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ProjectManagement-package

Management of Deterministic and Stochastic Projects

Description

Management of Deterministic and Stochastic Projects

Details

Management problems of deterministic and stochastic projects. It obtains the duration of a project
and the appropriate slack for each activity in a deterministic context. In addition it obtains a
schedule of activities’ time (Castro, Gómez & Tejada (2007) <doi:10.1016/j.orl.2007.01.003>).
It also allows the management of resources. When the project is done, and the actual duration
for each activity is known, then it can know how long the project is delayed and make a fair
delivery of the delay between each activity (Bergantiños, Valencia-Toledo & Vidal-Puga (2018)
<doi:10.1016/j.dam.2017.08.012>). In a stochastic context it can estimate the average duration of
the project and plot the density of this duration, as well as, the density of the early and last times of
the chosen activities. As in the deterministic case, it can make a distribution of the delay generated
by observing the project already carried out.

Author(s)

Maintainer: Juan Carlos Gonçalves Dosantos <juan.carlos.goncalves@udc.es>

Authors:

• Ignacio García Jurado

• Julián Costa Bouzas
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dag.plot DAG plot

Description

This function plots a directed acyclic graph (DAG).

Usage

dag.plot(
prec1and2 = matrix(0),
prec3and4 = matrix(0),
critical.activities = NULL

)

Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

critical.activities

A vector indicating the critical activities to represent them in a different color
(Default=NULL) .

Value

A plot.

Examples

prec1and2<-matrix(c(0,1,0,2,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0),nrow=5,ncol=5,byrow=TRUE)
prec3and4<-matrix(0,nrow=5,ncol=5)
prec3and4[3,1]<-3
dag.plot(prec1and2,prec3and4)
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delay.pert Problems of distribution of delay in deterministic projects

Description

This function calculates the delay of a project once it has been completed. In addition, it also cal-
culates the distribution of the delay between the different activities with the proportional, truncated
proportional and Shapley rule.

Usage

delay.pert(
duration,
prec1and2 = matrix(0),
prec3and4 = matrix(0),
observed.duration,
delta = NULL,
cost.function = NULL

)

Arguments

duration Vector with the expected duration for each activity.

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

observed.duration

Vector with the observed duration for each activity.

delta Value to indicate the maximun time that the project can take without delay. If
this is not added, the function will use as delta the expected project time. This
value is only used if the function uses the default cost function.

cost.function Delay costs function. If this value is not added, a default cost function will be
used.

Details

Given a problem of sharing delays in a project (N,≺, {X̄i}i∈N , {xi}i∈N ), such that {X̄i}i∈N is
the expected value of activities’ duration and {xi}i∈N the observed value. If D(N,≺, {X̄i}i∈N ) is
the expected project time and D(N,≺, {xi}i∈N ) is the observed project time, it has to d = D(N,≺
, {X̄i}i∈N ) − δ is the delay, where δ can be any arbitrary value greater than zero. The following
rules distribute the delay costs among the different activities.
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The proportional rule, from Brânzei et al. (2002), distributes the delay, d, proportionally. So that
each activity receives a payment of:

ϕi =
xi − X̄i∑

j∈N

max{xj − X̄j , 0}
· C(D(N,≺, {X̄i}i∈N )).

The truncated proportional rule, from Brânzei et al. (2002), distributes the delay, d, proportionally,
where the individual delay of each player is reduced to d if if is larger. So that each activity receives
a payment of:

ϕ̄i =
min{xi − X̄i, C(D(N,≺, {X̄i}i∈N ))}∑

j∈N

max{min{xj − X̄j , C(D(N,≺, {X̄i}i∈N ))}, 0}
· C(D(N,≺, {X̄i}i∈N )).

These values are only well defined when the sum of the individual delays is different from zero.

Shapley rule distributes the delay, d, based on the Shapley value for TU games, see Bergantiños
et al. (2018). Given a project problem with delays (N,≺, {X̄i}i∈N , {xi}i∈N ), its associated TU
game, (N, v), is v(S) = C(D(N,≺, ({X̄i}i∈N\S , {xi}i∈S))) for all S ⊆ N , where C is the costs
function (by default C(D(N,≺, y)) = D(N,≺, y) − δ. If the number of activities is greater than
ten, the Shapley value, of the game (N, v), is estimated using a unique sampling process for all
players, see Castro et al. (2009).

