
Package ‘PMwR’
October 19, 2025

Type Package

Title Portfolio Management with R

Version 1.1-0

Date 2025-10-19

Maintainer Enrico Schumann <es@enricoschumann.net>

Description Tools for the practical management of financial
portfolios: backtesting investment and trading strategies,
computing profit/loss and returns, analysing trades,
handling lists of transactions, reporting, and more. The
package provides a small set of reliable, efficient and
convenient tools for processing and analysing
trade/portfolio data. The manual provides all the details;
it is available from
<https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html>.
Examples and descriptions of new features are provided at
<https://enricoschumann.net/notes/PMwR/>.

Imports NMOF, datetimeutils, fastmatch, orgutils, parallel, textutils,
utils, zoo

Suggests crayon, rbenchmark, tinytest

Depends R (>= 3.5)

License GPL-3

LazyLoad yes

LazyData yes

ByteCompile yes

URL https://enricoschumann.net/PMwR/ ,

https://git.sr.ht/~enricoschumann/PMwR ,

https://gitlab.com/enricoschumann/PMwR ,

https://github.com/enricoschumann/PMwR

NeedsCompilation no

Author Enrico Schumann [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7601-6576>)

1

https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html
https://enricoschumann.net/notes/PMwR/
https://enricoschumann.net/PMwR/
https://git.sr.ht/~enricoschumann/PMwR
https://gitlab.com/enricoschumann/PMwR
https://github.com/enricoschumann/PMwR
https://orcid.org/0000-0001-7601-6576

2 PMwR-package

Repository CRAN

Date/Publication 2025-10-19 08:40:02 UTC

Contents
PMwR-package . 2
Adjust-Series . 3
btest . 5
DAX . 11
drawdowns . 11
instrument . 13
is_valid_ISIN . 14
journal . 15
NAVseries . 20
pl . 22
plot_trading_hours . 27
position . 29
pricetable . 32
quote32 . 33
rc . 35
rebalance . 38
returns . 40
REXP . 44
scale1 . 45
streaks . 46
toHTML . 48
Trade-Analysis . 48
unit_prices . 50
valuation . 52

Index 55

PMwR-package Tools for the Management of Financial Portfolios

Description

Tools for the practical management of financial portfolios: backtesting investment and trading
strategies, computing profit-and-loss and returns, analysing trades, reporting, and more.

Details

PMwR provides a small set of reliable, efficient and convenient tools for processing and analysing
trade/portfolio data. The Manual provides all the details; it is available from https://enricoschumann.
net/PMwR/. Examples and descriptions of new features are provided at https://enricoschumann.
net/notes/PMwR/.

https://enricoschumann.net/PMwR/
https://enricoschumann.net/PMwR/
https://enricoschumann.net/notes/PMwR/
https://enricoschumann.net/notes/PMwR/

Adjust-Series 3

Author(s)

Enrico Schumann <es@enricoschumann.net>

References

The PMwR Manual, which explains all functionality:
Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/

The closely-related NMOF package is described in:
Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2025) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF.htm#NMOFmanual

Adjust-Series Adjust Time Series for Dividends and Splits

Description

Adjust a time series for dividends and splits.

Usage

div_adjust(x, t, div, backward = TRUE, additive = FALSE)

split_adjust(x, t, ratio, backward = TRUE)

Arguments

x a numeric vector: the series to be adjusted

t An integer vector, specifying the positions in x at which dividends were paid
(‘ex-days’) or at which a split occurred. Timestamps may be duplicated, e.g.
several payments may occur on a single timestamp.

div A numeric vector, specifying the dividends (or payments, cashflows). If neces-
sary, recycled to the length of t.

ratio a numeric vector, specifying the split ratios. The ratio must be ‘American Style’:
a 2-for-1 stock split, for example, corresponds to a ratio of 2. (In other countries,
for instance Germany, a 2-for-1 stock split would be called a 1-for-1 split: you
keep your shares and receive one new share per share that you own.)

backward logical; see Details

additive logical; see Details

https://enricoschumann.net/PMwR/
https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

4 Adjust-Series

Details

The function transforms x into returns. The return in t is calculated as

xt +Dt

xt−1
− 1 ,

in which x is the price, D are dividends and t is time. The adjusted x is then reconstructed from
those returns.

