant is a positive definite matrix. Hence, we must separately define
p(α, b, ν) = +∞ whenever any component of ν is negative.

1.10.3 Subderivatives

In calculus we learn that the first derivative is zero at a local minimum
and, therefore, to check points where the first derivative is zero. This is called
Fermat’s rule. This rule no longer works for nonsmooth functions, including

12



those that incorporate constraints, such as (27). It does, of course, still work
at points in the interior of the constraint set where (27) is differentiable.
It does not work to check points on the boundary. There we need what
Rockafellar and Wets (2004, Theorem 10.1) call Fermat’s rule, generalized:
at a local minimum the subderivative function is nonnegative.

For any extended-real-valued function f on Rd, the subderivative func-
tion, denoted df(x) is also an extended-real-valued function on Rd defined
by

df(x)(w̄) = lim inf
τ↘0
w→w̄

f(x+ τw)− f(x)

τ

(Rockafellar and Wets, 2004, Definition 8.1). The notation on the left-hand
side is read the subderivative of f at the point x in the direction w̄. Fortu-
nately, we do not have to use this definition to calculate subderivatives we
want, because the calculus of subderivatives allows us to use simpler formu-
las in special cases. Firstly, there is the notion of subdifferential regularity
(Rockafellar and Wets, 2004, Definition 7.25), which we can use without
knowing the definition. The sum of regular functions is regular and the sub-
derivative of a sum is the sum of the subderivatives (Rockafellar and Wets,
2004, Corollary 10.9). A smooth function is regular and the subderivative is
given by

df(x)(w) = wT f ′(x), (28)

where, as in Sections 1.1 and 1.4 above, f ′(x) denotes the gradient vector
(the vector of partial derivatives) of f at the point x (Rockafellar and Wets,
2004, Exercise 8.20). Every LSC convex function is regular (Rockafellar and
Wets, 2004, Example 7.27). Thus in computing subderivatives of (27) we
may compute them term by term, and for the first and last terms, they
are given in terms of the partial derivatives already computed by (28). For
an LSC convex function f , we have the following characterization of the
subderivative (Rockafellar and Wets, 2004, Proposition 8.21). At any point
x where f(x) is finite, the limit

g(w) = lim
τ↘0

f(x+ τw)− f(x)

τ

exists and defines a sublinear function g, and then df(x) is the LSC regu-
larization of g. An extended-real-valued function g is sublinear if g(0) = 0
and

g(a1x1 + a2x2) ≤ a1g(x1) + a2g(x2)

13



for all vectors x1 and x2 and positive scalars a1 and a2 (Rockafellar and
Wets, 2004, Definition 3.18). The subderivative function of every regular
LSC function is sublinear (Rockafellar and Wets, 2004, Theorem 7.26).

So let us proceed to calculate the subderivative of (26). In the interior
of the constraint set, where this function is smooth, we can use the partial
derivatives already calculated

dh(b, ν)(u, v) =
2bu

ν
− b2v

ν2

where the notation on the left-hand side means the subderivative of h at the
point (b, ν) in the direction (u, v). On the boundary of the constraint set,
which consists of the single point (0, 0), we take limits. In case v > 0, we
have

lim
τ↘0

h(τu, τv)− h(0, 0)

τ
= lim

τ↘0

τ2u2/(τv)

τ
= lim

τ↘0

u2

v
=
u2

v

In case v ≤ 0 and u ̸= 0, we have

lim
τ↘0

h(τu, τv)− h(0, 0)

τ
= lim

τ↘0
(+∞) = +∞

In case v = 0 and u = 0, we have

lim
τ↘0

h(τu, τv)− h(0, 0)

τ
= 0

Thus if we define

g(u, v) =


u2/v, v > 0

0, u = v = 0

+∞, otherwise

The theorem says dh(0, 0) is the LSC regularization of g. But we recognize
g = h, so g is already LSC, and we have

dh(0, 0)(u, v) = h(u, v)

1.10.4 Applying the Generalization of Fermat’s Rule

The theory of constrained optimization tells us nothing we did not al-
ready know (from Fermat’s rule) about smooth functions. The only way
we can have df(x)(w) = wT f ′(x) ≥ 0 for all vectors w is if f ′(x) = 0. It is
only at points where the function is nonsmooth, in the cases of interest to us,

14



points on the boundary of the constraint set, where the theory of constrained
optimization tells us things we did not know and need to know.