Value

The delay value and a solution matrix.

References

berg Bergantiños, G., Valencia-Toledo, A., & Vidal-Puga, J. (2018). Hart and Mas-Colell consis-
tency in PERT problems. Discrete Applied Mathematics, 243, 11-20.

bran Brânzei, R., Ferrari, G., Fragnelli, V., & Tijs, S. (2002). Two approaches to the problem of
sharing delay costs in joint projects. Annals of Operations Research, 109(1-4), 359-374.

castro Castro, J., Gómez, D., & Tejada, J. (2009). Polynomial calculation of the Shapley value
based on sampling. Computers & Operations Research, 36(5), 1726-1730.

Examples

prec1and2<-matrix(c(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
duration<-c(2,1,1,4,2)
observed.duration<-c(2.5,1.25,2,4.5,3)
delta<-6
delay.pert(duration,prec1and2=prec1and2,observed.duration=observed.duration,
delta=delta,cost.function=NULL)
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delay.pert.unions Problems of distribution of delay in deterministic projects with unions
a priori

Description

This function calculates the delay of a project with unions a priori once it has been completed.
In addition, it also calculates the distribution of the delay between the different activities with the
proportional, truncated proportional and Owen rule.

Usage

delay.pert.unions(
duration,
prec1and2 = matrix(0),
prec3and4 = matrix(0),
union,
observed.duration,
delta = NULL,
cost.function = NULL

)

Arguments

duration Vector with the expected duration for each activity.

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

union List of vectors indicating the a priori unions between the players.

observed.duration

Vector with the observed duration for each activity.

delta Value to indicate the maximun time that the project can take without delay. If
this is not added, the function will use as delta the expected project time. This
value is only used if the function uses the default cost function.

cost.function Delay costs function. If this value is not added, a default cost function will be
used.
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Details

Given a problem of sharing delays in a project (N,≺, {X̄i}i∈N , {xi}i∈N ), such that {X̄i}i∈N is
the expected value of activities’ duration and {xi}i∈N the observed value. If D(N,≺, {X̄i}i∈N ) is
the expected project time and D(N,≺, {xi}i∈N ) is the observed project time, it has to d = D(N,≺
, {X̄i}i∈N ) − δ is the delay, where δ can be any arbitrary value greater than zero. The following
rules distribute the delay costs among the different activities.

The proportional rule, from Brânzei et al. (2002), distributes the delay, d, proportionally. So that
each activity receives a payment of:

ϕi =
xi − X̄i∑

j∈N

max{xj − X̄j , 0}
· C(D(N,≺, {X̄i}i∈N )).

The truncated proportional rule, from Brânzei et al. (2002), distributes the delay, d, proportionally,
where the individual delay of each player is reduced to d if if is larger. So that each activity receives
a payment of:

ϕ̄i =
min{xi − X̄i, C(D(N,≺, {X̄i}i∈N ))}∑

j∈N

max{min{xj − X̄j , C(D(N,≺, {X̄i}i∈N ))}, 0}
· C(D(N,≺, {X̄i}i∈N )).

These values are only well defined when the sum of the individual delays is different from zero.

Owen rule distributes the delay, d, based on the Owen value for TU games with a priori unions.
Given a project problem with delays and unions (N,≺, P, {X̄i}i∈N , {xi}i∈N ), its associated TU
game with a priori unions, (N, v, P ), is v(S) = C(D(N,≺, ({X̄i}i∈N\S , {xi}i∈S))) for all S ⊆
N , where C is the costs function (by default C(D(N,≺, y)) = D(N,≺, y) − δ. If the number of
activities is greater than ten, the Owen value, of the game (N, v, P ), is estimated using a unique
sampling process for all players.

Value

The delay value and a solution matrix.

Examples

prec1and2<-matrix(c(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
duration<-c(2,1,1,4,2)
observed.duration<-c(2.5,1.25,2,4.5,3)
delta<-6
union<-list(c(1,2),c(3,4),c(5))
delay.pert.unions(duration,prec1and2=prec1and2,union=union,observed.duration=observed.duration,
delta=delta,cost.function=NULL)
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delay.stochastic.pert Problems of distribution of delay in stochastic projects

Description

This function calculates the delay of a stochastic project, once it has been carried out. In addition,
it also calculates the distribution of the delay on the different activities with the Stochastic Shapley
rule.