When additive is TRUE, dividends are simply added back to the series; see Examples.

With backward set to TRUE, which is the default, the final prices in the unadjusted series matches
the final prices in the adjusted series.

Value

a numeric vector of length equal to length(x)

Author(s)

Enrico Schumann

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/

Using div_adjust for handling generic external cashflows: https://enricoschumann.net/R/
packages/PMwR/manual/PMwR.html#returns-with-external-cashflows

Examples

x <- c(9.777, 10.04, 9.207, 9.406)
div <- 0.7
t <- 3

div_adjust(x, t, div)
div_adjust(x, t, div, FALSE)

assume there were three splits: adjust shares outstanding
shares <- c(100, 100, 200, 200, 1000, 1500)
t <- c(3, 5, 6)
ratio <- c(2, 5, 1.5)
=> invert ratio
split_adjust(shares, t, 1/ratio)
[1] 1500 1500 1500 1500 1500 1500

split_adjust(shares, t, 1/ratio, backward = FALSE)
[1] 100 100 100 100 100 100

https://enricoschumann.net/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#returns-with-external-cashflows
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#returns-with-external-cashflows

btest 5

'additive' ** FALSE ** (default setting)
x <- c(100, 95, 100, 95, 100)
div <- 5
t <- c(2, 4)
div_adjust(x, t, div)
90.25 90.25 95.00 95.00 100.00
returns(div_adjust(x, t, div))
0.00000000 0.05263158 0.00000000 0.05263158
==> reflect _actual_ returns 100/95 - 1

'additive' ** TRUE **
div_adjust(x, t, div, additive = TRUE)
90 90 95 95 100
returns(div_adjust(x, t, div, additive = TRUE))
0.00000000 0.05555556 0.00000000 0.05263158
==> reflect return 95/90 - 1

btest Backtesting Investment Strategies

Description

Testing trading and investment strategies.

Usage

btest(prices, signal,
do.signal = TRUE, do.rebalance = TRUE,
print.info = NULL, b = 1, fraction = 1,
initial.position = 0, initial.cash = 0,
final.position = FALSE,
cashflow = NULL, tc = 0, ...,
add = FALSE, lag = 1, convert.weights = FALSE,
trade.at.open = TRUE, tol = 1e-5, tol.p = NA,
Globals = list(),
prices0 = NULL,
include.data = FALSE, include.timestamp = TRUE,
timestamp, instrument,
progressBar = FALSE,
variations, variations.settings, replications)

Arguments

prices For a single asset, a matrix of prices with four columns: open, high, low and
close. For n assets, a list of length four: prices[[1]] is then a matrix with n
columns containing the open prices for the assets; prices[[2]] is a matrix with
the high prices, and so on. If only close prices are used, then for a single asset
either a matrix of one column or a numeric vector; for multiple assets a list of

6 btest

length one, containing the matrix of close prices. For example, with 100 close
prices of 5 assets, the prices should be arranged in a matrix p of size 100 times
5; and prices = list(p).
The series in prices are used both as transaction prices and for valuing open
positions. If signals are to be based on other series, such other series should be
passed via the . . . argument.
Prices must be ordered by time (though the timestamps need not be provided).

signal A function that evaluates to the position in units of the instruments suggested
by the trading rule. If convert.weights is TRUE, signal should return the
suggested position as weights (which need not sum to 1). If signal returns
NULL, the current position is kept. See Details.

do.signal Logical or numeric vector, a function that evaluates to TRUE or FALSE, or a string.
When a logical vector, its length must match the number of observations in
prices: do.signal then corresponds to the rows in prices at which a signal
is computed. Alternatively, these rows may also be specified as integers. If a
length-one TRUE or FALSE, the value is recycled to match the number of obser-
vations in prices. Default is TRUE: a signal is then computed in every period.
do.signal may also be the string “firstofmonth”, “lastofmonth”, “firstofquar-
ter” or “lastofquarter”; in these cases, timestamp needs to specified and must
be coercable to Date.
If timestamp is specified, do.signal may also be a vector of the same class as
timestamp (typically Date or POSIXct). If the timestamps specified in do.signal
do not occur in timestamp, a signal is computed on the next possible time in-
stance.

