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Abstract

There are lots of ways to do the calculations involved in the delta
method. Here we illustrate what is the easiest way to use the delta
method to obtain standard errors for functions of parameters and ran-
dom effects (if any) for models fit by R package aster.

1 License

This work is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License http://creativecommons.org/licenses/by-sa/
4.0/.

2 R

e The version of R used to make this document is 4.5.1.
e The version of the knitr package used to make this document is 1.50.
e The version of the aster package used to make this document is 1.3.6.

e The version of the numDeriv package used to make this document is
2016.8.1.1.

> library(aster)
> library(numDeriv)

3 The Delta Method: Old Way and New Way

The first paper about aster models (Geyer, Wagenius, and Shaw, 2007,
Section 3.3) already briefly mentions using the delta method along with the
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method of R generic function predict that handles objects of class aster to
obtain standard errors for nonlinear functions of parameters. And the tech-
nical report (Geyer, Wagenius, and Shaw, 2005, Appendix A) that provides
supplementary material for that paper gives more details. That is the “old
way” to apply the delta method to aster models.

Since that time, there have been a lot of changes to R package aster
(Geyer, 2025). Aster models with random effects (Geyer, Ridley, Latta,
Etterson, and Shaw, 2013) were added. So now we need to apply the delta
method to obtain standard errors for estimates obtained from model fits
of class aster and class reaster. But new tools have been developed. R
package aster has gotten methods of R generic function vcov that handle R
objects of class aster or class reaster. R package numDeriv has methods
that calculate derivatives of nonlinear functions without users having to know
(or explain) calculus.

So the “new way” to apply the delta method to aster models uses these
new tools. This new way is exemplified in Geyer, Kulbaba, Sheth, Pain,
Eckhart, and Shaw (2022) and Shaw, Geyer, Kulbaba, Sheth, Eckhart, and
Pain (in preparation).

The delta method says that if a vector parameter estimate B has an
approximate multivariate normal distribution with mean § (the true un-
known vector parameter value) and variance-covariance matrix ¥ and if g
is a vector-to-vector function differentiable at 8 with derivative matrix (also
called Jacobian matrix) B = Vg(f), then the vector parameter estimate
g(B) has an approximate multivariate normal distribution with mean g(3)
and variance-covariance matrix BY BT

The “new way” gets 3 from R generic function vcov, gets the Jacobian
matrix from R function jacobian in R package numDeriv, and does the
matrix multiplication B %% Sigma %*% t(B) explicitly in R.

For future reference (we use this in Section 5 below) we note that the
delta method can be applied recursively. The composition of differentiable
functions is differentiable, and the derivative of the composition is the matrix
multiplication of the derivative (Jacobian matrices). If g3 = g1 o g2 meaning

93(8) = 91(92(8)), for all 8
and
B; = Vgi(B)

then
B3 = B1Bs



So the delta method says that the variance-covariance matrix of gs(J3) is
given by
(B1B2)%(B1B)! = B B,xBI B

which is just the delta method applied twice (to g2 and then g¢q).

4 Example I: No Random Effects

4.1 Introduction

We redo an example from a technical report (Geyer and Shaw, 2010) that
is supplementary material for the paper Shaw and Geyer (2010). Because
it was beyond what scientists had imagined could be done, that paper used
simulated data to expand horizons. (Later papers did apply these methods
to real data.)

> data(sim)

We fit a quadratic regression of fitness on phenotypic traits of an organ-
ism. The corresponding mean value parameters, considered as a function of
phenotypic traits (predictor variables) is called the fitness landscape.

> aout <- aster(resp ~ varb + 0 + zl1 + z2 + I(z1°2) + I(zl * z2) + I(z2°2),
+ pred, fam, varb, id, root, data = redata)
> summary (aout)

Call:

aster.formula(formula = resp ~ varb + 0 + z1 + z2 + I(z1"2) +
I(zl * z2) + I(z2°2), pred = pred, fam = fam, varvar = varb,
idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|zl|)

varbisurv4d 1.217672
varbnflowl -7.264353
varbnflow2 -7.452760

.234288  5.197 2.02e-07 *x*x
.090581 -80.198 < 2e-16 *x*x
.102617 -72.627 < 2e-16 *x*xx

varbiflowl -3.444251 0.180123 -19.122 < 2e-16 *x*x
varbiflow2 -3.064152 0.203311 -15.071 < 2e-16 ***
varbiflow3d -3.207467 0.218952 -14.649 < 2e-16 **x
varbiflow4d -3.284180 0.236597 -13.881 < 2e-16 **x
varbisurvl -0.065167 0.160348 -0.406 0.68444
varbisurv2 -0.700847 0.225747 -3.105 0.00191 x*x*
varbisurv3d -0.094013 0.275111 -0.342 0.73256

