Package ‘aifeducation’

October 14, 2025
Type Package
Title Artificial Intelligence for Education
Version 1.1.2

Description In social and educational settings, the use of Artificial
Intelligence (Al) is a challenging task. Relevant data is often only
available in handwritten forms, or the use of data is restricted by
privacy policies. This often leads to small data sets. Furthermore, in
the educational and social sciences, data is often unbalanced in terms
of frequencies. To support educators as well as educational and social
researchers in using the potentials of Al for their work, this package
provides a unified interface for neural nets in 'PyTorch' to deal with
natural language problems. In addition, the package ships with a shiny
app, providing a graphical user interface. This allows the usage of
Al for people without skills in writing python/R scripts. The tools
integrate existing mathematical and statistical methods for dealing
with small data sets via pseudo-labeling (e.g. Cascante-Bonilla et al.
(2020) <doi:10.48550/arXiv.2001.06001>) and imbalanced data via the
creation of synthetic cases (e.g. Islam et al. (2012)
<doi:10.1016/j.as0c.2021.108288>). Performance evaluation of Al is
connected to measures from content analysis which educational and
social researchers are generally more familiar with (e.g. Berding &
Pargmann (2022) <doi:10.30819/5581>, Gwet (2014)
<ISBN:978-0-9708062-8-4>, Krippendorff (2019)
<doi:10.4135/9781071878781>). Estimation of energy consumption and CO2
emissions during model training is done with the 'python' library
'codecarbon'. Finally, all objects created with this package allow to
share trained AI models with other people.

License GPL-3
URL https://fberding.github.io/aifeducation/

BugReports https://github.com/cran/aifeducation/issues
Depends R (>=3.5.0)
Imports doParallel, foreach, iotarelr(>= 0.1.5), methods, Rcpp (>=

1.0.10), reshape2, reticulate (>= 1.42.0), rlang, stringi,
utils

https://doi.org/10.48550/arXiv.2001.06001
https://doi.org/10.1016/j.asoc.2021.108288
https://doi.org/10.30819/5581
https://doi.org/10.4135/9781071878781
https://fberding.github.io/aifeducation/
https://github.com/cran/aifeducation/issues

Suggests bslib, DT, fs, future, ggplot2, knitr, pkgdown, promises,
readtext, readxl, rmarkdown, shiny(>= 1.9.0), shinyFiles,
shinyWidgets, shinycssloaders, sortable, testthat (>= 3.0.0)

LinkingTo Rcpp, ReppArmadillo

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

SystemRequirements PyTorch (see vignette * Get started")
Config/Needs/website rmarkdown

NeedsCompilation yes

Author Berding Florian [aut, cre] (ORCID:

<https://orcid.org/0000-0002-3593-1695>),

Tykhonova Yuliia [aut] (ORCID: <https://orcid.org/0009-0006-9015-1006>),

Pargmann Julia [ctb] (ORCID: <https://orcid.org/0000-0003-3616-0172>),

Leube Anna [ctb] (ORCID: <https://orcid.org/0009-0001-6949-1608>),

Riebenbauer Elisabeth [ctb] (ORCID:
<https://orcid.org/0000-0002-8535-3694>),

Rebmann Karin [ctb],

Slopinski Andreas [ctb]

Maintainer Berding Florian <florian.berding@uni-hamburg.de>
Repository CRAN
Date/Publication 2025-10-14 14:50:02 UTC

Contents

add_missSing_args e
AIFEBaseModel
AIFEMaster e e e e e
AULO_NM_COTES &« & v v v v e v e e e e e e e e e e e e e e e e e e
BaseModelBert e
BaseModelCore
BaseModelDebertaV2
BaseModelFunnel
BaseModelModernBert
BaseModelMPNet
BaseModelRoberta
BaseModelsIndex
build_documentation_for model
build_layer_stack_documentation_for_vignette
calc_standard_classification_measures
calc_tokenizer StatiStics
Cat_MESSAZE oo e e e e e e e e e e e e e e e e

Contents

https://orcid.org/0000-0002-3593-1695
https://orcid.org/0009-0006-9015-1006
https://orcid.org/0000-0003-3616-0172
https://orcid.org/0009-0001-6949-1608
https://orcid.org/0000-0002-8535-3694

Contents

3
check_adjust_n_samples_on_CI, 31
check_aif py modules 32
check_all_args 32
check_class_and_type. 33
ClassifiersBasedOnTextEmbeddings 34
class_vector_to_py_dataset e e 38
clean_pytorch_log_transformers oo 39
cohens_kappa e e 40
create_dir e e 40
create_ObJect e 41
create_synthetic_units_from_matrix L 0oL 42
data.frame_to_py_dataset 43
DataManagerClassifier 43
DataSetsIndex e e e e 49
EmbeddedText e e e 49
fleiss_kappa 55
generate_args_for_tests 55
generate_embeddings e 56
generate_id L L e e e 57
GENETate_tENSOTS . . « . v v v v v e b e e e e e e e e e e e e e e e e e 58
get_alpha_3_codes 59
get_batches_index 59
get_called_args L e 60
get_coder_metriCs e e 60
get_current_args_for_print L 62
get_depr_obj_namesl e e e 62
get_desc_for_core_model_architectureo 63
get_file_extension e 63
get_fixed_test_tensor e e e e 64
get_layer_documentation Lo 64
get_magnitude_values 65
get_n_chunks 66
get_parameter_documentationo 67
get_param_def L 67
get_param_diCt e 68
get_param_doc_desc e e e 69
get_py_package_Vversionol e e 70
get_py_package_vVersionso e e e 70
get_recommended_py_VerSIONSo i e e e e e e e 71
get_synthetic_cases_from_matrix 71
get_TEClassifiers_class_names 72
get_test_data_for_classifiers oL 73
GEeL_tIME_StAMP o ot e e e e e e e e e e e e e 74
GWELLAC .« v v o ot e e e e e e e e e e e e e 74
HuggingFaceTokenizer 75
install_aifeducation e 76
install_aifeducation_studio e 77

install_py_modules 77

Contents

kendalls_w e 79
knnor ..o e e 79
knnor_is_same_class 80
kripp_alpha 81
LargeDataSetBase e 82
LargeDataSetForText 85
LargeDataSetForTextEmbeddings 89
load_all_py_sCripts o v v i e e e e e e e 95
load_from_disk e 95
load_py_SCripts o oo e 96
long_load_target_data. 96
MArIX_LO_AITAY_C . v« v v v v v v e v e e e e e e e e e e e e e e e 97
ModelsBasedOnTextEmbeddings 98
OULPUL_MESSAZE .+ -+« o o e v e e v e e e e e e e e e e e e e e e 100
prepare_r_array_for_dataset e 101
prepare_SesSiONo e e 102
PrINE_MESSAZE . . .« « o o o v v e e e e e e e e e e e e e e e e e 102
py_dataset_to_embeddings 103
random_bool_on_CI 104
read_log L e e 104
read_loss_log 105
reduce to_UNIQUE v i e e e e e e e e e 105
reset_log L e e 106
reset_loss_log 107
run_py_fileo e e 107
save_to_disk. L e e e 108
set_transformers_logger 108
start_aifeducation_studio 109
summarize_args_for_long tasko Lo 109
TEClassifierParallel o 111
TEClassifierParallelPrototype 117
TEClassifierProtoNet e e e 123
TEClassifierRegular 127
TEClassifiersBasedOnProtoNet 130
TEClassifiersBasedOnRegular 135
TEClassifierSequential e 139
TEClassifierSequentialPrototype 144
TEFeatureExtractor e 151
tensor_liSt_tO_NUMPY v vt e e e e e e e e e e e e e e 155
tENSOr_tO_MALIIX_C v v v v e e e e e e e e e e e e e e e e 155
tENSOT_tO_NUIMPY .« .« « v v e v v e e e e e e e e e e e e e e e e 156
TextEmbeddingModel L 157
TokenizerBase 162
TokenizerIndex 165
to_categorical_C 166
update_aifeducation L e 167
WordPieceTokenizer e e 168

write_log 169

add_missing_args 5

Index 171

add_missing_args Add missing arguments to a list of arguments

Description

This function is designed for taking the output of summarize_args_for_long_task as input. It
adds the missing arguments. In general these are arguments that rely on objects of class R6 which
can not be exported to a new R session.

Usage

add_missing_args(args, path_args, meta_args)

Arguments
args Named list List for arguments for the method of a specific class.
path_args Named list List of paths where the objects are stored on disk.
meta_args Named list List containing arguments that are necessary in order to add the
missing objects correctly.
Value

Returns a named list of all arguments that a method of a specific class requires.

See Also

Other Utils Studio Developers: create_data_embeddings_description(), long_load_target_data(),
summarize_args_for_long_task()

AIFEBaseModel Base class for objects using a pytorch model as core model.

Description
Objects of this class containing fields and methods used in several other classes in *Al for Educa-
tion’.
This class is not designed for a direct application and should only be used by developers.

Value

A new object of this class.

Super class

aifeducation: :AIFEMaster -> AIFEBaseModel

6 AIFEMaster

Methods

Public methods:
* AIFEBaseModel$count_parameter()
¢ AIFEBaseModel$clone()

Method count_parameter(): Method for counting the trainable parameters of a model.
Usage:
AIFEBaseModel$count_parameter()
Returns: Returns the number of trainable parameters of the model.

Method clone(): The objects of this class are cloneable with this method.
Usage:
AIFEBaseModel$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other R6 Classes for Developers: AIFEMaster, BaseModelCore, ClassifiersBasedOnTextEmbeddings,
DataManagerClassifier, LargeDataSetBase, ModelsBasedOnTextEmbeddings, TEClassifiersBasedOnProtoNet,
TEClassifiersBasedOnRegular, TokenizerBase

AIFEMaster Base class for most objects

Description

Objects of this class containing fields and methods used in several other classes in *Al for Educa-
tion’.
This class is not designed for a direct application and should only be used by developers.

Value

A new object of this class.

Public fields

last_training (list()’)
List for storing the history, the configuration, and the results of the last training. This infor-
mation will be overwritten if a new training is started.
e last_training$start_time: Time point when training started.
e last_training$learning_time: Duration of the training process.
e last_training$finish_time: Time when the last training finished.
* last_training$history: History of the last training.
e last_training$data: Object of class table storing the initial frequencies of the passed
data.
e last_training$config: List storing the configuration used for the last training.

AIFEMaster

Methods

Public methods:

Method get_model_info(): Method for requesting the model information.

AIFEMaster$get_model_info()
AIFEMaster$set_publication_info()
AIFEMaster$get_publication_info()
AIFEMaster$set_model_license()
AIFEMaster$get_model_license()
AIFEMaster$set_documentation_license()
AIFEMaster$get_documentation_license()
AIFEMaster$set_model_description()
AIFEMaster$get_model_description()
AIFEMasters$get_package_versions()
AIFEMaster$get_sustainability_data()
AIFEMaster$get_ml_framework()
AIFEMaster$is_configured()
AIFEMaster$is_trained()
AIFEMaster$get_private()
AIFEMaster$get_all_fields()
AIFEMaster$get_model_config()
AIFEMaster$clone()

Usage:
AIFEMaster$get_model_info()

Returns: 1list of all relevant model information.

Method set_publication_info(): Method for setting publication information of the model.

Usage:

AIFEMaster$set_publication_info(authors, citation, url = NULL)

Arguments:

authors List of authors.

citation Free text citation.

url URL of a corresponding homepage.

Returns:

publication information.

Method get_publication_info(): Method for requesting the bibliographic information of the

model.

Usage:
AIFEMaster$get_publication_info()

Returns: list with all saved bibliographic information.

Method set_model_license(): Method for setting the license of the model.

Function does not return a value. It is used for setting the private members for

AIFEMaster

Usage:
AIFEMaster$set_model_license(license = "CC BY")

Arguments:
license string containing the abbreviation of the license or the license text.

Returns: Function does not return a value. It is used for setting the private member for the
software license of the model.
Method get_model_license(): Method for getting the license of the model.

Usage:
AIFEMaster$get_model_license()

Arguments:
license string containing the abbreviation of the license or the license text.

Returns: string representing the license for the model.
Method set_documentation_license(): Method for setting the license of the model’s docu-
mentation.

Usage:
AIFEMaster$set_documentation_license(license = "CC BY")

Arguments:
license string containing the abbreviation of the license or the license text.

Returns: Function does not return a value. It is used for setting the private member for the
documentation license of the model.
Method get_documentation_license(): Method for getting the license of the model’s docu-
mentation.

Usage:
AIFEMaster$get_documentation_license()

Arguments:
license string containing the abbreviation of the license or the license text.

Returns: Returns the license as a string.

Method set_model_description(): Method for setting a description of the model.

Usage:
AIFEMaster$set_model_description(
eng = NULL,

native = NULL,

abstract_eng = NULL,

abstract_native = NULL,

keywords_eng = NULL,

keywords_native = NULL
)

Arguments:

AIFEMaster 9

eng string A text describing the training, its theoretical and empirical background, and output
in English.

native string A text describing the training , its theoretical and empirical background, and
output in the native language of the model.

abstract_eng string A text providing a summary of the description in English.

abstract_native string A textproviding a summary of the description in the native language
of the model.

keywords_eng vector of keyword in English.
keywords_native vector of keyword in the native language of the model.

Returns: Function does not return a value. It is used for setting the private members for the
description of the model.
Method get_model_description(): Method for requesting the model description.

Usage:
AIFEMaster$get_model_description()

Returns: list with the description of the classifier in English and the native language.

Method get_package_versions(): Method for requesting a summary of the R and python
packages’ versions used for creating the model.

Usage:
AIFEMaster$get_package_versions()

Returns: Returns a 1ist containing the versions of the relevant R and python packages.

Method get_sustainability_data(): Method for requesting a summary of tracked energy
consumption during training and an estimate of the resulting CO2 equivalents in kg.

Usage:
AIFEMaster$get_sustainability_data(track_mode = "training")

Arguments:

track_mode string Determines the stept to which the data refer. Allowed values: ’training’,
“inference’

Returns: Returns a 1ist containing the tracked energy consumption, CO2 equivalents in kg,

information on the tracker used, and technical information on the training infrastructure.
Method get_ml_framework(): Method for requesting the machine learning framework used
for the model.

Usage:

AIFEMaster$get_ml_framework()

Returns: Returns a string describing the machine learning framework used for the classifier.
Method is_configured(): Method for checking if the model was successfully configured. An
object can only be used if this value is TRUE.

Usage:

AIFEMaster$is_configured()

Returns: bool TRUE if the model is fully configured. FALSE if not.

10 auto_n_cores

Method is_trained(): Check if the TEFeatureExtractor is trained.

Usage:
AIFEMaster$is_trained()
Returns: Returns TRUE if the object is trained and FALSE if not.
Method get_private(): Method for requesting all private fields and methods. Used for loading
and updating an object.

Usage:
AIFEMasters$get_private()
Returns: Returns a 1ist with all private fields and methods.

Method get_all_fields(): Return all fields.

Usage:
AIFEMasters$get_all_fields()
Returns: Method returns a 1ist containing all public and private fields of the object.

Method get_model_config(): Method for requesting the model configuration.

Usage:
AIFEMaster$get_model_config()
Returns: Returns a 1ist with all configuration parameters used during configuration.

Method clone(): The objects of this class are cloneable with this method.
Usage:
AIFEMaster$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Other R6 Classes for Developers: AIFEBaseModel, BaseModelCore, ClassifiersBasedOnTextEmbeddings,
DataManagerClassifier, LargeDataSetBase, ModelsBasedOnTextEmbeddings, TEClassifiersBasedOnProtoNet,

TEClassifiersBasedOnRegular, TokenizerBase

auto_n_cores Number of cores for multiple tasks

Description
Function for getting the number of cores that should be used for parallel processing of tasks. The
number of cores is set to 75 % of the available cores. If the environment variable CI is set to "true”

or if the process is running on cran 2 is returned.

BaseModelBert 11

Usage

auto_n_cores()

Value

Returns int as the number of cores.

See Also

Other Utils Developers: create_object(), create_synthetic_units_from_matrix(), generate_id(),
get_n_chunks(), get_synthetic_cases_from_matrix(), get_time_stamp(),matrix_to_array_c(),
tensor_to_matrix_c(), to_categorical_c()

BaseModelBert BERT-Transformer

Description

Represents models based on BERT.

Value

Does return a new object of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel -> aifeducation: :BaseModelCore
-> BaseModelBert

Methods

Public methods:

* BaseModelBert$configure()
¢ BaseModelBert$clone()

Method configure(): Configures a new object of this class.

Usage:

BaseModelBert$configure(
tokenizer,
max_position_embeddings = 512L,
hidden_size = 768L,
num_hidden_layers = 12L,
num_attention_heads = 12L,
intermediate_size = 3072L,
hidden_act = "GELU",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1

12 BaseModelCore

Arguments:
tokenizer TokenizerBase Tokenizer for the model.

max_position_embeddings int Number of maximum position embeddings. This parameter
also determines the maximum length of a sequence which can be processed with the model.
Allowed values: 10 <= x <= 4048

hidden_size int Number of neurons in each layer. This parameter determines the dimension-
ality of the resulting text embedding. Allowed values: 1 <= x <= 2048

num_hidden_layers int Number of hidden layers. Allowed values: 1 <= x

num_attention_heads int determining the number of attention heads for a self-attention layer.
Only relevant if attention_type='multihead' Allowed values: @ <= x

intermediate_size int determining the size of the projection layer within a each transformer
encoder. Allowed values: 1 <= x

hidden_act string Name of the activation function. Allowed values: ’GELU’, ’relu’, ’silu’,
"gelu_new’

hidden_dropout_prob double Ratio of dropout. Allowed values: @ <= x <= 0.6

attention_probs_dropout_prob double Ratio of dropout for attention probabilities. Al-
lowed values: @ <= x <= 0.6

Returns: Does nothing return.

Method clone(): The objects of this class are cloneable with this method.
Usage:
BaseModelBert$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. In J. Burstein, C. Doran, & T. Solorio (Eds.),
Proceedings of the 2019 Conference of the North (pp. 4171-4186). Association for Computational
Linguistics. doi:10.18653/v1/N191423

See Also
Other Base Model: BaseModelDebertaV2, BaseModelFunnel, BaseModelMPNet, BaseModelModernBert,
BaseModelRoberta
BaseModelCore Abstract class for all BaseModels
Description

This class contains all methods shared by all BaseModels.

https://doi.org/10.18653/v1/N19-1423

BaseModelCore 13

Value

Does return a new object of this class.

Super classes

aifeducation: :AIFEMaster -> aifeducation: :AIFEBaseModel -> BaseModelCore

Public fields

Tokenizer (’TokenizerBase’)
Objects of class TokenizerBase.

Methods
Public methods:

¢ BaseModelCore$create_from_hf()

* BaseModelCore$train()

* BaseModelCore$count_parameter()

* BaseModelCore$plot_training_history()

* BaseModelCore$get_special_tokens()

* BaseModelCore$get_tokenizer_statistics()

* BaseModelCore$fill_mask()

* BaseModelCore$save()

* BaseModelCore$load_from_disk()

* BaseModelCore$get_model()

* BaseModelCore$get_model_type()

* BaseModelCore$get_final_size()

* BaseModelCore$get_flops_estimates()

* BaseModelCore$set_publication_info()

* BaseModelCore$estimate_sustainability_inference_fill_mask()
¢ BaseModelCore$calc_flops_architecture_based()
¢ BaseModelCore$clone()

Method create_from_hf(): Creates BaseModel from a pretrained model
Usage:
BaseModelCore$create_from_hf(model_dir = NULL, tokenizer_dir = NULL)

Arguments:
model_dir

tokenizer_dir string Path to the directory where the tokenizer is saved. Allowed values:
any

Returns: Does return a new object of this class.

Method train(): Traines a BaseModel
Usage:

14

BaseModelCore

BaseModelCore$train(
text_dataset,
p_mask = 0.15,
whole_word = TRUE,
val_size = 0.1,
n_epoch = 1L,
batch_size = 12L,
max_sequence_length = 250L,
full_sequences_only = FALSE,
min_seqg_len = 50L,
learning_rate = 0.003,
sustain_track = FALSE,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 15L,
sustain_log_level = "warning",
trace = TRUE,
pytorch_trace = 1L,
log_dir = NULL,
log_write_interval = 2L

)

Arguments:

text_dataset

p_mask

N o |

whole_word

val_size

n_epoch

batch_size
max_sequence_length
full_sequences_only
min_seq_len
learning_rate
sustain_track
sustain_iso_code
sustain_region
sustain_interval
sustain_log_level
trace

pytorch_trace
log_dir
log_write_interval

Returns: Does nothing return.

Method count_parameter(): Method for counting the trainable parameters of a model.

Usage:

BaseModelCore 15

BaseModelCore$count_parameter ()

Returns: Returns the number of trainable parameters of the model.

Method plot_training_history(): Method for requesting a plot of the training history. This
method requires the R package *ggplot2’ to work.
Usage:
BaseModelCore$plot_training_history(
y_min = NULL,
y_max = NULL,
text_size = 10L
)
Arguments:
y_min
y_max
text_size

Returns: Returns a plot of class ggplot visualizing the training process.

Method get_special_tokens(): Method for receiving the special tokens of the model
Usage:
BaseModelCore$get_special_tokens()

Returns: Returns a matrix containing the special tokens in the rows and their type, token, and
id in the columns.

Method get_tokenizer_statistics(): Tokenizer statistics

Usage:
BaseModelCore$get_tokenizer_statistics()

Returns: Returns a data.frame containing the tokenizer’s statistics.

Method fill_mask(): Method for calculating tokens behind mask tokens.

Usage:

BaseModelCore$fill_mask(masked_text, n_solutions = 5L)
Arguments:

masked_text

n_solutions

Returns: Returns a 1ist containing a data. frame for every mask. The data.frame contains
the solutions in the rows and reports the score, token id, and token string in the columns.
Method save(): Method for saving a model on disk.

Usage:
BaseModelCore$save(dir_path, folder_name)

Arguments:
dir_path Path to the directory where to save the object.

16

BaseModelCore

folder_name string Name of the folder where the model should be saved. Allowed values:
any

Returns: Function does nothing return. It is used to save an object on disk.

Method load_from_disk(): Loads an object from disk and updates the object to the current
version of the package.

Usage:
BaseModelCore$load_from_disk(dir_path)

Arguments:

dir_path Path where the object set is stored.

Returns: Function does nothin return. It loads an object from disk.

Method get_model(): Get 'PyTorch’ model

Usage:
BaseModelCore$get_model ()

Returns: Returns the underlying "PyTorch’ model.

Method get_model_type(): Type of the underlying model.

Usage:
BaseModelCore$get_model_type()

Returns: Returns a string describing the model’s architecture.

Method get_final_size(): Size of the final layer.
Usage:
BaseModelCore$get_final_size()

Returns: Returns an int describing the number of dimensions of the last hidden layer.

Method get_flops_estimates(): Flop estimates

Usage:
BaseModelCore$get_flops_estimates()

Returns: Returns a data.frame containing statistics about the flops.

Method set_publication_info(): Method for setting the bibliographic information of the
model.

Usage:

BaseModelCore$set_publication_info(type, authors, citation, url = NULL)

Arguments:

type string Type of information which should be changed/added. developer, and modifier
are possible.

authors List of people.

citation string Citation in free text.

url string Corresponding URL if applicable.

BaseModelCore 17

Returns: Function does not return a value. It is used to set the private members for publication
information of the model.

Method estimate_sustainability_inference_fill_mask(): Calculates the energy con-
sumption for inference of the given task.
Usage:
BaseModelCore$estimate_sustainability_inference_fill_mask(
text_dataset = NULL,
n = NULL,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 15L,
sustain_log_level = "warning",
trace = TRUE
)
Arguments:
text_dataset
n
sustain_iso_code
sustain_region
sustain_interval
sustain_log_level
trace
Returns: Returns nothing. Method saves the statistics internally. The statistics can be accessed
with the method get_sustainability_data("”inference")

Method calc_flops_architecture_based(): Calculates FLOPS based on model’s architec-
ture.

Usage:

BaseModelCore$calc_flops_architecture_based(batch_size, n_batches, n_epochs)

Arguments:

batch_size

n_batches

n_epochs

Returns: Returns a data. frame storing the estimates.

Method clone(): The objects of this class are cloneable with this method.
Usage:
BaseModelCore$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also

Other R6 Classes for Developers: ALFEBaseModel, AIFEMaster, ClassifiersBasedOnTextEmbeddings,
DataManagerClassifier, LargeDataSetBase, ModelsBasedOnTextEmbeddings, TEClassifiersBasedOnProtoNet,
TEClassifiersBasedOnRegular, TokenizerBase

18 BaseModelDebertaV2

BaseModelDebertaV?2 DeBERTa V2

Description

Represents models based on DeBERTa version 2.

Value

Does return a new object of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->aifeducation: :BaseModelCore
-> BaseModelDebertaV2

Methods

Public methods:

* BaseModelDebertaV2$configure()
* BaseModelDebertaV2$clone()

Method configure(): Configures a new object of this class.

Usage:

BaseModelDebertaV2$configure(
tokenizer,
max_position_embeddings = 512L,
hidden_size = 768L,
num_hidden_layers = 12L,
num_attention_heads = 12L,
intermediate_size = 3072L,
hidden_act = "GELU",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1

)

Arguments:

tokenizer TokenizerBase Tokenizer for the model.

max_position_embeddings int Number of maximum position embeddings. This parameter
also determines the maximum length of a sequence which can be processed with the model.
Allowed values: 10 <= x <= 4048

hidden_size int Number of neurons in each layer. This parameter determines the dimension-
ality of the resulting text embedding. Allowed values: 1 <= x <= 2048

num_hidden_layers int Number of hidden layers. Allowed values: 1 <= x

num_attention_heads int determining the number of attention heads for a self-attention layer.
Only relevant if attention_type="multihead' Allowed values: @ <= x

BaseModelFunnel 19
intermediate_size int determining the size of the projection layer within a each transformer

encoder. Allowed values: 1 <= x
hidden_act string Name of the activation function. Allowed values: '"GELU’, ’relu’, ’silu’,

"gelu_new’
hidden_dropout_prob double Ratio of dropout. Allowed values: @ <= x <= 0.6

attention_probs_dropout_prob double Ratio of dropout for attention probabilities. Al-

lowed values: @ <= x <= 0.6

Returns: Does nothing return.
Method clone(): The objects of this class are cloneable with this method.

Usage:
BaseModelDebertaV2$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References
He, P, Liu, X., Gao, J. & Chen, W. (2020). DeBERTa: Decoding-enhanced BERT with Disentan-

gled Attention. doi:10.48550/arXiv.2006.03654

See Also
Other Base Model: BaseModelBert, BaseModelFunnel, BaseModelMPNet, BaseModelModernBert,
BaseModelRoberta
BaseModelFunnel Funnel transformer
Description

Represents models based on the Funnel-Transformer.

Value

Does return a new object of this class.

Super classes
aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel -> aifeducation: :BaseModelCore

-> BaseModelFunnel

https://doi.org/10.48550/arXiv.2006.03654

20 BaseModelFunnel

Methods
Public methods:

* BaseModelFunnel$configure()
* BaseModelFunnel$clone()

Method configure(): Configures a new object of this class.

Usage:

BaseModelFunnel$configure(
tokenizer,
max_position_embeddings = 512L,
hidden_size = 768L,
block_sizes = c(4L, 4L, 4L),
num_attention_heads = 12L,
intermediate_size = 3072L,
num_decoder_layers = 2L,
d_head = 64L,
funnel_pooling_type = "Mean”,
hidden_act = "GELU",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1,
activation_dropout = @

)

Arguments:

tokenizer TokenizerBase Tokenizer for the model.

max_position_embeddings int Number of maximum position embeddings. This parameter
also determines the maximum length of a sequence which can be processed with the model.
Allowed values: 10 <= x <= 4048

hidden_size int Number of neurons in each layer. This parameter determines the dimension-
ality of the resulting text embedding. Allowed values: 1 <= x <= 2048

block_sizes vector vector of int determining the number and sizes of each block.

num_attention_heads int determining the number of attention heads for a self-attention layer.
Only relevant if attention_type='multihead' Allowed values: @ <= x

intermediate_size int determining the size of the projection layer within a each transformer
encoder. Allowed values: 1 <= x

num_decoder_layers int Number of decoding layers. Allowed values: 1 <= x

d_head int Number of neurons of the final layer. Allowed values: 1 <= x

funnel_pooling_type string Method for pooling over the seqence length. Allowed values:
’Mean’, "Max’

hidden_act string Name of the activation function. Allowed values: *GELU’, 'relu’, ’silu’,
"gelu_new’

hidden_dropout_prob double Ratio of dropout. Allowed values: @ <= x <= 0.6

attention_probs_dropout_prob double Ratio of dropout for attention probabilities. Al-
lowed values: @ <= x <= 0.6

activation_dropout double Dropout probability between the layers of the feed-forward blocks.
Allowed values: @ <= x <= 0.6

BaseModelModernBert

21

num_hidden_layers int Number of hidden layers. Allowed values: 1 <= x

Returns: Does nothing return.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BaseModelFunnel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Dai, Z., Lai, G., Yang, Y. & Le, Q. V. (2020). Funnel-Transformer: Filtering out Sequential Redun-
dancy for Efficient Language Processing. doi:10.48550/arXiv.2006.03236

See Also

Other Base Model: BaseModelBert, BaseModelDebertaV2, BaseModelMPNet, BaseModelModernBert,

BaseModelRoberta

BaseModelModernBert ModernBert

Description

Represents models based on Modern Bert.

Value

Does return a new object of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation
-> BaseModelModernBert

Methods

Public methods:

¢ BaseModelModernBert$configure()
¢ BaseModelModernBert$clone()

: :AIFEBaseModel -> aifeducation: :BaseModelCore

Method configure(): Configures a new object of this class.

Usage:

https://doi.org/10.48550/arXiv.2006.03236

22 BaseModelModernBert

BaseModelModernBert$configure(
tokenizer,
max_position_embeddings = 512L,
hidden_size = 768L,
num_hidden_layers = 12L,
num_attention_heads = 12L,
global_attn_every_n_layers = 3L,
intermediate_size = 3072L,
hidden_activation = "GELU",
embedding_dropout = 0.1,
mlp_dropout = 0.1,
attention_dropout = 0.1

)

Arguments:

tokenizer TokenizerBase Tokenizer for the model.

max_position_embeddings int Number of maximum position embeddings. This parameter
also determines the maximum length of a sequence which can be processed with the model.
Allowed values: 10 <= x <= 4048

hidden_size int Number of neurons in each layer. This parameter determines the dimension-
ality of the resulting text embedding. Allowed values: 1 <= x <= 2048

num_hidden_layers int Number of hidden layers. Allowed values: 1 <= x

num_attention_heads int determining the number of attention heads for a self-attention layer.
Only relevant if attention_type="'multihead' Allowed values: @ <= x

global_attn_every_n_layers int Number determining to use a global attention every x-th
layer. Allowed values: 2 <= x <= 36

intermediate_size int determining the size of the projection layer within a each transformer
encoder. Allowed values: 1 <= x

hidden_activation string Name of the activation function. Allowed values: *GELU’, 'relu’,
silu’, gelu_new’

embedding_dropout double Dropout chance for the embeddings. Allowed values: @ <= x <= 0.6

mlp_dropout double Dropout rate for the mlp layer. Allowed values: @ <= x <= 0.6

attention_dropout double Ratio of dropout for attention probabilities. Allowed values:
0 <=x <=10.6

Returns: Does nothing return.

Method clone(): The objects of this class are cloneable with this method.
Usage:
BaseModelModernBert$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

References

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. In J. Burstein, C. Doran, & T. Solorio (Eds.),
Proceedings of the 2019 Conference of the North (pp. 4171-4186). Association for Computational
Linguistics. doi:10.18653/v1/N191423

https://doi.org/10.18653/v1/N19-1423

BaseModelMPNet 23

See Also
Other Base Model: BaseModelBert, BaseModelDebertaV2, BaseModelFunnel, BaseModelMPNet,
BaseModelRoberta
BaseModelMPNet MPNet
Description

Represents models based on MPNet.

Value

Does return a new object of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel -> aifeducation: :BaseModelCore
-> BaseModelMPNet

Methods

Public methods:

* BaseModelMPNet$configure()
* BaseModelMPNet$train()
¢ BaseModelMPNet$clone()

Method configure(): Configures a new object of this class.

Usage:

BaseModelMPNet$configure(
tokenizer,
max_position_embeddings = 512L,
hidden_size = 768L,
num_hidden_layers = 12L,
num_attention_heads = 12L,
intermediate_size = 3072L,
hidden_act = "GELU",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1

)
Arguments:
tokenizer TokenizerBase Tokenizer for the model.

max_position_embeddings int Number of maximum position embeddings. This parameter
also determines the maximum length of a sequence which can be processed with the model.
Allowed values: 10 <= x <= 4048

24

BaseModelMPNet

hidden_size int Number of neurons in each layer. This parameter determines the dimension-
ality of the resulting text embedding. Allowed values: 1 <= x <= 2048

num_hidden_layers int Number of hidden layers. Allowed values: 1 <= x

num_attention_heads int determining the number of attention heads for a self-attention layer.
Only relevant if attention_type='multihead' Allowed values: @ <= x

intermediate_size int determining the size of the projection layer within a each transformer
encoder. Allowed values: 1 <= x

hidden_act string Name of the activation function. Allowed values: 'GELU’, ’relu’, ’silu’,
"gelu_new’

hidden_dropout_prob double Ratio of dropout. Allowed values: @ <= x <= 0.6

attention_probs_dropout_prob double Ratio of dropout for attention probabilities. Al-
lowed values: @ <= x <= 0.6

Returns: Does nothing return.

