## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----message=FALSE------------------------------------------------------------ library(SpatPCA) library(ggplot2) base_theme <- theme_classic(base_size = 18, base_family = "Times") ## ----------------------------------------------------------------------------- set.seed(1024) position <- matrix(seq(-5, 5, length = 100)) true_eigen_fn <- exp(-position^2) / norm(exp(-position^2), "F") plot_df <- data.frame(position = position, eigenfunction = true_eigen_fn) ggplot(plot_df, aes(position, eigenfunction)) + geom_line() + base_theme ## ----------------------------------------------------------------------------- realizations <- rnorm(n = 100, sd = 20) %*% t(true_eigen_fn) + matrix(rnorm(n = 100 * 100), 100, 100) ## ----------------------------------------------------------------------------- subset_idx <- seq(1, 100, length.out = 9) matplot( t(realizations[subset_idx, ]), type = "l", lty = 1, ylim = c(-10, 10), xlab = "position index", ylab = "realization" ) ## ----------------------------------------------------------------------------- cv <- spatpca(x = position, Y = realizations) eigen_est <- cv$eigenfn ## ----------------------------------------------------------------------------- plot_df <- data.frame( position = position, true = true_eigen_fn, spatpca = eigen_est[, 1], pca = svd(realizations)$v[, 1] ) plot_df_long <- data.frame( position = rep(plot_df$position, 3), estimate = rep(c("true", "spatpca", "pca"), each = nrow(plot_df)), eigenfunction = c(plot_df$true, plot_df$spatpca, plot_df$pca) ) ggplot(plot_df_long, aes(x = position, y = eigenfunction, color = estimate)) + geom_line() + base_theme ## ----------------------------------------------------------------------------- realizations <- rnorm(n = 100, sd = 3) %*% t(true_eigen_fn) + matrix(rnorm(n = 100 * 100), 100, 100) ## ----------------------------------------------------------------------------- subset_idx <- seq(1, 100, length.out = 9) matplot( t(realizations[subset_idx, ]), type = "l", lty = 1, ylim = c(-10, 10), xlab = "position index", ylab = "realization" ) ## ----------------------------------------------------------------------------- cv <- spatpca(x = position, Y = realizations) eigen_est <- cv$eigenfn plot_df <- data.frame( position = position, true = true_eigen_fn, spatpca = eigen_est[, 1], pca = svd(realizations)$v[, 1] ) plot_df_long <- data.frame( position = rep(plot_df$position, 3), estimate = rep(c("true", "spatpca", "pca"), each = nrow(plot_df)), eigenfunction = c(plot_df$true, plot_df$spatpca, plot_df$pca) ) ggplot(plot_df_long, aes(x = position, y = eigenfunction, color = estimate)) + geom_line() + base_theme