Even on the boundary, the conclusions of the theory about components
of the state that are not on the boundary agree with what we already knew.
We have

dp(α, b, ν)(s, u, v) = sT pα(α, b, ν) + terms not containing s

and the only way this can be nonnegative for all s is if

pα(α, b, ν) = 0 (29)

in which case dp(α, b, ν)(s, u, v) is a constant function of s, or, what is the
same thing in other words, the terms of dp(α, b, ν)(s, u, v) that appear to
involve s are all zero (and so do not actually involve s).

Similarly, dp(α, b, ν)(s, u, v) ≥ 0 for all ui and vj such that νj > 0 and
k(i) = j only if

pνj (α, b, ν) = 0, j such that νj > 0

pbi(α, b, ν) = 0, i such that νk(i) > 0
(30)

in which case we conclude that dp(α, b, ν)(s, u, v) is a constant function of
such ui and vj .

Thus, assuming that we are at a point (α, b, ν) where (29) and (30) hold,
and we do assume this throughout the rest of this section, dp(α, b, ν)(s, u, v)
actually involves only vj and ui such that νj = 0 and k(i) = j. Define

p̄(α, b, ν) = −l(a+Mα+ Zb) + 1
2 log det

[
ZT ŴZD + I

]
(31)

(the part of (27) consisting of the smooth terms). Then

dp(α, b, ν)(s, u, v) =
∑
j∈J

[
vj p̄νj (α, b, ν)

+
∑

i∈k−1(j)

(
uip̄bi(α, b, ν) + h(ui, vj)

)] (32)

where J is the set of j such that νj = 0, where k−1(j) denotes the set of i
such that k(i) = j, and where h is defined by (26). Fermat’s rule generalized
says we must consider all of the terms of (32) together. We cannot consider
partial derivatives, because the partial derivatives do not exist. To check

15



that we are at a local minimum we need to show that (32) is nonnegative for
all vectors u and v. Conversely, to verify that we are not at a local minimum,
we need to find one pair of vectors u and v such that (32) is negative. Such
a pair (u, v) we call a descent direction. Since Fermat’s rule generalized is a
necessary but not sufficient condition (like the ordinary Fermat’s rule), the
check that we are at a local minimum is not definitive, but the check that
we are not is. If a descent direction is found, then moving in that direction
away from the current value of (α, b, ν) will decrease the objective function
(27).

So how do we find a descent direction? We want to minimize (32) consid-
ered as a function of u and v for fixed α, b, and ν. On further consideration,
we can consider the terms of (32) for each j separately. If the minimum of

vj p̄νj (α, b, ν) +
∑

i∈k−1(j)

(
uip̄bi(α, b, ν) + h(ui, vj)

)
(33)

over all vectors u and v is nonnegative, then the minimum is zero, because
(33) has the value zero when u = 0 and v = 0. Thus we can ignore this j in
calculating the descent direction.

On the other hand, if the minimum is negative, then the minimum does
not occur at v = 0 and the minimum is actually −∞ by the sublinearity of the
subderivative, one consequence of sublinearity being positive homogeneity

df(x)(τw) = τdf(x)(w), τ ≥ 0

which holds for for any subderivative. Thus (as our terminology hints) we
are only trying to find a descent direction, the length of the vector (u, v)
does not matter, only its direction. Thus to get a finite minimum we can
do a constrained minimization of (33), constraining (u, v) to lie in a ball.
This is found by the well-known Karush-Kuhn-Tucker theory of constrained
optimization to be the minimum of the Lagrangian function

L(u, v) = λv2j + vj p̄νj (α, b, ν) +
∑

i∈k−1(j)

(
λu2i + uip̄bi(α, b, ν) +

u2i
vj

)
(34)

where λ > 0 is the Lagrange multiplier, which would have to be adjusted if
we were interested in constraining (u, v) to lie in a particular ball. Since we
do not care about the length of (u, v) we can use any λ. We have replaced
h(ui, vi) by u2i /vj because we know that if we are finding an actual descent

16



direction, then we will have vj > 0. Now

Lui(u, v) = 2λui + p̄bi(α, b, ν) +
2ui
vj
, i ∈ k−1(j)