Method train(): Traines a BaseModel

Usage:

BaseModelMPNet$train(
text_dataset,
p_mask = 0.15,
p_perm = 0.15,
whole_word = TRUE,
val_size = 0.1,

n_epoch = 1L,

batch_size = 12L,
max_sequence_length = 250L,
full_sequences_only = FALSE,

min_seq_len = 50L,
learning_rate = 0.003,
sustain_track = FALSE,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 15L,
sustain_log_level = "warning”,
trace = TRUE,
pytorch_trace = 1L,
log_dir = NULL,
log_write_interval = 2L

)

Arguments:

text_dataset

p_mask

p_perm

whole_word

val_size

n_epoch

batch_size

BaseModelRoberta 25

max_sequence_length
full_sequences_only
min_seqg_len
learning_rate
sustain_track
sustain_iso_code
sustain_region
sustain_interval
sustain_log_level
trace

pytorch_trace
log_dir
log_write_interval

Returns: Does nothing return.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BaseModelMPNet$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Song,K., Tan, X., Qin, T., Lu, J. & Liu, T.-Y. (2020). MPNet: Masked and Permuted Pre-training
for Language Understanding. doi:10.48550/arXiv.2004.09297

See Also
Other Base Model: BaseModelBert, BaseModelDebertaV2, BaseModelFunnel, BaseModelModernBert,
BaseModelRoberta
BaseModelRoberta RoBERTa
Description

Represents models based on ROBERTa.

Value

Does return a new object of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel -> aifeducation: :BaseModelCore
-> BaseModelRoberta

https://doi.org/10.48550/arXiv.2004.09297

26 BaseModelRoberta

Methods

Public methods:

¢ BaseModelRoberta$configure()
¢ BaseModelRoberta$clone()

Method configure(): Configures a new object of this class.

Usage:

BaseModelRoberta$configure(
tokenizer,
max_position_embeddings = 512L,
hidden_size = 768L,
num_hidden_layers = 12L,
num_attention_heads = 12L,
intermediate_size = 3072L,
hidden_act = "GELU",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1

)
Arguments:

tokenizer TokenizerBase Tokenizer for the model.

max_position_embeddings int Number of maximum position embeddings. This parameter
also determines the maximum length of a sequence which can be processed with the model.
Allowed values: 10 <= x <= 4048

hidden_size int Number of neurons in each layer. This parameter determines the dimension-
ality of the resulting text embedding. Allowed values: 1 <= x <= 2048

num_hidden_layers int Number of hidden layers. Allowed values: 1 <= x

num_attention_heads int determining the number of attention heads for a self-attention layer.
Only relevant if attention_type='multihead' Allowed values: @ <= x

intermediate_size int determining the size of the projection layer within a each transformer
encoder. Allowed values: 1 <= x

hidden_act string Name of the activation function. Allowed values: ’GELU’, ’relu’, ’silu’,
“gelu_new’

hidden_dropout_prob double Ratio of dropout. Allowed values: @ <= x <= 0.6

attention_probs_dropout_prob double Ratio of dropout for attention probabilities. Al-
lowed values: @ <= x <= 0.6

Returns: Does nothing return.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BaseModelRoberta$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

BaseModelsIndex 27

References

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., &
Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. doi:10.48550/
arXiv.1907.11692

See Also
Other Base Model: BaseModelBert, BaseModelDebertaV2, BaseModelFunnel, BaseModelMPNet,
BaseModelModernBert
BaseModelsIndex List of all available BaseModels
Description

Named list containing all BaseModels as a string.

Usage

BaseModelsIndex

Format

An object of class 1ist of length 6.

See Also

Other Parameter Dictionary: DataSetsIndex, TokenizerIndex, get_TEClassifiers_class_names(),

get_called_args(), get_depr_obj_names(), get_magnitude_values(), get_param_def (), get_param_dict(),
get_param_doc_desc()

build_documentation_for_model
Generate documentation for a classifier class

Description

Function for generating the documentation of a model.

Usage

build_documentation_for_model(
model_name,
cls_type = NULL,
core_type = NULL,
input_type = "text_embeddings"

https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692

28 build_layer_stack_documentation_for_vignette

Arguments

model_name string Name of the model.

cls_type string Type of classification

core_type string Name of the core type.

input_type bool Name of the input type necessary for training and predicting.
Value

Returns a string containing the description written in rmarkdown.

Note

Function is designed to be used with roxygen?2 in the regular documentation.

See Also

Other Utils Documentation: build_layer_stack_documentation_for_vignette(), get_desc_for_core_model_archit
get_dict_cls_type(),get_dict_core_models(), get_dict_input_types(), get_layer_dict(),
get_layer_documentation(), get_parameter_documentation()

build_layer_stack_documentation_for_vignette
Generate documentation of all layers for an vignette or article

Description

Function for generating the whole documentation for an article used on the packages home page.

Usage

build_layer_stack_documentation_for_vignette()

Value

Returns a string containing the description written in rmarkdown.

Note

Function is designed to be used with inline r code in rmarkdown vignettes/articles.

See Also

Other Utils Documentation: build_documentation_for_model (), get_desc_for_core_model_architecture(),
get_dict_cls_type(), get_dict_core_models(), get_dict_input_types(), get_layer_dict(),
get_layer_documentation(), get_parameter_documentation()

calc_standard_classification_measures 29

calc_standard_classification_measures
Calculate recall, precision, and f1-scores

Description

Function for calculating recall, precision, and f1-scores.

Usage

calc_standard_classification_measures(true_values, predicted_values)

Arguments

true_values factor containing the true labels/categories.
predicted_values
factor containing the predicted labels/categories.

Value

Returns a matrix which contains the cases categories in the rows and the measures (precision, recall,
f1) in the columns.

See Also

Other performance measures: cohens_kappa(), fleiss_kappa(), get_coder_metrics(), gwet_ac(),
kendalls_w(), kripp_alpha()

calc_tokenizer_statistics
Estimate tokenizer statistics

Description

Function for estimating the tokenizer statistics described by Kaya & Tantug (2024).

Usage

calc_tokenizer_statistics(
dataset,
step = "creation”,
statistics_max_tokens_length = 512L

)

30 cat_message

Arguments
dataset Object of class datasets.arrow_dataset.Dataset. The data set must contain a col-
umn "length” containing the number of tokens for every sequence and a col-
umn "word_ids"” containing the word ids within every sequence.
step string indicating to which step the statistics belong. Recommended values are

* "creation” for the creation of the tokenizer.

e "initial_training” for the first training of the transformer.
e "fine_tuning” for all following trainings of the transformer.
* "training” for a training run of the transformer.

statistics_max_tokens_length
int Maximum sequence length for calculating the statistics. Allowed values:
20 <= x <= 8192

Value
Returns a 1ist with the following entries:

* n_sequences: Number of sequences

* n_words: Number for words in whole corpus

* n_tokens: Number of tokens in the whole corpus
* mu_t: eqn(n_tokens/n_sequences)

* mu_w: eqn(n_words/n_sequences)

* mu_g: eqn(n_tokens/n_words)

References

Kaya, Y. B., & Tantug, A. C. (2024). Effect of tokenization granularity for Turkish large language
models. Intelligent Systems with Applications, 21, 200335. https://doi.org/10.1016/j.iswa.2024.200335

cat_message Print message (cat())

Description

Prints a message msg if trace parameter is TRUE with current date with cat() function.

Usage

cat_message(msg, trace)

Arguments

msg string Message that should be printed.
trace bool Silent printing (FALSE) or not (TRUE).

check_adjust_n_samples_on_CI 31

Value

This function returns nothing.

See Also

Other Utils Log Developers: clean_pytorch_log_transformers(), output_message(), print_message(),
read_log(), read_loss_log(), reset_log(), reset_loss_log(),write_log()

check_adjust_n_samples_on_CI
Set sample size for argument combinations

Description

Function adjust the number of samples depending on the test environment. On continuous integra-
tion it is limited to a random sample of combinations.

Usage

check_adjust_n_samples_on_CI(n_samples_requested, n_CI = 50L)

Arguments

n_samples_requested
int Number of samples if the test do not run on continuous integration.

n_CI int Number of samples if the test run on continuous integration.

Value

Returns an int depending on the test environment.

See Also

Other Utils TestThat Developers: generate_args_for_tests(), generate_embeddings(), generate_tensors(),
get_current_args_for_print(), get_fixed_test_tensor(), get_test_data_for_classifiers(),
random_bool_on_CI()

32 check_all_args

check_aif_py_modules Check if all necessary python modules are available

Description
This function checks if all python modules necessary for the package ’aifeducation’ to work are
available.

Usage

check_aif_py_modules(trace = TRUE)

Arguments
trace bool TRUE if a list with all modules and their availability should be printed to
the console.
Value

The function prints a table with all relevant packages and shows which modules are available or
unavailable.

If all relevant modules are available, the functions returns TRUE. In all other cases it returns FALSE

See Also

Other Installation and Configuration: get_recommended_py_versions(), install_aifeducation(),
install_aifeducation_studio(), install_py_modules(), prepare_session(), set_transformers_logger(),
update_aifeducation()

check_all_args Check arguments automatically

Description
This function performs checks for every provided argument. It can only check arguments that are
defined in the central parameter dictionary. See get_param_dict for more details.

Usage

check_all_args(args)

Arguments

args Named list containing the arguments and their values.

check_class_and_type 33

Value

Function does nothing return. It raises an error the arguments are not valid.

See Also
Other Utils Checks Developers: check_class_and_type()

check_class_and_type Check class and type

Description

Function for checking if an object is of a specific type or class.

Usage
check_class_and_type(
object,
object_name = NULL,
type_classes = "bool”,
allow_NULL = FALSE,
min = NULL,
max = NULL,
allowed_values = NULL
)
Arguments
object Any R object.

object_name string Name of the object. This is helpful for debugging.

type_classes vector of strings containing the type or classes which the object should belong

to.
allow_NULL bool If TRUE allow the object to be NULL.
min double or int Minimal value for the object.
max double or int Maximal value for the object.

allowed_values vector of strings determining the allowed values. If all strings are allowed set
this argument to NULL.

Value

Function does nothing return. It raises an error if the object is not of the specified type.

Note

parameter min, max, and allowed_values do not apply if type_classes is a class.

allowed_values does only apply if type_classes is string.

34 ClassifiersBasedOnTextEmbeddings

See Also
Other Utils Checks Developers: check_all_args()

ClassifiersBasedOnTextEmbeddings
Abstract class for all classifiers that use numerical representations of
texts instead of words.

Description

Base class for classifiers relying on EmbeddedText or LargeDataSetForTextEmbeddings generated
with a TextEmbeddingModel.

Objects of this class containing fields and methods used in several other classes in *Al for Educa-
tion’.

This class is not designed for a direct application and should only be used by developers.

Value

A new object of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->aifeducation: :ModelsBasedOnTextEmbeddings
->ClassifiersBasedOnTextEmbeddings

Public fields

feature_extractor (list()’)
List for storing information and objects about the feature_extractor.

reliability (list()’)

List for storing central reliability measures of the last training.

* reliability$test_metric: Array containing the reliability measures for the test data
for every fold and step (in case of pseudo-labeling).

* reliability$test_metric_mean: Array containing the reliability measures for the test
data. The values represent the mean values for every fold.

e reliability$raw_iota_objects: List containing all iota_object generated with the
package iotarelr for every fold at the end of the last training for the test data.

e reliability$raw_iota_objects$iota_objects_end: List of objects with class iotarelr_iota2
containing the estimated iota reliability of the second generation for the final model for
every fold for the test data.

e reliability$raw_iota_objects$iota_objects_end_free: List of objects with class
iotarelr_iota2 containing the estimated iota reliability of the second generation for
the final model for every fold for the test data. Please note that the model is estimated
without forcing the Assignment Error Matrix to be in line with the assumption of weak
superiority.

ClassifiersBasedOnTextEmbeddings 35

e reliability$iota_object_end: Object of class iotarelr_iota2 as a mean of the
individual objects for every fold for the test data.

e reliability$iota_object_end_free: Object of class iotarelr_iota2 as a mean of
the individual objects for every fold. Please note that the model is estimated without
forcing the Assignment Error Matrix to be in line with the assumption of weak superiority.

* reliability$standard_measures_end: Object of class 1ist containing the final mea-
sures for precision, recall, and f1 for every fold.

e reliability$standard_measures_mean: matrix containing the mean measures for
precision, recall, and f1.

Methods

Public methods:

e ClassifiersBasedOnTextEmbeddings$predict()

e ClassifiersBasedOnTextEmbeddings$check_embedding_model ()

* ClassifiersBasedOnTextEmbeddings$check_feature_extractor_object_type()
* ClassifiersBasedOnTextEmbeddings$requires_compression()

* ClassifiersBasedOnTextEmbeddings$save()

e ClassifiersBasedOnTextEmbeddings$load_from_disk()

e ClassifiersBasedOnTextEmbeddings$adjust_target_levels()

¢ ClassifiersBasedOnTextEmbeddings$plot_training_history()

e ClassifiersBasedOnTextEmbeddings$plot_coding_stream()

e ClassifiersBasedOnTextEmbeddings$clone()

Method predict(): Method for predicting new data with a trained neural net.

Usage:
ClassifiersBasedOnTextEmbeddings$predict(
newdata,
batch_size = 32L,
ml_trace = 1L

)

Arguments:

newdata Object of class TextEmbeddingModel or LargeDataSetForTextEmbeddings for which
predictions should be made. In addition, this method allows to use objects of class array
and datasets.arrow_dataset.Dataset. However, these should be used only by develop-
ers.

batch_size int Size of batches.

ml_trace int ml_trace=@ does not print any information on the process from the machine
learning framework.

Returns: Returns a data. frame containing the predictions and the probabilities of the different
labels for each case.
Method check_embedding_model(): Method for checking if the provided text embeddings are
created with the same TextEmbeddingModel as the classifier.
Usage:

36

ClassifiersBasedOnTextEmbeddings

ClassifiersBasedOnTextEmbeddings$check_embedding_model (

text_embeddings,
require_compressed = FALSE

)

Arguments:

text_embeddings Object of class EmbeddedText or LargeDataSetForTextEmbeddings.

require_compressed TRUE if a compressed version of the embeddings are necessary. Com-
pressed embeddings are created by an object of class TEFeatureExtractor.

Returns: TRUE if the underlying TextEmbeddingModel is the same. FALSE if the models differ.

Method check_feature_extractor_object_type(): Method for checking an object of class
TEFeatureExtractor.

Usage:
ClassifiersBasedOnTextEmbeddings$check_feature_extractor_object_type(
feature_extractor

)

Arguments:
feature_extractor Object of class TEFeatureExtractor

Returns: This method does nothing returns. It raises an error if

* the object is NULL
* the object does not rely on the same machine learning framework as the classifier

* the object is not trained.
Method requires_compression(): Method for checking if provided text embeddings must be
compressed via a TEFeatureExtractor before processing.

Usage:
ClassifiersBasedOnTextEmbeddings$requires_compression(text_embeddings)

Arguments:
text_embeddings Object of class EmbeddedText, LargeDataSetForTextEmbeddings, array
or datasets.arrow_dataset.Dataset.

Returns: Return TRUE if a compression is necessary and FALSE if not.

Method save(): Method for saving a model.

Usage:
ClassifiersBasedOnTextEmbeddings$save(dir_path, folder_name)

Arguments:
dir_path string Path of the directory where the model should be saved.
folder_name string Name of the folder that should be created within the directory.

Returns: Function does not return a value. It saves the model to disk.
Method load_from_disk(): loads an object from disk and updates the object to the current
version of the package.

Usage:

ClassifiersBasedOnTextEmbeddings 37

ClassifiersBasedOnTextEmbeddings$load_from_disk(dir_path)

Arguments:

dir_path Path where the object set is stored.

Returns: Method does not return anything. It loads an object from disk.

Method adjust_target_levels(): Method transforms the levels of a factor into numbers
corresponding to the models definition.
Usage:
ClassifiersBasedOnTextEmbeddings$adjust_target_levels(data_targets)
Arguments:
data_targets factor containing the labels for cases stored in embeddings. Factor must be
named and has to use the same names as used in in the embeddings.

Returns: Method returns a factor containing the numerical representation of categories/classes.

Method plot_training_history(): Method for requesting a plot of the training history. This
method requires the R package *ggplot2’ to work.

Usage:
ClassifiersBasedOnTextEmbeddings$plot_training_history(
final_training = FALSE,
pl_step = NULL,

measure = "loss",
y_min = NULL,
y_max = NULL,

add_min_max = TRUE,
text_size = 10L

)

Arguments:

final_training bool If FALSE the values of the performance estimation are used. If TRUE
only the epochs of the final training are used.

pl_step int Number of the step during pseudo labeling to plot. Only relevant if the model was
trained with active pseudo labeling.

measure string Measure to plot. Allowed values:

* "avg_iota" = Average lota

* "loss"” =Loss

* "accuracy" = Accuracy

* "balanced_accuracy” = Balanced Accuracy
y_min Minimal value for the y-axis. Set to NULL for an automatic adjustment.
y_max Maximal value for the y-axis. Set to NULL for an automatic adjustment.

add_min_max bool If TRUE the minimal and maximal values during performance estimation
are port of the plot. If FALSE only the mean values are shown. Parameter is ignored if
final_training=TRUE.

text_size Size of the text.

Returns: Returns a plot of class ggplot visualizing the training process.

38 class_vector_to_py_dataset

Method plot_coding_stream(): Method for requesting a plot the coding stream. The plot
shows how the cases of different categories/classes are assigned to a the available classes/categories.
The visualization is helpful for analyzing the consequences of coding errors.

Usage:
ClassifiersBasedOnTextEmbeddings$plot_coding_stream(
label_categories_size = 3L,
key_size = 0.5,
text_size = 10L

)

Arguments:

label_categories_size double determining the size of the label for each true and assigned
category within the plot.

key_size double determining the size of the legend.

text_size double determining the size of the text within the legend.

Returns: Returns a plot of class ggplot visualizing the training process.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ClassifiersBasedOnTextEmbeddings$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other R6 Classes for Developers: AIFEBaseModel, AIFEMaster, BaseModelCore, DataManagerClassifier,
LargeDataSetBase, ModelsBasedOnTextEmbeddings, TEClassifiersBasedOnProtoNet, TEClassifiersBasedOnRegul:

TokenizerBase

class_vector_to_py_dataset
Convert class vector to arrow data set

Description

Function converts a vector of class indices into an arrow data set.

Usage

class_vector_to_py_dataset(vector)

Arguments

vector vector of class indices.

clean_pytorch_log_transformers 39

Value

Returns a data set of class datasets.arrow_dataset.Dataset containing the class indices.

See Also

Other Utils Python Data Management Developers: data. frame_to_py_dataset(), get_batches_index(),
prepare_r_array_for_dataset(), py_dataset_to_embeddings(), reduce_to_unique(), tensor_list_to_numpy(),
tensor_to_numpy ()

clean_pytorch_log_transformers
Clean pytorch log of transformers

Description

Function for preparing and cleaning the log created by an object of class Trainer from the python
library "transformer’s.

Usage

clean_pytorch_log_transformers(log)

Arguments

log data. frame containing the log.

Value

Returns a data. frame containing epochs, loss, and val_loss.

See Also

Other Utils Log Developers: cat_message(), output_message(), print_message(), read_log(),
read_loss_log(), reset_log(), reset_loss_log(),write_log()

40 create_dir

cohens_kappa Calculate Cohen’s Kappa

Description

This function calculates different version of Cohen’s Kappa.

Usage

cohens_kappa(rater_one, rater_two)

Arguments
rater_one factor rating of the first coder.
rater_two factor ratings of the second coder.
Value

Returns a 1ist containing the results for Cohen’ Kappa if no weights are applied (kappa_unweighted),
if weights are applied and the weights increase linear (kappa_linear), and if weights are applied
and the weights increase quadratic (kappa_squared).

References

Cohen, J (1968). Weighted kappa: Nominal scale agreement with provision for scaled disagreement
or partial credit. Psychological Bulletin, 70(4), 213-220. doi:10.1037/h0026256

Cohen, J (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement, 20(1), 37-46. doi:10.1177/001316446002000104
See Also

Other performance measures: calc_standard_classification_measures(), fleiss_kappa(),
get_coder_metrics(), gwet_ac(), kendalls_w(), kripp_alpha()

create_dir Create directory if not exists

Description
Check whether the passed dir_path directory exists. If not, creates a new directory and prints a
msg message if trace is TRUE.

Usage

create_dir(dir_path, trace, msg = "Creating Directory”, msg_fun = TRUE)

doi:10.1037/h0026256
doi:10.1177/001316446002000104

create_object 41

Arguments
dir_path string A new directory path that should be created.
trace bool Whether a msg message should be printed.
msg string A message that should be printed if trace is TRUE.
msg_fun func Function used for printing the message.

Value

TRUE or FALSE depending on whether the shiny app is active.

See Also

Other Utils File Management Developers: get_file_extension()

create_object Create object#’

Description

Support function for creating objects.

Usage

create_object(class)

Arguments

class string Name of the class to be created.

Value

Returns an object of the requested class.

See Also

Other Utils Developers: auto_n_cores(), create_synthetic_units_from_matrix(), generate_id(),
get_n_chunks(), get_synthetic_cases_from_matrix(), get_time_stamp(),matrix_to_array_c(),
tensor_to_matrix_c(), to_categorical_c()

42 create_synthetic_units_from_matrix

create_synthetic_units_from_matrix
Create synthetic units

Description

Function for creating synthetic cases in order to balance the data for training with TEClassifierRegu-
lar or TEClassifierProtoNet]. This is an auxiliary function for use with get_synthetic_cases_from_matrix
to allow parallel computations.

Usage

create_synthetic_units_from_matrix(
matrix_form,
target,
required_cases,
K,
method,
cat,
k_s,
max_k

Arguments

matrix_form Named matrix containing the text embeddings in matrix form. In most cases
this object is taken from EmbeddedText$embeddings.

target Named factor containing the labels/categories of the corresponding cases.

required_cases int Number of cases necessary to fill the gab between the frequency of the class
under investigation and the major class.

k int The number of nearest neighbors during sampling process.

method vector containing strings of the requested methods for generating new cases.
Currently "knnor" from this package is available.

cat string The category for which new cases should be created.

k_s int Number of ks in the complete generation process.

max_k int The maximum number of nearest neighbors during sampling process.
Value

Returns a 1ist which contains the text embeddings of the new synthetic cases as anamed data. frame
and their labels as a named factor.

data.frame_to_py_dataset 43

See Also

Other Utils Developers: auto_n_cores(), create_object(), generate_id(), get_n_chunks(),
get_synthetic_cases_from_matrix(), get_time_stamp(), matrix_to_array_c(), tensor_to_matrix_c(),
to_categorical_c()

data.frame_to_py_dataset
Convert data.frame to arrow data set

Description

Function for converting a data.frame into a pyarrow data set.

Usage

data.frame_to_py_dataset(data_frame)

Arguments

data_frame Object of class data. frame.

Value

Returns the data. frame as a pyarrow data set of class datasets.arrow_dataset.Dataset.

See Also

Other Utils Python Data Management Developers: class_vector_to_py_dataset(), get_batches_index(),
prepare_r_array_for_dataset(), py_dataset_to_embeddings(), reduce_to_unique(), tensor_list_to_numpy(),
tensor_to_numpy ()

DataManagerClassifier Data manager for classification tasks

Description
Abstract class for managing the data and samples during training a classifier. DataManagerClassifier
is used with all classifiers based on text embeddings.

Value

Objects of this class are used for ensuring the correct data management for training different types
of classifiers. They are also used for data augmentation by creating synthetic cases with different
techniques.

44 DataManagerClassifier

Public fields
config (’list’)
Field for storing configuration of the DataManagerClassifier.
state (’list’)
Field for storing the current state of the DataManagerClassifier.
datasets (list’)
Field for storing the data sets used during training. All elements of the list are data sets of
class datasets.arrow_dataset.Dataset. The following data sets are available:
* data_labeled: all cases which have a label.
* data_unlabeled: all cases which have no label.
* data_labeled_synthetic: all synthetic cases with their corresponding labels.
* data_labeled_pseudo: subset of data_unlabeled if pseudo labels were estimated by a clas-
sifier.

name_idx (’named vector’)
Field for storing the pairs of indexes and names of every case. The pairs for labeled and
unlabeled data are separated.

samples (list’)
Field for storing the assignment of every cases to a train, validation or test data set depending
on the concrete fold. Only the indexes and not the names are stored. In addition, the list
contains the assignment for the final training which excludes a test data set. If the DataMan-
agerClassifier uses i folds the sample for the final training can be requested with i+1.

Methods
Public methods:

* DataManagerClassifier$new()

¢ DataManagerClassifier$get_config()

* DataManagerClassifier$get_labeled_data()

e DataManagerClassifier$get_unlabeled_data()

* DataManagerClassifier$get_samples()

* DataManagerClassifier$set_state()

¢ DataManagerClassifier$get_n_folds()

e DataManagerClassifier$get_n_classes()

e DataManagerClassifier$get_statistics()

* DataManagerClassifier$contains_unlabeled_data()
* DataManagerClassifier$get_dataset()

* DataManagerClassifier$get_val_dataset()

* DataManagerClassifier$get_test_dataset()

e DataManagerClassifier$create_synthetic()

e DataManagerClassifier$add_replace_pseudo_data()
* DataManagerClassifier$clone()

Method new(): Creating a new instance of this class.

Usage:

DataManagerClassifier 45

DataManagerClassifier$new(
data_embeddings,
data_targets,
class_levels,
folds = 5L,
val_size = 0.25,
pad_value = -100L,
one_hot_encoding = TRUE,
add_matrix_map = TRUE,
sc_methods = "knnor",
sc_min_k = 1L,
sc_max_k = 10L,
trace = TRUE,
n_cores = auto_n_cores()

)

Arguments:

data_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-
beddedText or LargeDataSetForTextEmbeddings.

data_targets factor containing the labels for cases stored in embeddings. Factor must be
named and has to use the same names as used in in the embeddings.

class_levels vector containing the levels (categories or classes) within the target data. Please
note that order matters. For ordinal data please ensure that the levels are sorted correctly
with later levels indicating a higher category/class. For nominal data the order does not
matter.

folds int determining the number of cross-fold samples. Allowed values: 1 <= x

val_size double between 0 and 1, indicating the proportion of cases which should be used for
the validation sample during the estimation of the model. The remaining cases are part of
the training data. Allowed values: @ < x < 1

pad_value int Value indicating padding. This value should no be in the range of regluar
values for computations. Thus it is not recommended to chance this value. Default is -100.
Allowed values: x <= -100

one_hot_encoding bool If TRUE all labels are converted to one hot encoding.

add_matrix_map bool If TRUE all embeddings are transformed into a two dimensional ma-
trix. The number of rows equals the number of cases. The number of columns equals
timesxfeatures.

sc_methods string containing the method for generating synthetic cases. Allowed values:
"knnor’

sc_min_k int determining the minimal number of k which is used for creating synthetic units.
Allowed values: 1 <= x

sc_max_k int determining the maximal number of k which is used for creating synthetic units.
Allowed values: 1 <= x

trace bool TRUE if information about the estimation phase should be printed to the console.
n_cores int Number of cores which should be used during the calculation of synthetic cases.
Only relevant if use_sc=TRUE. Allowed values: 1 <= x

Returns: Method returns an initialized object of class DataManagerClassifier.

46

DataManagerClassifier

Method get_config(): Method for requesting the configuration of the DataManagerClassifier.
Usage:
DataManagerClassifier$get_config()

Returns: Returns a 1ist storing the configuration of the DataManagerClassifier.

Method get_labeled_data(): Method for requesting the complete labeled data set.
Usage:
DataManagerClassifier$get_labeled_data()

Returns: Returns an object of class datasets.arrow_dataset.Dataset containing all cases
with labels.

Method get_unlabeled_data(): Method for requesting the complete unlabeled data set.
Usage:
DataManagerClassifier$get_unlabeled_data()

Returns: Returns an object of class datasets.arrow_dataset.Dataset containing all cases
without labels.

Method get_samples(): Method for requesting the assignments to train, validation, and test
data sets for every fold and the final training.

Usage:

DataManagerClassifier$get_samples()

Returns: Returns a 1ist storing the assignments to a train, validation, and test data set for every
fold. In the case of the sample for the final training the test data set is always empty (NULL).

Method set_state(): Method for setting the current state of the DataManagerClassifier.

Usage:
DataManagerClassifier$set_state(iteration, step = NULL)

Arguments:

iteration int determining the current iteration of the training. That is iteration determines
the fold to use for training, validation, and testing. If i is the number of fold i+/ request the
sample for the final training. For requesting the sample for the final training iteration can
take a string "final”.

step int determining the step for estimating and using pseudo labels during training. Only
relevant if training is requested with pseudo labels.

Returns: Method does not return anything. It is used for setting the internal state of the
DataManager.
Method get_n_folds(): Method for requesting the number of folds the DataManagerClassifier
can use with the current data.

Usage:
DataManagerClassifier$get_n_folds()

Returns: Returns the number of folds the DataManagerClassifier uses.

Method get_n_classes(): Method for requesting the number of classes.

DataManagerClassifier 47

Usage:
DataManagerClassifier$get_n_classes()

Returns: Returns the number classes.

Method get_statistics(): Method for requesting descriptive sample statistics.
Usage:
DataManagerClassifier$get_statistics()

Returns: Returns a table describing the absolute frequencies of the labeled and unlabeled data.
The rows contain the length of the sequences while the columns contain the labels.

Method contains_unlabeled_data(): Method for checking if the dataset contains cases with-
out labels.

Usage:
DataManagerClassifier$contains_unlabeled_data()

Returns: Returns TRUE if the dataset contains cases without labels. Returns FALSE if all cases
have labels.

Method get_dataset(): Method for requesting a data set for training depending in the current
state of the DataManagerClassifier.

Usage:
DataManagerClassifier$get_dataset(

inc_labeled = TRUE,

inc_unlabeled = FALSE,

inc_synthetic = FALSE,

inc_pseudo_data = FALSE
)
Arguments:
inc_labeled bool If TRUE the data set includes all cases which have labels.
inc_unlabeled bool If TRUE the data set includes all cases which have no labels.
inc_synthetic bool If TRUE the data set includes all synthetic cases with their corresponding

labels.

inc_pseudo_data bool If TRUE the data set includes all cases which have pseudo labels.
Returns: Returns an object of class datasets.arrow_dataset.Dataset containing the re-
quested kind of data along with all requested transformations for training. Please note that
this method returns a data sets that is designed for training only. The corresponding vali-
dation data set is requested with get_val_dataset and the corresponding test data set with
get_test_dataset.

Method get_val_dataset(): Method for requesting a data set for validation depending in the
current state of the DataManagerClassifier.
Usage:
DataManagerClassifier$get_val_dataset()
Returns: Returns an object of class datasets.arrow_dataset.Dataset containing the re-
quested kind of data along with all requested transformations for validation. The corresponding
data set for training can be requested with get_dataset and the corresponding data set for
testing with get_test_dataset.

48 DataManagerClassifier

Method get_test_dataset(): Method for requesting a data set for testing depending in the
current state of the DataManagerClassifier.
Usage:
DataManagerClassifier$get_test_dataset()
Returns: Returns an object of class datasets.arrow_dataset.Dataset containing the re-
quested kind of data along with all requested transformations for validation. The corresponding
data set for training can be requested with get_dataset and the corresponding data set for
validation with get_val_dataset.

Method create_synthetic(): Method for generating synthetic data used during training. The
process uses all labeled data belonging to the current state of the DataManagerClassifier.
Usage:
DataManagerClassifier$create_synthetic(trace = TRUE, inc_pseudo_data = FALSE)
Arguments:
trace bool If TRUE information on the process are printed to the console.
inc_pseudo_data bool If TRUE data with pseudo labels are used in addition to the labeled data
for generating synthetic cases.

Returns: This method does nothing return. It generates a new data set for synthetic cases which
are stored as an object of class datasets.arrow_dataset.Dataset inthe field datasets$data_labeled_synthetic.
Please note that a call of this method will override an existing data set in the corresponding field.

Method add_replace_pseudo_data(): Method for adding data with pseudo labels generated
by a classifier

Usage:

DataManagerClassifier$add_replace_pseudo_data(inputs, labels)

Arguments:

inputs array or matrix representing the input data.

labels factor containing the corresponding pseudo labels.

Returns: This method does nothing return. It generates a new data set for synthetic cases which
are stored as an object of class datasets.arrow_dataset.Dataset in the field datasets$data_labeled_pseudo.
Please note that a call of this method will override an existing data set in the corresponding field.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DataManagerClassifier$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other R6 Classes for Developers: AIFEBaseModel, AIFEMaster, BaseModelCore, ClassifiersBasedOnTextEmbeddings,
LargeDataSetBase, ModelsBasedOnTextEmbeddings, TEClassifiersBasedOnProtoNet, TEClassifiersBasedOnRegul:
TokenizerBase

DataSetsIndex 49

DataSetsIndex List of all available types of data sets

Description

Named list containing all available types of data sets as a string.

Usage

DataSetsIndex

Format

An object of class 1ist of length 3.

See Also

Other Parameter Dictionary: BaseModelsIndex, TokenizerIndex, get_TEClassifiers_class_names(),
get_called_args(), get_depr_obj_names(), get_magnitude_values(), get_param_def (), get_param_dict(),
get_param_doc_desc()

EmbeddedText Abstract class for small data sets containing text embeddings

Description

Object of class R6 which stores the text embeddings generated by an object of class TextEmbed-
dingModel. The text embeddings are stored within memory/RAM. In the case of a high number
of documents the data may not fit into memory/RAM. Thus, please use this object only for a small
sample of texts. In general, it is recommended to use an object of class LargeDataSetForTextEm-
beddings which can deal with any number of texts.