do.rebalance Same as do.signal, but it may return a logical vector of length equal to the
number of assets, which indicates which assets to rebalance. Can also be the
string "do.signal", in which case the value of do.signal is copied. do.rebalance
is called after signal computation, so it can access the suggested position of the
current period (via SuggestedPortfolio(0).

print.info A function, called at the very end of each period, i.e. after rebalancing. Can also
be NULL, in which case nothing is printed.

cashflow A function or NULL (default).

b burn-in (an integer). Defaults to 1. This may also be a length-one timestamp of
the same class as timestamp, in which case the data up to (and including) b are
skipped.

fraction amount of rebalancing to be done: a scalar between 0 and 1
initial.position

a numeric vector: initial portfolio in units of instruments. If supplied, this will
also be the initial suggested position.

initial.cash a numeric vector of length 1. Defaults to 0.

final.position logical

tc transaction costs as a fraction of turnover (e.g., 0.001 means 0.1%). May also be
a function that evaluates to such a fraction. More-complex computations may
be specified with argument cashflow.

btest 7

... other named arguments. All functions (signal, do.signal, do.rebalance, print.info,
cashflow) will have access to these arguments. See Details for reserved argu-
ment names.

add Default is FALSE. TRUE is not implemented – but would mean that signal
should evaluate to changes in position, i.e. orders.

lag default is 1
convert.weights

Default is FALSE. If TRUE, the value of signal will be considered a weight vector
and automatically translated into (fractional) position sizes.

trade.at.open A logical vector of length one; default is TRUE.

tol A numeric vector of length one: only rebalance if the maximum absolute sug-
gested change for at least one position is greater than tol. Default is 0.00001
(which practically means always rebalance).

tol.p A numeric vector of length one: only rebalance those positions for which the
relative suggested change is greater than tol.p. Default is NA: always rebalance.

Globals A list of named elements. See Details.

prices0 A numeric vector (default is NULL). Only used if b is 0 and an initial portfolio
(initial.position) is specified.

include.data logical. If TRUE, all passed data are stored in final btest object. See Section
Value. See also argument include.timestamp.

include.timestamp

logical. If TRUE, timestamp is stored in final btest object. If timestamp is
missing, integers 1, 2, . . . are used. See Section Value. See also argument
include.data.

timestamp a vector of timestamps, along prices (optional; mainly used for print method and
journal)

instrument character vector of instrument names (optional; mainly used for print method
and journal)

progressBar logical: display txtProgressBar?

variations a list. See Details.
variations.settings

a list. See Details.

replications an integer. If set, the function returns a list of btest objects. Each btest has an
attribute replication, which records the replication number.

Details

The function provides infrastructure for testing trading rules. Essentially, btest does accounting:
keep track of transactions and positions, value open positions, etc. The ingredients are price time-
series (single series or OHLC bars), which need not be equally spaced; and several functions that
map these series and other pieces of information into positions.

How btest works:
btest runs a loop from b + 1 to NROW(prices). In iteration t, a signal can be computed based
on information from periods prior to t. Trading then takes place at the opening price of t.

8 btest

t time open high low close
1 HH:MM:SS <--\
2 HH:MM:SS <-- - use information
3 HH:MM:SS _________________________ <--/
4 HH:MM:SS X <- trade here
5 HH:MM:SS

For slow-to-compute signals this is reasonable if there is a time lag between close and open. For
daily prices, for instance, signals could be computed overnight. For higher frequencies, such as
every minute, the signal function should be fast to compute. Alternatively, it may be better to use
a larger time offset (i.e. use a longer time lag) and to trade at the close of t by setting argument
trade.at.open to FALSE.

t time open high low close
1 HH:MM:SS <-- \
2 HH:MM:SS <-- - use information
3 HH:MM:SS _________________________ <-- /
4 HH:MM:SS X <-- trade here
5 HH:MM:SS