Lvj (u, v) = 2λvj + p̄νj (α, b, ν)−
∑

i∈k−1(j)

u2i
v2j

The minimum occurs where these are zero. Setting the first equal to zero
and solving for ui gives

ûi(vj) = − p̄bi(α, b, ν)

2(λ+ 1/vj)

plugging this back into the second gives

Lvj
(
û(v), v

)
= 2λvj + p̄νj (α, b, ν)−

1

4(λvj + 1)2

∑
i∈k−1(j)

p̄bi(α, b, ν)
2

and we seek zeros of this. The right-hand is clearly an increasing function
of vj so it is negative somewhere only if it is negative when vj = 0 where it
has the value

p̄νj (α, b, ν)−
1

4

∑
i∈k−1(j)

p̄bi(α, b, ν)
2 (35)

So that gives us a test for a descent direction: we have a descent direction if
and only if (35) is negative. Conversely, we appear to have ν̂j = 0 if (35) is
nonnegative.

That finishes our treatment of the theory of constrained optimization.
We have to ask is all of this complication really necessary? It turns out that
it is and it isn’t. We can partially avoid it by a change of variables. But
the cure is worse than the disease in some ways. This is presented in the
following section.

1.11 Square Roots

We can avoid constrained optimization by the following change of pa-
rameter. Introduce new parameter variables by

νj = σ2j

b = Ac

17



where A is diagonal and A2 = D, so the i-th diagonal component of A is
σk(i). Then the objective function (8) becomes

p̃(α, c, σ) = −l(a+Mα+ ZAc) + 1
2c
T c+ 1

2 log det
[
ZT ŴZA2 + I

]
(36)

There are now no constraints and (36) is a continuous function of all vari-
ables.

The drawback is that by symmetry we must have p̃σj (α, c, σ) equal to
zero when σj = 0. Thus first derivatives become useless for checking for
descent directions, and second derivative information is necessary. However,
that is not the way unconstrained optimizers like the R functions optim and
nlminb work. They do not expect such pathological behavior and do not
deal with it correctly. If we want to use such optimizers to find local minima
of (36), then we must provide starting points that have no component of ν
equal to zero, and hope that the optimizer will never get any component of
ν close to zero unless zero actually is a solution. But this is only a hope.
The theory that guided the design of these optimizers does not provide any
guarantees for this kind of objective function.

Moreover, optimizer algorithms stop when close to but not exactly at a
solution, a consequence of inexactness of computer arithmetic. Thus when
the optimizer stops and declares convergence with one or more components
of ν close to zero, how do we know whether the true solution is exactly zero
or not? We don’t unless we return to the original parameterization and apply
the theory of the preceding section. The question of whether the MLE of
the variance components are exactly zero or not is of scientific interest, so
it seems that the device of this section does not entirely avoid the theory of
constrained optimization. We must change back to the original parameters
and use (35) to determine whether or not we have νj = 0.

Finally, there is another issue with this “square root” parameterization.
The analogs of the second derivative formulas derived in Section 1.8 above,
for this new parameterization are extraordinarily ill-behaved. The Hessian
matrices are badly conditioned and sometimes turn out to be not positive
definite when calculated by the computer’s arithmetic (which is inexact) even
though theory says they must be positive definite. We know this because
at one point we thought that this “square root” parameterization was the
answer to everything and tried to use it everywhere. Months of frustration
ensued where it mostly worked, but failed on a few problems. It took us a
long time to see that it is fundamentally wrong-headed. As we said above,
the cure is worse than the disease.

Thus we concluded that, while we may use this “square root” parameteri-
zation to do unconstrained rather than constrained minimization, we should

18



only use it only for that. The test (35) should be used to determine whether
variance components are exactly zero or not, and the formulas in Section 1.8
should be used to derive Fisher information.

1.11.1 First Derivatives

Some of R’s optimization routines can use first derivative information,
thus we derive first derivatives in this parameterization.

p̃α(α, c, σ) = −MT [y − µ(a+Mα+ ZAc)] (37)

p̃c(α, c, σ) = −AZT [y − µ(a+Mα+ ZAc)] + c (38)

p̃σj (α, c, σ) = −cTEjZT [y − µ(a+Mα+ ZAc)]

+ tr
(
[ZT ŴZA2 + I

]−1
ZT ŴZAEj

)
(39)

where Ej is given by (12).