Value

Returns an object of class EmbeddedText. These objects are used for storing and managing the text
embeddings created with objects of class TextEmbeddingModel. Objects of class EmbeddedText
serve as input for objects of class TEClassifierRegular, TEClassifierProtoNet, and TEFeatureEx-
tractor. The main aim of this class is to provide a structured link between embedding models and
classifiers. Since objects of this class save information on the text embedding model that created
the text embedding it ensures that only embedding generated with same embedding model are com-
bined. Furthermore, the stored information allows objects to check if embeddings of the correct text
embedding model are used for training and predicting.

50

Public fields

embeddings (’data.frame()’)
data.frame containing the text embeddings for all chunks. Documents are in the rows. Em-

Methods

bedding dimensions are in the columns.

Public methods:

Method configure(): Creates a new object representing text embeddings.

EmbeddedText$configure()
EmbeddedText$save()
EmbeddedText$is_configured()
EmbeddedText$load_from_disk()
EmbeddedText$get_model_info()
EmbeddedText$get_model_label ()
EmbeddedText$get_times()
EmbeddedText$get_features()
EmbeddedText$get_original_features()
EmbeddedText$get_pad_value()
EmbeddedText$is_compressed()
EmbeddedText$add_feature_extractor_info()
EmbeddedText$get_feature_extractor_info()
EmbeddedText$convert_to_LargeDataSetForTextEmbeddings()
EmbeddedText$n_rows()
EmbeddedText$get_all_fields()
EmbeddedText$set_package_versions()
EmbeddedText$get_package_versions()
EmbeddedText$clone()

Usage:
EmbeddedText$configure(

embeddings,

model_name = NA,
model_label = NA,
model_date = NA,
model_method = NA,
model_version = NA,
model_language = NA,
param_seq_length = NA,
param_chunks = NULL,
param_features = NULL,
param_overlap = NULL,
param_emb_layer_min = NULL,
param_emb_layer_max = NULL,
param_emb_pool_type = NULL,

EmbeddedText

EmbeddedText 51

param_aggregation = NULL,

param_pad_value = -100L
)
Arguments:
embeddings data.frame containing the text embeddings.
model_name string Name of the model that generates this embedding.
model_label string Label of the model that generates this embedding.
model_date string Date when the embedding generating model was created.
model_method string Method of the underlying embedding model.
model_version string Version of the model that generated this embedding.
model_language string Language of the model that generated this embedding.

param_seqd_length int Maximum number of tokens that processes the generating model for a
chunk.

param_chunks int Maximum number of chunks which are supported by the generating model.
param_features int Number of dimensions of the text embeddings.

param_overlap int Number of tokens that were added at the beginning of the sequence for
the next chunk by this model. #

param_emb_layer_min int or string determining the first layer to be included in the creation
of embeddings.

param_emb_layer_max int or string determining the last layer to be included in the creation
of embeddings.

param_emb_pool_type string determining the method for pooling the token embeddings within
each layer.

param_aggregation string Aggregation method of the hidden states. Deprecated. Only in-
cluded for backward compatibility.

param_pad_value int Value indicating padding. This value should no be in the range of
regluar values for computations. Thus it is not recommended to chance this value. De-
fault is -100. Allowed values: x <= -100

Returns: Returns an object of class EmbeddedText which stores the text embeddings produced
by an objects of class TextEmbeddingModel.
Method save(): Saves a data set to disk.
Usage:
EmbeddedText$save(dir_path, folder_name, create_dir = TRUE)
Arguments:
dir_path Path where to store the data set.
folder_name string Name of the folder for storing the data set.
create_dir bool If True the directory will be created if it does not exist.

Returns: Method does not return anything. It write the data set to disk.
Method is_configured(): Method for checking if the model was successfully configured. An
object can only be used if this value is TRUE.

Usage:

52

EmbeddedText

EmbeddedText$is_configured()
Returns: bool TRUE if the model is fully configured. FALSE if not.

Method load_from_disk(): loads an object of class EmbeddedText from disk and updates the
object to the current version of the package.

Usage:
EmbeddedText$load_from_disk(dir_path)
Arguments:

dir_path Path where the data set set is stored.

Returns: Method does not return anything. It loads an object from disk.

Method get_model_info(): Method for retrieving information about the model that generated
this embedding.

Usage:
EmbeddedText$get_model_info()

Returns: list contains all saved information about the underlying text embedding model.

Method get_model_label(): Method for retrieving the label of the model that generated this
embedding.

Usage:
EmbeddedText$get_model_label()

Returns: string Label of the corresponding text embedding model

Method get_times(): Number of chunks/times of the text embeddings.

Usage:
EmbeddedText$get_times()

Returns: Returns an int describing the number of chunks/times of the text embeddings.

Method get_features(): Number of actual features/dimensions of the text embeddings.In the
case a feature extractor was used the number of features is smaller as the original number of
features. To receive the original number of features (the number of features before applying a
feature extractor) you can use the method get_original_features of this class.

Usage:

EmbeddedText$get_features()

Returns: Returns an int describing the number of features/dimensions of the text embeddings.
Method get_original_features(): Number of original features/dimensions of the text em-
beddings.

Usage:
EmbeddedText$get_original_features()

Returns: Returns an int describing the number of features/dimensions if no feature extractor)
is used or before a feature extractor) is applied.

Method get_pad_value(): Value for indicating padding.

EmbeddedText 53

Usage:
EmbeddedText$get_pad_value()

Returns: Returns an int describing the value used for padding.

Method is_compressed(): Checks if the text embedding were reduced by a feature extractor.
Usage:
EmbeddedText$is_compressed()

Returns: Returns TRUE if the number of dimensions was reduced by a feature extractor. If not
return FALSE.

Method add_feature_extractor_info(): Method setting information on the feature extractor
that was used to reduce the number of dimensions of the text embeddings. This information should
only be used if a feature extractor was applied.
Usage:
EmbeddedText$add_feature_extractor_info(
model_name,
model_label = NA,
features = NA,
method = NA,
noise_factor = NA,
optimizer = NA
)
Arguments:
model_name string Name of the underlying TextEmbeddingModel.
model_label string Label of the underlying TextEmbeddingModel.
features int Number of dimension (features) for the compressed text embeddings.

method string Method that the TEFeatureExtractor applies for genereating the compressed
text embeddings.

noise_factor double Noise factor of the TEFeatureExtractor.
optimizer string Optimizer used during training the TEFeatureExtractor.

Returns: Method does nothing return. It sets information on a feature extractor.
Method get_feature_extractor_info(): Method for receiving information on the feature
extractor that was used to reduce the number of dimensions of the text embeddings.

Usage:

EmbeddedText$get_feature_extractor_info()

Returns: Returns a 1ist with information on the feature extractor. If no feature extractor was
used it returns NULL.

Method convert_to_LargeDataSetForTextEmbeddings(): Method for converting this object
to an object of class LargeDataSetForTextEmbeddings.

Usage:
EmbeddedText$convert_to_LargeDataSetForTextEmbeddings()

54 EmbeddedText

Returns: Returns an object of class LargeDataSetForTextEmbeddings which uses memory
mapping allowing to work with large data sets.

Method n_rows(): Number of rows.
Usage:
EmbeddedText$n_rows()

Returns: Returns the number of rows of the text embeddings which represent the number of

cases.

Method get_all_fields(): Return all fields.
Usage:
EmbeddedText$get_all_fields()

Returns: Method returns a 1ist containing all public and private fields of the object.

Method set_package_versions(): Method for setting the package version for "aifeducation’,
’reticulate’, “torch’, and *numpy’ to the currently used versions.

Usage:
EmbeddedText$set_package_versions()

Returns: Method does not return anything. It is used to set the private fields fo package

versions.
Method get_package_versions(): Method for requesting a summary of the R and python
packages’ versions used for creating the model.

Usage:
EmbeddedText$get_package_versions()

Returns: Returns a 1ist containing the versions of the relevant R and python packages.

Method clone(): The objects of this class are cloneable with this method.

Usage:
EmbeddedText$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Data Management: LargeDataSetForText, LargeDataSetForTextEmbeddings

fleiss_kappa 55

fleiss_kappa Calculate Fleiss’ Kappa

Description

This function calculates Fleiss” Kappa.

Usage

fleiss_kappa(rater_one, rater_two, additional_raters = NULL)

Arguments
rater_one factor rating of the first coder.
rater_two factor ratings of the second coder.

additional_raters
list Additional raters with same requirements as rater_one and rater_two.
If there are no additional raters set to NULL.

Value

Returns the value for Fleiss’ Kappa.

References
Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bul-
letin, 76(5), 378-382. doi:10.1037/h0031619

See Also

Other performance measures: calc_standard_classification_measures(), cohens_kappa(),
get_coder_metrics(), gwet_ac(), kendalls_w(), kripp_alpha()

generate_args_for_tests
Generate combinations of arguments

Description

Function generates a specific number of combinations for a method. These are used for automating
tests of objects.

doi:10.1037/h0031619

56 generate_embeddings

Usage

generate_args_for_tests(
object_name,
method,
var_objects = list(),
necessary_objects = list(),
var_override = list(sustain_interval = 30L, trace = FALSE, epochs = 50L, batch_size =
20L, ml_trace = @L, n_cores = 2L, data_folds = 2L, pl_max_steps = 2L, pl_max = 1L,

pl_anchor = 1L, pl_min = @L, sustain_track = TRUE, sustain_iso_code = "DEU",
sustain_log_level = "error”, data_val_size = 0.25, lr_rate = 0.001, lr_warm_up_ratio

= 0.01)

)

Arguments

object_name string Name of the object to generate the arguments for.

method string Name of the method of the object to generate the arguments for.

var_objects list of other objects which should be combined with the other arguments.

necessary_objects
list of other objects which are part of every combination.

var_override Named list containing the arguments which should be set to a specific value
for all combinations.
Value

Returns a 1ist with combinations of arguments.

Note

var_objects, necessary_objects, and var_override the names must exactly match the name of
the parameter. Otherwise they are not applied. Names of arguments which are not part a a method
are ignored. #

See Also

Other Utils TestThat Developers: check_adjust_n_samples_on_CI(), generate_embeddings(),
generate_tensors(), get_current_args_for_print(), get_fixed_test_tensor(), get_test_data_for_classifiel
random_bool_on_CI()

generate_embeddings Generate test embeddings

Description

Functions generates a random test embedding that can be used for testing methods and functions.
The embeddings have the shape (Batch, Times,Features).

generate_id 57

Usage

generate_embeddings(times, features, seq_len, pad_value)

Arguments
times int Maximal length of a sequence.
features int Number of features of the sequence.
seq_len Numeric vector containing the length of the given cases. The length of this
vector determines the value for ’Batch’. Values must be at least 1 and maximal
times.
pad_value int Value used to indicate padding.
Value

Returns an array with dim (length(seqg_len),times,features).

Note

To generate a "PyTorch’ object please use generate_tensors.

See Also

Other Utils TestThat Developers: check_adjust_n_samples_on_CI(), generate_args_for_tests(),
generate_tensors(), get_current_args_for_print(), get_fixed_test_tensor(), get_test_data_for_classifiel
random_bool_on_CI()

generate_id Generate ID suffix for objects

Description

Function for generating an ID suffix for objects of class TextEmbeddingModel, TEClassifierRegu-
lar, and TEClassifierProtoNet.

Usage

generate_id(length = 16L)

Arguments

length int determining the length of the id suffix.

Value

Returns a string of the requested length.

58 generate_tensors

See Also

Other Utils Developers: auto_n_cores(), create_object(), create_synthetic_units_from_matrix(),
get_n_chunks(), get_synthetic_cases_from_matrix(), get_time_stamp(),matrix_to_array_c(),
tensor_to_matrix_c(), to_categorical_c()

generate_tensors Generate test tensors

Description

Functions generates a random test tensor that can be used for testing methods and functions based
on 'PyTorch’. The tensors have the shape (Batch, Times,Features).

Usage

generate_tensors(times, features, seq_len, pad_value)

Arguments
times int Maximal length of a sequence.
features int Number of features of the sequence.
seq_len Numeric vector containing the length of the given cases. The length of this
vector determines the value for *Batch’. Values must be at least 1 and maximal
times.
pad_value int Value used to indicate padding.
Value

Returns an object of class Tensor from *PyTorch’.

Note

To request a R array please use generate_embeddings.

See Also

Other Utils TestThat Developers: check_adjust_n_samples_on_CI(), generate_args_for_tests(),
generate_embeddings(), get_current_args_for_print(), get_fixed_test_tensor(), get_test_data_for_classi
random_bool_on_CI()

get_alpha_3_codes 59

get_alpha_3_codes Country Alpha 3 Codes

Description

Function for requesting a vector containing the alpha-3 codes for most countries.

Usage
get_alpha_3_codes()

Value

Returns a vector containing the alpha-3 codes for most countries.

See Also

Other Utils Sustainability Developers: summarize_tracked_sustainability()

get_batches_index Assign cases to batches

Description

Function groups cases into batches.

Usage

get_batches_index(number_rows, batch_size, zero_based = FALSE)

Arguments
number_rows int representing the number of cases or rows of a matrix or array.
batch_size int size of a batch.
zero_based bool If TRUE the indices of the cases within each batch are zero based. One
based if FALSE.
Value

Returns a 1ist of batches. Each entry in the list contains a vector of int representing the cases
belonging to that batch.

See Also

Other Utils Python Data Management Developers: class_vector_to_py_dataset(), data.frame_to_py_dataset(),
prepare_r_array_for_dataset(), py_dataset_to_embeddings(), reduce_to_unique(), tensor_list_to_numpy(),
tensor_to_numpy ()

60 get_coder_metrics

get_called_args Called arguments

Description

Function for receiving all arguments that were called by a method or function.

Usage

get_called_args(n = 1L)

Arguments

n int level of the nested environments where to extract the arguments.

Value

Returns a named list of all arguments and their values.

See Also

Other Parameter Dictionary: BaseModelsIndex, DataSetsIndex, TokenizerIndex, get_TEClassifiers_class_names().
get_depr_obj_names(), get_magnitude_values(), get_param_def (), get_param_dict(), get_param_doc_desc()

get_coder_metrics Calculate reliability measures based on content analysis

Description

This function calculates different reliability measures which are based on the empirical research
method of content analysis.

Usage

get_coder_metrics(
true_values = NULL,
predicted_values = NULL,
return_names_only = FALSE

)

Arguments

true_values factor containing the true labels/categories.

predicted_values
factor containing the predicted labels/categories.

return_names_only
bool If TRUE returns only the names of the resulting vector. Use FALSE to request
computation of the values.

get_coder_metrics 61

Value

If return_names_only = FALSE returns a vector with the following reliability measures:

iota_index: Iota Index from the Iota Reliability Concept Version 2.

min_iota2: Minimal Iota from Iota Reliability Concept Version 2.

avg_iota2: Average lota from Iota Reliability Concept Version 2.

max_iota2: Maximum lIota from Iota Reliability Concept Version 2.
min_alpha: Minmal Alpha Reliability from Iota Reliability Concept Version 2.
avg_alpha: Average Alpha Reliability from Iota Reliability Concept Version 2.
max_alpha: Maximum Alpha Reliability from Iota Reliability Concept Version 2.
static_iota_index: Static Iota Index from Iota Reliability Concept Version 2.
dynamic_iota_index: Dynamic Iota Index Iota Reliability Concept Version 2.
kalpha_nominal: Krippendorff’s Alpha for nominal variables.

kalpha_ordinal: Krippendorff’s Alpha for ordinal variables.

kendall: Kendall’s coefficient of concordance W with correction for ties.
c_kappa_unweighted: Cohen’s Kappa unweighted.

c_kappa_linear: Weighted Cohen’s Kappa with linear increasing weights.
c_kappa_squared: Weighted Cohen’s Kappa with quadratic increasing weights.
kappa_fleiss: Fleiss” Kappa for multiple raters without exact estimation.
percentage_agreement: Percentage Agreement.

balanced_accuracy: Average accuracy within each class.

gwet_acl_nominal: Gwet’s Agreement Coefficient 1 (AC1) for nominal data which is un-
weighted.

gwet_ac2_linear: Gwet’s Agreement Coefficient 2 (AC2) for ordinal data with linear weights.

gwet_ac2_quadratic: Gwet’s Agreement Coefficient 2 (AC2) for ordinal data with quadratic
weights.

If return_names_only = TRUE returns only the names of the vector elements.

See Also

Other performance measures: calc_standard_classification_measures(), cohens_kappa(),
fleiss_kappa(), gwet_ac(), kendalls_w(), kripp_alpha()

62 get_depr_obj_names

get_current_args_for_print
Print arguments

Description
Functions prints the used arguments. The aim of this function is to print the arguments to the
console that resulted in a failed test.

Usage

get_current_args_for_print(arg_list)

Arguments

arg_list Named list of arguments. The list should be generated with generate_args_for_tests.

Value

Function does nothing return.

See Also

Other Utils TestThat Developers: check_adjust_n_samples_on_CI(), generate_args_for_tests(),
generate_embeddings(), generate_tensors(), get_fixed_test_tensor(), get_test_data_for_classifiers(),
random_bool_on_CI()

get_depr_obj_names Get names of deprecated objects

Description

Function returns the names of all objects that are deprecated.

Usage

get_depr_obj_names()

Value

Returns a vector containing the names.

See Also

Other Parameter Dictionary: BaseModelsIndex, DataSetsIndex, TokenizerIndex, get_TEClassifiers_class_names(),
get_called_args(), get_magnitude_values(), get_param_def (), get_param_dict(), get_param_doc_desc()

get_desc_for_core_model_architecture 63

get_desc_for_core_model_architecture
Generate documentation for core models

Description

Function for generating the documentation of a specific core model.

Usage

get_desc_for_core_model_architecture(
name,
title_format = "bold",
inc_img = FALSE

)

Arguments

name string Name of the core model.
title_format string Kind of format of the title.

inc_img bool Include a visualization of the layer.

Value

Returns a string containing the description written in rmarkdown.

See Also

Other Utils Documentation: build_documentation_for_model(), build_layer_stack_documentation_for_vignette
get_dict_cls_type(), get_dict_core_models(), get_dict_input_types(), get_layer_dict(),
get_layer_documentation(), get_parameter_documentation()

get_file_extension Get file extension

Description

Function for requesting the file extension

Usage

get_file_extension(file_path)

Arguments

file_path string Path to a file.

64 get_layer_documentation

Value

Returns the extension of a file as a string.

See Also

Other Utils File Management Developers: create_dir ()

get_fixed_test_tensor Generate static test tensor

Description

Function generates a static test tensor which is always the same.

Usage

get_fixed_test_tensor(pad_value)

Arguments

pad_value int Value used to indicate padding.

Value

Returns an object of class Tensor which is always the same except padding. Shape (5,3,7).

See Also

Other Utils TestThat Developers: check_adjust_n_samples_on_CI(), generate_args_for_tests(),
generate_embeddings(), generate_tensors(), get_current_args_for_print(), get_test_data_for_classifiers
random_bool_on_CI()

get_layer_documentation
Generate layer documentation

Description

Function for generating the documentation of a specific layer.

get_magnitude_values 65

Usage

get_layer_documentation(
layer_name,
title_format = "bold”,
subtitle_format = "italic”,
inc_img = FALSE,
inc_params = FALSE,
inc_references = FALSE

Arguments

layer_name string Name of the layer.
title_format string Kind of format of the title.
subtitle_format
string Kind of format for all sub-titles.
inc_img bool Include a visualization of the layer.
inc_params bool Include a description of every parameter of the layer.

inc_references bool Include a list of literature references for the layer.

Value

Returns a string containing the description written in rmarkdown.

See Also

Other Utils Documentation: build_documentation_for_model (), build_layer_stack_documentation_for_vignette
get_desc_for_core_model_architecture(), get_dict_cls_type(),get_dict_core_models(),
get_dict_input_types(), get_layer_dict(), get_parameter_documentation()

get_magnitude_values Magnitudes of an argument

Description

Function calculates different magnitude for a numeric argument.

Usage

get_magnitude_values(magnitude, n_elements = 9L, max = NULL, min = NULL)

Arguments
magnitude double Factor using for creating the magnitude.
n_elements int Number of values to return.
max double The maximal value.

min double The minimal value.

66 get_n_chunks

Value
Returns a numeric vector with the generated values. The values are calculated with the following
formula: max * magnitude”i for i=1,...,n_elements. Only values equal or greater min are returned.
See Also

Other Parameter Dictionary: BaseModelsIndex, DataSetsIndex, TokenizerIndex, get_TEClassifiers_class_names(),
get_called_args(), get_depr_obj_names(), get_param_def (), get_param_dict(), get_param_doc_desc()

get_n_chunks Get the number of chunks/sequences for each case

Description

Function for calculating the number of chunks/sequences for every case.

Usage

get_n_chunks(text_embeddings, features, times, pad_value = -100L)

Arguments

text_embeddings
data.frame or array containing the text embeddings.

features int Number of features within each sequence.
times int Number of sequences.
pad_value int Value indicating padding. This value should no be in the range of regluar

values for computations. Thus it is not recommended to chance this value. De-
fault is -100. Allowed values: x <= -100

Value

Namedvector of integers representing the number of chunks/sequences for every case.

See Also

Other Utils Developers: auto_n_cores(), create_object(), create_synthetic_units_from_matrix(),
generate_id(), get_synthetic_cases_from_matrix(), get_time_stamp(),matrix_to_array_c(),
tensor_to_matrix_c(), to_categorical_c()

get_parameter_documentation 67

get_parameter_documentation
Generate layer documentation

Description

Function for generating the documentation of a specific layer.

Usage

get_parameter_documentation(
param_name,
param_dict,
as_list = TRUE,
inc_param_name = TRUE

)
Arguments
param_name string Name of the parameter.
param_dict list storing the parameter description.
as_list bool If TRUE returns the element as part of a list.

inc_param_name bool If TRUE the documentation includes the name of the parameter.

Value

Returns a string containing the description written in rmarkdown.

See Also

Other Utils Documentation: build_documentation_for_model(), build_layer_stack_documentation_for_vignette
get_desc_for_core_model_architecture(), get_dict_cls_type(), get_dict_core_models(),
get_dict_input_types(), get_layer_dict(), get_layer_documentation()

get_param_def Definition of an argument

Description

Function returns the definition of an argument. Please note that only definitions of arguments can
be requested which are used for transformers or classifier models.

Usage

get_param_def (param_name)

68 get_param_dict

Arguments

param_name string Name of the parameter to request its definition.

Value

Returns a 1ist with the definition of the argument. See get_param_dict for more details.

See Also

Other Parameter Dictionary: BaseModelsIndex, DataSetsIndex, TokenizerIndex, get_TEClassifiers_class_names(),
get_called_args(), get_depr_obj_names(), get_magnitude_values(), get_param_dict(),
get_param_doc_desc()

get_param_dict Get dictionary of all parameters

Description

Function provides a 1ist containing important characteristics of the parameter used in the models.
The 1list does contain only the definition of arguments for transformer models and all classifiers.
The arguments of other functions in this package are documented separately.

The aim of this list is to automatize argument checking and widget generation for Al for Education
- Studio.

Usage

get_param_dict()

Value

Returns a named 1ist. The names correspond to specific arguments. The 1ist contains a 1ist for
every argument with the following components:

* type: The type of allowed values.

e allow_null: A bool indicating if the argument can be set to NULL.

* min: The minimal value the argument can be. Set to NULL if not relevant. Set to -Inf if there
is no minimum.

* max: The maximal value the argument can be. Set to NULL if not relevant. Set to Inf if there
is no Minimum.

* desc: A string which includes the description of the argument written in markdown. This
string is for the documentation the parameter.

* values_desc: A named list containing a description of every possible value. The names must
exactly match the strings in allowed_values. Descriptions should be written in markdown.

* allowed_values: vector of allowed values. This is only relevant if the argument is not nu-
meric. During the checking of the arguments it is checked if the provided values can be found
in this vector. If all values are allowed set to NULL.

get_param_doc_desc 69

default_value: The default value of the argument. If there is no default set to NULL.

default_historic: Historic default value. This can be necessary for backward compatibility.

* gui_box: string Name of the box in Al for Education - Studio where the argument appears.
If it should not appear set to NULL.

* gui_label: string Label of the controlling widget in Al for Education - Studio.

See Also

Other Parameter Dictionary: BaseModelsIndex, DataSetsIndex, TokenizerIndex, get_TEClassifiers_class_names(),
get_called_args(), get_depr_obj_names(), get_magnitude_values(), get_param_def (), get_param_doc_desc()

get_param_doc_desc Description of an argument

Description

Function provides the description of an argument in markdown. Its aim is to be used for document-
ing the parameter of functions.

Usage

get_param_doc_desc(param_name)

Arguments

param_name string Name of the parameter to request its definition.

Value

Returns a string which contains the description of the argument in markdown. The concrete format
depends on the type of the argument.

See Also

Other Parameter Dictionary: BaseModelsIndex, DataSetsIndex, TokenizerIndex, get_TEClassifiers_class_names(),
get_called_args(), get_depr_obj_names(), get_magnitude_values(), get_param_def (), get_param_dict()

70 get_py_package_versions

get_py_package_version
Get versions of a specific python package

Description

Function for requesting the version of a specific python package.

Usage

get_py_package_version(package_name)

Arguments

package_name string Name of the package.

Value

Returns the version as string or NA if the package does not exist or no version is available.

See Also

Other Utils Python Developers: get_py_package_versions(), load_all_py_scripts(), load_py_scripts(),
run_py_file()

get_py_package_versions
Get versions of python components

Description

Function for requesting a summary of the versions of all critical python components.

Usage

get_py_package_versions()

Value
Returns a list that contains the version number of python and the versions of critical python pack-
ages. If a package is not available version is set to NA.

See Also

Other Utils Python Developers: get_py_package_version(), load_all_py_scripts(), load_py_scripts(),
run_py_file()

get_recommended_py_versions 71

get_recommended_py_versions
Recommended version of python packages

Description

Returns the minimum and maximum versions of the core python packages used in aifeducation. It
is recommended to use packages of these version. Packages of other versions can result in errors or
unexpected results.

Usage

get_recommended_py_versions()

Value

Returns a data. frame with the packages in the columns and the minimum and maximum version
in the rows.

See Also

Other Installation and Configuration: check_aif_py_modules(), install_aifeducation(), install_aifeducation_stt
install_py_modules(), prepare_session(), set_transformers_logger(), update_aifeducation()

get_synthetic_cases_from_matrix
Create synthetic cases for balancing training data

Description

This function creates synthetic cases for balancing the training with classifier models.

Usage

get_synthetic_cases_from_matrix(
matrix_form,
times,
features,
target,
sequence_length,
method = "knnor",
min_k = 1L,
max_k = 6L

72 get_TEClassifiers_class_names

Arguments
matrix_form Named matrix containing the text embeddings in a matrix form.
times int for the number of sequences/times.
features int for the number of features within each sequence.
target Named factor containing the labels of the corresponding embeddings.

sequence_length
int Length of the text embedding sequences.

method vector containing strings of the requested methods for generating new cases.
Currently "knnor" from this package is available.
min_k int The minimal number of nearest neighbors during sampling process.
max_k int The maximum number of nearest neighbors during sampling process.
Value

list with the following components:
* syntetic_embeddings: Named data. frame containing the text embeddings of the synthetic
cases.

* syntetic_targets: Named factor containing the labels of the corresponding synthetic
cases.

* n_syntetic_units: table showing the number of synthetic cases for every label/category.

See Also

Other Utils Developers: auto_n_cores(), create_object(), create_synthetic_units_from_matrix(),
generate_id(), get_n_chunks(), get_time_stamp(),matrix_to_array_c(), tensor_to_matrix_c(),
to_categorical_c()

get_TEClassifiers_class_names
Get names of classifiers

Description

Function returns the names of all classifiers which are child classes of a specific super class.

Usage

get_TEClassifiers_class_names(super_class = NULL)

Arguments

super_class string Name of the super class the classifiers should be a child of. To request
the names of all classifiers set this argument to NULL.

get_test_data_for_classifiers 73

Value

Returns a vector containing the names of the classifiers.

See Also

Other Parameter Dictionary: BaseModelsIndex, DataSetsIndex, TokenizerIndex, get_called_args(),
get_depr_obj_names(), get_magnitude_values(), get_param_def (), get_param_dict(), get_param_doc_desc()

get_test_data_for_classifiers
Get test data

Description

Function returns example data for testing the package

Usage

get_test_data_for_classifiers(class_range = c(2L, 3L), path_test_embeddings)

Arguments

class_range vector containing the number of classes.

path_test_embeddings
string Path to the location where the test data is stored.

Value

Returns a 1ist with test data.

See Also

Other Utils TestThat Developers: check_adjust_n_samples_on_CI(), generate_args_for_tests(),
generate_embeddings(), generate_tensors(), get_current_args_for_print(), get_fixed_test_tensor(),
random_bool_on_CI()

74 gwet_ac

get_time_stamp Time stamp

Description

Function returns the time on the machine at the moment of calling.

Usage

get_time_stamp()

Value

Returns a string with date and time in format "%y-%m-%d %H:%M:%S".

See Also

Other Utils Developers: auto_n_cores(), create_object(), create_synthetic_units_from_matrix(),
generate_id(), get_n_chunks(), get_synthetic_cases_from_matrix(),matrix_to_array_c(),
tensor_to_matrix_c(), to_categorical_c()

gwet_ac Calculate Gwet’s ACI and AC2

Description

This function calculates Gwets Agreement Coefficients.

Usage

gwet_ac(rater_one, rater_two, additional_raters = NULL)

Arguments
rater_one factor rating of the first coder.
rater_two factor ratings of the second coder.

additional_raters
list Additional raters with same requirements as rater_one and rater_two.
If there are no additional raters set to NULL.

Value

Returns a 1ist with the following entries

* acl: Gwet’s Agreement Coefficient 1 (AC1) for nominal data which is unweighted.
* ac2_linear: Gwet’s Agreement Coefficient 2 (AC2) for ordinal data with linear weights.

* ac2_quadratic: Gwet’s Agreement Coefficient 2 (AC2) for ordinal data with quadratic weights.

HuggingFaceTokenizer 75

Note
Weights are calculated as described in Gwet (2021).

Missing values are supported.

References

Gwet, K. L. (2021). Handbook of inter-rater reliability: The definitive guide to measuring the extent
of agreement among raters (Fifth edition, volume 1). AgreeStat Analytics.

See Also

Other performance measures: calc_standard_classification_measures(), cohens_kappa(),
fleiss_kappa(), get_coder_metrics(), kendalls_w(), kripp_alpha()

HuggingFaceTokenizer HuggingFacelokenizer

Description

Abstract class for all tokenizers used with the "transformers’ library.

Value

Does return a new object of this class.

Super classes

aifeducation: :AIFEMaster -> aifeducation: : TokenizerBase -> HuggingFaceTokenizer

Methods

Public methods:
¢ HuggingFaceTokenizer$create_from_hf()
* HuggingFaceTokenizer$clone()

Method create_from_hf(): Creates a tokenizer from a pretrained model
Usage:
HuggingFaceTokenizer$create_from_hf(model_dir)
Arguments:
model_dir
Returns: Does return a new object of this class.

Method clone(): The objects of this class are cloneable with this method.
Usage:
HuggingFaceTokenizer$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

76 install_aifeducation

See Also

Other Tokenizer: WordPieceTokenizer

install_aifeducation Install aifeducation on a machine

Description

Function for installing ’aifeducation’ on a machine.

Using a virtual environment (use_conda=FALSE) If "python’ is already installed the installed ver-
sion is used. In the case that the required version of "python’ is different from the existing version
the new version is installed. In all other cases python will be installed on the system.

Using a conda environment (use_conda=TRUE) If "'miniconda’ is already existing on the machine
no installation of miniconda’ is applied. In this case the system checks for update and updates
’miniconda’ to the newest version. If *miniconda’ is not found on the system it will be installed.

Usage

install_aifeducation(
install_aifeducation_studio = TRUE,
python_version = "3.12",

cuda_version = "12.9",
use_conda = FALSE
)
Arguments

install_aifeducation_studio
bool If TRUE all necessary R packages are installed for using Al for Education
Studio.

python_version string Python version to use/install.
cuda_version string determining the requested version of cuda.

use_conda bool If TRUE installation installs miniconda’ and uses conda’ as package man-
ager. If FALSE installation installs python and uses virtual environments for
package management.

Value

Function does nothing return. It installs python, optional R packages, and necessary "python’ pack-
ages on a machine.

Note
On MAC OS torch will be installed without support for cuda.

install_aifeducation_studio 77

See Also

Other Installation and Configuration: check_aif_py_modules(), get_recommended_py_versions(),
install_aifeducation_studio(), install_py_modules(), prepare_session(), set_transformers_logger(),
update_aifeducation()

install_aifeducation_studio
Install Al for Education - Studio’ on a machine

Description
Function installs/updates all relevant R packages necessary to run the shiny app Al for Education
- Studio’.

Usage

install_aifeducation_studio()

Value

Function does nothing return. It installs/updates R packages.

See Also

Other Installation and Configuration: check_aif_py_modules(), get_recommended_py_versions(),
install_aifeducation(), install_py_modules(), prepare_session(), set_transformers_logger(),
update_aifeducation()

install_py_modules Installing necessary python modules to an environment

Description

Function for installing the necessary python modules.

Usage
install_py_modules(

envname = "aifeducation”,
transformer_version = "<=4.56.1",
tokenizers_version = "<=0.22.0",
pandas_version = "<=2.3.2",
datasets_version = "<=3.6.0",
codecarbon_version = "<=3.0.4",

safetensors_version = "<=0.6.2",

78

install_py_modules

torcheval _version = "<=0.0.7",
accelerate_version = "<=1.10.1",
calflops_version = "<=0.3.2",
pytorch_cuda_version = "12.9",
python_version = "3.12",
remove_first = FALSE,

use_conda = FALSE

Arguments

envname string Name of the environment where the packages should be installed.
transformer_version

string determining the desired version of the python library ’transformers’.
tokenizers_version

string determining the desired version of the python library ’tokenizers’.
pandas_version string determining the desired version of the python library ’pandas’.
datasets_version

string determining the desired version of the python library ’datasets’.
codecarbon_version

string determining the desired version of the python library ’codecarbon’.
safetensors_version

string determining the desired version of the python library ’safetensors’.
torcheval_version

string determining the desired version of the python library ’torcheval’.
accelerate_version

string determining the desired version of the python library ’accelerate’.
calflops_version

string determining the desired version of the python library ’calflops’.
pytorch_cuda_version

string determining the desired version of "cuda’ for ’PyTorch’. To install *Py-

Torch’ without cuda set to NULL.
python_version string Python version to use.
remove_first bool If TRUE removes the environment completely before recreating the envi-

ronment and installing the packages. If FALSE the packages are installed in the

existing environment without any prior changes.
use_conda bool If TRUE uses ’conda’ for package management. If FALSE uses virtual envi-

ronments for package management.