Usage

delay.stochastic.pert(
prec1and2 = matrix(0),
prec3and4 = matrix(0),
distribution,
values,
observed.duration,
percentile = NULL,
delta = NULL,
cost.function = NULL,
compilations = 1000

)

Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

distribution Type of distribution that each activities’ duration has. It can be NORMAL,
TRIANGLE, EXPONENTIAL, UNIFORM, T-STUDENT, FDISTRIBUTION,
CHI-SQUARED, GAMMA, WEIBULL, BINOMIAL, POISSON, GEOMET-
RIC, HYPERGEOMETRIC and EMPIRICAL.

values Matrix with the parameters corresponding to the distribution associated with the
duration for each activity. Considering i as an activity we have the following
cases. If the distribution is TRIANGLE, then (i, 1) it is the minimum value, (i,
2) the maximum value and (i, 3) the mode. If the distribution is NORMAL, (i, 1)
is the mean and (i, 2) the variance. If the distribution is EXPONENTIAL, then
(i, 1) is the λ parameter. If the distribution is UNIFORM, (i, 1) it is the minimum
value and (i, 2) the maximum value. If the distribution is T-STUDENT, (i, 1)
degrees of freedom and (i, 2) non-centrality parameter delta. In FDISTRIBU-
TION, (i, 1) and (i, 2) degrees of freedom and (i, 3) non-centrality parameter. In
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CHI-SQUARED, (i, 1) degrees of freedom and (i, 2) non-centrality parameter
(non-negative). In GAMMA, (i, 1) and (i, 3) shape and scale parameters and (i,
2) an alternative way to specify the scale. In WEIBULL, (i, 1) and (i, 2) shape
and scale parameters. In BINOMIAL, (i, 1) number of trials (zero or more)
and (i, 2) probability of success on each trial. In POISSON, (i, 1) non-negative
mean. In GEOMETRIC, (i, 1) probability of success in each trial, between 0
and 1. In HYPERGEOMETRIC, (i, 1) number of white balls in the urn, (i, 2)
number of black balls in the urn and (i, 3) numer of balls drawn from the urn.
Finally, if the distribution is EMPIRICAL, then (i,j), for all j ∈ {1, ...,M} such
that M > 0, is the sample.

observed.duration

Vector with the observed duration for each activity.

percentile Percentile used to calculate the maximum time allowed for the duration of the
project (Default=NULL). Only percentile or delta is necessary. This value is
only used if the function uses the default cost function.

delta Maximum time allowed for the duration of the project (Default=NULL). Only
delta or pencetile is necessary. This value is only used if the function uses the
default cost function.

cost.function Delay costs function. If this value is not added, a default cost function will be
used.

compilations Number of compilations that the function will use for average calculations (De-
fault=1000).

Details

Given a problem of sharing delays in a stochastic project (N,≺, {Xi}i∈N , {xi}i∈N ), such that
{Xi}i∈N is the random variable of activities’ durations and {xi}i∈N the observed value. It is
defined as E(D(N,≺, {Xi}i∈N )) the expected project time, where E is the mathematical expec-
tation, and D(N,≺, {xi}i∈N ) the observed project time, then d = D(N,≺, {Xi}i∈N ) − δ, with
δ > 0, normally δ > E(D(N,≺, {Xi}i∈N )), is the delay. The proportional and truncated propor-
tional rule, see delay.pert function, can be adapted to this context by using the mean of the random
variables.

The Stochastic Shapley, Gonçalves-Dosantos et al. (2020), rule is based on the Shapley value for
the TU game (N, v) where v(S) = E(C(D(N,≺, ({Xi}i∈N\S , {xi}i∈S))), for all S ⊆ N , where
C is the costs function (by default C(y) = D(N,≺, y) − δ). If the number of activities is greater
than ten, the Shapley value, of the game (N, v), is estimated using a unique sampling process for
all players, see Castro et al. (2009).

The Stochastic Shapley rule 2 is based on the sum of the Shapley values for the TU games (N, v) and
(N,w) where v(S) = E(C(D(N,≺, ({Xi}i∈N\S , {xi}i∈S)))) − E(C(D(N,≺, ({Xi}i∈N ))))
and w(S) = E(C(D(N,≺, ({0i}i∈N\S , {Xi}i∈S)))), for all S ⊆ N , 0N denotes the vector in RN

whose components are equal to zero and where C is the costs function (by default C(y) = D(N,≺
, y)− δ).