1.12 Fisher Information

The observed Fisher information matrix is minus the second derivative
matrix of the log likelihood. As we said above, we want to do this in the
original parameterization.

Assembling stuff derived in preceding sections and introducing

µ∗ = µ
(
a+Mα+ Zb∗(α, ν)

)
W ∗ =W

(
a+Mα+ Zb∗(α, ν)

)
H∗ = ZTW ∗Z +D−1

Ĥ = ZT ŴZD + I

we obtain

qαα(α, ν) =MTW ∗M −MTW ∗Z(H∗)−1ZTW ∗M

qανj (α, ν) =MTW ∗Z(H∗)−1D−1EjD
−1b∗

qνjνk(α, ν) = (b∗)TD−1EjD
−1EkD

−1b∗

− 1
2 tr
(
Ĥ−1ZT ŴZEjĤ

−1ZT ŴZEk

)
− (b∗)TD−1EjD

−1(H∗)−1D−1EkD
−1b∗

In all of these b∗, µ∗, W ∗, and H∗ are functions of α and ν even though the
notation does not indicate this.

19



It is tempting to think expected Fisher information simplifies things be-
cause we “know” E(y) = µ and var(y) = W , except we don’t know that!
What we do know is

E(y | b) = µ(a+Mα+ Zb)

but we don’t know how to take the expectation of the right hand side (and
similarly for the variance). Rather than introduce further approximations
of dubious validity, it seems best to just use (approximate) observed Fisher
information.

1.13 Standard Errors for Random Effects

Suppose that the approximate Fisher information derived in Section 1.12
can be used to give an approximate asymptotic variance for the parameter
vector ψ = (α, ν). This estimate of the asymptotic variance is qψψ(ψ̂)−1,
where qψψ(ψ) is given by (18) and ψ̂ = (α̂, ν̂).

To apply the delta method to get asymptotic standard errors for b̂ we
need the derivatives (16) and (17). Stacking these we obtain

b∗ψ(ψ̂) =

(
−pbb(α̂, b̂, ν̂)−1pbα(α̂, b̂, ν̂)

−pbb(α̂, b̂, ν̂)−1pbν(α̂, b̂, ν̂)

)
and the delta method gives

b∗ψ(ψ̂)
T qψ,ψ(ψ̂)

−1b∗ψ(ψ̂) (40)

for the asymptotic variance of the estimator b̂.
It must be conceded that in this section we are living what true believers

in random effects models would consider a state of sin. The random effects
vector b is not a parameter, yet b∗(ψ̂) treats it as a function of parameters
(which is thus a parameter) and the “asymptotic variance” (40) is derived by
considering b̂ just such a parameter estimate. So (40) is correct in what it
does, so long as we buy the assumption that qψψ(ψ̂) is approximate Fisher
information for ψ, but it fails to treat random effects as actually random.
Since any attempt to actually treat random effects as random would lead
us to integrals that we cannot do, we leave the subject at this point. The
asymptotic variance (40) may be philosophically incorrect in some circles,
but it seems to be the best we can do.

20



1.14 REML?

Breslow and Clayton (1993) do not maximize the approximate log like-
lihood (6), but make further approximations to give estimators motivated
by REML (restricted maximum likelihood) estimators for linear mixed mod-
els (LMM). Breslow and Clayton (1993) concede that the argument that
justifies REML estimators for LMM does not carry over to their REML-
like estimators for generalized linear mixed models (GLMM). Hence these
REML-like estimators have no mathematical justification. Even in LMM the
widely used procedure of following REML estimates of the variance compo-
nents with so-called BLUE estimates of fixed effects and BLUP estimates
of random effects, which are actually only BLUE and BLUP if the variance
components are assumed known rather than estimated, is obviously wrong:
ignoring the fact that the variance components are estimated cannot be jus-
tified (and Breslow and Clayton say this in their discussion section). Hence
REML is not justified even in LMM when fixed effects are the parameters
of interest. In aster models, because components of the response vector are
dependent and have distributions in different families, it is very unclear what
REML-like estimators in the style of Breslow and Clayton (1993) might be.
The analogy just breaks down. Hence, we do not pursue this REML analogy
and stick with what we have described above.

2 Practice

Our goal is to minimize (6). We replace (6) with (7) in some steps because
of our inability to differentiate (6), but our whole procedure must minimize
(6).