Value

Returns no values or objects. Function is used for installing the necessary python libraries in a
conda environment.

Note

Function tries to identify the type of operating system. In the case that MAC OS is detected ’Py-
Torch’ is installed without support for cuda.

kendalls_w 79

See Also

Other Installation and Configuration: check_aif_py_modules(), get_recommended_py_versions(),
install_aifeducation(), install_aifeducation_studio(), prepare_session(), set_transformers_logger(),
update_aifeducation()

kendalls_w Calculate Kendall’s coefficient of concordance w

Description

This function calculates Kendall’s coefficient of concordance w with and without correction.

Usage

kendalls_w(rater_one, rater_two, additional_raters = NULL)

Arguments
rater_one factor rating of the first coder.
rater_two factor ratings of the second coder.

additional_raters
list Additional raters with same requirements as rater_one and rater_two.
If there are no additional raters set to NULL.
Value
Returns a list containing the results for Kendall’s coefficient of concordance w with and without
correction.
See Also

Other performance measures: calc_standard_classification_measures(), cohens_kappa(),
fleiss_kappa(), get_coder_metrics(), gwet_ac(), kripp_alpha()

knnor K-Nearest Neighbor OveRsampling approach (KNNOR)

Description

K-Nearest Neighbor OveRsampling approach (KNNOR)

Usage

knnor(dataset, k, aug_num, cycles_number_limit = 100L)

80 knnor_is_same_class

Arguments
dataset list containing the following fields:
* embeddings: an 2-D array (matrix) with size batch x timesxfeatures
* labels: an 1-D array (vector) of integers with batch elements
k unsigned integer number of nearest neighbors
aug_num unsigned integer number of datapoints to be augmented

cycles_number_limit
unsigned integer number of maximum try cycles

Value

Returns artificial points (2-D array (matrix) with size aug_numxtimes*features®)

References

Islam, A., Belhaouari, S. B., Rehman, A. U. & Bensmail, H. (2022). KNNOR: An oversampling
technique for imbalanced datasets. Applied Soft Computing, 115, 108288. https://doi.org/10.1016/j.as0c.2021.108288

knnor_is_same_class Validate a new point

Description

Function written in C++ for validating a new point (KNNOR-Validation)

Usage

knnor_is_same_class(new_point, dataset, labels, k)

Arguments
new_point 1-D array (vector) new data point to be validated before adding (with timesxfeatures
elements)
dataset 2-D array (matrix) current embeddings (with size batch x times*features)
labels 1-D array (vector) of integers with batch elements
k unsigned integer number of nearest neighbors
Value

Returns TRUE if a new point can be added, otherwise - FALSE

kripp_alpha 81

kripp_alpha Calculate Krippendorff’s Alpha

Description

This function calculates different Krippendorff’s Alpha for nominal and ordinal variables.

Usage

kripp_alpha(rater_one, rater_two, additional_raters = NULL)

Arguments
rater_one factor rating of the first coder.
rater_two factor ratings of the second coder.

additional_raters

list Additional raters with same requirements as rater_one and rater_two.
If there are no additional raters set to NULL.

Value

Returns a 1ist containing the results for Krippendorff’s Alpha for nominal and ordinal data.

Note

Missing values are supported.

References

Krippendorff, K. (2019). Content Analysis: An Introduction to Its Methodology (4th Ed.). SAGE

See Also

Other performance measures: calc_standard_classification_measures(), cohens_kappa(),
fleiss_kappa(), get_coder_metrics(), gwet_ac(), kendalls_w()

82 LargeDataSetBase

LargeDataSetBase Abstract base class for large data sets

Description

This object contains public and private methods which may be useful for every large data sets.
Objects of this class are not intended to be used directly.

Value

Returns a new object of this class.

Methods

Public methods:

e LargeDataSetBase$n_cols()

e LargeDataSetBase$n_rows()

e LargeDataSetBase$get_colnames()

e LargeDataSetBase$get_dataset()

* LargeDataSetBase$reduce_to_unique_ids()
e LargeDataSetBase$select()

* LargeDataSetBase$get_ids()

* LargeDataSetBase$save()

e LargeDataSetBase$load_from_disk()

* LargeDataSetBase$load()

* LargeDataSetBase$set_package_versions()
e LargeDataSetBase$get_package_versions()
e LargeDataSetBase$get_all_fields()

e LargeDataSetBase$clone()

Method n_cols(): Number of columns in the data set.
Usage:
LargeDataSetBase$n_cols()

Returns: int describing the number of columns in the data set.

Method n_rows(): Number of rows in the data set.

Usage:
LargeDataSetBase$n_rows()

Returns: int describing the number of rows in the data set.

Method get_colnames(): Get names of the columns in the data set.
Usage:
LargeDataSetBase$get_colnames()

LargeDataSetBase 83

Returns: vector containing the names of the columns as strings.

Method get_dataset(): Get data set.

Usage:

LargeDataSetBase$get_dataset()

Returns: Returns the data set of this object as an object of class datasets.arrow_dataset.Dataset.
Method reduce_to_unique_ids(): Reduces the data set to a data set containing only unique
ids. In the case an id exists multiple times in the data set the first case remains in the data set. The

other cases are dropped.
Attention Calling this method will change the data set in place.

Usage:
LargeDataSetBase$reduce_to_unique_ids()

Returns: Method does not return anything. It changes the data set of this object in place.

Method select(): Returns a data set which contains only the cases belonging to the specific
indices.

Usage:
LargeDataSetBase$select(indicies)

Arguments:

indicies vector of int for selecting rows in the data set. Attention The indices are zero-
based.

Returns: Returns a data set of class datasets.arrow_dataset.Dataset with the selected
rOws.

Method get_ids(): Getids

Usage:
LargeDataSetBase$get_ids()

Returns: Returns a vector containing the ids of every row as strings.

Method save(): Saves a data set to disk.
Usage:
LargeDataSetBase$save(dir_path, folder_name, create_dir = TRUE)
Arguments:
dir_path Path where to store the data set.
folder_name string Name of the folder for storing the data set.
create_dir bool If True the directory will be created if it does not exist.

Returns: Method does not return anything. It write the data set to disk.
Method load_from_disk(): loads an object of class LargeDataSetBase from disk *and updates
the object to the current version of the package.

Usage:
LargeDataSetBase$load_from_disk(dir_path)

84 LargeDataSetBase

Arguments:
dir_path Path where the data set set is stored.

Returns: Method does not return anything. It loads an object from disk.

Method load(): Loads a data set from disk.

Usage:
LargeDataSetBase$load(dir_path)

Arguments:
dir_path Path where the data set is stored.

Returns: Method does not return anything. It loads a data set from disk.

Method set_package_versions(): Method for setting the package version for "aifeducation’,
‘reticulate’, “torch’, and *numpy’ to the currently used versions.

Usage:
LargeDataSetBase$set_package_versions()

Returns: Method does not return anything. It is used to set the private fields fo package
versions.
Method get_package_versions(): Method for requesting a summary of the R and python
packages’ versions used for creating the model.

Usage:
LargeDataSetBase$get_package_versions()

Returns: Returns a 1ist containing the versions of the relevant R and python packages.

Method get_all_fields(): Return all fields.

Usage:
LargeDataSetBase$get_all_fields()

Returns: Method returns a 1ist containing all public and private fields of the object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
LargeDataSetBase$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also

Other R6 Classes for Developers: ALFEBaseModel, ALIFEMaster, BaseModelCore, ClassifiersBasedOnTextEmbeddings,
DataManagerClassifier, ModelsBasedOnTextEmbeddings, TEClassifiersBasedOnProtoNet,
TEClassifiersBasedOnRegular, TokenizerBase

LargeDataSetForText 85

LargeDataSetForText Abstract class for large data sets containing raw texts

Description

This object stores raw texts. The data of this objects is not stored in memory directly. By using
memory mapping these objects allow to work with data sets which do not fit into memory/RAM.

Value

Returns a new object of this class.

Super class

aifeducation::LargeDataSetBase -> LargeDataSetForText

Methods

Public methods:

e LargeDataSetForText$new()

e LargeDataSetForText$add_from_files_txt()
* LargeDataSetForText$add_from_files_pdf ()
* LargeDataSetForText$add_from_files_x1lsx()
e LargeDataSetForText$add_from_data.frame()
e LargeDataSetForText$get_private()

e LargeDataSetForText$clone()

Method new(): Method for creation of LargeDataSetForText instance. It can be initialized
with init_data parameter if passed (Uses add_from_data.frame() method if init_data is
data.frame).

Usage:

LargeDataSetForText$new(init_data = NULL)

Arguments:

init_data Initial data. frame for dataset.

Returns: A new instance of this class initialized with init_data if passed.

Method add_from_files_txt(): Method for adding raw texts saved within .txt files to the data
set. Please note the the directory should contain one folder for each .txt file. In order to create an
informative data set every folder can contain the following additional files:

* bib_entry.txt: containing a text version of the bibliographic information of the raw text.

* license.txt: containing a statement about the license to use the raw text such as "CC BY".

* url_license.txt: containing the url/link to the license in the internet.

* text_license.txt: containing the license in raw text.

86

LargeDataSetForText

e url_source.txt: containing the url/link to the source in the internet.
The id of every .txt file is the file name without file extension. Please be aware to provide
unique file names. Id and raw texts are mandatory, bibliographic and license information are
optional.

Usage:
LargeDataSetForText$add_from_files_txt(
dir_path,
batch_size = 500L,
log_file = NULL,
log_write_interval = 2L,
log_top_value = oL,
log_top_total = 1L,
log_top_message = NA,
clean_text = TRUE,
trace = TRUE

)

Arguments:

dir_path Path to the directory where the files are stored.
batch_size int determining the number of files to process at once.

log_file string Path to the file where the log should be saved. If no logging is desired set
this argument to NULL.

log_write_interval int Time in seconds determining the interval in which the logger should
try to update the log files. Only relevant if log_file is not NULL.

log_top_value int indicating the current iteration of the process.

log_top_total int determining the maximal number of iterations.

log_top_message string providing additional information of the process.

clean_text bool If TRUE the text is modified to improve the quality of the following analysis:
* Some special symbols are removed.
* All spaces at the beginning and the end of a row are removed.
» Multiple spaces are reduced to single space.

* All rows with a number from 1 to 999 at the beginning or at the end are removed (header
and footer).

* List of content is removed.
» Hyphenation is made undone.
* Line breaks within a paragraph are removed.
* Multiple line breaks are reduced to a single line break.
trace bool If TRUE information on the progress is printed to the console.

Returns: The method does not return anything. It adds new raw texts to the data set.

Method add_from_files_pdf(): Method for adding raw texts saved within .pdf files to the
data set. Please note the the directory should contain one folder for each .pdf file. In order to
create an informative data set every folder can contain the following additional files:

* bib_entry.txt: containing a text version of the bibliographic information of the raw text.

* license.txt: containing a statement about the license to use the raw text such as "CC BY".

LargeDataSetForText 87

* url_license.txt: containing the url/link to the license in the internet.
* text_license.txt: containing the license in raw text.

e url_source.txt: containing the url/link to the source in the internet.
The id of every .pdf file is the file name without file extension. Please be aware to provide
unique file names. Id and raw texts are mandatory, bibliographic and license information are
optional.

Usage:
LargeDataSetForText$add_from_files_pdf(
dir_path,
batch_size = 500L,
log_file = NULL,
log_write_interval = 2L,
log_top_value = oL,
log_top_total 1L,
log_top_message = NA,
clean_text = TRUE,
trace = TRUE

)

Arguments:
dir_path Path to the directory where the files are stored.
batch_size int determining the number of files to process at once.

log_file string Path to the file where the log should be saved. If no logging is desired set
this argument to NULL.

log_write_interval int Time in seconds determining the interval in which the logger should
try to update the log files. Only relevant if log_file is not NULL.

log_top_value int indicating the current iteration of the process.

log_top_total int determining the maximal number of iterations.

log_top_message string providing additional information of the process.

clean_text bool If TRUE the text is modified to improve the quality of the following analysis:
* Some special symbols are removed.
* All spaces at the beginning and the end of a row are removed.
» Multiple spaces are reduced to single space.

* All rows with a number from 1 to 999 at the beginning or at the end are removed (header
and footer).

* List of content is removed.
* Hyphenation is made undone.
* Line breaks within a paragraph are removed.
* Multiple line breaks are reduced to a single line break.
trace bool If TRUE information on the progress is printed to the console.

Returns: The method does not return anything. It adds new raw texts to the data set.
Method add_from_files_x1sx(): Method for adding raw texts saved within .xIsx files to the

data set. The method assumes that the texts are saved in the rows and that the columns store the
id and the raw texts in the columns. In addition, a column for the bibliography information and

88

LargeDataSetForText

the license can be added. The column names for these rows must be specified with the following
arguments. They must be the same for all .xlsx files in the chosen directory. Id and raw texts
are mandatory, bibliographic, license, license’s url, license’s text, and source’s url are optional.
Additional columns are dropped.

Usage:
LargeDataSetForText$add_from_files_x1lsx(
dir_path,
trace = TRUE,
id_column = "id",
text_column = "text"”,
bib_entry_column = "bib_entry”,
license_column = "license",
url_license_column = "url_license”,
text_license_column = "text_license”,
url_source_column = "url_source”,

log_file = NULL,

log_write_interval = 2L,

log_top_value = oL,

log_top_total = 1L,

log_top_message = NA
)
Arguments:
dir_path Path to the directory where the files are stored.
trace bool If TRUE prints information on the progress to the console.
id_column string Name of the column storing the ids for the texts.
text_column string Name of the column storing the raw text.

bib_entry_column string Name of the column storing the bibliographic information of the
texts.

license_column string Name of the column storing information about the licenses.

url_license_column string Name of the column storing information about the url to the
license in the internet.

text_license_column string Name of the column storing the license as text.

url_source_column string Name of the column storing information about about the url to
the source in the internet.

log_file string Path to the file where the log should be saved. If no logging is desired set
this argument to NULL.

log_write_interval int Time in seconds determining the interval in which the logger should
try to update the log files. Only relevant if log_file is not NULL.

log_top_value int indicating the current iteration of the process.
log_top_total int determining the maximal number of iterations.
log_top_message string providing additional information of the process.

Returns: The method does not return anything. It adds new raw texts to the data set.

Method add_from_data.frame(): Method for adding raw texts from a data. frame
Usage:

LargeDataSetForTextEmbeddings 89

LargeDataSetForText$add_from_data.frame(data_frame)

Arguments:

data_frame Object of class data. frame with at least the following columns "id","text","bib_entry",

non non

"license", "url_license", "text_license", and "url_source". If "id" and7or "text" is missing
an error occurs. If the other columns are not present in the data. frame they are added with
empty values(NA). Additional columns are dropped.

Returns: The method does not return anything. It adds new raw texts to the data set.
Method get_private(): Method for requesting all private fields and methods. Used for loading
and updating an object.

Usage:
LargeDataSetForText$get_private()

Returns: Returns a 1ist with all private fields and methods.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LargeDataSetForText$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Data Management: EmbeddedText, LargeDataSetForTextEmbeddings

LargeDataSetForTextEmbeddings
Abstract class for large data sets containing text embeddings

Description

This object stores text embeddings which are usually produced by an object of class TextEmbed-
dingModel. The data of this objects is not stored in memory directly. By using memory mapping
these objects allow to work with data sets which do not fit into memory/RAM.

LargeDataSetForTextEmbeddings are used for storing and managing the text embeddings created
with objects of class TextEmbeddingModel. Objects of class LargeDataSetForTextEmbeddings
serve as input for objects of class ClassifiersBasedOnTextEmbeddings and TEFeatureExtractor.
The main aim of this class is to provide a structured link between embedding models and classi-
fiers. Since objects of this class save information on the text embedding model that created the
text embedding it ensures that only embeddings generated with same embedding model are com-
bined. Furthermore, the stored information allows objects to check if embeddings of the correct text
embedding model are used for training and predicting.

This class is not designed for a direct use.

90 LargeDataSetForTextEmbeddings

Value

Returns a new object of this class.

Super class

aifeducation::LargeDataSetBase -> LargeDataSetForTextEmbeddings

Methods

Public methods:

e LargeDataSetForTextEmbeddings$configure()

e LargeDataSetForTextEmbeddings$is_configured()

* LargeDataSetForTextEmbeddings$get_text_embedding_model_name()

e LargeDataSetForTextEmbeddings$get_model_info()

* LargeDataSetForTextEmbeddings$load_from_disk()

e LargeDataSetForTextEmbeddings$get_model_label()

e LargeDataSetForTextEmbeddings$add_feature_extractor_info()

* LargeDataSetForTextEmbeddings$get_feature_extractor_info()

e LargeDataSetForTextEmbeddings$is_compressed()

e LargeDataSetForTextEmbeddings$get_times()

e LargeDataSetForTextEmbeddings$get_features()

e LargeDataSetForTextEmbeddings$get_original_features()

* LargeDataSetForTextEmbeddings$get_pad_value()

* LargeDataSetForTextEmbeddings$add_embeddings_from_array()

e LargeDataSetForTextEmbeddings$add_embeddings_from_EmbeddedText ()
* LargeDataSetForTextEmbeddings$add_embeddings_from_LargeDataSetForTextEmbeddings()
* LargeDataSetForTextEmbeddings$convert_to_EmbeddedText ()

e LargeDataSetForTextEmbeddings$clone()

Method configure(): Creates a new object representing text embeddings.
Usage:
LargeDataSetForTextEmbeddings$configure(

model_name = NA,
model_label = NA,
model_date = NA,
model_method = NA,
model_version = NA,
model_language = NA,
param_seq_length = NA,
param_chunks = NULL,
param_features = NULL,
param_overlap = NULL,
param_emb_layer_min = NULL,
param_emb_layer_max = NULL,
param_emb_pool_type = NULL,

LargeDataSetForTextEmbeddings 91

param_pad_value = -100L,

param_aggregation = NULL
)
Arguments:
model_name string Name of the model that generates this embedding.
model_label string Label of the model that generates this embedding.
model_date string Date when the embedding generating model was created.
model_method string Method of the underlying embedding model.
model_version string Version of the model that generated this embedding.
model_language string Language of the model that generated this embedding.

param_seq_length int Maximum number of tokens that processes the generating model for a
chunk.

param_chunks int Maximum number of chunks which are supported by the generating model.
param_features int Number of dimensions of the text embeddings.

param_overlap int Number of tokens that were added at the beginning of the sequence for
the next chunk by this model.

param_emb_layer_min int or string determining the first layer to be included in the creation
of embeddings.

param_emb_layer_max int or string determining the last layer to be included in the creation
of embeddings.

param_emb_pool_type string determining the method for pooling the token embeddings within
each layer.

param_pad_value int Value indicating padding. This value should no be in the range of
regluar values for computations. Thus it is not recommended to chance this value. De-
fault is -100. Allowed values: x <= -100

param_aggregation string Aggregation method of the hidden states. Deprecated. Only in-
cluded for backward compatibility.

Returns: The method returns a new object of this class.
Method is_configured(): Method for checking if the model was successfully configured. An
object can only be used if this value is TRUE.

Usage:

LargeDataSetForTextEmbeddings$is_configured()

Returns: bool TRUE if the model is fully configured. FALSE if not.
Method get_text_embedding_model_name(): Method for requesting the name (unique id) of
the underlying text embedding model.

Usage:

LargeDataSetForTextEmbeddings$get_text_embedding_model_name()

Returns: Returns a string describing name of the text embedding model.
Method get_model_info(): Method for retrieving information about the model that generated
this embedding.

Usage:

LargeDataSetForTextEmbeddings

LargeDataSetForTextEmbeddings$get_model_info()

Returns: list containing all saved information about the underlying text embedding model.

Method load_from_disk(): loads an object of class LargeDataSetForTextEmbeddings from
disk and updates the object to the current version of the package.

Usage:

LargeDataSetForTextEmbeddings$load_from_disk(dir_path)

Arguments:

dir_path Path where the data set set is stored.

Returns: Method does not return anything. It loads an object from disk.

Method get_model_label(): Method for retrieving the label of the model that generated this
embedding.

Usage:

LargeDataSetForTextEmbeddings$get_model_label()

Returns: string Label of the corresponding text embedding model

Method add_feature_extractor_info(): Method setting information on the TEFeatureEx-
tractor that was used to reduce the number of dimensions of the text embeddings. This information
should only be used if a TEFeatureExtractor was applied.
Usage:
LargeDataSetForTextEmbeddings$add_feature_extractor_info(
model_name,
model_label = NA,
features = NA,
method = NA,
noise_factor = NA,
optimizer = NA
)
Arguments:
model_name string Name of the underlying TextEmbeddingModel.
model_label string Label of the underlying TextEmbeddingModel.
features int Number of dimension (features) for the compressed text embeddings.

method string Method that the TEFeatureExtractor applies for genereating the compressed
text embeddings.

noise_factor double Noise factor of the TEFeatureExtractor.
optimizer string Optimizer used during training the TEFeatureExtractor.

Returns: Method does nothing return. It sets information on a TEFeatureExtractor.
Method get_feature_extractor_info(): Method for receiving information on the TEFea-
tureExtractor that was used to reduce the number of dimensions of the text embeddings.

Usage:
LargeDataSetForTextEmbeddings$get_feature_extractor_info()

LargeDataSetForTextEmbeddings 93

Returns: Returns a 1ist with information on the TEFeatureExtractor. If no TEFeatureExtrac-
tor was used it returns NULL.

Method is_compressed(): Checks if the text embedding were reduced by a TEFeatureExtrac-
tor.

Usage:
LargeDataSetForTextEmbeddings$is_compressed()

Returns: Returns TRUE if the number of dimensions was reduced by a TEFeatureExtractor. If
not return FALSE.
Method get_times(): Number of chunks/times of the text embeddings.

Usage:
LargeDataSetForTextEmbeddings$get_times()

Returns: Returns an int describing the number of chunks/times of the text embeddings.
Method get_features(): Number of actual features/dimensions of the text embeddings.In the
case a TEFeatureExtractor was used the number of features is smaller as the original number of

features. To receive the original number of features (the number of features before applying a
TEFeatureExtractor) you can use the method get_original_features of this class.

Usage:
LargeDataSetForTextEmbeddings$get_features()

Returns: Returns an int describing the number of features/dimensions of the text embeddings.

Method get_original_features(): Number of original features/dimensions of the text em-
beddings.

Usage:
LargeDataSetForTextEmbeddings$get_original_features()

Returns: Returns an int describing the number of features/dimensions if no TEFeatureExtrac-
tor) is used or before a TEFeatureExtractor) is applied.
Method get_pad_value(): Value for indicating padding.

Usage:
LargeDataSetForTextEmbeddings$get_pad_value()

Returns: Returns an int describing the value used for padding.
Method add_embeddings_from_array(): Method for adding new data to the data set from an

array. Please note that the method does not check if cases already exist in the data set. To reduce
the data set to unique cases call the method reduce_to_unique_ids.

Usage:
LargeDataSetForTextEmbeddings$add_embeddings_from_array(embedding_array)

Arguments:

embedding_array array containing the text embeddings.

Returns: The method does not return anything. It adds new data to the data set.

94 LargeDataSetForTextEmbeddings

Method add_embeddings_from_EmbeddedText(): Method for adding new data to the data set
from an EmbeddedText. Please note that the method does not check if cases already exist in the
data set. To reduce the data set to unique cases call the method reduce_to_unique_ids.
Usage:
LargeDataSetForTextEmbeddings$add_embeddings_from_EmbeddedText(EmbeddedText)
Arguments:
EmbeddedText Object of class EmbeddedText.

Returns: The method does not return anything. It adds new data to the data set.

Method add_embeddings_from_LargeDataSetForTextEmbeddings(): Method for adding
new data to the data set from an LargeDataSetForTextEmbeddings. Please note that the method
does not check if cases already exist in the data set. To reduce the data set to unique cases call the
method reduce_to_unique_ids.

Usage:

LargeDataSetForTextEmbeddings$add_embeddings_from_LargeDataSetForTextEmbeddings(

dataset

)

Arguments:

dataset Object of class LargeDataSetForTextEmbeddings.

Returns: The method does not return anything. It adds new data to the data set.

Method convert_to_EmbeddedText(): Method for converting this object to an object of class
EmbeddedText.

Attention This object uses memory mapping to allow the usage of data sets that do not fit into
memory. By calling this method the data set will be loaded and stored into memory/RAM. This
may lead to an out-of-memory error.

Usage:
LargeDataSetForTextEmbeddings$convert_to_EmbeddedText ()

Returns: LargeDataSetForTextEmbeddings an object of class EmbeddedText which is stored
in the memory/RAM.
Method clone(): The objects of this class are cloneable with this method.

Usage:
LargeDataSetForTextEmbeddings$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Data Management: EmbeddedText, LargeDataSetForText

load_all_py_scripts 95

load_all_py_scripts Load and re-load all python scripts

Description

Function loads or re-loads all python scripts within the package ’aifeducation’.

Usage

load_all_py_scripts()

Value

Function does nothing return. It loads the requested scripts.

See Also

Other Utils Python Developers: get_py_package_version(), get_py_package_versions(), load_py_scripts(),
run_py_file()

load_from_disk Loading objects created with ’aifeducation’

Description

Function for loading objects created with ’aifeducation’.

Usage
load_from_disk(dir_path)

Arguments

dir_path string Path to the directory where the model is stored.

Value
Returns an object of class TEClassifierRegular, TEClassifierProtoNet, TEFeatureExtractor, Tex-
tEmbeddingModel, LargeDataSetForTextEmbeddings, LargeDataSetForText or EmbeddedText.
See Also

Other Saving and Loading: save_to_disk()

96 long_load_target_data

load_py_scripts Load and re-load python scripts

Description

Function loads or re-loads python scripts within the package ’aifeducation’.

Usage

load_py_scripts(files)

Arguments

files vector containing the file names of the scripts that should be loaded.

Value

Function does nothing return. It loads the requested scripts.

See Also

Other Utils Python Developers: get_py_package_version(), get_py_package_versions(), load_all_py_scripts(),
run_py_file()

long_load_target_data Load target data for long running tasks

Description

Function loads the target data for a long running task.

Usage

long_load_target_data(file_path, selectet_column)

Arguments

file_path string Path to the file storing the target data.
selectet_column
string Name of the column containing the target data.

Details

This function assumes that the target data is stored as a columns with the cases in the rows and the
categories in the columns. The ids of the cases must be stored in a column called "id".

matrix_to_array_c 97

Value

Returns a named factor containing the target data.

See Also

Other Utils Studio Developers: add_missing_args(), create_data_embeddings_description(),
summarize_args_for_long_task()

matrix_to_array_c Reshape matrix to array

Description

Function written in C++ for reshaping a matrix containing sequential data into an array for use with
keras.

Usage

matrix_to_array_c(matrix, times, features)

Arguments

matrix matrix containing the sequential data.

times uword Number of sequences.

features uword Number of features within each sequence.
Value

Returns an array. The first dimension corresponds to the cases, the second to the times, and the third
to the features.

See Also

Other Utils Developers: auto_n_cores(), create_object(), create_synthetic_units_from_matrix(),
generate_id(), get_n_chunks(), get_synthetic_cases_from_matrix(), get_time_stamp(),
tensor_to_matrix_c(), to_categorical_c()

98 ModelsBasedOnTextEmbeddings

ModelsBasedOnTextEmbeddings
Base class for models using neural nets

Description

Abstract class for all models that do not rely on the python library ’transformers’. All models of
this class require text embeddings as input. These are provided as objects of class EmbeddedText
or LargeDataSetForTextEmbeddings.

Objects of this class containing fields and methods used in several other classes in *Al for Educa-
tion’.

This class is not designed for a direct application and should only be used by developers.

Value

A new object of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->ModelsBasedOnTextEmbeddings

Methods

Public methods:
* ModelsBasedOnTextEmbeddings$get_text_embedding_model ()
¢ ModelsBasedOnTextEmbeddings$get_text_embedding_model_name()
¢ ModelsBasedOnTextEmbeddings$check_embedding_model ()
* ModelsBasedOnTextEmbeddings$save()
* ModelsBasedOnTextEmbeddings$load_from_disk()
* ModelsBasedOnTextEmbeddings$plot_training_history()
* ModelsBasedOnTextEmbeddings$clone()

Method get_text_embedding_model(): Method for requesting the text embedding model in-
formation.

Usage:
ModelsBasedOnTextEmbeddings$get_text_embedding_model ()

Returns: 1list of all relevant model information on the text embedding model underlying the
model.
Method get_text_embedding_model_name(): Method for requesting the name (unique id) of
the underlying text embedding model.

Usage:
ModelsBasedOnTextEmbeddings$get_text_embedding_model_name()

Returns: Returns a string describing name of the text embedding model.

ModelsBasedOnTextEmbeddings 99

Method check_embedding_model(): Method for checking if the provided text embeddings are
created with the same TextEmbeddingModel as the model.

Usage:
ModelsBasedOnTextEmbeddings$check_embedding_model (text_embeddings)

Arguments:
text_embeddings Object of class EmbeddedText or LargeDataSetForTextEmbeddings.
Returns: TRUE if the underlying TextEmbeddingModel are the same. FALSE if the models differ.

Method save(): Method for saving a model.
Usage:
ModelsBasedOnTextEmbeddings$save(dir_path, folder_name)
Arguments:
dir_path string Path of the directory where the model should be saved.
folder_name string Name of the folder that should be created within the directory.

Returns: Function does not return a value. It saves the model to disk.

Method load_from_disk(): loads an object from disk and updates the object to the current
version of the package.

Usage:

ModelsBasedOnTextEmbeddings$load_from_disk(dir_path)

Arguments:

dir_path Path where the object set is stored.

Returns: Method does not return anything. It loads an object from disk.

Method plot_training_history(): Method for requesting a plot of the training history. This
method requires the R package *ggplot2’ to work.

Usage:
ModelsBasedOnTextEmbeddings$plot_training_history(
final_training = FALSE,
pl_step = NULL,

measure = "loss”,
y_min = NULL,
y_max = NULL,

add_min_max = TRUE,
text_size = 10L

)

Arguments:

final_training bool If FALSE the values of the performance estimation are used. If TRUE
only the epochs of the final training are used.

pl_step int Number of the step during pseudo labeling to plot. Only relevant if the model was
trained with active pseudo labeling.

measure Measure to plot.

y_min Minimal value for the y-axis. Set to NULL for an automatic adjustment.

100 output_message

y_max Maximal value for the y-axis. Set to NULL for an automatic adjustment.

add_min_max bool If TRUE the minimal and maximal values during performance estimation
are port of the plot. If FALSE only the mean values are shown. Parameter is ignored if
final_training=TRUE.

text_size Size of the text.

Returns: Returns a plot of class ggplot visualizing the training process. Prepare history data
of objects Function for preparing the history data of a model in order to be plotted in Al for
Education - Studio.

final bool If TRUE the history data of the final training is used for the data set. pl_step int
If use_pl=TRUE select the step within pseudo labeling for which the data should be prepared.
Returns a named 1ist with the training history data of the model. The reported measures depend
on the provided model.

Utils Studio Developers internal

Method clone(): The objects of this class are cloneable with this method.
Usage:
ModelsBasedOnTextEmbeddings$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

Other R6 Classes for Developers: ALFEBaseModel, ALIFEMaster, BaseModelCore, ClassifiersBasedOnTextEmbeddings,
DataManagerClassifier, LargeDataSetBase, TEClassifiersBasedOnProtoNet, TEClassifiersBasedOnRegular,
TokenizerBase

output_message Print message

Description
Prints a message msg if trace parameter is TRUE with current date with message() or cat() func-
tion.

Usage

output_message(msg, trace, msg_fun)

Arguments
msg string Message that should be printed.
trace bool Silent printing (FALSE) or not (TRUE).
msg_fun bool value that determines what function should be used. TRUE for message(),

FALSE for cat().

prepare_r._array_for_dataset 101

Value

This function returns nothing.

See Also

Other Utils Log Developers: cat_message(), clean_pytorch_log_transformers(), print_message(),
read_log(), read_loss_log(), reset_log(), reset_loss_log(),write_log()

prepare_r_array_for_dataset
Convert R array for arrow data set

Description

Function converts a R array into a numpy array that can be added to an arrow data set. The array
should represent embeddings.

Usage

prepare_r_array_for_dataset(r_array)

Arguments

r_array array representing embeddings.

Value

Returns a numpy array.

See Also

Other Utils Python Data Management Developers: class_vector_to_py_dataset(),data.frame_to_py_dataset(),
get_batches_index (), py_dataset_to_embeddings(), reduce_to_unique(), tensor_list_to_numpy(),
tensor_to_numpy ()

102 print_message

prepare_session Function for setting up a python environment within R.

Description

This functions checks for python and a specified environment. If the environment exists it will be
activated. If python is already initialized it uses the current environment.

Usage
prepare_session(env_type = "auto”, envname = "aifeducation")
Arguments
env_type string If set to "venv" virtual environment is requested. If set to "conda” a
"conda’ environment is requested. If set to "auto"” the function tries to activate
a virtual environment with the given name. If this environment does not exist
it tries to activate a conda environment with the given name. If this fails the
default virtual environment is used.
envname string envname name of the requested environment.
Value

Function does not return anything. It is used for preparing python and R.