Value

A delay value and solution vector.
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References

castro Castro, J., Gómez, D., & Tejada, J. (2009). Polynomial calculation of the Shapley value
based on sampling. Computers & Operations Research, 36(5), 1726-1730.

gon Gonçalves-Dosantos, J.C., García-Jurado, I., Costa, J. (2020) Sharing delay costs in Stochastic
scheduling problems with delays. 4OR, 18(4), 457-476

Examples

prec1and2<-matrix(c(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
distribution<-c("TRIANGLE","TRIANGLE","TRIANGLE","TRIANGLE","EXPONENTIAL")
values<-matrix(c(1,3,2,1/2,3/2,1,1/4,9/4,1/2,3,5,4,1/2,0,0),nrow=5,byrow=TRUE)
observed.duration<-c(2.5,1.25,2,4.5,3)
percentile<-NULL
delta<-6.5
delay.stochastic.pert(prec1and2=prec1and2,distribution=distribution,values=values,
observed.duration=observed.duration,percentile=percentile,delta=delta,
cost.function=NULL,compilations=1000)

delay.stochastic.pert.unions

Problems of distribution of delay in stochastic projects

Description

This function calculates the delay of a stochastic project, once it has been carried out. In addition,
it also calculates the distribution of the delay on the different activities with the Stochastic Shapley
rule.

Usage

delay.stochastic.pert.unions(
prec1and2 = matrix(0),
prec3and4 = matrix(0),
union,
distribution,
values,
observed.duration,
percentile = NULL,
delta = NULL,
cost.function = NULL,
compilations = 1000

)
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Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

union List of vectors indicating the a priori unions between the players.

distribution Type of distribution that each activities’ duration has. It can be NORMAL,
TRIANGLE, EXPONENTIAL, UNIFORM, T-STUDENT, FDISTRIBUTION,
CHI-SQUARED, GAMMA, WEIBULL, BINOMIAL, POISSON, GEOMET-
RIC, HYPERGEOMETRIC and EMPIRICAL.

values Matrix with the parameters corresponding to the distribution associated with the
duration for each activity. Considering i as an activity we have the following
cases. If the distribution is TRIANGLE, then (i, 1) it is the minimum value, (i,
2) the maximum value and (i, 3) the mode. If the distribution is NORMAL, (i, 1)
is the mean and (i, 2) the variance. If the distribution is EXPONENTIAL, then
(i, 1) is the λ parameter. If the distribution is UNIFORM, (i, 1) it is the minimum
value and (i, 2) the maximum value. If the distribution is T-STUDENT, (i, 1)
degrees of freedom and (i, 2) non-centrality parameter delta. In FDISTRIBU-
TION, (i, 1) and (i, 2) degrees of freedom and (i, 3) non-centrality parameter. In
CHI-SQUARED, (i, 1) degrees of freedom and (i, 2) non-centrality parameter
(non-negative). In GAMMA, (i, 1) and (i, 3) shape and scale parameters and (i,
2) an alternative way to specify the scale. In WEIBULL, (i, 1) and (i, 2) shape
and scale parameters. In BINOMIAL, (i, 1) number of trials (zero or more)
and (i, 2) probability of success on each trial. In POISSON, (i, 1) non-negative
mean. In GEOMETRIC, (i, 1) probability of success in each trial, between 0
and 1. In HYPERGEOMETRIC, (i, 1) number of white balls in the urn, (i, 2)
number of black balls in the urn and (i, 3) numer of balls drawn from the urn.
Finally, if the distribution is EMPIRICAL, then (i,j), for all j ∈ {1, ...,M} such
that M > 0, is the sample.

observed.duration

Vector with the observed duration for each activity.

percentile Percentile used to calculate the maximum time allowed for the duration of the
project (Default=NULL). Only percentile or delta is necessary. This value is
only used if the function uses the default cost function.

delta Maximum time allowed for the duration of the project (Default=NULL). Only
delta or pencetile is necessary. This value is only used if the function uses the
default cost function.

cost.function Delay costs function. If this value is not added, a default cost function will be
used.

compilations Number of compilations that the function will use for average calculations (De-
fault=1000).
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Details

Given a problem of sharing delays in a stochastic project with unions (N,P,≺, {Xi}i∈N , {xi}i∈N ),
such that {Xi}i∈N is the random variable of activities’ durations and {xi}i∈N the observed value.
It is defined as E(D(N,≺, {Xi}i∈N )) the expected project time, where E is the mathematical
expectation, and D(N,≺, {xi}i∈N ) the observed project time, then d = D(N,≺, {Xi}i∈N ) − δ,
with δ > 0, normally δ > E(D(N,≺, {Xi}i∈N )), is the delay. The proportional and truncated
proportional rule, see delay.pert function, can be adapted to this context by using the mean of the
random variables.