If no OHLC bars are available, a single series per asset (assumed to be close prices) can be used.
trade.at.open will automaticall be set to FALSE.
The trade logic needs to be coded in the function signal. Arguments to that function must be
named and need to be passed with Certain names are reserved and cannot be used as argu-
ments: Open, High, Low, Close, Wealth, Cash, Time, Timestamp, Portfolio, SuggestedPortfolio,
Globals. Further reserved names may be added in the future: it is suggested to not start an ar-
gument name with a capital letter.
The function signal must evaluate to the target position in units of the instruments. To work with
weights, set convert.weights to TRUE, and btest will translate the weights into positions, based
on the value of the portfolio at t - 1.

Accessing data:
Within signal (and also other function arguments, such as do.signal), you can access data
via special functions such as Close. These are automatically added as arguments to signal.
Currently, the following functions are available: Open, High, Low, Close, Wealth, Cash, Time,
Timestamp, Portfolio, SuggestedPortfolio, Globals. Globals is special: it is an environment,
which can be used to persistently store data during the run of btest. Use the argument Globals
to add initial objects. See the Examples below and the manual.
Additional functions may be added to btest in the future. The names of those functions will
always be in title case. Hence, it is recommended to not use argument names for signal, etc. that
start with a capital letter.

Replications and variations:
btest allows to run backtests in parallel. See the examples at https://enricoschumann.net/
notes/parallel-backtests.html.
The argument variations.settings is a list with the following defaults:

method character: supported are "loop", "parallel" (or "snow") and "multicore"

https://enricoschumann.net/notes/parallel-backtests.html
https://enricoschumann.net/notes/parallel-backtests.html

btest 9

load.balancing logical
cores numeric

Value

A list with class attribute btest. The list comprises:

position actual portfolio holdings
suggested.position

suggested holdings (aka target position)

cash cash

wealth time-series of total portfolio value (aka equity curve)

cum.tc transaction costs

journal journal of trades. Only includes trades done during the backtest, not initial
positions.

initial.wealth initial wealth

b burn-in

final.position final position if final.position is TRUE; otherwise NA

Globals environment Globals

When include.timestamp is TRUE, the timestamp is included. If no timestamp was specified,
integers 1, 2, ... are used instead.

When include.data is TRUE, essentially all information (prices, instrument, the actual call and
functions signal etc.) are stored in the list as well.

Author(s)

Enrico Schumann <es@enricoschumann.net>

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/; in
particular, see the chapter on backtesting:
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#backtesting

Schumann, E. (2018) Backtesting.
doi:10.2139/ssrn.3374195

Examples

For more examples, please see the Manual
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html

1 - a simple rule
timestamp <- structure(c(16679L, 16680L, 16681L, 16682L,

16685L, 16686L, 16687L, 16688L,
16689L, 16692L, 16693L),

class = "Date")

https://enricoschumann.net/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#backtesting
https://doi.org/10.2139/ssrn.3374195

10 btest

prices <- c(3182, 3205, 3272, 3185, 3201,
3236, 3272, 3224, 3194, 3188, 3213)

data.frame(timestamp, prices)

signal <- function() ## buy when last price is
if (Close() < 3200) ## below 3200, else sell

1 else 0 ## (more precisely: build position of 1
when price < 3200, else reduce
position to 0)

solution <- btest(prices = prices, signal = signal)
journal(solution)

with Date timestamps
solution <- btest(prices = prices, signal = signal,

timestamp = timestamp)
journal(solution)

2 - a simple MA model
Not run:
library("PMwR")
library("NMOF")

dax <- DAX[[1]]

n <- 5
ma <- MA(dax, n, pad = NA)

ma_strat <- function(ma) {
if (Close() > ma[Time()])

1
else

0
}

plot(as.Date(row.names(DAX)), dax, type = "l", xlab = "", ylab = "DAX")
lines(as.Date(row.names(DAX)), ma, type = "l")

res <- btest(prices = dax,
signal = ma_strat,
b = n, ma = ma)

par(mfrow = c(3, 1))
plot(as.Date(row.names(DAX)), dax, type = "l",

xlab = "", ylab = "DAX")
plot(as.Date(row.names(DAX)), res$wealth, type = "l",

xlab = "", ylab = "Equity")
plot(as.Date(row.names(DAX)), position(res), type = "s",

DAX 11

xlab = "", ylab = "Position")

End(Not run)

DAX Deutscher Aktienindex (DAX)

Description

Historical Prices of the DAX.