See Also

Other Installation and Configuration: check_aif_py_modules(), get_recommended_py_versions(),
install_aifeducation(), install_aifeducation_studio(), install_py_modules(), set_transformers_logger(),

update_aifeducation()

print_message Print message (message())

Description

Prints a message msg if trace parameter is TRUE with current date with message () function.

Usage

print_message(msg, trace)

Arguments
msg string Message that should be printed.
trace bool Silent printing (FALSE) or not (TRUE).

py_dataset_to_embeddings 103

Value

This function returns nothing.

See Also

Other Utils Log Developers: cat_message(), clean_pytorch_log_transformers(), output_message(),
read_log(), read_loss_log(), reset_log(), reset_loss_log(),write_log()

py_dataset_to_embeddings
Convert arrow data set to an arrow data set

Description

Function for converting an arrow data set into a data set that can be used to store and process
embeddings.

Usage

py_dataset_to_embeddings(py_dataset)

Arguments

py_dataset Object of class datasets.arrow_dataset.Dataset.

Value

Returns the data set of class datasets.arrow_dataset.Dataset with only two columns ("id","input").
"id" stores the name of the cases while "input" stores the embeddings.

See Also
Other Utils Python Data Management Developers: class_vector_to_py_dataset(), data.frame_to_py_dataset(),

get_batches_index(), prepare_r_array_for_dataset(), reduce_to_unique(), tensor_list_to_numpy(),
tensor_to_numpy ()

104 read_log

random_bool_on_CI Random bool on Continuous Integration

Description

Function returns randomly TRUE or FALSE if on CI. It returns FALSE if it is not on CIL.

Usage

random_bool_on_CI()

Value

Returns a bool.

See Also

Other Utils TestThat Developers: check_adjust_n_samples_on_CI(), generate_args_for_tests(),
generate_embeddings(), generate_tensors(), get_current_args_for_print(), get_fixed_test_tensor(),
get_test_data_for_classifiers()

read_log Function for reading a log file in R

Description

This function reads a log file at the given location. The log file should be created with write_log.

Usage
read_log(file_path)

Arguments

file_path string Path to the log file.

Value

Returns a matrix containing the log file.

See Also

Other Utils Log Developers: cat_message(), clean_pytorch_log_transformers(), output_message(),
print_message(), read_loss_log(), reset_log(), reset_loss_log(),write_log()

read_loss_log 105

read_loss_log Function for reading a log file containing a record of the loss during
training.

Description

This function reads a log file that contains values for every epoch for the loss. The values are
grouped for training and validation data. The log contains values for test data if test data was
available during training.

Usage

read_loss_log(path_loss)

Arguments

path_loss string Path to the log file.

Details

In general the loss is written by a python function during model’s training.

Value

Function returns a matrix that contains two or three row depending on the data inside the loss log.
In the case of two rows the first represents the training data and the second the validation data. In
the case of three rows the third row represents the values for test data. All Columns represent the
epochs.

See Also

Other Utils Log Developers: cat_message(), clean_pytorch_log_transformers(), output_message(),
print_message(), read_log(), reset_log(), reset_loss_log(),write_log()

reduce_to_unique Reduce to unique cases

Description

Function creates an arrow data set that contains only unique cases. That is, duplicates are removed.

Usage

reduce_to_unique(dataset_to_reduce, column_name)

106 reset_log

Arguments

dataset_to_reduce
Object of class datasets.arrow_dataset.Dataset.

column_name string Name of the column whose values should be unique.

Value

Returns a data set of class datasets.arrow_dataset.Dataset where the duplicates are removed
according to the given column.

See Also

Other Utils Python Data Management Developers: class_vector_to_py_dataset(),data.frame_to_py_dataset(),
get_batches_index(), prepare_r_array_for_dataset(), py_dataset_to_embeddings(), tensor_list_to_numpy(),
tensor_to_numpy ()

reset_log Function that resets a log file.

Description

This function writes a log file with default values. The file can be read with read_log.

Usage

reset_log(log_path)

Arguments

log_path string Path to the log file.

Value

Function does nothing return. It is used to write an "empty" log file.

See Also

Other Utils Log Developers: cat_message(), clean_pytorch_log_transformers(), output_message(),
print_message(), read_log(), read_loss_log(), reset_loss_log(),write_log()

reset_loss_log 107

reset_loss_log Reset log for loss information

Description

This function writes an empty log file for loss information.

Usage

reset_loss_log(log_path, epochs)

Arguments

log_path string Path to the log file.

epochs int Number of epochs for the complete training process.
Value

Function does nothing return. It writes a log file at the given location. The file is a .csv file that
contains three rows. The first row takes the value for the training, the second for the validation, and
the third row for the test data. The columns represent epochs.

See Also

Other Utils Log Developers: cat_message(), clean_pytorch_log_transformers(), output_message(),
print_message(), read_log(), read_loss_log(), reset_log(),write_log()

run_py_file Run python file

Description

Used to run python files with reticulate: :py_run_file() from folder python.

Usage

run_py_file(py_file_name)

Arguments
py_file_name string Name of a python file to run. The file must be in the python folder of
aifeducation package.
Value

This function returns nothing.

108 set_transformers_logger

See Also

Other Utils Python Developers: get_py_package_version(), get_py_package_versions(), load_all_py_scripts(),
load_py_scripts()

save_to_disk Saving objects created with ’aifeducation’

Description

Function for saving objects created with *aifeducation’.

Usage

save_to_disk(object, dir_path, folder_name)

Arguments
object Object of class TEClassifierRegular, TEClassifierProtoNet, TEFeatureExtrac-
tor, TextEmbeddingModel, LargeDataSetForTextEmbeddings, LargeDataSetFor-
Text or EmbeddedText which should be saved.
dir_path string Path to the directory where the should model is stored.
folder_name string Name of the folder where the files should be stored.
Value

Function does not return a value. It saves the model to disk.

No return value, called for side effects.

See Also
Other Saving and Loading: load_from_disk()

set_transformers_logger
Sets the level for logging information of the ’transformers’ library

Description

This function changes the level for logging information of the ’transformers’ library. It influences
the output printed to console for creating and training transformer models as well as TextEmbed-
dingModels.

Usage

set_transformers_logger(level = "ERROR")

start_aifeducation_studio 109

Arguments
level string Minimal level that should be printed to console. Four levels are avail-
able: INFO, WARNING, ERROR and DEBUG
Value

This function does not return anything. It is used for its side effects.

See Also

Other Installation and Configuration: check_aif_py_modules(), get_recommended_py_versions(),
install_aifeducation(), install_aifeducation_studio(), install_py_modules(), prepare_session(),
update_aifeducation()

start_aifeducation_studio
Aifeducation Studio

Description

Functions starts a shiny app that represents Aifeducation Studio.

Usage

start_aifeducation_studio(launch_browser = TRUE)

Arguments

launch_browser bool If TRUE the system’s default web browser is used for displaying the app.

Value

This function does nothing return. It is used to start a shiny app.

summarize_args_for_long_task
Summarize arguments from shiny input

Description

This function extracts the input relevant for a specific method of a specific class from shiny input.

In addition, it adds the path to all objects which can not be exported to another R session. These
object must be loaded separately in the new session with the function add_missing_args. The
paths are intended to be used with shiny: :ExtendedTask. The final preparation of the arguments
should be done with

The function can also be used to override the default value of a method or to add value for arguments
which are not part of shiny input (use parameter override_args).

110 summarize_args_for_long_task

Usage
summarize_args_for_long_task(
input,
object_class,
method = "configure”,

path_args = list(path_to_embeddings = NULL, path_to_textual_dataset = NULL,

path_to_target_data = NULL, path_to_feature_extractor = NULL, destination_path =
NULL, folder_name = NULL),

override_args = list(),

meta_args = list(py_environment_type = get_py_env_type(), py_env_name =

get_py_env_name(), target_data_column = input$data_target_column, object_class =
input$classifier_type)

)
Arguments
input Shiny input.
object_class string Class of the object.
method string Method of the class for which the arguments should be extracted and
prepared.
path_args list List containing the path to object that can not be exported to another R

session. These must be loaded in the session.

override_args list List containing all arguments that should be set manually. The values
override default values of the argument and values which are part of input.

meta_args list List containing information that are not relevant for the arguments of the
method but are necessary to set up the shiny: :ExtendedTask correctly.

Value
Returns a named list with the following entries:
* args: Named list of all arguments necessary for the method of the class.

* path_args: Named 1list of all paths for loading the objects missing in args.

* meta_args: Named list of all arguments that are not part of the arguments of the method but
which are necessary to set up the shiny: :ExtendedTask correctly.

Note

Please not that all list are named list of the format (argument_name=values).

See Also

Other Utils Studio Developers: add_missing_args(), create_data_embeddings_description(),
long_load_target_data()

TEClassifierParallel 111

TEClassifierParallel Text embedding classifier with a neural net

Description

Classification Type

This is a probability classifier that predicts a probability distribution for different classes/categories.
This is the standard case most common in literature.

Parallel Core Architecture

This model is based on a parallel architecture. An input is passed to different types of layers
separately. At the end the outputs are combined to create the final output of the whole model.

Transformer Encoder Layers
Description

The transformer encoder layers follow the structure of the encoder layers used in transformer mod-
els. A single layer is designed as described by Chollet, Kalinowski, and Allaire (2022, p. 373)
with the exception that single components of the layers (such as the activation function, the kind
of residual connection, the kind of normalization or the kind of attention) can be customized. All
parameters with the prefix ¢f_ can be used to configure this layer.

Feature Layer
Description

The feature layer is a dense layer that can be used to increase or decrease the number of features of
the input data before passing the data into your model. The aim of this layer is to increase or reduce
the complexity of the data for your model. The output size of this layer determines the number of
features for all following layers. In the special case that the requested number of features equals
the number of features of the text embeddings this layer is reduced to a dropout layer with masking
capabilities. All parameters with the prefix fear_ can be used to configure this layer.

Dense Layers
Description

A fully connected layer. The layer is applied to every step of a sequence. All parameters with the
prefix dense_ can be used to configure this layer.

Multiple N-Gram Layers
Description

This type of layer focuses on sub-sequence and performs an 1d convolutional operation. On a word
and token level these sub-sequences can be interpreted as n-grams (Jacovi, Shalom & Goldberg
2018). The convolution is done across all features. The number of filters equals the number of
features of the input tensor. Thus, the shape of the tensor is retained (Pham, Kruszewski & Boleda
2016).

The layer is able to consider multiple n-grams at the same time. In this case the convolution of the
n-grams is done seprately and the resulting tensors are concatenated along the feature dimension.
The number of filters for every n-gram is set to num_features/num_n-grams. Thus, the resulting
tensor has the same shape as the input tensor.

112 TEClassifierParallel

Sub-sequences that are masked in the input are also masked in the output.

The output of this layer can be understand as the results of the n-gram filters. Stacking this layer
allows the model to perform n-gram detection of n-grams (meta perspective). All parameters with
the prefix ng_conv_ can be used to configure this layer.

Recurrent Layers
Description

A regular recurrent layer either as Gated Recurrent Unit (GRU) or Long Short-Term Memory
(LSTM) layer. Uses PyTorchs implementation. All parameters with the prefix rec_ can be used
to configure this layer.

Merge Layer
Description

Layer for combining the output of different layers. All inputs must be sequential data of shape
(Batch, Times, Features). First, pooling over time is applied extracting the minimal and/or maximal
features. Second, the pooled tensors are combined by calculating their weighted sum. Different
attention mechanism can be used to dynamically calculate the corresponding weights. This allows
the model to decide which part of the data is most usefull. Finally, pooling over features is applied
extracting a specific number of maximal and/or minimal features. A normalization of all input at
the begining of the layer is possible. All parameters with the prefix merge_ can be used to configure
this layer.

Training and Prediction

For the creation and training of a classifier an object of class EmbeddedText or LargeDataSetFor-
TextEmbeddings on the one hand and a factor on the other hand are necessary.

The object of class EmbeddedText or LargeDataSetForTextEmbeddings contains the numerical text
representations (text embeddings) of the raw texts generated by an object of class TextEmbedding-
Model. For supporting large data sets it is recommended to use LargeDataSetForTextEmbeddings
instead of EmbeddedText.

The factor contains the classes/categories for every text. Missing values (unlabeled cases) are
supported and can be used for pseudo labeling.

For predictions an object of class EmbeddedText or LargeDataSetForTextEmbeddings has to be
used which was created with the same TextEmbeddingModel as for training.

Value

Returns a new object of this class ready for configuration or for loading a saved classifier.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel -> aifeducation: :ModelsBasedOnTextEmbeddings
->aifeducation::ClassifiersBasedOnTextEmbeddings ->aifeducation: :TEClassifiersBasedOnRegular
->TEClassifierParallel

Methods

Public methods:
e TEClassifierParallel$configure()

TEClassifierParallel 113

e TEClassifierParallel$clone()

Method configure(): Creating a new instance of this class.

Usage:
TEClassifierParallel$configure(
name = NULL,
label = NULL,

text_embeddings = NULL,
feature_extractor = NULL,
target_levels = NULL,
shared_feat_layer = TRUE,
feat_act_fct = "ELU",

feat_size = 50L,

feat_bias = TRUE,

feat_dropout = 0,
feat_parametrizations = "None”,
feat_normalization_type = "LayerNorm",
ng_conv_act_fct = "ELU",
ng_conv_n_layers = 1L,
ng_conv_ks_min = 2L,
ng_conv_ks_max = 4L,
ng_conv_bias = FALSE,
ng_conv_dropout = 0.1,

ng_conv_parametrizations = "None”,
ng_conv_normalization_type = "LayerNorm”,
ng_conv_residual_type = "ResidualGate",

dense_act_fct = "ELU",
dense_n_layers = 1L,
dense_dropout = 0.5,
dense_bias = FALSE,

dense_parametrizations = "None”,
dense_normalization_type = "LayerNorm",
dense_residual_type = "ResidualGate”,
rec_act_fct = "Tanh",

rec_n_layers = 1L,
rec_type = "GRU",
rec_bidirectional = FALSE,
rec_dropout = 0.2,
rec_bias = FALSE,

rec_parametrizations = "None”,
rec_normalization_type = "LayerNorm",
rec_residual_type = "ResidualGate",

tf_act_fct = "ELU",

tf_dense_dim = 50L,

tf_n_layers = 1L,
tf_dropout_rate_1 0.1,
tf_dropout_rate_2 = 0.5,
tf_attention_type = "MultiHead"”,

114

TEClassifierParallel

tf_positional_type = "absolute”,
tf_num_heads = 1L,
tf_bias = FALSE,

tf_parametrizations = "None",
tf_normalization_type = "LayerNorm”,
tf_residual_type = "ResidualGate”,
merge_attention_type = "multi_head”,
merge_num_heads = 1L,
merge_normalization_type = "LayerNorm",
merge_pooling_features = 50L,
merge_pooling_type = "MinMax”

)

Arguments:

name string Name of the new model. Please refer to common name conventions. Free text
can be used with parameter label. If set to NULL a unique ID is generated automatically.
Allowed values: any

label string Label for the new model. Here you can use free text. Allowed values: any
text_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-
beddedText or LargeDataSetForTextEmbeddings.

feature_extractor TEFeatureExtractor Object of class TEFeatureExtractor which should
be used in order to reduce the number of dimensions of the text embeddings. If no feature
extractor should be applied set NULL.

target_levels vector containing the levels (categories or classes) within the target data.
Please note that order matters. For ordinal data please ensure that the levels are sorted
correctly with later levels indicating a higher category/class. For nominal data the order
does not matter.

shared_feat_layer bool If TRUE all streams use the same feature layer. If FALSE all streams
use their own feature layer.

feat_act_fct string Activation function for all layers. Allowed values: "ELU’, ’LeakyReLU’,
’ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, 'PReLU’

feat_size int Number of neurons for each dense layer. Allowed values: 2 <= x

feat_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to
the layers.

feat_dropout double determining the dropout for the dense projection of the feature layer.
Allowed values: @ <= x <= 0.6

feat_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: "None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

feat_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: "LayerNorm’, ’None’

ng_conv_act_fct string Activation function for all layers. Allowed values: ’ELU’, ’LeakyReL.U’,
"ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

ng_conv_n_layers int determining how many times the n-gram layers should be added to the
network. Allowed values: @ <= x

ng_conv_ks_min int determining the minimal window size for n-grams. Allowed values: 2
<=X

TEClassifierParallel 115

ng_conv_ks_max int determining the maximal window size for n-grams. Allowed values: 2
<=x

ng_conv_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added
to the layers.

ng_conv_dropout double determining the dropout for n-gram convolution layers. Allowed
values: @ <= x <= 0.6

ng_conv_parametrizations string Re-Parametrizations of the weights of layers. Allowed
values: ’None’, ’Orthogonal Weights’, *WeightNorm’, ’SpectralNorm’

ng_conv_normalization_type string Type of normalization applied to all layers and stack
layers. Allowed values: 'LayerNorm’, ’None’

ng_conv_residual_type string Type of residual connenction for all layers and stack of lay-
ers. Allowed values: ’ResidualGate’, ’ Addition’, ’None’

dense_act_fct string Activation function for all layers. Allowed values: ’ELU’, ’LeakyReLU’,
’ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, 'PReLU’

dense_n_layers int Number of dense layers. Allowed values: @ <= x

dense_dropout double determining the dropout between dense layers. Allowed values: @ <= x <= 0.6

dense_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to
the layers.

dense_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: "None’, ’OrthogonalWeights’, *WeightNorm’, ’ SpectralNorm’

dense_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: ’LayerNorm’, ’None’

dense_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: 'ResidualGate’, *Addition’, ’None’

rec_act_fct string Activation function for all layers. Allowed values: *Tanh’
rec_n_layers int Number of recurrent layers. Allowed values: @ <= x

rec_type string Type of the recurrent layers. rec_type="'GRU' for Gated Recurrent Unit and
rec_type='LSTM' for Long Short-Term Memory. Allowed values: "GRU’, "LSTM’

rec_bidirectional bool If TRUE a bidirectional version of the recurrent layers is used.
rec_dropout double determining the dropout between recurrent layers. Allowed values: @ <= x <= 0.6

rec_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

rec_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: 'None’

rec_normalization_type string Type of normalization applied to all layers and stack layers.
Allowed values: ’LayerNorm’, ’None’

rec_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: ResidualGate’, *Addition’, ’None’

tf_act_fct string Activation function for all layers. Allowed values: ’ELU’, LeakyReLU’,
’ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

tf_dense_dim int determining the size of the projection layer within a each transformer en-
coder. Allowed values: 1 <= x

tf_n_layers int determining how many times the encoder should be added to the network.
Allowed values: 0 <= x

116 TEClassifierParallel

tf_dropout_rate_1 double determining the dropout after the attention mechanism within the
transformer encoder layers. Allowed values: @ <= x <= 0.6

tf_dropout_rate_2 double determining the dropout for the dense projection within the trans-
former encoder layers. Allowed values: @ <= x <= 0.6

tf_attention_type string Choose the attention type. Allowed values: ’Fourier’, "Multi-
Head’

tf_positional_type string Type of processing positional information. Allowed values:
’None’, ’absolute’

tf_num_heads int determining the number of attention heads for a self-attention layer. Only
relevant if attention_type="multihead' Allowed values: @ <= x

tf_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

tf_parametrizations string Re-Parametrizations of the weights of layers. Allowed values:
’None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

tf_normalization_type string Type of normalization applied to all layers and stack layers.
Allowed values: ’LayerNorm’, ’None’

tf_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: 'ResidualGate’, ’ Addition’, ’None’

merge_attention_type string Choose the attention type. Allowed values: ’Fourier’, "Mul-
tiHead’

merge_num_heads int determining the number of attention heads for a self-attention layer.
Only relevant if attention_type="multihead' Allowed values: @ <= x

merge_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: ’LayerNorm’, ’None’

merge_pooling_features int Number of features to be extracted at the end of the model.
Allowed values: 1 <= x

merge_pooling_type string Type of extracting intermediate features. Allowed values: "Max’,
’Min’, ’MinMax’

Returns: Function does nothing return. It modifies the current object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TEClassifierParallel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Classification: TEClassifierParallelPrototype, TEClassifierProtoNet, TEClassifierRegular,
TEClassifierSequential, TEClassifierSequentialPrototype

TEClassifierParallelPrototype 117

TEClassifierParallelPrototype
Text embedding classifier with a ProtoNet

Description

Classification Type

This object is a metric based classifer and represents in implementation of a prototypical network
for few-shot learning as described by Snell, Swersky, and Zemel (2017). The network uses a multi
way contrastive loss described by Zhang et al. (2019). The network learns to scale the metric as
described by Oreshkin, Rodriguez, and Lacoste (2018).

Parallel Core Architecture

This model is based on a parallel architecture. An input is passed to different types of layers
separately. At the end the outputs are combined to create the final output of the whole model.
Transformer Encoder Layers

Description

The transformer encoder layers follow the structure of the encoder layers used in transformer mod-
els. A single layer is designed as described by Chollet, Kalinowski, and Allaire (2022, p. 373)
with the exception that single components of the layers (such as the activation function, the kind
of residual connection, the kind of normalization or the kind of attention) can be customized. All
parameters with the prefix ¢f_ can be used to configure this layer.

Feature Layer
Description

The feature layer is a dense layer that can be used to increase or decrease the number of features of
the input data before passing the data into your model. The aim of this layer is to increase or reduce
the complexity of the data for your model. The output size of this layer determines the number of
features for all following layers. In the special case that the requested number of features equals
the number of features of the text embeddings this layer is reduced to a dropout layer with masking
capabilities. All parameters with the prefix feat_ can be used to configure this layer.

Dense Layers
Description

A fully connected layer. The layer is applied to every step of a sequence. All parameters with the
prefix dense_ can be used to configure this layer.

Multiple N-Gram Layers
Description

This type of layer focuses on sub-sequence and performs an 1d convolutional operation. On a word
and token level these sub-sequences can be interpreted as n-grams (Jacovi, Shalom & Goldberg
2018). The convolution is done across all features. The number of filters equals the number of
features of the input tensor. Thus, the shape of the tensor is retained (Pham, Kruszewski & Boleda
2016).

The layer is able to consider multiple n-grams at the same time. In this case the convolution of the
n-grams is done seprately and the resulting tensors are concatenated along the feature dimension.

118 TEClassifierParallelPrototype

The number of filters for every n-gram is set to num_features/num_n-grams. Thus, the resulting
tensor has the same shape as the input tensor.

Sub-sequences that are masked in the input are also masked in the output.

The output of this layer can be understand as the results of the n-gram filters. Stacking this layer
allows the model to perform n-gram detection of n-grams (meta perspective). All parameters with
the prefix ng_conv_ can be used to configure this layer.

Recurrent Layers
Description

A regular recurrent layer either as Gated Recurrent Unit (GRU) or Long Short-Term Memory
(LSTM) layer. Uses PyTorchs implementation. All parameters with the prefix rec_ can be used
to configure this layer.

Merge Layer
Description

Layer for combining the output of different layers. All inputs must be sequential data of shape
(Batch, Times, Features). First, pooling over time is applied extracting the minimal and/or maximal
features. Second, the pooled tensors are combined by calculating their weighted sum. Different
attention mechanism can be used to dynamically calculate the corresponding weights. This allows
the model to decide which part of the data is most usefull. Finally, pooling over features is applied
extracting a specific number of maximal and/or minimal features. A normalization of all input at
the begining of the layer is possible. All parameters with the prefix merge_ can be used to configure
this layer.

Training and Prediction

For the creation and training of a classifier an object of class EmbeddedText or LargeDataSetFor-
TextEmbeddings on the one hand and a factor on the other hand are necessary.

The object of class EmbeddedText or LargeDataSetForTextEmbeddings contains the numerical text
representations (text embeddings) of the raw texts generated by an object of class TextEmbedding-
Model. For supporting large data sets it is recommended to use LargeDataSetForTextEmbeddings
instead of EmbeddedText.

The factor contains the classes/categories for every text. Missing values (unlabeled cases) are
supported and can be used for pseudo labeling.

For predictions an object of class EmbeddedText or LargeDataSetForTextEmbeddings has to be
used which was created with the same TextEmbeddingModel as for training.

Value

Returns a new object of this class ready for configuration or for loading a saved classifier.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->aifeducation: :ModelsBasedOnTextEmbeddings
->aifeducation::ClassifiersBasedOnTextEmbeddings ->aifeducation: :TEClassifiersBasedOnProtoNet
-> TEClassifierParallelPrototype

TEClassifierParallelPrototype

Methods

Public methods:

e TEClassifierParallelPrototype$configure()

e TEClassifierParallelPrototype$clone()

Method configure(): Creating a new instance of this class.

Usage:
TEClassifierParallelPrototype$configure(
name = NULL,
label = NULL,

text_embeddings = NULL,
feature_extractor = NULL,
target_levels = NULL,

metric_type = "Euclidean”,
shared_feat_layer = TRUE,

feat_act_fct = "ELU",

feat_size = 50L,

feat_bias = TRUE,

feat_dropout = 0,
feat_parametrizations = "None”,
feat_normalization_type = "LayerNorm",
ng_conv_act_fct = "ELU",
ng_conv_n_layers = 1L,
ng_conv_ks_min = 2L,
ng_conv_ks_max = 4L,
ng_conv_bias = FALSE,
ng_conv_dropout = 0.1,

ng_conv_parametrizations = "None”,
ng_conv_normalization_type = "LayerNorm”,
ng_conv_residual_type = "ResidualGate",

dense_act_fct = "ELU",
dense_n_layers = 1L,
dense_dropout = 0.5,
dense_bias = FALSE,

dense_parametrizations = "None”,
dense_normalization_type = "LayerNorm",
dense_residual_type = "ResidualGate”,
rec_act_fct = "Tanh",

rec_n_layers = 1L,
rec_type = "GRU",
rec_bidirectional = FALSE,
rec_dropout = 0.2,
rec_bias = FALSE,

rec_parametrizations = "None”,
rec_normalization_type = "LayerNorm",
rec_residual_type = "ResidualGate",

tf_act_fct = "ELU",

119

120

TEClassifierParallelPrototype

tf_dense_dim = 50L,

tf_n_layers = 1L,
tf_dropout_rate_1 0.1,
tf_dropout_rate_2 = 0.5,
tf_attention_type = "MultiHead"”,
tf_positional_type = "absolute”,
tf_num_heads = 1L,

tf_bias = FALSE,

tf_parametrizations = "None",
tf_normalization_type = "LayerNorm”,
tf_residual_type = "ResidualGate”,
merge_attention_type = "multi_head”,
merge_num_heads = 1L,
merge_normalization_type = "LayerNorm",

merge_pooling_features = 50L,
merge_pooling_type = "MinMax",
embedding_dim = 2L

)

Arguments:

name string Name of the new model. Please refer to common name conventions. Free text
can be used with parameter label. If set to NULL a unique ID is generated automatically.
Allowed values: any

label string Label for the new model. Here you can use free text. Allowed values: any

text_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-
beddedText or LargeDataSetForTextEmbeddings.

feature_extractor TEFeatureExtractor Object of class TEFeatureExtractor which should
be used in order to reduce the number of dimensions of the text embeddings. If no feature
extractor should be applied set NULL.

target_levels vector containing the levels (categories or classes) within the target data.
Please note that order matters. For ordinal data please ensure that the levels are sorted
correctly with later levels indicating a higher category/class. For nominal data the order
does not matter.

metric_type string Type of metric used for calculating the distance. Allowed values: Eu-
clidean’

shared_feat_layer bool If TRUE all streams use the same feature layer. If FALSE all streams
use their own feature layer.

feat_act_fct string Activation function for all layers. Allowed values: "ELU’, ’LeakyReLU’,
"ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

feat_size int Number of neurons for each dense layer. Allowed values: 2 <= x

feat_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to
the layers.

feat_dropout double determining the dropout for the dense projection of the feature layer.
Allowed values: @ <= x <= 0.6

feat_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: ’None’, ’OrthogonalWeights’, *WeightNorm’, ’ SpectralNorm’

feat_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: 'LayerNorm’, ’None’

TEClassifierParallelPrototype 121

ng_conv_act_fct string Activation function for all layers. Allowed values: "ELU’, ’LeakyReL.U’,
’ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

ng_conv_n_layers int determining how many times the n-gram layers should be added to the
network. Allowed values: @ <= x

ng_conv_ks_min int determining the minimal window size for n-grams. Allowed values: 2
<=x

ng_conv_ks_max int determining the maximal window size for n-grams. Allowed values: 2
<=x

ng_conv_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added
to the layers.

ng_conv_dropout double determining the dropout for n-gram convolution layers. Allowed
values: @ <= x <= 0.6

ng_conv_parametrizations string Re-Parametrizations of the weights of layers. Allowed
values: ’None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

ng_conv_normalization_type string Type of normalization applied to all layers and stack
layers. Allowed values: 'LayerNorm’, ’None’

ng_conv_residual_type string Type of residual connenction for all layers and stack of lay-
ers. Allowed values: ’ResidualGate’, ’ Addition’, ’None’

dense_act_fct string Activation function for all layers. Allowed values: "ELU’, ’LeakyReLU’,
’ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

dense_n_layers int Number of dense layers. Allowed values: @ <= x

dense_dropout double determining the dropout between dense layers. Allowed values: @ <= x <= 0.6

dense_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to
the layers.

dense_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: 'None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

dense_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: ’LayerNorm’, ’None’

dense_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: 'ResidualGate’, *Addition’, ’None’

rec_act_fct string Activation function for all layers. Allowed values: *Tanh’
rec_n_layers int Number of recurrent layers. Allowed values: @ <= x

rec_type string Type of the recurrent layers. rec_type="'GRU' for Gated Recurrent Unit and
rec_type='LSTM' for Long Short-Term Memory. Allowed values: "GRU’, "LSTM’

rec_bidirectional bool If TRUE a bidirectional version of the recurrent layers is used.
rec_dropout double determining the dropout between recurrent layers. Allowed values: @ <= x <= 0.6

rec_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

rec_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: "None’

rec_normalization_type string Type of normalization applied to all layers and stack layers.
Allowed values: ’LayerNorm’, ’None’

rec_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: ResidualGate’, *Addition’, ’None’

122

TEClassifierParallelPrototype

tf_act_fct string Activation function for all layers. Allowed values: 'ELU’, ’LeakyRel.U’,
’ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

tf_dense_dim int determining the size of the projection layer within a each transformer en-
coder. Allowed values: 1 <= x

tf_n_layers int determining how many times the encoder should be added to the network.
Allowed values: @ <= x

tf_dropout_rate_1 double determining the dropout after the attention mechanism within the
transformer encoder layers. Allowed values: @ <= x <= 0.6

tf_dropout_rate_2 double determining the dropout for the dense projection within the trans-
former encoder layers. Allowed values: @ <= x <= 0.6

tf_attention_type string Choose the attention type. Allowed values: ’Fourier’, Multi-
Head’

tf_positional_type string Type of processing positional information. Allowed values:
’None’, ’absolute’

tf_num_heads int determining the number of attention heads for a self-attention layer. Only
relevant if attention_type="multihead' Allowed values: @ <= x

tf_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

tf_parametrizations string Re-Parametrizations of the weights of layers. Allowed values:
’None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

tf_normalization_type string Type of normalization applied to all layers and stack layers.
Allowed values: ’LayerNorm’, ’None’

tf_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: ResidualGate’, *Addition’, ’"None’

merge_attention_type string Choose the attention type. Allowed values: ’Fourier’, ’Mul-
tiHead’

merge_num_heads int determining the number of attention heads for a self-attention layer.
Only relevant if attention_type="multihead' Allowed values: @ <= x

merge_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: ’LayerNorm’, ’None’

merge_pooling_features int Number of features to be extracted at the end of the model.
Allowed values: 1 <= x

merge_pooling_type string Type of extracting intermediate features. Allowed values: "Max’,
’Min’, ’MinMax’

embedding_dim int determining the number of dimensions for the embedding. Allowed val-
ues: 2 <=x

Returns: Function does nothing return. It modifies the current object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TEClassifierParallelPrototype$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

TEClassifierProtoNet 123

References

Oreshkin, B. N., Rodriguez, P. & Lacoste, A. (2018). TADAM: Task dependent adaptive metric for
improved few-shot learning. https://doi.org/10.48550/arXiv.1805.10123

Snell, J., Swersky, K. & Zemel, R. S. (2017). Prototypical Networks for Few-shot Learning.
https://doi.org/10.48550/arXiv.1703.05175

Zhang, X., Nie, J., Zong, L., Yu, H. & Liang, W. (2019). One Shot Learning with Margin. In
Q. Yang, Z.-H. Zhou, Z. Gong, M.-L. Zhang & S.-J. Huang (Eds.), Lecture Notes in Computer
Science. Advances in Knowledge Discovery and Data Mining (Vol. 11440, pp. 305-317). Springer
International Publishing. https://doi.org/10.1007/978-3-030-16145-3_24

See Also

Other Classification: TEClassifierParallel, TEClassifierProtoNet, TEClassifierRegular,
TEClassifierSequential, TEClassifierSequentialPrototype

TEClassifierProtoNet Text embedding classifier with a ProtoNet

Description

Abstract class for neural nets with ’pytorch’.
This class is deprecated. Please use an Object of class TEClassifierSequentialPrototype instead.