The Stochastic Owen rule rule is based on the Owen value for the TU game (N, v, P ) where v(S) =
E(C(D(N,≺, ({Xi}i∈N\S , {xi}i∈S))), for all S ⊆ N , where C is the costs function (by default
C(y) = D(N,≺, y) − δ). If the number of activities is greater than ten, the Owen value, of the
game (N, v, P ), is estimated using a unique sampling process for all players.

The Stochastic Owen rule 2 is based on the sum of the Owen values for the TU games (N, v, P ) and
(N,w, P ) where v(S) = E(C(D(N,≺, ({Xi}i∈N\S , {xi}i∈S))))−E(C(D(N,≺, ({Xi}i∈N ))))
and w(S) = E(C(D(N,≺, ({0i}i∈N\S , {Xi}i∈S)))), for all S ⊆ N , 0N denotes the vector in RN

whose components are equal to zero and where C is the costs function (by default C(y) = D(N,≺
, y)− δ).

Value

A delay value and solution vector.

Examples

prec1and2<-matrix(c(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
distribution<-c("TRIANGLE","TRIANGLE","TRIANGLE","TRIANGLE","EXPONENTIAL")
values<-matrix(c(1,3,2,1/2,3/2,1,1/4,9/4,1/2,3,5,4,1/2,0,0),nrow=5,byrow=TRUE)
observed.duration<-c(2.5,1.25,2,4.5,3)
percentile<-NULL
delta<-6.5
union<-list(c(1,2),c(3,4),c(5))
delay.stochastic.pert.unions(prec1and2=prec1and2,union=union,distribution=distribution,
values=values,observed.duration=observed.duration,percentile=percentile,delta=delta,
cost.function=NULL,compilations=1000)

early.time Early time for a deterministic projects

Description

This function calculates the early time for one project.

Usage

early.time(prec1and2 = matrix(0), prec3and4 = matrix(0), duration)
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Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

duration vector with the duración for each activities.

Value

Early time vector.

References

burke Burke, R. (2013). Project management: planning and control techniques. New Jersey, USA.

Examples

prec1and2<-matrix(c(0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
duration<-c(3,2,1,1.5,4.2)
early.time(prec1and2,duration=duration)

last.time Last time for a deterministic projects

Description

This function calculates the last time for one project.

Usage

last.time(prec1and2 = matrix(0), prec3and4 = matrix(0), duration, early.times)

Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

duration Vector with the duración for each activity.
early.times Vector with the early times for each activities.
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Value

Last time vector.

References

bur Burke, R. (2013). Project management: planning and control techniques. New Jersey, USA.

Examples

prec1and2<-matrix(c(0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
duration<-c(3,2,1,1.5,4.2)
early.times<-c(0,0,3.5,2,0)
last.time(prec1and2,duration=duration,early.times=early.times)

levelling.resources Project resource levelling

Description

This function calculates the schedule of the project so that the consumption of resources is as uni-
form as possible.

Usage

levelling.resources(
duration,
prec1and2 = matrix(0),
prec3and4 = matrix(0),
resources,
int = 1

)

Arguments

duration Vector with the duration for each activity.

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

resources Vector indicating the necessary resources for each activity per period of time.

int Numerical value indicating the duration of each period of time (Default=1).
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Details

The problem of leveling resources takes into account that in order for activities to be carried out in
the estimated time, a certain level of resources must be used. The problem is to find a schedule that
allows to execute the project in the estimated time so that the temporary consumption of resources
is as level as possible.

Value

A solution matrices.

References

heg Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms.
Journal of construction engineering and management, 125(3), 167-175.