0

0

0



varbnflow3 -7.227782  0.105711 -68.373 < 2e-16 **¥x
varbnflow4d -7.044131  0.107792 -65.349 < 2e-16 **x*
varbngerml -2.264595 0.030308 -74.720 < 2e-16 **x
varbngerm2 -2.270312 0.033766 -67.237 < 2e-16 **x
varbngerm3 -2.325980 0.036102 -64.429 < 2e-16 **x
varbngerm4 -2.304824  0.036977 -62.332 < 2e-16 **x
varbnseedl 2.881224 0.009182 313.789 < 2e-16 **x
varbnseed2 2.895118 0.010258 282.241 < 2e-16 **¥x
varbnseed3 2.880964 0.010737 268.332 < 2e-16 **x
varbnseed4 2.864026 0.011117 257.619 < 2e-16 **x
zl 0.146950 0.013695 10.730 < 2e-16 *x*x
z2 -0.020598 0.009842 -2.093 0.03637 *

I(z172) -0.027807 0.009508 -2.925 0.00345 **
I(zl * z2) 0.023713 0.012352 1.920 0.05489 .

I(z2°2) -0.017986  0.006536 -2.752 0.00593 **

Signif. codes: 0 “**x’ 0.001 ‘**’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ > 1

4.2 Point Estimate

We want the maximum of the fitness landscape calculated by the function

> foo <- function(beta) {

+ A <- matrix(NaN, 2, 2)

+ Al1, 1] <- beta["I(z1~2)"]

+ Al[2, 2] <- beta["I(z2"2)"]

+ A1, 2] <- beta["I(z1 * z2)"] / 2
+ A[2, 1] <- beta["I(zl * z2)"] / 2
+ b <- rep(NaN, 2)

+ b[1] <- beta["z1"]

+ b[2] <- beta["z2"]

+ solve(-2 * A, b)

+ }

Try it.
> foo(aout$coef)

[1] 3.335738 1.626314

This agrees with the “old way” shown in Geyer and Shaw (2010, Section 4).



4.3 Standard Errors
4.3.1 The New Way

The new way does

> Sigma <- vcov(aout)

> B <- jacobian(foo, aout$coef)
> V <- B %*J Sigma %*} t(B)
>V

[,1] [,2]
[1,] 1.1965982 0.8126606
[2,] 0.8126606 1.1215374

This disagrees with the calculation in Geyer and Shaw (2010, Section 4).
Something is wrong. Either R function jacobian is wrong, or Geyer and
Shaw botched their calculus (or their R implementation of that calculus).
As we shall see, they did indeed botch the calculus.

4.3.2 The Old Way

This section can be skipped. This is the old way implemented correctly.
The old way extracts aout$fisher with the dollar sign operator rather
than a helper function and then explicitly inverts this matrix

> all.equal(Sigma, solve(aout$fisher), check.attributes = FALSE)
[1] TRUE

That checks that the old way and the new way do the same thing for this
part (asymptotic variance-covariance matrix coefficients vector).
Now we have to differentiate

c= —%A_lb
with respect to any parameter .

gc _ _lA—lﬁ + lA—lﬁ

I =1p
0Pk 2 OB 2 OBk

Do it.



beta <- aout$coef

A <- matrix(NaN, 2, 2)

A1, 1] <- beta["I(z1"2)"]

A[2, 2] <- beta["I(z2~2)"]

Al1, 2] <- beta["I(z1 * z2)"] / 2

A[2, 1] <- beta["I(z1 * z2)"] / 2

b <- rep(NaN, 2)

b[1] <- beta["z1"]

b[2] <- beta["z2"]

jack <- matrix(0, nrow = nrow(B), ncol = ncol(B))
#db/ d betal["z1"]

i <- names(beta) == "z1"

jack[ , i] <- solve(-2 * A, c(1, 0))

#db / d betal["z2"]

i <- names(beta) == "z2"

jack[ , i] <- solve(-2 * A, c(0, 1))

#d A/ d betal["I(z172)"]

dA <- matrix(0, 2, 2)

dAf1, 1] <- 1

i <- names(beta) == "I(z1°2)"

jack[ , i] <- (1 / 2) * solve(A) Jx*} dA J*} solve(A) J*J, b
#d A/ d betal["I(z2°2)"]

dA <- matrix(0, 2, 2)

dA[2, 2] <- 1

i <- names(beta) == "I(z2"2)"

jack[ , i] <- (1 / 2) * solve(A) }*} dA 7*) solve(A) }*J b
#d A/ d betal["I(z1 *x z2)"]

dA <- matrix(0, 2, 2)

dA[1, 2] <- 1/ 2

dA[2, 1] <- 1 / 2

i <- names(beta) == "I(z1 * z2)"

jack[ , i] <- (1 / 2) * solve(A) Jx*} dA J*} solve(A) J*J, b
all.equal(jack, B)

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYV

[1] TRUE

This check shows that R function jacobian in R package numDeriv is correct
in its calculus.