This object represents in implementation of a prototypical network for few-shot learning as de-
scribed by Snell, Swersky, and Zemel (2017). The network uses a multi way contrastive loss de-
scribed by Zhang et al. (2019). The network learns to scale the metric as described by Oreshkin,
Rodriguez, and Lacoste (2018)

Value

Objects of this class are used for assigning texts to classes/categories. For the creation and training
of a classifier an object of class EmbeddedText or LargeDataSetForTextEmbeddings and a factor
are necessary. The object of class EmbeddedText or LargeDataSetForTextEmbeddings contains the
numerical text representations (text embeddings) of the raw texts generated by an object of class
TextEmbeddingModel. The factor contains the classes/categories for every text. Missing values
(unlabeled cases) are supported. For predictions an object of class EmbeddedText or LargeDataSet-
ForTextEmbeddings has to be used which was created with the same TextEmbeddingModel as for
training.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->aifeducation: :ModelsBasedOnTextEmbeddings
->aifeducation::ClassifiersBasedOnTextEmbeddings ->aifeducation: :TEClassifiersBasedOnProtoNet
->TEClassifierProtoNet

124

Methods

Public methods:

e TEClassifierProtoNet$new()
TEClassifierProtoNet$configure()
TEClassifierProtoNet$embed()
TEClassifierProtoNet$plot_embeddings()
TEClassifierProtoNet$clone()

Method new(): Creating a new instance of this class.

Usage:
TEClassifierProtoNet$new()

TEClassifierProtoNet

Returns: Returns an object of class TEClassifierProtoNet which is ready for configuration.

Method configure(): Creating a new instance of this class.

Usage:
TEClassifierProtoNet$configure(
name = NULL,
label = NULL,

)

text_embeddings = NULL,
feature_extractor = NULL,
target_levels = NULL,
dense_size = 4L,
dense_layers = oL,
rec_size = 4L,

rec_layers = 2L,

rec_type = "GRU",
rec_bidirectional = FALSE,
embedding_dim = 2L,
self_attention_heads = oL,
intermediate_size = NULL,

attention_type = "Fourier”,

add_pos_embedding = TRUE,
act_fct = "ELU",
parametrizations = "None”,
rec_dropout = 0.1,
repeat_encoder = 1L,
dense_dropout = 0.4,
encoder_dropout = 0.1

Arguments:

name string Name of the new model. Please refer to common name conventions. Free text
can be used with parameter label. If set to NULL a unique ID is generated automatically.

Allowed values: any

label string Label for the new model. Here you can use free text. Allowed values: any
text_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-

beddedText or LargeDataSetForTextEmbeddings.

TEClassifierProtoNet 125

feature_extractor TEFeatureExtractor Object of class TEFeatureExtractor which should
be used in order to reduce the number of dimensions of the text embeddings. If no feature
extractor should be applied set NULL.

target_levels vector containing the levels (categories or classes) within the target data.
Please note that order matters. For ordinal data please ensure that the levels are sorted
correctly with later levels indicating a higher category/class. For nominal data the order
does not matter.

dense_size int Number of neurons for each dense layer. Allowed values: 1 <= x
dense_layers int Number of dense layers. Allowed values: @ <= x
rec_size int Number of neurons for each recurrent layer. Allowed values: 1 <= x
rec_layers int Number of recurrent layers. Allowed values: @ <= x

rec_type string Type of the recurrent layers. rec_type='GRU' for Gated Recurrent Unit and
rec_type='LSTM' for Long Short-Term Memory. Allowed values: "GRU’, 'LSTM’

rec_bidirectional bool If TRUE a bidirectional version of the recurrent layers is used.

embedding_dim int determining the number of dimensions for the embedding. Allowed val-
ues: 2 <= X

self_attention_heads int determining the number of attention heads for a self-attention
layer. Only relevant if attention_type="multihead' Allowed values: @ <= x

intermediate_size int determining the size of the projection layer within a each transformer
encoder. Allowed values: 1 <= x
attention_type string Choose the attention type. Allowed values: 'Fourier’, ’MultiHead’
add_pos_embedding bool TRUE if positional embedding should be used.
act_fct string Activation function for all layers. Allowed values: ELU’, 'LeakyReLU’,
"ReLU’, ’GELU’, ’Sigmoid’, "Tanh’, "PReLU’
parametrizations string Re-Parametrizations of the weights of layers. Allowed values:
’None’, ’OrthogonalWeights’, >WeightNorm’, ’SpectralNorm’
rec_dropout double determining the dropout between recurrent layers. Allowed values: @ <= x <= 0.6

repeat_encoder int determining how many times the encoder should be added to the net-
work. Allowed values: @ <= x

dense_dropout double determining the dropout between dense layers. Allowed values: @ <= x <= 0.6

encoder_dropout double determining the dropout for the dense projection within the trans-
former encoder layers. Allowed values: @ <= x <= 0.6

bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

Method embed(): Method for embedding documents. Please do not confuse this type of em-
beddings with the embeddings of texts created by an object of class TextEmbeddingModel. These
embeddings embed documents according to their similarity to specific classes.

Usage:

TEClassifierProtoNet$embed(embeddings_q = NULL, batch_size = 32L)

Arguments:

embeddings_q Object of class EmbeddedText or LargeDataSetForTextEmbeddings containing
the text embeddings for all cases which should be embedded into the classification space.

batch_size int batch size.

126 TEClassifierProtoNet

Returns: Returns a 1ist containing the following elements
* embeddings_g: embeddings for the cases (query sample).

* embeddings_prototypes: embeddings of the prototypes which were learned during train-
ing. They represents the center for the different classes.

Method plot_embeddings(): Method for creating a plot to visualize embeddings and their
corresponding centers (prototypes).
Usage:
TEClassifierProtoNet$plot_embeddings(
embeddings_q,
classes_q = NULL,
batch_size = 12L,
alpha = 0.5,
size_points = 3L,
size_points_prototypes = 8L,
inc_unlabeled = TRUE
)
Arguments:
embeddings_q Object of class EmbeddedText or LargeDataSetForTextEmbeddings containing
the text embeddings for all cases which should be embedded into the classification space.
classes_g Named factor containg the true classes for every case. Please note that the names
must match the names/ids in embeddings_g.
batch_size int batch size.

alpha float Value indicating how transparent the points should be (important if many points
overlap). Does not apply to points representing prototypes.

size_points int Size of the points excluding the points for prototypes.
size_points_prototypes int Size of points representing prototypes.
inc_unlabeled bool If TRUE plot includes unlabeled cases as data points.

Returns: Returns a plot of class ggplotvisualizing embeddings.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TEClassifierProtoNet$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

This model requires pad_value=0. If this condition is not met the padding value is switched auto-
matically.

References

Oreshkin, B. N., Rodriguez, P. & Lacoste, A. (2018). TADAM: Task dependent adaptive metric for
improved few-shot learning. https://doi.org/10.48550/arXiv.1805.10123

TEClassifierRegular 127

Snell, J., Swersky, K. & Zemel, R. S. (2017). Prototypical Networks for Few-shot Learning.
https://doi.org/10.48550/arXiv.1703.05175

Zhang, X., Nie, J., Zong, L., Yu, H. & Liang, W. (2019). One Shot Learning with Margin. In
Q. Yang, Z.-H. Zhou, Z. Gong, M.-L. Zhang & S.-J. Huang (Eds.), Lecture Notes in Computer
Science. Advances in Knowledge Discovery and Data Mining (Vol. 11440, pp. 305-317). Springer
International Publishing. https://doi.org/10.1007/978-3-030-16145-3_24

See Also

Other Classification: TEClassifierParallel, TEClassifierParallelPrototype, TEClassifierRegular,
TEClassifierSequential, TEClassifierSequentialPrototype

TEClassifierRegular Text embedding classifier with a neural net

Description

Abstract class for neural nets with *pytorch’.

This class is deprecated. Please use an Object of class TEClassifierSequential instead.

Value

Objects of this class are used for assigning texts to classes/categories. For the creation and training
of a classifier an object of class EmbeddedText or LargeDataSetForTextEmbeddings on the one
hand and a factor on the other hand are necessary.

The object of class EmbeddedText or LargeDataSetForTextEmbeddings contains the numerical text
representations (text embeddings) of the raw texts generated by an object of class TextEmbedding-
Model. For supporting large data sets it is recommended to use LargeDataSetForTextEmbeddings
instead of EmbeddedText.

The factor contains the classes/categories for every text. Missing values (unlabeled cases) are
supported and can be used for pseudo labeling.

For predictions an object of class EmbeddedText or LargeDataSetForTextEmbeddings has to be
used which was created with the same TextEmbeddingModel as for training.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->aifeducation: :ModelsBasedOnTextEmbeddings
->aifeducation::ClassifiersBasedOnTextEmbeddings ->aifeducation::TEClassifiersBasedOnRegular
-> TEClassifierRegular

Methods

Public methods:

e TEClassifierRegular$new()
e TEClassifierRegular$configure()

128

e TEClassifierRegular$clone()

Method new(): Creating a new instance of this class.

Usage:
TEClassifierRegular$new()

TEClassifierRegular

Returns: Returns an object of class TEClassifierRegular which is ready for configuration.

Method configure(): Creating a new instance of this class.

Usage:
TEClassifierRegular$configure(
name = NULL,
label = NULL,

)

text_embeddings = NULL,
feature_extractor = NULL,
target_levels = NULL,

bias = TRUE,

dense_size = 4L,
dense_layers = 0L,
rec_size = 4L,

rec_layers = 2L,

rec_type = "GRU",
rec_bidirectional = FALSE,
self_attention_heads = 0oL,
intermediate_size = NULL,

attention_type = "Fourier”,

add_pos_embedding = TRUE,
act_fct = "ELU",
parametrizations = "None”,
rec_dropout = 0.1,
repeat_encoder = 1L,
dense_dropout = 0.4,
Q.

encoder_dropout = 0.1

Arguments:

name string Name of the new model. Please refer to common name conventions. Free text
can be used with parameter label. If set to NULL a unique ID is generated automatically.

Allowed values: any

label string Label for the new model. Here you can use free text. Allowed values: any
text_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-

beddedText or LargeDataSetForTextEmbeddings.

feature_extractor TEFeatureExtractor Object of class TEFeatureExtractor which should
be used in order to reduce the number of dimensions of the text embeddings. If no feature

extractor should be applied set NULL.

target_levels vector containing the levels (categories or classes) within the target data.
Please note that order matters. For ordinal data please ensure that the levels are sorted
correctly with later levels indicating a higher category/class. For nominal data the order

does not matter.

TEClassifierRegular 129

bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

dense_size int Number of neurons for each dense layer. Allowed values: 1 <= x
dense_layers int Number of dense layers. Allowed values: @ <= x
rec_size int Number of neurons for each recurrent layer. Allowed values: 1 <= x
rec_layers int Number of recurrent layers. Allowed values: @ <= x

rec_type string Type of the recurrent layers. rec_type="'GRU' for Gated Recurrent Unit and
rec_type='LSTM' for Long Short-Term Memory. Allowed values: ’"GRU’, 'LSTM’

rec_bidirectional bool If TRUE a bidirectional version of the recurrent layers is used.

self_attention_heads int determining the number of attention heads for a self-attention
layer. Only relevant if attention_type="'multihead' Allowed values: @ <= x

intermediate_size int determining the size of the projection layer within a each transformer
encoder. Allowed values: 1 <= x

attention_type string Choose the attention type. Allowed values: 'Fourier’, ’MultiHead’
add_pos_embedding bool TRUE if positional embedding should be used.
act_fct string Activation function for all layers. Allowed values: ELU’, *LeakyReLU’,
’ReLU’, ’GELU’, ’Sigmoid’, "Tanh’, "PReLU’
parametrizations string Re-Parametrizations of the weights of layers. Allowed values:
’None’, ’OrthogonalWeights’, >WeightNorm’, ’SpectralNorm’
rec_dropout double determining the dropout between recurrent layers. Allowed values: @ <= x <= 0.6

repeat_encoder int determining how many times the encoder should be added to the net-
work. Allowed values: @ <= x

dense_dropout double determining the dropout between dense layers. Allowed values: @ <= x <= 0.6

encoder_dropout double determining the dropout for the dense projection within the trans-
former encoder layers. Allowed values: @ <= x <= 0.6

Returns: Returns an object of class TEClassifierRegular which is ready for training.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TEClassifierRegular$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

This model requires pad_value=0. If this condition is not met the padding value is switched auto-
matically.

See Also

Other Classification: TEClassifierParallel, TEClassifierParallelPrototype, TEClassifierProtoNet,
TEClassifierSequential, TEClassifierSequentialPrototype

130 TEClassifiersBasedOnProtoNet

TEClassifiersBasedOnProtoNet
Base class for classifiers relying on numerical representations of texts
instead of words that use the architecture of Protonets and its corre-
sponding training techniques.

Description

Base class for classifiers relying on EmbeddedText or LargeDataSetForTextEmbeddings as input
which use the architecture of Protonets and its corresponding training techniques.

Objects of this class containing fields and methods used in several other classes in *Al for Educa-
tion’.

This class is not designed for a direct application and should only be used by developers.

Value

A new object of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->aifeducation: :ModelsBasedOnTextEmbeddings
-> aifeducation: :ClassifiersBasedOnTextEmbeddings -> TEClassifiersBasedOnProtoNet

Methods

Public methods:

e TEClassifiersBasedOnProtoNet$train()

* TEClassifiersBasedOnProtoNet$predict_with_samples()

e TEClassifiersBasedOnProtoNet$embed()

e TEClassifiersBasedOnProtoNet$get_metric_scale_factor()
e TEClassifiersBasedOnProtoNet$plot_embeddings()

e TEClassifiersBasedOnProtoNet$clone()

Method train(): Method for training a neural net.
Training includes a routine for early stopping. In the case that loss<0.0001 and Accuracy=1.00
and Average lota=1.00 training stops. The history uses the values of the last trained epoch for the
remaining epochs.
After training the model with the best values for Average Iota, Accuracy, and Loss on the valida-
tion data set is used as the final model.
Usage:
TEClassifiersBasedOnProtoNet$train(
data_embeddings = NULL,
data_targets = NULL,
data_folds = 5L,
data_val_size = 0.25,

TEClassifiersBasedOnProtoNet 131

loss_pt_fct_name = "MultiWayContrastiveloss",
use_sc = FALSE,

sc_method = "knnor"”,

sc_min_k = 1L,

sc_max_k = 10L,

use_pl = FALSE,

pl_max_steps = 3L,

pl_max =1,
pl_anchor = 1,
pl_min = 0,

sustain_track = TRUE,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 15L,

sustain_log_level = "warning",
epochs = 4oL,

batch_size = 35L,

Ns = 5L,

Ng = 3L,

loss_alpha = 0.5,
loss_margin = 0.05,
sampling_separate = FALSE,
sampling_shuffle = TRUE,
trace = TRUE,
ml_trace = 1L,
log_dir = NULL,
log_write_interval = 10L,
n_cores = auto_n_cores(),
lr_rate = 0.001,
lr_warm_up_ratio = 0.02,
optimizer = "AdamW"
)
Arguments:
data_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-
beddedText or LargeDataSetForTextEmbeddings.
data_targets factor containing the labels for cases stored in embeddings. Factor must be
named and has to use the same names as used in in the embeddings. .
data_folds int determining the number of cross-fold samples. Allowed values: 1 <= x
data_val_size double between 0 and 1, indicating the proportion of cases which should be
used for the validation sample during the estimation of the model. The remaining cases are
part of the training data. Allowed values: @ < x < 1
loss_pt_fct_name string Name of the loss function to use during training. Allowed values:
’MultiWayContrastiveLoss’
use_sc bool TRUE if the estimation should integrate synthetic cases. FALSE if not.
sc_method string containing the method for generating synthetic cases. Allowed values: kn-
nor’
sc_min_k int determining the minimal number of k which is used for creating synthetic units.
Allowed values: 1 <= x

132 TEClassifiersBasedOnProtoNet

sc_max_k int determining the maximal number of k which is used for creating synthetic units.
Allowed values: 1 <= x

use_pl bool TRUE if the estimation should integrate pseudo-labeling. FALSE if not.

pl_max_steps int determining the maximum number of steps during pseudo-labeling. Al-
lowed values: 1 <= x

pl_max double setting the maximal level of confidence for considering a case for pseudo-
labeling. Allowed values: @ < x <= 1

pl_anchor double indicating the reference point for sorting the new cases of every label. Al-
lowed values: @ <= x <= 1

pl_min double setting the mnimal level of confidence for considering a case for pseudo-
labeling. Allowed values: @ <= x < 1

sustain_track bool If TRUE energy consumption is tracked during training via the python
library *codecarbon’.

sustain_iso_code string ISO code (Alpha-3-Code) for the country. This variable must be
set if sustainability should be tracked. A list can be found on Wikipedia: https://en.
wikipedia.org/wiki/List_of_ISO_3166_country_codes. Allowed values: any

sustain_region string Region within a country. Only available for USA and Canada See the
documentation of codecarbon for more information. https://mlco2.github.io/codecarbon/
parameters.html Allowed values: any

sustain_interval int Interval in seconds for measuring power usage. Allowed values: 1 <=
X

sustain_log_level

epochs int Number of training epochs. Allowed values: 1 <= x

batch_size int Size of the batches for training. Allowed values: 1 <= x

Ns int Number of cases for every class in the sample. Allowed values: 1 <= x

Ng int Number of cases for every class in the query. Allowed values: 1 <= x

loss_alpha double Value between 0 and 1 indicating how strong the loss should focus on
pulling cases to its corresponding prototypes or pushing cases away from other prototypes.
The higher the value the more the loss concentrates on pulling cases to its corresponding
prototypes. Allowed values: @ <= x <= 1

loss_margin double Value greater O indicating the minimal distance of every case from pro-
totypes of other classes. Please note that in contrast to the orginal work by Zhang et al.
(2019) this implementation reaches better performance if the margin is a magnitude lower
(e.g. 0.05 instead of 0.5). Allowed values: @ <= x <= 1

sampling_separate bool If TRUE the cases for every class are divided into a data set for sam-
ple and for query. These are never mixed. If TRUE sample and query cases are drawn from
the same data pool. That is, a case can be part of sample in one epoch and in another epoch
it can be part of query. It is ensured that a case is never part of sample and query at the same
time. In addition, it is ensured that every cases exists only once during a training step.

sampling_shuffle bool if TRUE cases a randomly drawn from the data during every step. If
FALSE the cases are not shuffled.

trace bool TRUE if information about the estimation phase should be printed to the console.

ml_trace int ml_trace=0 does not print any information about the training process from py-
torch on the console. Allowed values: @ <= x <= 1

log_dir string Path to the directory where the log files should be saved. If no logging is
desired set this argument to NULL. Allowed values: any

https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://mlco2.github.io/codecarbon/parameters.html
https://mlco2.github.io/codecarbon/parameters.html

TEClassifiersBasedOnProtoNet 133

log_write_interval int Time in seconds determining the interval in which the logger should
try to update the log files. Only relevant if log_dir is not NULL. Allowed values: 1 <= x

n_cores int Number of cores which should be used during the calculation of synthetic cases.
Only relevant if use_sc=TRUE. Allowed values: 1 <= x

lr_rate double Initial learning rate for the training. Allowed values: @ < x <= 1

lr_warm_up_ratio double Number of epochs used for warm up. Allowed values: @ < x < 0.5

optimizer string determining the optimizer used for training. Allowed values: ’Adam’,
"RMSprop’, ’AdamW’, ’SGD’

loss_balance_class_weights bool If TRUE class weights are generated based on the fre-
quencies of the training data with the method Inverse Class Frequency. If FALSE each class
has the weight 1.

loss_balance_sequence_length bool If TRUE sample weights are generated for the length
of sequences based on the frequencies of the training data with the method Inverse Class
Frequency. If FALSE each sequences length has the weight 1.

Details:

* sc_max_k: All values from sc_min_k up to sc_max_k are successively used. If the number
of sc_max_k is too high, the value is reduced to a number that allows the calculating of
synthetic units.

e pl_anchor: With the help of this value, the new cases are sorted. For this aim, the distance
from the anchor is calculated and all cases are arranged into an ascending order.

Returns: Function does not return a value. It changes the object into a trained classifier.

Method predict_with_samples(): Method for predicting the class of given data (query) based
on provided examples (sample).

Usage:

TEClassifiersBasedOnProtoNet$predict_with_samples(
newdata,
batch_size = 32L,
ml_trace = 1L,
embeddings_s = NULL,
classes_s = NULL

)

Arguments:

newdata Object of class EmbeddedText or LargeDataSetForTextEmbeddings containing the
text embeddings for all cases which should be predicted. They form the query set.

batch_size int batch size.

ml_trace int ml_trace=0 does not print any information about the training process from py-
torch on the console. Allowed values: @ <= x <= 1

embeddings_s Object of class EmbeddedText or LargeDataSetForTextEmbeddings containing
the text embeddings for all reference examples. They form the sample set.

classes_s Named factor containing the classes for every case within embeddings_s.

Returns: Returns a data. frame containing the predictions and the probabilities of the different
labels for each case.

134 TEClassifiersBasedOnProtoNet

Method embed(): Method for embedding documents. Please do not confuse this type of em-
beddings with the embeddings of texts created by an object of class TextEmbeddingModel. These
embeddings embed documents according to their similarity to specific classes.
Usage:
TEClassifiersBasedOnProtoNet$embed(
embeddings_q = NULL,
embeddings_s = NULL,
classes_s = NULL,
batch_size = 32L,
ml_trace = 1L

)

Arguments:

embeddings_q Object of class EmbeddedText or LargeDataSetForTextEmbeddings containing
the text embeddings for all cases which should be embedded into the classification space.

embeddings_s Object of class EmbeddedText or LargeDataSetForTextEmbeddings containing
the text embeddings for all reference examples. They form the sample set. If set to NULL
the trained prototypes are used.

classes_s Named factor containing the classes for every case within embeddings_s. If set
to NULL the trained prototypes are used.

batch_size int batch size.

ml_trace int ml_trace=0 does not print any information about the training process from py-
torch on the console. Allowed values: @ <= x <= 1

Returns: Returns a 1ist containing the following elements
* embeddings_g: embeddings for the cases (query sample).
* distances_q: matrix containing the distance of every query case to every prototype.

* embeddings_prototypes: embeddings of the prototypes which were learned during train-
ing. They represents the center for the different classes.

Method get_metric_scale_factor(): Method returns the scaling factor of the metric.

Usage:
TEClassifiersBasedOnProtoNet$get_metric_scale_factor()

Returns: Returns the scaling factor of the metric as float.

Method plot_embeddings(): Method for creating a plot to visualize embeddings and their
corresponding centers (prototypes).

Usage:
TEClassifiersBasedOnProtoNet$plot_embeddings(

embeddings_q,

classes_q = NULL,

embeddings_s = NULL,

classes_s = NULL,

batch_size = 12L,

alpha = 0.5,

size_points = 3L,

size_points_prototypes = 8L,

TEClassifiersBasedOnRegular 135

inc_unlabeled = TRUE,
inc_margin = TRUE
)
Arguments:
embeddings_q Object of class EmbeddedText or LargeDataSetForTextEmbeddings containing
the text embeddings for all cases which should be embedded into the classification space.
classes_g Named factor containg the true classes for every case. Please note that the names
must match the names/ids in embeddings_g.
embeddings_s Object of class EmbeddedText or LargeDataSetForTextEmbeddings containing
the text embeddings for all reference examples. They form the sample set. If set to NULL
the trained prototypes are used.

classes_s Named factor containing the classes for every case within embeddings_s. If set
to NULL the trained prototypes are used.

batch_size int batch size.

alpha float Value indicating how transparent the points should be (important if many points
overlap). Does not apply to points representing prototypes.

size_points int Size of the points excluding the points for prototypes.

size_points_prototypes int Size of points representing prototypes.

inc_unlabeled bool If TRUE plot includes unlabeled cases as data points.

inc_margin bool If TRUE plot includes the margin around every prototype. Adding margin
requires a trained model. If the model is not trained this argument is treated as set to FALSE.

Returns: Returns a plot of class ggplotvisualizing embeddings.

Method clone(): The objects of this class are cloneable with this method.
Usage:
TEClassifiersBasedOnProtoNet$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also

Other R6 Classes for Developers: ALFEBaseModel, AIFEMaster, BaseModelCore, ClassifiersBasedOnTextEmbeddings,
DataManagerClassifier, LargeDataSetBase, ModelsBasedOnTextEmbeddings, TEClassifiersBasedOnRegular,
TokenizerBase

TEClassifiersBasedOnRegular
Base class for regular classifiers relying on EmbeddedText or Large-
DataSetForTextEmbeddings as input

Description

Abstract class for all regular classifiers that use numerical representations of texts instead of words.
Objects of this class containing fields and methods used in several other classes in Al for Educa-
tion’.

This class is not designed for a direct application and should only be used by developers.

136 TEClassifiersBasedOnRegular

Value

A new object of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->aifeducation: :ModelsBasedOnTextEmbeddings
-> aifeducation: :ClassifiersBasedOnTextEmbeddings -> TEClassifiersBasedOnRegular

Methods

Public methods:

e TEClassifiersBasedOnRegular$train()
e TEClassifiersBasedOnRegular$clone()

Method train(): Method for training a neural net.

Training includes a routine for early stopping. In the case that loss<0.0001 and Accuracy=1.00
and Average Iota=1.00 training stops. The history uses the values of the last trained epoch for the
remaining epochs.

After training the model with the best values for Average Iota, Accuracy, and Loss on the valida-
tion data set is used as the final model.

Usage:
TEClassifiersBasedOnRegular$train(
data_embeddings = NULL,
data_targets = NULL,
data_folds = 5L,
data_val_size = 0.25,
loss_balance_class_weights = TRUE,
loss_balance_sequence_length = TRUE,
loss_cls_fct_name = "Focalloss”,
use_sc = FALSE,
sc_method = "knnor",
sc_min_k = 1L,
sc_max_k = 10L,
use_pl = FALSE,
pl_max_steps = 3L,

pl_max =1,
pl_anchor = 1,
pl_min = 0,

sustain_track = TRUE,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 15L,
sustain_log_level = "warning",
epochs = 40L,

batch_size = 32L,

trace = TRUE,

ml_trace = 1L,

TEClassifiersBasedOnRegular 137

log_dir = NULL,
log_write_interval = 10L,
n_cores = auto_n_cores(),
lr_rate = 0.001,
lr_warm_up_ratio = 0.02,
optimizer = "AdamW”

)

Arguments:

data_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-
beddedText or LargeDataSetForTextEmbeddings.

data_targets factor containing the labels for cases stored in embeddings. Factor must be
named and has to use the same names as used in in the embeddings. .

data_folds int determining the number of cross-fold samples. Allowed values: 1 <= x

data_val_size double between O and 1, indicating the proportion of cases which should be
used for the validation sample during the estimation of the model. The remaining cases are
part of the training data. Allowed values: @ < x < 1

loss_balance_class_weights bool If TRUE class weights are generated based on the fre-
quencies of the training data with the method Inverse Class Frequency. If FALSE each class
has the weight 1.

loss_balance_sequence_length bool If TRUE sample weights are generated for the length
of sequences based on the frequencies of the training data with the method Inverse Class
Frequency. If FALSE each sequences length has the weight 1.

loss_cls_fct_name string Name of the loss function to use during training. Allowed values:
’FocalLoss’, ’CrossEntropyLoss’

use_sc bool TRUE if the estimation should integrate synthetic cases. FALSE if not.

sc_method string containing the method for generating synthetic cases. Allowed values: kn-
nor’

sc_min_k int determining the minimal number of k which is used for creating synthetic units.
Allowed values: 1 <= x

sc_max_k int determining the maximal number of k which is used for creating synthetic units.
Allowed values: 1 <= x

use_pl bool TRUE if the estimation should integrate pseudo-labeling. FALSE if not.

pl_max_steps int determining the maximum number of steps during pseudo-labeling. Al-
lowed values: 1 <= x

pl_max double setting the maximal level of confidence for considering a case for pseudo-
labeling. Allowed values: @ < x <= 1

pl_anchor double indicating the reference point for sorting the new cases of every label. Al-
lowed values: @ <= x <= 1

pl_min double setting the mnimal level of confidence for considering a case for pseudo-
labeling. Allowed values: @ <= x < 1

sustain_track bool If TRUE energy consumption is tracked during training via the python
library ’codecarbon’

sustain_iso_code string ISO code (Alpha-3-Code) for the country. This variable must be
set if sustainability should be tracked. A list can be found on Wikipedia: https://en.
wikipedia.org/wiki/List_of_ISO_3166_country_codes. Allowed values: any

https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes

138 TEClassifiersBasedOnRegular

sustain_region string Region within a country. Only available for USA and Canada See the
documentation of codecarbon for more information. https://mlco2.github.io/codecarbon/
parameters.html Allowed values: any

sustain_interval int Interval in seconds for measuring power usage. Allowed values: 1 <=
X

sustain_log_level

epochs int Number of training epochs. Allowed values: 1 <= x

batch_size int Size of the batches for training. Allowed values: 1 <= x

trace bool TRUE if information about the estimation phase should be printed to the console.

ml_trace int ml_trace=0 does not print any information about the training process from py-
torch on the console. Allowed values: @ <= x <= 1

log_dir string Path to the directory where the log files should be saved. If no logging is
desired set this argument to NULL. Allowed values: any

log_write_interval int Time in seconds determining the interval in which the logger should
try to update the log files. Only relevant if log_dir is not NULL. Allowed values: 1 <= x

n_cores int Number of cores which should be used during the calculation of synthetic cases.
Only relevant if use_sc=TRUE. Allowed values: 1 <= x

lr_rate double Initial learning rate for the training. Allowed values: @ < x <= 1

lr_warm_up_ratio double Number of epochs used for warm up. Allowed values: @ < x < 0.5

optimizer string determining the optimizer used for training. Allowed values: ’Adam’,
’RMSprop’, ’AdamW’, ’SGD’

Details:

e sc_max_k: All values from sc_min_k up to sc_max_k are successively used. If the number
of sc_max_k is too high, the value is reduced to a number that allows the calculating of
synthetic units.

* pl_anchor: With the help of this value, the new cases are sorted. For this aim, the distance
from the anchor is calculated and all cases are arranged into an ascending order.

Returns: Function does not return a value. It changes the object into a trained classifier.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TEClassifiersBasedOnRegular$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other R6 Classes for Developers: AIFEBaseModel, AIFEMaster, BaseModelCore, ClassifiersBasedOnTextEmbeddings,
DataManagerClassifier, LargeDataSetBase, ModelsBasedOnTextEmbeddings, TEClassifiersBasedOnProtoNet,
TokenizerBase

https://mlco2.github.io/codecarbon/parameters.html
https://mlco2.github.io/codecarbon/parameters.html

TEClassifierSequential 139

TEClassifierSequential
Text embedding classifier with a neural net

Description

Classification Type

This is a probability classifier that predicts a probability distribution for different classes/categories.
This is the standard case most common in literature.

Sequential Core Architecture

This model is based on a sequential architecture. The input is passed to a specific number of layers
step by step. All layers are grouped by their kind into stacks.

Transformer Encoder Layers
Description

The transformer encoder layers follow the structure of the encoder layers used in transformer mod-
els. A single layer is designed as described by Chollet, Kalinowski, and Allaire (2022, p. 373)
with the exception that single components of the layers (such as the activation function, the kind
of residual connection, the kind of normalization or the kind of attention) can be customized. All
parameters with the prefix #f_ can be used to configure this layer.

Feature Layer
Description

The feature layer is a dense layer that can be used to increase or decrease the number of features of
the input data before passing the data into your model. The aim of this layer is to increase or reduce
the complexity of the data for your model. The output size of this layer determines the number of
features for all following layers. In the special case that the requested number of features equals
the number of features of the text embeddings this layer is reduced to a dropout layer with masking
capabilities. All parameters with the prefix fear_ can be used to configure this layer.

Dense Layers
Description

A fully connected layer. The layer is applied to every step of a sequence. All parameters with the
prefix dense_ can be used to configure this layer.

Multiple N-Gram Layers
Description

This type of layer focuses on sub-sequence and performs an 1d convolutional operation. On a word
and token level these sub-sequences can be interpreted as n-grams (Jacovi, Shalom & Goldberg
2018). The convolution is done across all features. The number of filters equals the number of
features of the input tensor. Thus, the shape of the tensor is retained (Pham, Kruszewski & Boleda
2016).

The layer is able to consider multiple n-grams at the same time. In this case the convolution of the
n-grams is done seprately and the resulting tensors are concatenated along the feature dimension.
The number of filters for every n-gram is set to num_features/num_n-grams. Thus, the resulting
tensor has the same shape as the input tensor.

140 TEClassifierSequential

Sub-sequences that are masked in the input are also masked in the output.

The output of this layer can be understand as the results of the n-gram filters. Stacking this layer
allows the model to perform n-gram detection of n-grams (meta perspective). All parameters with
the prefix ng_conv_ can be used to configure this layer.

Recurrent Layers
Description

A regular recurrent layer either as Gated Recurrent Unit (GRU) or Long Short-Term Memory
(LSTM) layer. Uses PyTorchs implementation. All parameters with the prefix rec_ can be used
to configure this layer.

Classifiction Pooling Layer
Description

Layer transforms sequences into a lower dimensional space that can be passed to dense layers. It
performs two types of pooling. First, it extractes features across the time dimension selecting the
maximal and/or minimal features. Second, it performs pooling over the remaining features selecting
a speficifc number of the heighest and/or lowest features.

In the case of selecting the minmal and maximal features at the same time the minmal features
are concatenated to the tensor of the maximal features resulting the in the shape $(Batch, Times,
2*Features)$ at the end of the first step. In the second step the number of requested features is
halved. The first half is used for the maximal features and the second for the minimal features. All
parameters with the prefix cls_pooling_ can be used to configure this layer.

Training and Prediction

For the creation and training of a classifier an object of class EmbeddedText or LargeDataSetFor-
TextEmbeddings on the one hand and a factor on the other hand are necessary.

The object of class EmbeddedText or LargeDataSetForTextEmbeddings contains the numerical text
representations (text embeddings) of the raw texts generated by an object of class TextEmbedding-
Model. For supporting large data sets it is recommended to use LargeDataSetForTextEmbeddings
instead of EmbeddedText.

The factor contains the classes/categories for every text. Missing values (unlabeled cases) are
supported and can be used for pseudo labeling.