Usage

data("DAX")

Format

A data frame with 505 observations on the following variable:

DAX a numeric vector

Details

The DAX (Deutscher Aktienindex) is a stock-price index of the largest companies listed in Germany.
The dataset comprises the close prices of the index for the years 2014 and 2015; dates are provided
as rownames.

Examples

str(DAX)
summary(DAX)

drawdowns Compute Drawdowns

Description

Compute drawdown statistics.

Usage

drawdowns(x, ...)
Default S3 method:
drawdowns(x, ...)
S3 method for class 'zoo'
drawdowns(x, ...)

12 drawdowns

Arguments

x a numeric vector of prices

... additional arguments, to be passed to methods

Details

drawdowns is a generic function. It computes drawdown statistics: maximum; and time of peak,
trough and recovery.

Value

a data.frame:

peak peak before drawdown

trough lowest point

recover new high or NA if the drawdown has not been recovered yet

max the max drawdown

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/;
in particular,
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#drawdowns-streaks

See Also

The actual computation of the drawdowns is done by function drawdown in package NMOF.

Series of uninterrupted up and down movements can be computed with streaks.

Examples

x <- c(100, 98)
drawdowns(x)

x <- c(100, 98, 102, 99)
dd <- drawdowns(x)
dd[order(dd$max, decreasing = TRUE),]

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#drawdowns-streaks

instrument 13

instrument Retrieve or Change Instrument

Description

Generic function for retrieving and changing instrument information.

Usage

instrument(x, ...)
instrument(x, ...) <- value

Arguments

x an object

... arguments passed to methods

value an object

Details

Generic function: extract or, if meaningful, replace instrument information

Value

when used to extract instrument, a character vector

Author(s)

Enrico Schumann

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/R/packages/
PMwR/manual/PMwR.html

See Also

position

Examples

jnl <- journal(instrument = "A",
amount = 100,
price = 1)

instrument(jnl)
instrument(jnl) <- "B"

https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html

14 is_valid_ISIN

is_valid_ISIN Validate Security Identification Numbers

Description

Check whether a given ISIN or SEDOL is valid.

Usage

is_valid_ISIN(isin, NA.FALSE = FALSE)
is_valid_SEDOL(SEDOL, NA.FALSE = FALSE)

Arguments

isin a character vector

SEDOL a character vector

NA.FALSE logical: if TRUE, NA values evaluate to FALSE.

Details

Checks a character vector of ISINs and SEDOLs. The function returns TRUE if the ISIN/SEDOL is
valid, else FALSE. Handling of NA is defined by argument NA.FALSE.

International Securities Identification Numbers (ISINs): The test procedure in ISO 6166 does not
differentiate between cases. Thus, ISINs are transformed to uppercase before being tested.

Value

A named logical vector. For is_valid_SEDOL, a character vector is attached as an attribute note.

Author(s)

Enrico Schumann

References

https://en.wikipedia.org/wiki/ISO_6166

https://en.wikipedia.org/wiki/SEDOL

https://anna-web.org/identifiers/

Examples

isin <- c("US0378331005", "AU0000XVGZA3",
"DE000A0C3743", "not_an_isin")

is_valid_ISIN(isin)

is_valid_ISIN(c("US0378331005",
"us0378331005")) ## case is ignored

https://en.wikipedia.org/wiki/ISO_6166
https://en.wikipedia.org/wiki/SEDOL
https://anna-web.org/identifiers/

journal 15

SEDOL <- c("0263494", "B1F3M59", "0263491", "A", NA)
is_valid_SEDOL(SEDOL)
0263494 B1F3M59 0263491 A <NA>
TRUE TRUE FALSE FALSE NA

is_valid_SEDOL(SEDOL, NA.FALSE = TRUE)
0263494 B1F3M59 0263491 A <NA>
TRUE TRUE FALSE FALSE FALSE

journal Journal

Description

Create and manipulate a journal of financial transactions.