4.3.3 Comment

The new way is a lot easier than the old way, which is so hard that it
was botched by Geyer and Shaw (2010, Section 4).

4.3.4 Clean Up

Clear the R global environment, removing the trash from example I.

> rm(list = 1s())

5 Example II: With Random Effects

5.1 Fit Aster Model with Random Effects

Fit a random effects aster model. Unfortunately, this takes more time
than CRAN allows, so we precompute this result and save it (so CRAN does
not notice). To see this actually work, remove the file vignettes/rout.rda
from the aster package sources and rebuild this vignette.

> lout <- suppressWarnings(try(load("rout.rda"), silent = TRUE))
> if (inherits(lout, "try-error")) {
+ data(grey_cloud_2015)
modmat.sire <- model.matrix(~ O + fit:paternallD, redata)
modmat.dam <- model.matrix(~ 0 + fit:maternallD, redata)
modmat.siredam <- cbind(modmat.sire, modmat.dam)
rout.time <- system.time (
rout <- reaster(resp ~ fit + varb,
list(parental = ~ 0 + modmat.siredam, block = ~ 0 + fit:block),
pred, fam, varb, id, root, data = redata)

)

save(rout, rout.time, file = "rout.rda")

+ + + + + + + + + +

}

This invocation of R function reaster on this model for these data takes
24 minutes and 56.5 seconds (on one computer). Not really long. We’ve seen
worse.

The results of such a fit are the following “estimates” in scare quotes:
the vector alpha of fixed effects, the vector b of random effects, and the
vector nu of variance components. The reason for the scare quotes is that «
and v are indeed parameters of the model and rout$alpha and rout$nu are
the approximate maximum likelihood estimates (Geyer, et al., 2013) but, at



least according to the frequentist theory of statistics, the vector b of random
effects is not a parameter of the model, and it makes no sense to estimate it,
or, at least, it is very unclear what it means to “estimate” it (in scare quotes).
What rout$b is is the conditional mode of the distribution of the random
effects given the data and the parameters. This is, of course, a function of
the parameters a and v.

5.2 Asymptotic Variance-Covariance Matrix

So we can use the delta method to calculate a joint asymptotic variance-
covariance matrix for the combined vector («, b, v), and this is what

> Sigma <- vcov(rout, standard.deviation = FALSE, re.too = TRUE)

Does for us.

5.3 Map Random Effect Estimates to Mean Values

The vector b of random effects is not scientifically interpretable. Hence we
map it to the mean value parameter scale (response scale). In the process, we
also correct the means for the artificial subsampling done in the experiment.
For any more explanation of what is going on here, see Shaw, et al. (in
preparation) and references cited therein.

The following R function is just copied from the supplementary material
for Shaw, et al. (in preparation) (you are not expected to understand this)

> map.factory <- function(rout) {
stopifnot (inherits(rout, "reaster"))
aout <- rout$obj
stopifnot (inherits (aout, "aster"))
nnode <- ncol (aout$x)
nind <- nrow(aout$x)
fixed <- rout$fixed
random <- rout$random
if (nnode == 4) {
is.subsamp <- rep(FALSE, 4)
} else if (nnode == 5) {
is.subsamp <- c(FALSE, FALSE, FALSE, TRUE, FALSE)
} else stop("can only deal with graphs for individuals with 4 or 5 nodes",
"\nand graph is linear, and subsampling arrow is 4th of 5")
# fake object of class aster
randlab <- unlist(lapply(rout$random, colnames))