For predictions an object of class EmbeddedText or LargeDataSetForTextEmbeddings has to be
used which was created with the same TextEmbeddingModel as for training.

Value

Returns a new object of this class ready for configuration or for loading a saved classifier.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->aifeducation: :ModelsBasedOnTextEmbeddings
->aifeducation::ClassifiersBasedOnTextEmbeddings ->aifeducation: :TEClassifiersBasedOnRegular
-> TEClassifierSequential

TEClassifierSequential

Methods

Public methods:

e TEClassifierSequential$configure()
e TEClassifierSequential$clone()

Method configure(): Creating a new instance of this class.

Usage:
TEClassifierSequential$configure(

name = NULL,

label = NULL,

text_embeddings = NULL,
feature_extractor = NULL,
target_levels = NULL,
skip_connection_type = "ResidualGate",
cls_pooling_features = NULL,
cls_pooling_type = "MinMax”,
feat_act_fct = "ELU",

feat_size = 50L,

feat_bias = TRUE,

feat_dropout = 0,
feat_parametrizations = "None”,
feat_normalization_type = "LayerNorm",
ng_conv_act_fct = "ELU",
ng_conv_n_layers = 1L,

ng_conv_ks_min = 2L,

ng_conv_ks_max = 4L,

ng_conv_bias = FALSE,

ng_conv_dropout = 0.1,

ng_conv_parametrizations = "None",
ng_conv_normalization_type = "LayerNorm”,
ng_conv_residual_type = "ResidualGate”,

dense_act_fct = "ELU",
dense_n_layers = 1,
dense_dropout = 0.5,
dense_bias = FALSE,

dense_parametrizations = "None”,
dense_normalization_type = "LayerNorm",
dense_residual_type = "ResidualGate”,
rec_act_fct = "Tanh",

rec_n_layers = 1L,

rec_type = "GRU",

rec_bidirectional = FALSE,
rec_dropout = 0.2,

rec_bias = FALSE,
rec_parametrizations = "None",
rec_normalization_type = "LayerNorm",
rec_residual_type = "ResidualGate",

141

142

TEClassifierSequential

tf_act_fct = "ELU",

tf_dense_dim = 50L,

tf_n_layers = 1L,
tf_dropout_rate_1 0.1,
tf_dropout_rate_2 = 0.5,
tf_attention_type = "MultiHead”,
tf_positional_type = "absolute”,
tf_num_heads = 1,

tf_bias = FALSE,

tf_parametrizations = "None",
tf_normalization_type = "LayerNorm”,
tf_residual_type = "ResidualGate”

)

Arguments:

name string Name of the new model. Please refer to common name conventions. Free text
can be used with parameter label. If set to NULL a unique ID is generated automatically.
Allowed values: any

label string Label for the new model. Here you can use free text. Allowed values: any

text_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-
beddedText or LargeDataSetForTextEmbeddings.

feature_extractor TEFeatureExtractor Object of class TEFeatureExtractor which should
be used in order to reduce the number of dimensions of the text embeddings. If no feature
extractor should be applied set NULL.

target_levels vector containing the levels (categories or classes) within the target data.
Please note that order matters. For ordinal data please ensure that the levels are sorted
correctly with later levels indicating a higher category/class. For nominal data the order
does not matter.

skip_connection_type string Type of residual connenction for all layers and stack of layers.
Allowed values: 'ResidualGate’, *Addition’, ’None’

cls_pooling_features int Number of features to be extracted at the end of the model. Al-
lowed values: 1 <= x

cls_pooling_type string Type of extracting intermediate features. Allowed values: "Max’,
’Min’, ’MinMax’

feat_act_fct string Activation function for all layers. Allowed values: "ELU’, ’LeakyReLU’,
’ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

feat_size int Number of neurons for each dense layer. Allowed values: 2 <= x

feat_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to
the layers.

feat_dropout double determining the dropout for the dense projection of the feature layer.
Allowed values: @ <= x <= 0.6

feat_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: "None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

feat_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: "LayerNorm’, ’None’

ng_conv_act_fct string Activation function for all layers. Allowed values: ’ELU’, ’LeakyReL.U’
"ReLU’, ’GELU’, ’Sigmoid’, "Tanh’, "PReLU’

TEClassifierSequential 143

ng_conv_n_layers int determining how many times the n-gram layers should be added to the
network. Allowed values: @ <= x

ng_conv_ks_min int determining the minimal window size for n-grams. Allowed values: 2
<=x

ng_conv_ks_max int determining the maximal window size for n-grams. Allowed values: 2
<=X

ng_conv_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added
to the layers.

ng_conv_dropout double determining the dropout for n-gram convolution layers. Allowed
values: @ <= x <= 0.6

ng_conv_parametrizations string Re-Parametrizations of the weights of layers. Allowed
values: ’None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

ng_conv_normalization_type string Type of normalization applied to all layers and stack
layers. Allowed values: "LayerNorm’, ’None’

ng_conv_residual_type string Type of residual connenction for all layers and stack of lay-
ers. Allowed values: 'ResidualGate’, ’Addition’, ’None’

dense_act_fct string Activation function for all layers. Allowed values: ’ELU’, ’LeakyReLU’,
’ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

dense_n_layers int Number of dense layers. Allowed values: @ <= x

dense_dropout double determining the dropout between dense layers. Allowed values: @ <= x <= 0.6

dense_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to
the layers.

dense_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: "None’, *OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

dense_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: "’LayerNorm’, ’None’

dense_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: 'ResidualGate’, *Addition’, ’None’

rec_act_fct string Activation function for all layers. Allowed values: *Tanh’
rec_n_layers int Number of recurrent layers. Allowed values: @ <= x

rec_type string Type of the recurrent layers. rec_type="'GRU' for Gated Recurrent Unit and
rec_type='LSTM' for Long Short-Term Memory. Allowed values: ’"GRU’, 'LSTM’

rec_bidirectional bool If TRUE a bidirectional version of the recurrent layers is used.
rec_dropout double determining the dropout between recurrent layers. Allowed values: @ <= x <= 0.6

rec_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

rec_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: ’None’

rec_normalization_type string Type of normalization applied to all layers and stack layers.
Allowed values: 'LayerNorm’, ’None’

rec_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: 'ResidualGate’, * Addition’, ’None’

tf_act_fct string Activation function for all layers. Allowed values: ’ELU’, ’LeakyReLU’,
"ReLU’, ’GELU’, ’Sigmoid’, "Tanh’, ’PReLU’

144 TEClassifierSequential Prototype

tf_dense_dim int determining the size of the projection layer within a each transformer en-
coder. Allowed values: 1 <= x

tf_n_layers int determining how many times the encoder should be added to the network.
Allowed values: @ <= x

tf_dropout_rate_1 double determining the dropout after the attention mechanism within the
transformer encoder layers. Allowed values: @ <= x <= 0.6

tf_dropout_rate_2 double determining the dropout for the dense projection within the trans-
former encoder layers. Allowed values: @ <= x <= 0.6

tf_attention_type string Choose the attention type. Allowed values: ’Fourier’, *Multi-
Head’

tf_positional_type string Type of processing positional information. Allowed values:
’None’, ’absolute’

tf_num_heads int determining the number of attention heads for a self-attention layer. Only
relevant if attention_type="multihead' Allowed values: @ <= x

tf_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

tf_parametrizations string Re-Parametrizations of the weights of layers. Allowed values:
’None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

tf_normalization_type string Type of normalization applied to all layers and stack layers.
Allowed values: 'LayerNorm’, ’None’

tf_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: *ResidualGate’, * Addition’, ’None’

Returns: Function does nothing return. It modifies the current object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TEClassifierSequential$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Classification: TEClassifierParallel, TEClassifierParallelPrototype, TEClassifierProtoNet,
TEClassifierRegular, TEClassifierSequentialPrototype

TEClassifierSequentialPrototype
Text embedding classifier with a ProtoNet

TEClassifierSequentialPrototype 145

Description

Classification Type

This object is a metric based classifer and represents in implementation of a prototypical network
for few-shot learning as described by Snell, Swersky, and Zemel (2017). The network uses a multi
way contrastive loss described by Zhang et al. (2019). The network learns to scale the metric as
described by Oreshkin, Rodriguez, and Lacoste (2018).

Sequential Core Architecture

This model is based on a sequential architecture. The input is passed to a specific number of layers
step by step. All layers are grouped by their kind into stacks.

Transformer Encoder Layers
Description

The transformer encoder layers follow the structure of the encoder layers used in transformer mod-
els. A single layer is designed as described by Chollet, Kalinowski, and Allaire (2022, p. 373)
with the exception that single components of the layers (such as the activation function, the kind
of residual connection, the kind of normalization or the kind of attention) can be customized. All
parameters with the prefix #f_ can be used to configure this layer.

Feature Layer
Description

The feature layer is a dense layer that can be used to increase or decrease the number of features of
the input data before passing the data into your model. The aim of this layer is to increase or reduce
the complexity of the data for your model. The output size of this layer determines the number of
features for all following layers. In the special case that the requested number of features equals
the number of features of the text embeddings this layer is reduced to a dropout layer with masking
capabilities. All parameters with the prefix fear_ can be used to configure this layer.

Dense Layers
Description

A fully connected layer. The layer is applied to every step of a sequence. All parameters with the
prefix dense_ can be used to configure this layer.

Multiple N-Gram Layers
Description

This type of layer focuses on sub-sequence and performs an 1d convolutional operation. On a word
and token level these sub-sequences can be interpreted as n-grams (Jacovi, Shalom & Goldberg
2018). The convolution is done across all features. The number of filters equals the number of
features of the input tensor. Thus, the shape of the tensor is retained (Pham, Kruszewski & Boleda
2016).

The layer is able to consider multiple n-grams at the same time. In this case the convolution of the
n-grams is done seprately and the resulting tensors are concatenated along the feature dimension.
The number of filters for every n-gram is set to num_features/num_n-grams. Thus, the resulting
tensor has the same shape as the input tensor.

Sub-sequences that are masked in the input are also masked in the output.

The output of this layer can be understand as the results of the n-gram filters. Stacking this layer
allows the model to perform n-gram detection of n-grams (meta perspective). All parameters with
the prefix ng_conv_ can be used to configure this layer.

146 TEClassifierSequential Prototype

Recurrent Layers
Description

A regular recurrent layer either as Gated Recurrent Unit (GRU) or Long Short-Term Memory
(LSTM) layer. Uses PyTorchs implementation. All parameters with the prefix rec_ can be used
to configure this layer.

Classifiction Pooling Layer
Description

Layer transforms sequences into a lower dimensional space that can be passed to dense layers. It
performs two types of pooling. First, it extractes features across the time dimension selecting the
maximal and/or minimal features. Second, it performs pooling over the remaining features selecting
a speficifc number of the heighest and/or lowest features.

In the case of selecting the minmal and maximal features at the same time the minmal features
are concatenated to the tensor of the maximal features resulting the in the shape $(Batch, Times,
2*Features)$ at the end of the first step. In the second step the number of requested features is
halved. The first half is used for the maximal features and the second for the minimal features. All
parameters with the prefix cls_pooling_ can be used to configure this layer.

Training and Prediction

For the creation and training of a classifier an object of class EmbeddedText or LargeDataSetFor-
TextEmbeddings on the one hand and a factor on the other hand are necessary.

The object of class EmbeddedText or LargeDataSetForTextEmbeddings contains the numerical text
representations (text embeddings) of the raw texts generated by an object of class TextEmbedding-
Model. For supporting large data sets it is recommended to use LargeDataSetForTextEmbeddings
instead of EmbeddedText.

The factor contains the classes/categories for every text. Missing values (unlabeled cases) are
supported and can be used for pseudo labeling.

For predictions an object of class EmbeddedText or LargeDataSetForTextEmbeddings has to be
used which was created with the same TextEmbeddingModel as for training..
Value

Returns a new object of this class ready for configuration or for loading a saved classifier.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel ->aifeducation: :ModelsBasedOnTextEmbeddings
->aifeducation::ClassifiersBasedOnTextEmbeddings ->aifeducation: :TEClassifiersBasedOnProtoNet
-> TEClassifierSequentialPrototype

Methods

Public methods:

e TEClassifierSequentialPrototype$configure()
e TEClassifierSequentialPrototype$clone()

Method configure(): Creating a new instance of this class.

TEClassifierSequentialPrototype 147

Usage:
TEClassifierSequentialPrototype$configure(
name = NULL,
label = NULL,

text_embeddings = NULL,
feature_extractor = NULL,
target_levels = NULL,
skip_connection_type = "ResidualGate”,
cls_pooling_features = 50L,
cls_pooling_type = "MinMax",
metric_type = "Euclidean”,
feat_act_fct = "ELU",

feat_size = 50L,

feat_bias = TRUE,

feat_dropout = 0,
feat_parametrizations = "None”,
feat_normalization_type = "LayerNorm",
ng_conv_act_fct = "ELU",
ng_conv_n_layers = 1L,
ng_conv_ks_min = 2L,
ng_conv_ks_max = 4,
ng_conv_bias = FALSE,
ng_conv_dropout = 0.1,

ng_conv_parametrizations = "None”,
ng_conv_normalization_type = "LayerNorm”,
ng_conv_residual_type = "ResidualGate",

dense_act_fct = "ELU",
dense_n_layers = 1L,
dense_dropout = 0.5,
dense_bias = FALSE,

dense_parametrizations = "None”,
dense_normalization_type = "LayerNorm",
dense_residual_type = "ResidualGate”,
rec_act_fct = "Tanh",

rec_n_layers = 1,
rec_type = "GRU",
rec_bidirectional = FALSE,
rec_dropout = 0.2,
rec_bias = FALSE,

rec_parametrizations = "None”,
rec_normalization_type = "LayerNorm",
rec_residual_type = "ResidualGate",

tf_act_fct = "ELU",

tf_dense_dim = 50L,

tf_n_layers = 1L,
tf_dropout_rate_1 0.1,
tf_dropout_rate_2 = 0.5,
tf_attention_type = "MultiHead"”,

148 TEClassifierSequential Prototype

tf_positional_type = "absolute”,
tf_num_heads = 1L,
tf_bias = FALSE,
tf_parametrizations = "None",
tf_normalization_type = "LayerNorm”,
tf_residual_type = "ResidualGate”,
embedding_dim = 2L

)

Arguments:

name string Name of the new model. Please refer to common name conventions. Free text
can be used with parameter label. If set to NULL a unique ID is generated automatically.
Allowed values: any

label string Label for the new model. Here you can use free text. Allowed values: any

text_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-
beddedText or LargeDataSetForTextEmbeddings.

feature_extractor TEFeatureExtractor Object of class TEFeatureExtractor which should
be used in order to reduce the number of dimensions of the text embeddings. If no feature
extractor should be applied set NULL.

target_levels vector containing the levels (categories or classes) within the target data.
Please note that order matters. For ordinal data please ensure that the levels are sorted
correctly with later levels indicating a higher category/class. For nominal data the order
does not matter.

skip_connection_type string Type of residual connenction for all layers and stack of layers.
Allowed values: ResidualGate’, *Addition’, "None’

cls_pooling_features int Number of features to be extracted at the end of the model. Al-
lowed values: 1 <= x

cls_pooling_type string Type of extracting intermediate features. Allowed values: "Max’,
’Min’, ’MinMax’

metric_type string Type of metric used for calculating the distance. Allowed values: 'Eu-
clidean’

feat_act_fct string Activation function for all layers. Allowed values: "ELU’, ’LeakyReLU’,
"ReLU’, ’GELU’, ’Sigmoid’, "Tanh’, "PReLU’

feat_size int Number of neurons for each dense layer. Allowed values: 2 <= x

feat_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to
the layers.

feat_dropout double determining the dropout for the dense projection of the feature layer.
Allowed values: @ <= x <= 0.6

feat_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: ’None’, ’OrthogonalWeights’, >WeightNorm’, ’SpectralNorm’

feat_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: ’LayerNorm’, ’None’

ng_conv_act_fct string Activation function for all layers. Allowed values: "ELU’, *LeakyReLU’,
"ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

ng_conv_n_layers int determining how many times the n-gram layers should be added to the
network. Allowed values: @ <= x

TEClassifierSequential Prototype 149

ng_conv_ks_min int determining the minimal window size for n-grams. Allowed values: 2
<=x

ng_conv_ks_max int determining the maximal window size for n-grams. Allowed values: 2
<=x

ng_conv_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added
to the layers.

ng_conv_dropout double determining the dropout for n-gram convolution layers. Allowed
values: @ <= x <= 0.6

ng_conv_parametrizations string Re-Parametrizations of the weights of layers. Allowed
values: ’None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

ng_conv_normalization_type string Type of normalization applied to all layers and stack
layers. Allowed values: *LayerNorm’, ’None’

ng_conv_residual_type string Type of residual connenction for all layers and stack of lay-
ers. Allowed values: 'ResidualGate’, *Addition’, "None’

dense_act_fct string Activation function for all layers. Allowed values: ’ELU’, ’LeakyReL.U’,
"ReLU’, ’GELU’, ’Sigmoid’, Tanh’, ’PReLU’

dense_n_layers int Number of dense layers. Allowed values: @ <= x

dense_dropout double determining the dropout between dense layers. Allowed values: @ <= x <= 0.6

dense_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to
the layers.

dense_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: "None’, ’OrthogonalWeights’, *WeightNorm’, ’SpectralNorm’

dense_normalization_type string Type of normalization applied to all layers and stack lay-
ers. Allowed values: "LayerNorm’, ’None’

dense_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: "ResidualGate’, * Addition’, ’None’

rec_act_fct string Activation function for all layers. Allowed values: *Tanh’
rec_n_layers int Number of recurrent layers. Allowed values: @ <= x

rec_type string Type of the recurrent layers. rec_type='GRU' for Gated Recurrent Unit and
rec_type='LSTM' for Long Short-Term Memory. Allowed values: ’"GRU’, 'LSTM’

rec_bidirectional bool If TRUE a bidirectional version of the recurrent layers is used.

rec_dropout double determining the dropout between recurrent layers. Allowed values: @ <= x <= 0.6

rec_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

rec_parametrizations string Re-Parametrizations of the weights of layers. Allowed val-
ues: ’None’

rec_normalization_type string Type of normalization applied to all layers and stack layers.
Allowed values: *LayerNorm’, ’None’

rec_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: "ResidualGate’, * Addition’, ’None’

tf_act_fct string Activation function for all layers. Allowed values: ’ELU’, ’LeakyReL.U’,
’ReLU’, ’GELU’, ’Sigmoid’, *Tanh’, ’PReLU’

tf_dense_dim int determining the size of the projection layer within a each transformer en-
coder. Allowed values: 1 <= x

150 TEClassifierSequential Prototype

tf_n_layers int determining how many times the encoder should be added to the network.
Allowed values: @ <= x

tf_dropout_rate_1 double determining the dropout after the attention mechanism within the
transformer encoder layers. Allowed values: @ <= x <= 0.6

tf_dropout_rate_2 double determining the dropout for the dense projection within the trans-
former encoder layers. Allowed values: @ <= x <= 0.6

tf_attention_type string Choose the attention type. Allowed values: ’Fourier’, "Multi-
Head’

tf_positional_type string Type of processing positional information. Allowed values:
’None’, ’absolute’

tf_num_heads int determining the number of attention heads for a self-attention layer. Only
relevant if attention_type="multihead' Allowed values: @ <= x

tf_bias bool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the
layers.

tf_parametrizations string Re-Parametrizations of the weights of layers. Allowed values:
’None’, ’OrthogonalWeights’, >WeightNorm’, ’SpectralNorm’

tf_normalization_type string Type of normalization applied to all layers and stack layers.
Allowed values: 'LayerNorm’, ’None’

tf_residual_type string Type of residual connenction for all layers and stack of layers.
Allowed values: "ResidualGate’, * Addition’, ’None’

embedding_dim int determining the number of dimensions for the embedding. Allowed val-
ues: 2 <= X

Returns: Function does nothing return. It modifies the current object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
TEClassifierSequentialPrototype$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References
Oreshkin, B. N., Rodriguez, P. & Lacoste, A. (2018). TADAM: Task dependent adaptive metric for
improved few-shot learning. https://doi.org/10.48550/arXiv.1805.10123

Snell, J., Swersky, K. & Zemel, R. S. (2017). Prototypical Networks for Few-shot Learning.
https://doi.org/10.48550/arXiv.1703.05175

Zhang, X., Nie, J., Zong, L., Yu, H. & Liang, W. (2019). One Shot Learning with Margin. In
Q. Yang, Z.-H. Zhou, Z. Gong, M.-L. Zhang & S.-J. Huang (Eds.), Lecture Notes in Computer
Science. Advances in Knowledge Discovery and Data Mining (Vol. 11440, pp. 305-317). Springer
International Publishing. https://doi.org/10.1007/978-3-030-16145-3_24

See Also

Other Classification: TEClassifierParallel, TEClassifierParallelPrototype, TEClassifierProtoNet,
TEClassifierRegular, TEClassifierSequential

TEFeatureExtractor 151

TEFeatureExtractor Feature extractor for reducing the number for dimensions of text em-
beddings.

Description

Abstract class for auto encoders with *pytorch’.

Objects of this class are used for reducing the number of dimensions of text embeddings created by
an object of class TextEmbeddingModel.

For training an object of class EmbeddedText or LargeDataSetForTextEmbeddings generated by an
object of class TextEmbeddingModel is necessary. Passing raw texts is not supported.

For prediction an ob object class EmbeddedText or LargeDataSetForTextEmbeddings is necessary
that was generated with the same TextEmbeddingModel as during training. Prediction outputs
a new object of class EmbeddedText or LargeDataSetForTextEmbeddings which contains a text
embedding with a lower number of dimensions.

All models use tied weights for the encoder and decoder layers (except method="LSTM") and ap-
ply the estimation of orthogonal weights. In addition, training tries to train the model to achieve
uncorrelated features.

Objects of class TEFeatureExtractor are designed to be used with classifiers such as TEClassifier-
Regular and TEClassifierProtoNet.

Value

A new instances of this class.

Super classes

aifeducation: :AIFEMaster ->aifeducation: :AIFEBaseModel -> aifeducation: :ModelsBasedOnTextEmbeddings
-> TEFeatureExtractor

Methods
Public methods:

e TEFeatureExtractor$configure()

e TEFeatureExtractor$train()

e TEFeatureExtractor$extract_features()

e TEFeatureExtractor$extract_features_large()
e TEFeatureExtractor$plot_training_history()
e TEFeatureExtractor$clone()

Method configure(): Creating a new instance of this class.

Usage:

152

TEFeatureExtractor

TEFeatureExtractor$configure(
name = NULL,
label = NULL,
text_embeddings = NULL,
features = 128L,
method = "dense”,
orthogonal_method = "matrix_exp”,
noise_factor = 0.2

)

Arguments:

name string Name of the new model. Please refer to common name conventions. Free text
can be used with parameter label. If set to NULL a unique ID is generated automatically.
Allowed values: any

label string Label for the new model. Here you can use free text. Allowed values: any

text_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-
beddedText or LargeDataSetForTextEmbeddings.

features int Number of features the model should use. Allowed values: 1 <= x

method string Method to use for the feature extraction. 'lstm' for an extractor based on
LSTM-layers or 'Dense’ for dense layers. Allowed values: 'Dense’, 'LSTM’

orthogonal_method string Method to use for the feature extraction. '1stm' for an extractor
based on LSTM-layers or 'Dense’ for dense layers. Allowed values: Dense’, 'LSTM’

noise_factor double Value between O and a value lower 1 indicating how much noise should
be added to the input during training. Allowed values: @ <= x <= 1

Returns: Returns an object of class TEFeatureExtractor which is ready for training.

Method train(): Method for training a neural net.

Usage:

TEFeatureExtractor$train(
data_embeddings = NULL,
data_val_size = 0.25,
sustain_track = TRUE,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 15L,
sustain_log_level = "warning",
epochs = 4oL,
batch_size = 32L,
trace = TRUE,
ml_trace = 1L,
log_dir = NULL,
log_write_interval = 10L,
lr_rate = 0.001,
lr_warm_up_ratio = 0.02,
optimizer = "AdamW"

)

Arguments:

TEFeatureExtractor 153

data_embeddings EmbeddedText, LargeDataSetForTextEmbeddings Object of class Em-
beddedText or LargeDataSetForTextEmbeddings.

data_val_size double between O and 1, indicating the proportion of cases which should be
used for the validation sample during the estimation of the model. The remaining cases are
part of the training data. Allowed values: @ < x < 1

sustain_track bool If TRUE energy consumption is tracked during training via the python
library *codecarbon’.

sustain_iso_code string ISO code (Alpha-3-Code) for the country. This variable must be
set if sustainability should be tracked. A list can be found on Wikipedia: https://en.
wikipedia.org/wiki/List_of_IS0_3166_country_codes. Allowed values: any
sustain_region string Region within a country. Only available for USA and Canada See the
documentation of codecarbon for more information. https://mlco2.github.io/codecarbon/
parameters.html Allowed values: any

sustain_interval int Interval in seconds for measuring power usage. Allowed values: 1 <=
X

sustain_log_level string Level for printing information to the console. Allowed values:
"debug’, ’info’, *warning’, "error’, critical’

epochs int Number of training epochs. Allowed values: 1 <= x

batch_size int Size of the batches for training. Allowed values: 1 <= x

trace bool TRUE if information about the estimation phase should be printed to the console.

ml_trace int ml_trace=0 does not print any information about the training process from py-
torch on the console. Allowed values: @ <= x <= 1

log_dir string Path to the directory where the log files should be saved. If no logging is
desired set this argument to NULL. Allowed values: any

log_write_interval int Time in seconds determining the interval in which the logger should
try to update the log files. Only relevant if log_dir is not NULL. Allowed values: 1 <= x

lr_rate double Initial learning rate for the training. Allowed values: @ < x <= 1

lr_warm_up_ratio double Number of epochs used for warm up. Allowed values: @ < x < 0.5

optimizer string determining the optimizer used for training. Allowed values: ’Adam’,
"RMSprop’, ’AdamW’, ’SGD’

Returns: Function does not return a value. It changes the object into a trained classifier.

Method extract_features(): Method for extracting features. Applying this method reduces
the number of dimensions of the text embeddings. Please note that this method should only be
used if a small number of cases should be compressed since the data is loaded completely into
memory. For a high number of cases please use the method extract_features_large.

Usage:

TEFeatureExtractor$extract_features(data_embeddings, batch_size)

Arguments:

data_embeddings Object of class EmbeddedText,LargeDataSetForTextEmbeddings, datasets.arrow_dataset.Data:
or array containing the text embeddings which should be reduced in their dimensions.

batch_size int batch size.

Returns: Returns an object of class EmbeddedText containing the compressed embeddings.

Method extract_features_large(): Method for extracting features from a large number of
cases. Applying this method reduces the number of dimensions of the text embeddings.

https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://mlco2.github.io/codecarbon/parameters.html
https://mlco2.github.io/codecarbon/parameters.html

154 TEFeatureExtractor
Usage:
TEFeatureExtractor$extract_features_large(
data_embeddings,
batch_size,
trace = FALSE
)
Arguments:
data_embeddings Object of class EmbeddedText or LargeDataSetForTextEmbeddings con-
taining the text embeddings which should be reduced in their dimensions.
batch_size int batch size.
trace bool If TRUE information about the progress is printed to the console.
Returns: Returns an object of class LargeDataSetForTextEmbeddings containing the com-
pressed embeddings.
Method plot_training_history(): Method for requesting a plot of the training history. This
method requires the R package *ggplot2’ to work.
Usage:
TEFeatureExtractor$plot_training_history(
y_min = NULL,
y_max = NULL,
text_size = 10L
)
Arguments:
y_min Minimal value for the y-axis. Set to NULL for an automatic adjustment.
y_max Maximal value for the y-axis. Set to NULL for an automatic adjustment.
text_size Size of the text.
Returns: Returns a plot of class ggplot visualizing the training process.
Method clone(): The objects of this class are cloneable with this method.
Usage:
TEFeatureExtractor$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Note
features refers to the number of features for the compressed text embeddings.
This model requires pad_value=0. If this condition is not met the padding value is switched auto-
matically.
This model requires that the underlying TextEmbeddingModel uses pad_value=0. If this condition
is not met the pad value is switched before training.
See Also

Other Text Embedding: TextEmbeddingModel

tensor_list_to_numpy 155

tensor_list_to_numpy Convert list of tensors into numpy arrays

Description

Function converts tensors within a 1ist into numpy arrays in order to allow further operations in R.

Usage

tensor_list_to_numpy(tensor_list)

Arguments

tensor_list list of objects.

Value

Returns the same list with the exception that objects of class torch. Tensor are transformed into
numpy arrays. If the tensor requires a gradient and/or is on gpu it is detached and converted. If the
object in a list is not of this class the original object is returned.

See Also

Other Utils Python Data Management Developers: class_vector_to_py_dataset(), data.frame_to_py_dataset(),
get_batches_index(), prepare_r_array_for_dataset(), py_dataset_to_embeddings(), reduce_to_unique(),
tensor_to_numpy ()

tensor_to_matrix_c Transform tensor to matrix

Description
Function written in C++ for transformation the tensor (with size batch x times x features) to the
matrix (with size batch x times*features)

Usage

tensor_to_matrix_c(tensor, times, features)

Arguments
tensor 3-D array (cube) data as tensor (with size batch x times x features)
times unsigned integer times number

features unsigned integer features number

156 tensor_to_numpy

Value

Returns matrix (with size batch x times*features)

See Also

Other Utils Developers: auto_n_cores(), create_object(), create_synthetic_units_from_matrix(),
generate_id(), get_n_chunks(), get_synthetic_cases_from_matrix(), get_time_stamp(),
matrix_to_array_c(), to_categorical_c()

tensor_to_numpy Tensor_to_numpy

Description

Function converts a tensor into a numpy array in order to allow further operations in R.

Usage

tensor_to_numpy(object)

Arguments

object Object of any class.

Value

In the case the object is of class torch.Tensor it returns a numpy error. If the tensor requires a
gradient and/or is on gpu it is detached and converted. If the object is not of class torch.Tensor
the original object is returned.

See Also

Other Utils Python Data Management Developers: class_vector_to_py_dataset(),data.frame_to_py_dataset(),
get_batches_index(), prepare_r_array_for_dataset(), py_dataset_to_embeddings(), reduce_to_unique(),
tensor_list_to_numpy()

TextEmbeddingModel 157

TextEmbeddingModel Text embedding model

Description

This R6 class stores a text embedding model which can be used to tokenize, encode, decode, and
embed raw texts. The object provides a unique interface for different text processing methods.

Value

Objects of class TextEmbeddingModel transform raw texts into numerical representations which
can be used for downstream tasks. For this aim objects of this class allow to tokenize raw texts, to
encode tokens to sequences of integers, and to decode sequences of integers back to tokens.

Super classes

aifeducation: :AIFEMaster -> aifeducation: :AIFEBaseModel -> TextEmbeddingModel

Public fields

BaseModel (’BaseModelCore’)
Object of class BaseModelCore.

Methods

Public methods:

e TextEmbeddingModel$configure()

* TextEmbeddingModel$load_from_disk()

e TextEmbeddingModel$save()

e TextEmbeddingModel$encode ()

e TextEmbeddingModel$decode ()

¢ TextEmbeddingModel$embed()

¢ TextEmbeddingModel$embed_large()

* TextEmbeddingModel$get_n_features()

e TextEmbeddingModel$get_pad_value()

* TextEmbeddingModel$set_publication_info()

e TextEmbeddingModel$get_sustainability_data()
* TextEmbeddingModel$estimate_sustainability_inference_embed()
e TextEmbeddingModel$clone()

Method configure(): Method for creating a new text embedding model

Usage:

158 TextEmbeddingModel

TextEmbeddingModel$configure(
model_name = NULL,
model_label = NULL,
model_language = NULL,
max_length = oL,
chunks = 2L,
overlap = 0L,
emb_layer_min = 1L,
emb_layer_max = 2L,
emb_pool_type = "Average",
pad_value = -100L,
base_model = NULL

)

Arguments:

model_name string Name of the new model. Please refer to common name conventions. Free
text can be used with parameter label. If set to NULL a unique ID is generated automatically.
Allowed values: any

model_label string Label for the new model. Here you can use free text. Allowed values:
any
model_language string Languages that the models can work with. Allowed values: any

max_length int Maximal number of token per chunks. Must be equal or lower as the maximal
postional embeddings for the model. Allowed values: 20 <= x

chunks int Maximal number chunks. Allowed values: 2 <= x

overlap int Number of tokens from the previous chunk that should be added at the beginng
of the next chunk. Allowed values: @ <= x

emb_layer_min int Minimal layer from which the embeddings should be calculated. Allowed
values: 1 <= x

emb_layer_max int Maximal layer from which the embeddings should be calculated. Allowed
values: 1 <= x

emb_pool_type string Method to summarize the embedding of single tokens into a text em-
bedding. In the case of 'CLS"' all cls-tokens between emb_layer_min and emb_layer_max
are averaged. In the case of 'Average' the embeddings of all tokens are averaged. Please
note that BaseModelFunnel allows only "CLS’. Allowed values: *CLS’, ’ Average’

pad_value int Value indicating padding. This value should no be in the range of regluar
values for computations. Thus it is not recommended to chance this value. Default is -100.
Allowed values: x <= -100

base_model BaseModelCore BaseModels for processing raw texts.
trace bool TRUE if information about the estimation phase should be printed to the console.

Returns: Does nothing return.
Method load_from_disk(): Loads an object from disk and updates the object to the current
version of the package.

Usage:
TextEmbeddingModel$load_from_disk(dir_path)

Arguments:

TextEmbeddingModel 159

dir_path Path where the object set is stored.

Returns: Function does nothin return. It loads an object from disk.

Method save(): Method for saving a model on disk.

Usage:
TextEmbeddingModel$save(dir_path, folder_name)

Arguments:

dir_path Path to the directory where to save the object.

folder_name string Name of the folder where the model should be saved. Allowed values:
any

Returns: Function does nothing return. It is used to save an object on disk.