2.1 Step 1

To get close to (α̂, ĉ, σ̂) starting from far away we minimize

r(σ) = −l(a+Mα̃+ ZAc̃) + 1
2 c̃
T c̃

+ 1
2 log det

[
ZTW (a+Mα̃+ ZAc̃)ZA2 + I

] (41)

where α̃ and c̃ are the joint minimizers of (36) considered as a function of
α and c for fixed σ. In (41), α̃, c̃, and A are all functions of σ although the
notation does not indicate this.

Because we cannot calculate derivatives of (41) we minimize using by the
R function optim with method = "Nelder-Mead", the so-called Nelder-Mead

21



simplex algorithm, a no-derivative method nonlinear optimization, not to be
confused with the simplex algorithm for linear programming.

2.2 Step 2

Having found α, c, and σ close to the MLE values via the preceding step,
we then switch to minimization of (36) for which we have the derivative
formulas (37), (38), and (39). In this step we can use one of R’s optimization
functions that uses first derivative information: nlm or nlminb or optim
with optional argument method = "BFGS" or method = "CG" or method =
"L-BFGS-B".

To define (36) we also need a Ŵ , and we take the value at the current
values of α, c, and σ. Because W is typically a very large matrix (n × n,
where n is the number of nodes in complete aster graph, the number of nodes
in the subgraph for a single individual times the number of individuals), we
actually store ZT ŴZ, which is only r× r, where r is the number of random
effects. We set

ZT ŴZ = ZTW (a+Mα+ ZAc)Z (42)

where α, c, and A = A(σ) are the current values before we start minimizing
p̃(α, c, σ) and this value of ZT ŴZ is fixed throughout the minimization, as
is required by the definition of p̃(α, c, σ).

Having minimized p̃(α, c, σ) we are still not done, because now (42) is
wrong. We held it fixed at the values of α, c, and σ we had before the min-
imization, and now those values have changed. Thus we should re-evaluate
(42) and re-minimize, and continue doing this until convergence.

We terminate this iteration when σ values do not change (to within some
prespecified tolerance) because the α and c values are, in theory, determined
by σ, because p̃ considered as a function of α and c for fixed σ is convex and
hence has at most one local minimizer, so we do not need to worry about
them converging.

When this iteration terminates we are done with this step, and we have
our point estimates α̂, ĉ, and σ̂. We also have our point estimates b̂ of the
random effects on the original scale given by A(ν̂)ĉ and our point estimates
νj = σ2j of the variance components.

2.3 Step 3

Having converted back to the original parameters, if any of the νj are
close to zero we use the check (35) to determine whether or not they are
exactly zero.

22



2.4 To Do

A few issues that have not been settled. Points 1 and 2 in the following
list are not specific to random effects models. They arise in fixed effect
aster models too, even in generalized linear models and log-linear models in
categorical data analysis.

1. Verify no directions of recession of fixed-effects-only model.

2. Verify supposedly nested models are actually nested.

3. How about constrained optimization and hypothesis tests of variance
components being zero? How does the software automagically or edu-
cationally do the right thing? That is, do we just do the Right Thing
or somehow explain to lusers what the Right Thing is?

A Cholesky

How do we calculate log determinants and derivatives thereof? R has
a function determinant that calculates the log determinant. It uses LU
decomposition.

An alternative method is to use Cholesky decomposition, but that only
works when the given matrix is symmetric. This may be better because
there is a sparse version (the chol function in the Matrix package) that
may enable us to do much larger problems (perhaps after some other issues
getting in the way of scaling are also fixed).

We need to calculate the log determinant that appears in (8) or (36),
but the matrix is not symmetric. It can, however, be rewritten so as to be
symmetric. Assuming A is invertible

det
(
ZT ŴZA2 + I

)
= det

(
ZT ŴZA+A−1

)
det
(
A
)

= det
(
AZT ŴZA+ I

)
If A is singular, we can see by continuity that the two sides must agree there
too. That takes care of (36). The same trick works for (8); just replace A
by D1/2, which is the diagonal matrix whose diagonal components are the
nonnegative square roots of the corresponding diagonal components of D.

Cholesky can also be used to efficiently calculate matrix inverses (done
by the chol2inv function in the Matrix package). So we investigate whether
we can use Cholesky to calculate derivatives.