Examples

duration<-c(3,4,2,1)
resources<-c(4,1,3,3)
prec1and2<-matrix(c(0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0),nrow=4,ncol=4,byrow=TRUE)

levelling.resources(duration,prec1and2,prec3and4=matrix(0),resources,int=1)

mce Build a precedence matrix

Description

This function calculates the costs per activity to accelerate the project.

Usage

mce(
duration,
minimum.durations,
prec1and2 = matrix(0),
prec3and4 = matrix(0),
activities.costs,
duration.project = NULL

)

Arguments

duration Vector with the duration for each activity.
minimum.durations

Vector with the Minimum duration allowed for each activity.



16 organize

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

activities.costs

Vector indicating the cost of accelerating a unit of time the duration of each
activity.

duration.project

numerical value indicating the minimum time sought in the project (Default=NULL).

Details

The MCE method (Minimal Cost Expediting) tries to speed up the project at minimum cost. It
considers that the duration of some project activities could be reduced by increasing the resources
allocated to them (and thus increasing their implementation costs).

Value

A solution matrices.

References

kelley Kelley Jr, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. Opera-
tions research, 9(3), 296-320.

Examples

duration<-c(5,4,5,2,2)
minimum.durations<-c(3,2,3,1,1)
activities.costs<-c(1,1,1,1,1)
prec1and2<-matrix(c(0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
duration.project<-6

mce(duration,minimum.durations,prec1and2,prec3and4=matrix(0),activities.costs,duration.project)

organize Organize project activities

Description

This function organizes the activities of a project, in such a way that if i precedes j then i is less
strict than j.



rebuild 17

Usage

organize(prec1and2 = matrix(0), prec3and4 = matrix(0))

Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

Value

A list containing:

• Precedence: ordered precedence matrix.

• Order: new activities values.

Examples

prec1and2<-matrix(c(0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
organize(prec1and2)

rebuild Build a precedence matrix

Description

This function builds a unique type 1 precedence matrix given any kind of precedence.

Usage

rebuild(prec1and2 = matrix(0), prec3and4 = matrix(0))

Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.
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Details

There are four types of precedence between two activities i, j: Type 1: the activity j cannot start
until activity i has finished. Type 2: the activity j cannot start until activity i has started. Type 3:
the activity j cannot end until activity i has ended. Type 4: the activity j cannot end until activity i
has started.

All these precedences can be written only as type 1. It should be noted that precedence type 1
implies type 2, and type 2 implies type 4. On the other hand, precedence type 1 implies type 3, and
type 3 implies type 4.

Value

A list containing:

• Precedence: precedence matrix.

• Type 2: activities related to type 2 precedence.

• Type 3: activities related to type 3 precedence.

• Type 4: activities related to type 4 precedence.

Examples

prec1and2<-matrix(c(0,1,0,2,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0),nrow=5,ncol=5,byrow=TRUE)
prec3and4<-matrix(0,nrow=5,ncol=5)
prec3and4[3,1]<-3
rebuild(prec1and2,prec3and4)

resource.allocation Project resource allocation

Description

This function calculates the project schedule so that resource consumption does not exceed the
maximum available per time period..

Usage

resource.allocation(
duration,
prec1and2,
prec3and4 = matrix(0),
resources,
max.resources,
int = 1

)
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Arguments

duration Vector with the duration for each activity.

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

resources Vector indicating the necessary resources for each activity per period of time.

max.resources Numerical value indicating the maximum number of resources that can be used
in each period.

int Numerical value indicating the duration of each period of time (Default=1).

Details

The problem of resource allocation takes into account that in order for activities to be carried out
in the estimated time, a certain level of resources must be used. The problem is that the level of
resources available in each period is limited. The aim is to obtain the minimum time and a schedule
for the execution of the project taking into account this new restriction.

Value

A solution matrices.

References

hega Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms.
Journal of construction engineering and management, 125(3), 167-175.

Examples

duration<-c(3,4,2,1)
prec1and2<-matrix(c(0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0),nrow=4,ncol=4,byrow=TRUE)
resources<-c(4,1,3,3)
max.resources<-4

resource.allocation(duration,prec1and2,prec3and4=matrix(0),resources,max.resources,int=1)
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schedule.pert Schedule for deterministic projects

Description

This function calculates the duration of the project, the slacks for each activity, as well as the
schedule of each activity.

Usage

schedule.pert(
duration,
prec1and2 = matrix(0),
prec3and4 = matrix(0),
PRINT = TRUE

)

Arguments

duration Vector with the duration for each activity.