+ + + + + F + + F ++ 4+ o+ o+



+ + + + + F ++FF+FFF A EFAFEFAFFEEF A EF AR AR+

include.random <- grepl("paternallD", randlab, fixed = TRUE)
fake.out <- aout
fake.beta <- with(rout, c(alpha, b[include.random]))
modmat.random <- Reduce(cbind, random)
stopifnot (ncol (modmat.random) == length(rout$b))
# never forget drop = FALSE in programming R
modmat . random <- modmat.random[ , include.random, drop = FALSE]
fake.modmat <- cbind(fixed, modmat.random)
# now have to deal with objects of class aster (as opposed to reaster)
# thinking model matrices are three-way arrays.
stopifnot (prod(dim(aout$modmat) [1:2]) == nrow(fake.modmat))
fake.modmat <- array(as.vector (fake.modmat),
dim = c(dim(aout$modmat) [1:2], ncol(fake.modmat)))
fake.out$modmat <- fake.modmat
nparm <- length(rout$alpha) + length(rout$b) + length(rout$nu)
is.alpha <- 1:nparm /inj, seq_along(rout$alpha)
is.bee <- 1:nparm }inj, (length(rout$alpha) + seq_along(rout$b))
is.nu <- (! (is.alpha | is.bee))
# figure out individuals from each family
m <- rout$random$parental
dads <- grep("paternal", colnames(m))
# get family, that is, paternallD or grandpaternallD as the case may be
fams <- colnames(m) [dads] [|> sub("~.*ID", "", x = _)
drop maternal effects columns (if any)
.dads <- m[ , dads, drop = FALSE]
make into 3-dimensional array, like obj$modmat
.dads <- array(m.dads, c(nind, nnode, ncol(m.dads)))
only keep fitness node
only works for linear graph
.dads <- m.dads[ , nnode, ]
redefine dads as families of individuals
stopifnot (as.vector(m.dads) 7inj c(0, 1))
stopifnot (rowSums (m.dads) == 1)
# tricky, only works because each row of m.dads
# 1s indicator vector of family,
# so we are multiplying family number by zero or one
dads <- drop(m.dads 7*J, as.integer (fams))
# find one individual in each family
sudads <- sort(unique(dads))
which.ind <- match(sudads, dads)

# B #HBE B R



+ + + + + F + ++F o+ F O+ 4+

vV VvV Vv Vv

function(alphabeenu) {

}

stopifnot (is.numeric (alphabeenu))
stopifnot(is.finite(alphabeenu))

stopifnot (length(alphabeenu) == nparm)

alpha <- alphabeenulis.alphal
bee <- alphabeenul[is.bee]
nu <- alphabeenu[is.nu]

fake.beta <- c(alpha, bee[include.random])

fake.out$coefficients <- fake.beta

pout <- predict(fake.out, model.type = "conditional",

is.always.parameter = TRUE)
nnode)

xi <- matrix(pout, ncol

xi <- xi[ , ! is.subsamp, drop = FALSE]

mu <- apply(xi, 1, prod)
mu <- mu[which.ind]
names (mu) <- pasteO("PID",

formatC(sudads, format="d", width=3, flag="0"))

return (mu)

Rather than try to explain what this function does and how — see the
supplementary material for Shaw, et al. (in preparation) for that — just
notice

e this function is very complicated and not easy to differentiate, and

e this function did arise in a real application, so it cannot be avoided.

So try it out.

alphabeenu <- with(rout, c(alpha, b, nu))
map <- map.factory(rout)

mu.hat
mu.hat

PIDOO1

.990591

PIDO37

.402446

PIDO81

.175566

<- map (alphabeenu)

PIDOO6  PIDO08 PIDO15  PIDO16
2.064271 1.111101 2.192411 1.549630
PIDO38 PID044 PID0O58 PID060
1.914469 1.111345 3.140484 2.043843
PIDO98 PID099 PID106  PID110
2.029489 1.603035 1.461212 2.067527

10

PIDO28

.751216

PIDO63

.398764

PID112

.435715

PID034

.070592

PIDO71

.061942

PID115

.433127

PIDO36
1.775515
PIDO76
1.586514
PID119
1.112868



PID122
1.662109
PID139
2.826841
PID198
1.785939

PID124 PID126 PID127 PID130 PID131 PID135 PID138
1.343533 1.699121 3.219975 2.299833 2.548421 1.227020 2.231037
PID149 PID152 PID160 PID162 PID163 PID166  PID167
1.545078 3.211666 2.337268 1.689828 3.024124 1.855835 2.158382
PID204
2.757090

5.4 One Application of the Delta Method

Great! Now we want an (approximate) variance-covariance matrix for
this (vector) estimate.

> jack <- jacobian(map, alphabeenu)
> Sigma.mu.hat <- jack 7%*J), Sigma %*} t(jack)

So that is one application of the delta method.

5.5 Another Application of the Delta Method

But we actually wanted a function of these estimates.

> fitness_change <- function(mu) mean(mu * (mu / mean(mu) - 1))
> delta.fitness <- fitness_change (mu.hat)
> delta.fitness

[1] 0.1682873

And, of course, we need variance for this.

> jack <-

jacobian(fitness_change, mu.hat)

> Sigma.delta.fit <- jack J}*} Sigma.mu.hat %%}, t(jack)
> Sigma.delta.fit

[,1]

[1,] 0.0002177411

And standard error

> sqrt(drop(Sigma.delta.fit))

[1] 0.01475605

This agrees with Table 1 of the supplementary material for Shaw, et al.
(in preparation).

11



6 Summary

It works and requires no calculus, so is less prone to mistakes and easier
to explain.
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