23



A.1 First Derivatives

For the trace in the formula (39) for p̃σj (α, c, σ) we have in case A is
invertible

tr
(
[ZT ŴZA2 + I

]−1
ZT ŴZAEj

)
= tr

(
[A−1(AZT ŴZA+ I)A

]−1
ZT ŴZAEj

)
= tr

(
A−1[AZT ŴZA+ I

]−1
AZT ŴZAEj

)
= tr

(
[AZT ŴZA+ I

]−1
AZT ŴZAEjA

−1
)

= tr
(
[AZT ŴZA+ I

]−1
AZT ŴZEj

)
the next-to-last equality being tr(AB) = tr(BA) and the last equality using
the fact that A, Ej , and A−1 are all diagonal so they commute. Again we
see that we get the same identity of the first and last expressions even when
A is singular by continuity.

For the trace in the formula (11) for pνk(α, b, ν) we have in case D is
invertible

tr
([
ZT ŴZD + I

]−1
ZT ŴZEk

)
= tr

(
D−1/2

[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEk

)
= tr

([
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZD−1/2Ek

)
This, of course, does not work when D is singular. We already knew we
cannot differentiate p(α, b, ν) on the boundary of the constraint set.

A.2 Second Derivatives

For the trace in the formula in Section 1.8 for pνjνk(α, b, ν) we have in
case D is invertible

tr
([
ZT ŴZD + I

]−1
ZT ŴZEj

[
ZT ŴZD + I

]−1
ZT ŴZEk

)
= tr

(
D−1/2

[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEj

D−1/2
[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEk

)
= tr

([
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEjD

−1/2[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEkD

−1/2
)

24



Again, this does not work when D is singular.
The same trace occurs in the expression for qνjνk(α, ν) given in Sec-

tion 1.12 and can be calculated the same way.

References

Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis,
3rd ed. Hoboken: John Wiley & Sons.

Barndorff-Nielsen, O. (1978). Information and Exponential Families. Chich-
ester: John Wiley & Sons.

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in general-
ized linear mixed models. Journal of the American Statistical Association,
88, 9–25.

Browder, A. (1996). Mathematical Analysis: An Introduction. New York:
Springer-Verlag.

Geyer, C. J. (1994). On the convergence of Monte Carlo maximum likelihood
calculations. Journal of the Royal Statistical Society, Series B, 56, 261–
274.

Geyer, C. J. (2015). R package aster (Aster Models), version
0.8-31. http://www.stat.umn.edu/geyer/aster/ and https://cran.
r-project.org/package=aster

Geyer, C. J. (2013). Asymptotics of maximum likelihood without the LLN
or CLT or sample size going to infinity. In Advances in Modern Statistical
Theory and Applications: A Festschrift in honor of Morris L. Eaton, G. L.
Jones and X. Shen eds. IMS Collections, Vol. 10, pp. 1–24. Institute of
Mathematical Statistics: Hayward, CA.

Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo max-
imum likelihood for dependent data, (with discussion). Journal of the
Royal Statistical Society, Series B, 54, 657–699.

Geyer, C. J., Wagenius, S. and Shaw, R. G. (2007). Aster models for life
history analysis. Biometrika, 94, 415–426.

Harville, D. A. (1997). Matrix Algebra From a Statistician’s Perspective.
New York: Springer.

25



Rockafellar, R. T. and Wets, R. J.-B. (2004). Variational Analysis, corr. 2nd
printing. Berlin: Springer-Verlag.

Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Compo-
nents. New York: John Wiley.

Shaw, F. H., Promislow, D. E. L., Tatar, M., Hughes, K. A. and Geyer,
C. J. (1999). Towards reconciling inferences concerning genetic variation
in senescence. Genetics, 152, 553–566.

Shaw, F. H., Geyer, C. J. and Shaw, R. G. (2002). A Comprehensive Model of
Mutations Affecting Fitness and Inferences for Arabidopsis thaliana Evo-
lution, 56, 453–463.

Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H., and Etterson,
J. R. (2008). Unifying life history analysis for inference of fitness and
population growth. American Naturalist 172, E35–E47.

Sung, Y. J. and Geyer, C. J. (2007). Monte Carlo likelihood inference for
missing data models. Annals of Statistics, 35, 990–1011.

Thompson, E. A. and Guo, S. W. (1991). Evaluation of likelihood ratios for
complex genetic models. IMA J. Math. Appl. Med. Biol., 8, 149–169.

26