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

PRINT Logical indicator to show the schedule represented in a graph (Default=TRUE)

Value

A list of a project schedule and if PRINT=TRUE a plot of schedule.

References

burk Burke, R. (2013). Project management: planning and control techniques. New Jersey, USA.

Examples

prec1and2<-matrix(c(0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
duration<-c(3,2,1,1.5,4.2)
schedule.pert(duration,prec1and2)
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stochastic.pert Stochastic projects

Description

This function calculates the average duration time for a stochastic project and the activities critical-
ity index. It also plots the estimate density of the project duration, as well as the estimate density of
the early and last times.

Usage

stochastic.pert(
prec1and2 = matrix(0),
prec3and4 = matrix(0),
distribution,
values,
percentile = 0.95,
plot.activities.times = NULL,
compilations = 1000

)

Arguments

prec1and2 A matrix indicating the order of precedence type 1 and 2 between the activities
(Default=matrix(0)). If value (i, j) = 1 then activity i precedes type 1 to j, and
if (i, j) = 2 then activity i precedes type 2 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

prec3and4 A matrix indicating the order of precedence type 3 and 4 between the activities
(Default=matrix(0)). If value (i, j) = 3 then activity i precedes type 3 to j, and
if (i, j) = 4 then activity i precedes type 4 to j. Cycles cannot exist in a project,
i.e. if an activity i precedes j then j cannot precede i.

distribution Type of distribution that each activities’ duration has. It can be NORMAL,
TRIANGLE, EXPONENTIAL, UNIFORM, T-STUDENT, FDISTRIBUTION,
CHI-SQUARED, GAMMA, WEIBULL, BINOMIAL, POISSON, GEOMET-
RIC, HYPERGEOMETRIC and EMPIRICAL.

values Matrix with the parameters corresponding to the distribution associated with the
duration for each activity. Considering i as an activity we have the following
cases. If the distribution is TRIANGLE, then (i, 1) it is the minimum value, (i,
2) the maximum value and (i, 3) the mode. If the distribution is NORMAL, (i, 1)
is the mean and (i, 2) the variance. If the distribution is EXPONENTIAL, then
(i, 1) is the λ parameter. If the distribution is UNIFORM, (i, 1) it is the minimum
value and (i, 2) the maximum value. If the distribution is T-STUDENT, (i, 1)
degrees of freedom and (i, 2) non-centrality parameter delta. In FDISTRIBU-
TION, (i, 1) and (i, 2) degrees of freedom and (i, 3) non-centrality parameter. In
CHI-SQUARED, (i, 1) degrees of freedom and (i, 2) non-centrality parameter
(non-negative). In GAMMA, (i, 1) and (i, 3) shape and scale parameters and (i,
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2) an alternative way to specify the scale. In WEIBULL, (i, 1) and (i, 2) shape
and scale parameters. In BINOMIAL, (i, 1) number of trials (zero or more)
and (i, 2) probability of success on each trial. In POISSON, (i, 1) non-negative
mean. In GEOMETRIC, (i, 1) probability of success in each trial, between 0
and 1. In HYPERGEOMETRIC, (i, 1) number of white balls in the urn, (i, 2)
number of black balls in the urn and (i, 3) numer of balls drawn from the urn.
Finally, if the distribution is EMPIRICAL, then (i,j), for all j ∈ {1, ...,M} such
that M > 0, is the sample.

percentile Percentile used to calculate the maximum time allowed for the duration of the
project (Default=0.95).

plot.activities.times

Vector of selected activities to show the distribution of their early and last times
(Default=NULL).

compilations Number of compilations that the function will use for average calculations (De-
fault=1000).

Value

Two values, average duration time and the maximum time allowed, a critically index vector and a
durations histogram.

Examples

prec1and2<-matrix(c(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE)
distribution<-c("TRIANGLE","TRIANGLE","TRIANGLE","TRIANGLE","EXPONENTIAL")
values<-matrix(c(1,3,2,1/2,3/2,1,1/4,9/4,1/2,3,5,4,1/2,0,0),nrow=5,byrow=TRUE)
percentile<-0.95
plot.activities.times<-c(1,4)
stochastic.pert(prec1and2=prec1and2,distribution=distribution,values=values,
percentile=percentile,plot.activities.times=plot.activities.times)
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