Method encode(): Method for encoding words of raw texts into integers.

Usage:
TextEmbeddingModel$encode (
raw_text,
token_encodings_only = FALSE,
token_to_int = TRUE,
trace = FALSE

)
Arguments:
raw_text vector Raw text.
token_encodings_only bool
* TRUE: Returns a 1ist containg only the tokens.

* FALSE: Returns a list containg a list for the tokens, the number of chunks, and the
number potential number of chunks for each document/text.

token_to_int bool
* TRUE: Returns the tokens as int index.
e FALSE: Returns the tokens as strings.
trace bool TRUE if information about the estimation phase should be printed to the console.

Returns: list containing the integer or token sequences of the raw texts with special tokens.

Method decode(): Method for decoding a sequence of integers into tokens

Usage:
TextEmbeddingModel$decode(int_seqgence, to_token = FALSE)
Arguments:
int_seqence list list of integer sequence that should be converted to tokens.
to_token bool

* FALSE: Transforms the integers to plain text.

* TRUE: Transforms the integers to a sequence of tokens.

Returns: list of token sequences

160 TextEmbeddingModel

Method embed(): Method for creating text embeddings from raw texts. This method should
only be used if a small number of texts should be transformed into text embeddings. For a large
number of texts please use the method embed_large.
Usage:
TextEmbeddingModel$embed(
raw_text = NULL,
doc_id = NULL,
batch_size = 8L,
trace = FALSE,
return_large_dataset = FALSE

)

Arguments:

raw_text vector Raw text.

doc_id vector Id for every text.

batch_size int Size of the batches for training. Allowed values: 1 <= x

trace bool TRUE if information about the estimation phase should be printed to the console.

return_large_dataset bool If TRUE a LargeDataSetForTextEmbeddings is returned. If FALSE
an object if class EmbeddedText is returned.

Returns: Method returns an object of class EmbeddedText or LargeDataSetForTextEmbed-
dings. This object contains the embeddings as a data.frame and information about the model
creating the embeddings.

Method embed_large(): Method for creating text embeddings from raw texts.

Usage:
TextEmbeddingModel$embed_large(
text_dataset,
batch_size = 32L,
trace = FALSE,
log_file = NULL,
log_write_interval = 2L
)
Arguments:
text_dataset LargeDataSetForText LargeDataSetForText Object storing textual data.
batch_size int Size of the batches for training. Allowed values: 1 <= x
trace bool TRUE if information about the estimation phase should be printed to the console.

log_file string Path to the file where the log files should be saved. If no logging is desired
set this argument to NULL. Allowed values: any

log_write_interval int Time in seconds determining the interval in which the logger should
try to update the log files. Only relevant if log_dir is not NULL. Allowed values: 1 <= x

Returns: Method returns an object of class LargeDataSetForTextEmbeddings.

Method get_n_features(): Method for requesting the number of features.

Usage:
TextEmbeddingModel$get_n_features()

TextEmbeddingModel 161

Returns: Returns a double which represents the number of features. This number represents
the hidden size of the embeddings for every chunk or time.

Method get_pad_value(): Value for indicating padding.

Usage:
TextEmbeddingModel$get_pad_value()

Returns: Returns an int describing the value used for padding.

Method set_publication_info(): Method for setting the bibliographic information of the
model.

Usage:

TextEmbeddingModel$set_publication_info(type, authors, citation, url = NULL)

Arguments:

type string Type of information which should be changed/added. developer, and modifier
are possible.

authors List of people.

citation string Citation in free text.

url string Corresponding URL if applicable.

Returns: Function does not return a value. It is used to set the private members for publication
information of the model.

Method get_sustainability_data(): Method for requesting a summary of tracked energy
consumption during training and an estimate of the resulting CO2 equivalents in kg.

Usage:
TextEmbeddingModel$get_sustainability_data(track_mode = "training")

Arguments:

track_mode string Determines the stept to which the data refer. Allowed values: ’training’,
“inference’

Returns: Returns a 1ist containing the tracked energy consumption, CO2 equivalents in kg,
information on the tracker used, and technical information on the training infrastructure.

Method estimate_sustainability_inference_embed(): Calculates the energy consumption
for inference of the given task.

Usage:
TextEmbeddingModel$estimate_sustainability_inference_embed(
text_dataset = NULL,
batch_size = 32L,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 10L,
sustain_log_level = "warning",
trace = TRUE
)

Arguments:

162 TokenizerBase

text_dataset LargeDataSetForText LargeDataSetForText Object storing textual data.
batch_size int Size of the batches for training. Allowed values: 1 <= x

sustain_iso_code string ISO code (Alpha-3-Code) for the country. This variable must be
set if sustainability should be tracked. A list can be found on Wikipedia: https://en.
wikipedia.org/wiki/List_of_ISO_3166_country_codes. Allowed values: any

sustain_region string Region within a country. Only available for USA and Canada See the
documentation of codecarbon for more information. https://mlco2.github.io/codecarbon/
parameters.html Allowed values: any

sustain_interval int Interval in seconds for measuring power usage. Allowed values: 1 <=
X

sustain_log_level
trace bool TRUE if information about the estimation phase should be printed to the console.

Returns: Returns nothing. Method saves the statistics internally. The statistics can be accessed
with the method get_sustainability_data("”inference")
Method clone(): The objects of this class are cloneable with this method.

Usage:
TextEmbeddingModel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Text Embedding: TEFeatureExtractor

TokenizerBase Base class for tokenizers

Description

Base class for tokenizers containing all methods shared by the sub-classes.

Value

Does return a new object of this class.

Returns a data. frame containing the estimates.

Super class

aifeducation: :AIFEMaster -> TokenizerBase

https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://mlco2.github.io/codecarbon/parameters.html
https://mlco2.github.io/codecarbon/parameters.html

TokenizerBase 163

Methods

Public methods:

TokenizerBase$save()
TokenizerBase$load_from_disk()
TokenizerBase$get_tokenizer_statistics()
TokenizerBase$get_tokenizer()
TokenizerBase$encode()
TokenizerBase$decode()
TokenizerBase$get_special_tokens()
TokenizerBase$n_special_tokens()
TokenizerBase$calculate_statistics()
TokenizerBase$clone()

Method save(): Method for saving a model on disk.

Usage:
TokenizerBase$save(dir_path, folder_name)

Arguments:

dir_path Path to the directory where to save the object.
folder_name string Name of the folder where the model should be saved. Allowed values:

any

Returns: Function does nothing return. It is used to save an object on disk.

Method load_from_disk(): Loads an object from disk and updates the object to the current
version of the package.

Usage:
TokenizerBase$load_from_disk(dir_path)

Arguments:

dir_path Path where the object set is stored.

Returns: Function does nothin return. It loads an object from disk.

Method get_tokenizer_statistics(): Tokenizer statistics

Usage:
TokenizerBase$get_tokenizer_statistics()

Returns: Returns a data.frame containing the tokenizer’s statistics.

Method get_tokenizer(): Python tokenizer

Usage:
TokenizerBase$get_tokenizer()

Returns: Returns the python tokenizer within the model.

Method encode(): Method for encoding words of raw texts into integers.

Usage:

164 TokenizerBase

TokenizerBase$encode(
raw_text,
token_overlap = 0oL,
max_token_sequence_length = 512L,
n_chunks = 1L,
token_encodings_only = FALSE,
token_to_int = TRUE,
return_token_type_ids = TRUE,
trace = FALSE

)
Arguments:
raw_text vector Raw text.

token_overlap int Number of tokens from the previous chunk that should be added at the
beginng of the next chunk. Allowed values: @ <= x

max_token_sequence_length int Maximal number of tokens per chunk. Allowed values: 20
<=x

n_chunks int Maximal number chunks. Allowed values: 1 <= x

token_encodings_only bool
* TRUE: Returns a 1ist containg only the tokens.

* FALSE: Returns a list containg a list for the tokens, the number of chunks, and the
number potential number of chunks for each document/text.

token_to_int bool

* TRUE: Returns the tokens as int index.

* FALSE: Returns the tokens as strings.
return_token_type_ids bool If TRUE additionally returns the return_token_type_ids.
trace bool TRUE if information about the estimation phase should be printed to the console.

Returns: list containing the integer or token sequences of the raw texts with special tokens.

Method decode(): Method for decoding a sequence of integers into tokens
Usage:
TokenizerBase$decode(int_seqgence, to_token = FALSE)
Arguments:
int_segence list list of integer sequence that should be converted to tokens.
to_token bool
* FALSE: Transforms the integers to plain text.
* TRUE: Transforms the integers to a sequence of tokens.

Returns: list of token sequences

Method get_special_tokens(): Method for receiving the special tokens of the model

Usage:
TokenizerBase$get_special_tokens()

Returns: Returns a matrix containing the special tokens in the rows and their type, token, and
id in the columns.

TokenizerIndex 165

Method n_special_tokens(): Method for receiving the special tokens of the model

Usage:
TokenizerBase$n_special_tokens()

Returns: Returns an ’int’ counting the number of special tokens.

Method calculate_statistics(): Method for calculating tokenizer statistics as suggested by

Kaya and Tantug (2024).

Kaya, Y. B., & Tantug, A. C. (2024). Effect of tokenization granularity for Turkish large language

models. Intelligent Systems with Applications, 21, 200335. <https://doi.org/10.1016/j.iswa.2024.200335>

Usage:
TokenizerBase$calculate_statistics(
text_dataset,
statistics_max_tokens_length,
step = "creation”
)
Arguments:
text_dataset LargeDataSetForText LargeDataSetForText Object storing textual data.
statistics_max_tokens_length int Maximum sequence length for calculating the statis-
tics. Allowed values: 20 <= x <= 8192
step string describing the context of the estimation.

Returns: Returns an ’int’ counting the number of special tokens.

Method clone(): The objects of this class are cloneable with this method.
Usage:
TokenizerBase$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also

Other R6 Classes for Developers: ALFEBaseModel, AIFEMaster, BaseModelCore, ClassifiersBasedOnTextEmbeddings,
DataManagerClassifier, LargeDataSetBase, ModelsBasedOnTextEmbeddings, TEClassifiersBasedOnProtoNet,

TEClassifiersBasedOnRegular

TokenizerIndex List of all available Tokenizers

Description

Named list containing all tokenizers as a string.

Usage

TokenizerIndex

166 to_categorical_c

Format

An object of class 1ist of length 2.

See Also

Other Parameter Dictionary: BaseModelsIndex, DataSetsIndex, get_TEClassifiers_class_names(),

get_called_args(), get_depr_obj_names(), get_magnitude_values(), get_param_def (), get_param_dict(),
get_param_doc_desc()

to_categorical_c Transforming classes to one-hot encoding

Description

Function transforming a vector of classes (int) into a binary class matrix.

Usage

to_categorical_c(class_vector, n_classes)

Arguments

class_vector vector containing integers for every class. The integers must range from 0 to
n_classes-1.

n_classes int Total number of classes.

Value

Returns a matrix containing the binary representation for every class.

See Also

Other Utils Developers: auto_n_cores(), create_object(), create_synthetic_units_from_matrix(),
generate_id(), get_n_chunks(), get_synthetic_cases_from_matrix(), get_time_stamp(),
matrix_to_array_c(), tensor_to_matrix_c()

update_aifeducation 167

update_aifeducation Updates an existing installation of ’aifeducation’ on a machine

Description

Function for updating ’aifeducation’ on a machine.

The function tries to find an existing environment on the machine, removes the environment and
installs the environment with the new python modules.

In the case env_type = "auto” the function tries to update an existing virtual environment. If no
virtual environment exits it tries to update a conda environment.
Usage

update_aifeducation(
update_aifeducation_studio = TRUE,

env_type = "auto”,
cuda_version = "12.4",
envname = "aifeducation”
)
Arguments

update_aifeducation_studio

bool If TRUE all necessary R packages are installed for using Al for Education
Studio.

env_type string If set to "venv" virtual environment is requested. If set to "conda” a
’conda’ environment is requested. If set to "auto” the function tries to use a
virtual environment with the given name. If this environment does not exist it
tries to activate a conda environment with the given name. If this fails the default
virtual environment is used.’

cuda_version string determining the requested version of cuda.
envname string Name of the environment where the packages should be installed.

Value
Function does nothing return. It installs python, optional R packages, and necessary *python’ pack-
ages on a machine.

Note

On MAC OS torch will be installed without support for cuda.

See Also

Other Installation and Configuration: check_aif_py_modules(), get_recommended_py_versions(),
install_aifeducation(), install_aifeducation_studio(), install_py_modules(), prepare_session(),
set_transformers_logger()

168 WordPieceTokenizer

WordPieceTokenizer WordPieceTokenizer

Description

Tokenizer based on the WordPiece model (Wu et al. 2016).

Value

Does return a new object of this class.

Super classes

aifeducation: :AIFEMaster -> aifeducation: :TokenizerBase -> WordPieceTokenizer

Methods
Public methods:

e WordPieceTokenizer$configure()
e WordPieceTokenizer$train()
e WordPieceTokenizer$clone()

Method configure(): Configures a new object of this class.

Usage:
WordPieceTokenizer$configure(vocab_size = 10000L, vocab_do_lower_case = FALSE)

Arguments:
vocab_size int Size of the vocabulary. Allowed values: 1000 <= x <= 500000
vocab_do_lower_case bool TRUE if all tokens should be lower case.

Returns: Does nothing return.

Method train(): Trains a new object of this class

Usage:

WordPieceTokenizer$train(
text_dataset,
statistics_max_tokens_length = 512L,
sustain_track = FALSE,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 15L,
sustain_log_level = "warning",
trace = FALSE

)

Arguments:
text_dataset LargeDataSetForText LargeDataSetForText Object storing textual data.

write_log 169

statistics_max_tokens_length int Maximum sequence length for calculating the statis-
tics. Allowed values: 20 <= x <= 8192

sustain_track bool If TRUE energy consumption is tracked during training via the python
library *codecarbon’.

sustain_iso_code string ISO code (Alpha-3-Code) for the country. This variable must be
set if sustainability should be tracked. A list can be found on Wikipedia: https://en.
wikipedia.org/wiki/List_of_ISO_3166_country_codes. Allowed values: any

sustain_region string Region within a country. Only available for USA and Canada See the
documentation of codecarbon for more information. https://mlco2.github.io/codecarbon/
parameters.html Allowed values: any

sustain_interval int Interval in seconds for measuring power usage. Allowed values: 1 <=
X

sustain_log_level string Level for printing information to the console. Allowed values:
’debug’, ’info’, *warning’, “error’, ’critical’
trace bool TRUE if information about the estimation phase should be printed to the console.

Returns: Does nothing return.

Method clone(): The objects of this class are cloneable with this method.

Usage:
WordPieceTokenizer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L.., Gouws, S., Kato, Y., Kudo,
T., Kazawa, H., . . . Dean, J. (2016). Google’s Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation. <https://doi.org/10.48550/arXiv.1609.08144>

See Also

Other Tokenizer: HuggingFaceTokenizer

write_log Write log

Description

Function for writing a log file from R containing three rows and three columns. The log file can
report the current status of maximal three processes. The first row describes the top process. The
second row describes the status of the process within the top process. The third row can be used to
describe the status of a process within the middle process.

The log can be read with read_log.

https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://mlco2.github.io/codecarbon/parameters.html
https://mlco2.github.io/codecarbon/parameters.html

write_log

170
Usage
write_log(
log_file,
value_top = oL,
total_top = 1L,

message_top = NA,
value_middle = oL,
total_middle = 1L,
message_middle = NA,
value_bottom = oL,

total_bottom = 1L,
message_bottom = NA,
last_log = NULL,
write_interval = 2L

Arguments

log_file
value_top
total_top
message_top
value_middle
total_middle
message_middle
value_bottom
total_bottom
message_bottom

last_log
write_interval

Value

This function wri
write a log file.

string Path to the file where the log should be saved and updated.
double Current value for the top process.

double Maximal value for the top process.

string Message describing the current state of the top process.
double Current value for the middle process.

double Maximal value for the middle process.

string Message describing the current state of the middle process.
double Current value for the bottom process.

double Maximal value for the bottom process.

string Message describing the current state of the bottom process.

POSIXct Time when the last log was created. If there is no log file set this value
to NULL.

int Time in seconds. This time must be past before a new log is created.

tes a log file to the given location. If log_file is NULL the function will not try to

If log_fileis avalid path to a file the function will write a log if the time specified by write_interval
has passed. In addition the function will return an object of class POSIXct describing the time when
the log file was successfully updated. If the initial attempt for writing log fails the function returns

the value of last

See Also

_log which is NULL by default.

Other Utils Log Developers: cat_message(), clean_pytorch_log_transformers(), output_message(),

print_message(

), read_log(), read_loss_log(), reset_log(), reset_loss_log()

Index

+ Base Model
BaseModelBert, 11
BaseModelDebertaV2, 18
BaseModelFunnel, 19
BaseModelModernBert, 21
BaseModelMPNet, 23
BaseModelRoberta, 25

+ Classification
TEClassifierParallel, 111
TEClassifierParallelPrototype, 117
TEClassifierProtoNet, 123
TEClassifierRegular, 127
TEClassifierSequential, 139
TEClassifierSequentialPrototype,

144

+x Data Management
EmbeddedText, 49
LargeDataSetForText, 85
LargeDataSetForTextEmbeddings, 89

* Graphical User Interface
start_aifeducation_studio, 109

x Installation and Configuration
check_aif_py_modules, 32
get_recommended_py_versions, 71
install_aifeducation, 76
install_aifeducation_studio, 77
install_py_modules, 77
prepare_session, 102
set_transformers_logger, 108
update_aifeducation, 167

+x Parameter Dictionary
BaseModelsIndex, 27
DataSetsIndex, 49
get_called_args, 60
get_depr_obj_names, 62
get_magnitude_values, 65
get_param_def, 67
get_param_dict, 68
get_param_doc_desc, 69

171

get_TEClassifiers_class_names, 72
TokenizerIndex, 165

* R6 Classes for Developers
AIFEBaseModel, 5
AIFEMaster, 6
BaseModelCore, 12
ClassifiersBasedOnTextEmbeddings,

34

DataManagerClassifier, 43
LargeDataSetBase, 82
ModelsBasedOnTextEmbeddings, 98
TEClassifiersBasedOnProtoNet, 130
TEClassifiersBasedOnRegular, 135
TokenizerBase, 162

* Saving and Loading
load_from_disk, 95
save_to_disk, 108

* Text Embedding
TEFeatureExtractor, 151
TextEmbeddingModel, 157

* Tokenizer
HuggingFaceTokenizer, 75
WordPieceTokenizer, 168

* Utils Checks Developers
check_all_args, 32
check_class_and_type, 33

+ Utils Developers
auto_n_cores, 10
create_object, 41

create_synthetic_units_from_matrix,

42
generate_id, 57
get_n_chunks, 66
get_synthetic_cases_from_matrix,
71
get_time_stamp, 74
matrix_to_array_c, 97
tensor_to_matrix_c, 155
to_categorical_c, 166

172

x Utils Documentation
build_documentation_for_model, 27

INDEX

get_current_args_for_print, 62
get_fixed_test_tensor, 64

build_layer_stack_documentation_for_vignette,get_test_data_for_classifiers, 73

28
get_desc_for_core_model_architecture
63
get_layer_documentation, 64
get_parameter_documentation, 67
x Utils File Management Developers
create_dir, 40
get_file_extension, 63
x Utils Log Developers
cat_message, 30
clean_pytorch_log_transformers, 39
output_message, 100
print_message, 102
read_log, 104
read_loss_log, 105
reset_log, 106
reset_loss_log, 107
write_log, 169
x Utils Python Data Management
Developers
class_vector_to_py_dataset, 38
data.frame_to_py_dataset, 43
get_batches_index, 59
prepare_r_array_for_dataset, 101
py_dataset_to_embeddings, 103
reduce_to_unique, 105
tensor_list_to_numpy, 155
tensor_to_numpy, 156
* Utils Python Developers
get_py_package_version, 70
get_py_package_versions, 70
load_all_py_scripts, 95
load_py_scripts, 96
run_py_file, 107
x Utils Studio Developers
add_missing_args, 5
long_load_target_data, 96
summarize_args_for_long_task, 109
x Utils Sustainability Developers
get_alpha_3_codes, 59
x Utils TestThat Developers
check_adjust_n_samples_on_CI, 31
generate_args_for_tests, 55
generate_embeddings, 56
generate_tensors, 58

random_bool_on_CI, 104

x Utils Transformers Developers
calc_tokenizer_statistics, 29

+ datasets
BaseModelsIndex, 27
DataSetsIndex, 49
TokenizerIndex, 165

* oversampling_approaches Developers
knnor_is_same_class, 80

* oversampling_approaches
knnor, 79

* performance measures
calc_standard_classification_measures,

29

cohens_kappa, 40
fleiss_kappa, 55
get_coder_metrics, 60
gwet_ac, 74
kendalls_w, 79
kripp_alpha, 81

add_missing_args, 5, 97, 110

AIFEBaseModel, 5, 10, 17, 38, 48, 84, 100,
135, 138, 165

aifeducation: :AIFEBaseModel, /1, 13, 18
19,21,23,25,34,98,112,118, 123,
127,130, 136, 140, 146, 151, 157

aifeducation: :AIFEMaster, 5, 11, 13, 18,
19,21,23,25,34,75,98,112, 118,
123,127, 130, 136, 140, 146, 151,
157,162, 168

aifeducation: :BaseModelCore, 11, 18, 19,
21,23,25

aifeducation::ClassifiersBasedOnTextEmbeddings

112,118, 123,127, 130, 136, 140,

146
aifeducation::LargeDataSetBase, 85, 90
aifeducation: :ModelsBasedOnTextEmbeddings,

34,112,118, 123,127, 130, 136,

140, 146, 151
aifeducation: :TEClassifiersBasedOnProtoNet

118,123, 146
aifeducation: :TEClassifiersBasedOnRegular,

112,127, 140
aifeducation: :TokenizerBase, 75, 168

INDEX

AIFEMaster, 6, 6, 17, 38, 48, 84, 100, 135,
138, 165

auto_n_cores, 10,41, 43, 58, 66, 72, 74, 97
156, 166

BaseModelBert, 11, 19, 21, 23, 25, 27
BaseModelCore, 6, 10, 12, 38, 48, 84, 100,
135,138, 165
BaseModelDebertaV2, 12, 18, 21, 23, 25, 27
BaseModelFunnel, 12, 19, 19, 23, 25, 27
BaseModelModernBert, 12, 19, 21, 21, 25, 27
BaseModelMPNet, 12, 19, 21, 23,23, 27
BaseModelRoberta, 12, 19, 21, 23, 25, 25
BaseModelsIndex, 27, 49, 60, 62, 66, 68, 69,
73, 166
build_documentation_for_model, 27, 28,
63,65, 67

build_layer_stack_documentation_for_vignette

28,28, 63,65,67

calc_standard_classification_measures,
29, 40, 55,61, 75,79, 81
calc_tokenizer_statistics, 29
cat_message, 30, 39, 101, 103-107, 170
check_adjust_n_samples_on_CI, 31, 56-58,
62,64,73, 104
check_aif_py_modules, 32, 71,77,79, 102,
109, 167
check_all_args, 32, 34
check_class_and_type, 33, 33
class_vector_to_py_dataset, 38, 43, 59,
101, 103, 106, 155, 156
ClassifiersBasedOnTextEmbeddings, 6, 10,
17,34, 48, 84, 89, 100, 135, 138, 165
clean_pytorch_log_transformers, 31, 39,
101, 103-107, 170
cohens_kappa, 29, 40, 55, 61, 75, 79, 81
create_data_embeddings_description, 5,
97,110
create_dir, 40, 64
create_object, 11,41, 43,58, 66, 72, 74, 97,
156, 166
create_synthetic_units_from_matrix, /1,
41,42, 58, 66, 72, 74, 97, 156, 166

data.frame, 160
data.frame_to_py_dataset, 39, 43, 59, 101,
103, 106, 155, 156

173

DataManagerClassifier, 6, 10, 17, 38, 43,
44-47, 84, 100, 135, 138, 165

DataSetsIndex, 27, 49, 60, 62, 66, 68, 69, 73,
166

EmbeddedText, 34, 36, 42, 45, 49, 49, 51, 52,
89,94, 95,98, 99, 108, 112, 114,
118, 120, 123-128, 130, 131,
133-135, 137, 140, 142, 146, 148,
151-154, 160

factor, 112,118, 127, 140, 146
feature extractor, 52, 53
fleiss_kappa, 29, 40, 55,61, 75,79, 81

generate_args_for_tests, 31, 55, 57, 58,
62,64,73,104
generate_embeddings, 31, 56, 56, 58, 62, 64,
73,104
generate_id, 11,41,43,57,66, 72,74, 97,
156, 166
generate_tensors, 31, 56, 57, 58, 62, 64, 73,
104
get_alpha_3_codes, 59
get_batches_index, 39, 43,59, 101, 103,
106, 155, 156
get_called_args, 27, 49, 60, 62, 66, 68, 69,
73, 166
get_coder_metrics, 29, 40, 55, 60, 75, 79, 81
get_current_args_for_print, 31, 56-58,
62,64,73,104
get_depr_obj_names, 27, 49, 60, 62, 66, 68,
69, 73, 166
get_desc_for_core_model_architecture,
28, 63, 65, 67
get_dict_cls_type, 28, 63, 65, 67
get_dict_core_models, 28, 63, 65, 67
get_dict_input_types, 28, 63, 65, 67
get_file_extension, 41, 63
get_fixed_test_tensor, 31, 56-58, 62, 64,
73,104
get_layer_dict, 28, 63, 65, 67
get_layer_documentation, 28, 63, 64, 67
get_magnitude_values, 27, 49, 60, 62, 65,
68, 69, 73, 166
get_n_chunks, 11,41,43,58, 66, 72, 74, 97,
156, 166
get_param_def, 27, 49, 60, 62, 66, 67, 69, 73,
166

174

get_param_dict, 27, 32, 49, 60, 62, 66, 68,
68, 69, 73, 166
get_param_doc_desc, 27, 49, 60, 62, 66, 68,
69,69, 73, 166
get_parameter_documentation, 28, 63, 65
67
get_py_package_version, 70, 70, 95, 96,
108
get_py_package_versions, 70, 70, 95, 96,
108
get_recommended_py_versions, 32,71, 77
79,102, 109, 167
get_synthetic_cases_from_matrix, /1,
41-43, 58, 66,71, 74, 97, 156, 166
get_TEClassifiers_class_names, 27, 49,
60, 62, 66, 68, 69, 72, 166
get_test_data_for_classifiers, 31,
56-58, 62, 64,73, 104
get_time_stamp, 11,41,43, 58, 66, 72,74,
97, 156, 166
gwet_ac, 29, 40, 55, 61,74, 79, 81

HuggingFaceTokenizer, 75, 169

install_aifeducation, 32, 71,76, 77,79,
102, 109, 167

install_aifeducation_studio, 32, 71, 77,
71,79, 102,109, 167

install_py_modules, 32, 71,77,77, 102,
109, 167

kendalls_w, 29, 40, 55,61, 75,79, 81
knnor, 79

knnor_is_same_class, 80
kripp_alpha, 29, 40, 55, 61, 75, 79, 81

LargeDataSetBase, 6, 10, 17, 38, 48, 82, 83,
100, 135, 138, 165
LargeDataSetForText, 54, 85, 85, 94, 95,
108, 160, 162, 165, 168
LargeDataSetForTextEmbeddings, 34-36,
45,49, 53, 54, 89, 89, 92, 94, 95, 98,
99,108,112, 114, 118, 120,
123-128, 130, 131, 133-135, 137,
140, 142, 146, 148, 151154, 160
load_all_py_scripts, 70, 95, 96, 108
load_from_disk, 95, 108
load_py_scripts, 70, 95, 96, 108
long_load_target_data, 5, 96, 110

INDEX

matrix_to_array_c, 11,41,43,58, 66, 72,
74,97, 156, 166

ModelsBasedOnTextEmbeddings, 6, 10, 17,
38,48, 84,98, 135, 138, 165

output_message, 31, 39, 100, 103-107, 170

prepare_r_array_for_dataset, 39, 43, 59,
101, 103, 106, 155, 156

prepare_session, 32,71,77,79, 102, 109,
167

print_message, 31, 39, 101, 102, 104-107,
170

py_dataset_to_embeddings, 39, 43, 59, 101,
103, 106, 155, 156

random_bool_on_CI, 31, 56-58, 62, 64, 73,

104
read_log, 31, 39, 101, 103, 104, 105-107
169, 170
read_loss_log, 31, 39, 101, 103, 104, 105,
106, 107, 170
reduce_to_unique, 39, 43, 59, 101, 103, 105,
155, 156
reset_log, 31, 39, 101, 103-105, 106, 107,
170
reset_loss_log, 31, 39, 101, 103-106, 107,
170

run_py_file, 70, 95, 96, 107

save_to_disk, 95, 108
set_transformers_logger, 32, 71,77, 79,
102, 108, 167
start_aifeducation_studio, 109
summarize_args_for_long_task, 5, 97, 109
summarize_tracked_sustainability, 59

TEClassifierParallel, 111, 123, 127, 129,
144, 150

TEClassifierParallelPrototype, 116, 117,
127,129, 144, 150

TEClassifierProtoNet, 42, 49, 57, 95, 108,
116, 123,123, 124, 129, 144, 150,
151

TEClassifierRegular, 42,49, 57, 95, 108,
116, 123,127,127, 128, 129, 144,
150, 151

TEClassifiersBasedOnProtoNet, 6, 10, 17,
38, 48, 84, 100, 130, 138, 165

INDEX

TEClassifiersBasedOnRegular, 6, 10, 17,
38,48, 84, 100, 135, 135, 165
TEClassifierSequential, 116, 123, 127,
129, 139, 150
TEClassifierSequentialPrototype, 116,
123,127,129, 144, 144
TEFeatureExtractor, 10, 36, 49, 53, 89, 92
93,95,108, 114, 120, 125, 128, 142,
148,151, 151, 152, 162
tensor_list_to_numpy, 39, 43, 59, 101, 103,
106, 155, 156
tensor_to_matrix_c, 11,41,43, 58, 66, 72,
74, 97, 155, 166
tensor_to_numpy, 39, 43, 59, 101, 103, 106,
155,156
TextEmbeddingModel, 34-36, 49, 51, 53, 57,
89,92,95,99, 108,112,118, 123,
125,127,134, 140, 146, 151, 154,
157,157
to_categorical_c, 11,41,43,58, 66,72, 74,
97, 156, 166
TokenizerBase, 6, 10, 17, 38, 48, 84, 100,
135, 138, 162
TokenizerIndex, 27, 49, 60, 62, 66, 68, 69,
73,165

update_aifeducation, 32,71, 77,79, 102,
109, 167

WordPieceTokenizer, 76, 168
write_log, 31, 39, 101, 103-107, 169

175

	add_missing_args
	AIFEBaseModel
	AIFEMaster
	auto_n_cores
	BaseModelBert
	BaseModelCore
	BaseModelDebertaV2
	BaseModelFunnel
	BaseModelModernBert
	BaseModelMPNet
	BaseModelRoberta
	BaseModelsIndex
	build_documentation_for_model
	build_layer_stack_documentation_for_vignette
	calc_standard_classification_measures
	calc_tokenizer_statistics
	cat_message
	check_adjust_n_samples_on_CI
	check_aif_py_modules
	check_all_args
	check_class_and_type
	ClassifiersBasedOnTextEmbeddings
	class_vector_to_py_dataset
	clean_pytorch_log_transformers
	cohens_kappa
	create_dir
	create_object
	create_synthetic_units_from_matrix
	data.frame_to_py_dataset
	DataManagerClassifier
	DataSetsIndex
	EmbeddedText
	fleiss_kappa
	generate_args_for_tests
	generate_embeddings
	generate_id
	generate_tensors
	get_alpha_3_codes
	get_batches_index
	get_called_args
	get_coder_metrics
	get_current_args_for_print
	get_depr_obj_names
	get_desc_for_core_model_architecture
	get_file_extension
	get_fixed_test_tensor
	get_layer_documentation
	get_magnitude_values
	get_n_chunks
	get_parameter_documentation
	get_param_def
	get_param_dict
	get_param_doc_desc
	get_py_package_version
	get_py_package_versions
	get_recommended_py_versions
	get_synthetic_cases_from_matrix
	get_TEClassifiers_class_names
	get_test_data_for_classifiers
	get_time_stamp
	gwet_ac
	HuggingFaceTokenizer
	install_aifeducation
	install_aifeducation_studio
	install_py_modules
	kendalls_w
	knnor
	knnor_is_same_class
	kripp_alpha
	LargeDataSetBase
	LargeDataSetForText
	LargeDataSetForTextEmbeddings
	load_all_py_scripts
	load_from_disk
	load_py_scripts
	long_load_target_data
	matrix_to_array_c
	ModelsBasedOnTextEmbeddings
	output_message
	prepare_r_array_for_dataset
	prepare_session
	print_message
	py_dataset_to_embeddings
	random_bool_on_CI
	read_log
	read_loss_log
	reduce_to_unique
	reset_log
	reset_loss_log
	run_py_file
	save_to_disk
	set_transformers_logger
	start_aifeducation_studio
	summarize_args_for_long_task
	TEClassifierParallel
	TEClassifierParallelPrototype
	TEClassifierProtoNet
	TEClassifierRegular
	TEClassifiersBasedOnProtoNet
	TEClassifiersBasedOnRegular
	TEClassifierSequential
	TEClassifierSequentialPrototype
	TEFeatureExtractor
	tensor_list_to_numpy
	tensor_to_matrix_c
	tensor_to_numpy
	TextEmbeddingModel
	TokenizerBase
	TokenizerIndex
	to_categorical_c
	update_aifeducation
	WordPieceTokenizer
	write_log
	Index