Usage

journal(amount, ...)

Default S3 method:
journal(amount, price, timestamp, instrument,

id = NULL, account = NULL, ...)

as.journal(x, ...)
is.journal(x)

S3 method for class 'journal'
c(..., recursive = FALSE)

S3 method for class 'journal'
length(x)

S3 method for class 'journal'
aggregate(x, by, FUN, ...)

S3 method for class 'journal'
print(x, ...,

width = getOption("width"), max.print = getOption("max.print"),
exclude = NULL, include.only = NULL)

S3 method for class 'journal'
sort(x, decreasing = FALSE, by = "timestamp", ..., na.last = TRUE)

S3 method for class 'journal'
summary(object, by = "instrument", drop.zero = TRUE,

16 journal

na.rm = FALSE, ...)

S3 method for class 'journal'
subset(x, ...)

S3 method for class 'journal'
x[i, match.against = NULL,
ignore.case = TRUE, perl = FALSE, fixed = FALSE,
useBytes = FALSE, ..., invert = FALSE]

S3 replacement method for class 'journal'
x[i, match.against = NULL,
ignore.case = TRUE, ..., invert = FALSE] <- value

S3 method for class 'journal'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'journal'
head(x, n = 6L, ..., by = "instrument")

S3 method for class 'journal'
tail(x, n = 6L, ..., by = "instrument")

Arguments

timestamp An atomic vector of mode numeric or character. Timestamps should typically
be sortable.

amount numeric

price numeric

instrument character or numeric (though typically character)

id An atomic vector. Default is NULL.

account An atomic vector. Default is NULL.

... For journal: further arguments, which must all be named.
For subset: an expression that evaluates to a logical vector. The expression
may use all fields of the passed journal; see Examples.
For `[`: arguments other than ignore.case to be passed to grep.
For sort: arguments passed to sort.

x a journal or an object to be coerced to class journal (for as.journal) or to
be checked if it inherits from journal (for is.journal)

object a journal

width integer. See options.

decreasing passed to sort

by sort: sort by field. head/tail: by field (default is instrument). summary: a vec-
tor of keywords (or NULL); supported are "instrument", "year" and "month".

journal 17

na.rm logical

drop.zero logical

na.last arguments passed to sort

max.print maximum number of transactions to print

exclude character: fields that should not be printed

include.only character: print only those fields. (Not supported yet.)

row.names see as.data.frame

optional see as.data.frame

recursive ignored (see c)

i integer, logical or character. The latter is interpreted as a regexp (see grep)

n integer

match.against character vector of field names. Default is NULL, which means to match against
all character fields.

ignore.case logical: passed to grepl

perl logical: passed to grepl

fixed logical: passed to grepl

useBytes logical: passed to grepl

invert logical. If TRUE, invert selection (when i is of mode character, select journal
entries that do not match regular expression)

FUN either a function that takes as input a journal and evaluates to a journal, or a list
of named functions

value a replacement value

Details

The journal function creates a list of its arguments and attaches a class attribute (‘journal’). It
is a generic function; the default method creates a journal from atomic vectors. The btest method
extracts the journal from the results of a backtest; see btest.

as.journal coerces an object to a journal and is primarily used for creating a journal from a
data.frame. Calling as.journal on an unnamed numeric vector interprets the vector as amounts.
If the vector is named, these are interpreted as instruments; see Examples. Calling as.journal on
a journal returns the journal itself.

journal methods are available for several generic functions, for instance:

all.equal compare contents of two journals

aggregate Splits a journal according to by, applies a function to every sub-journal and recombines
the results into a journal.

as.data.frame Coerce journal to data.frame.

c Combine several journals into one. Note that the first argument to c.journal must inherit from
journal, or else the method dispatch will fail. For empty journals, use journal() (not NULL).

length number of transactions in a journal; it uses the length of amount

18 journal

split Splits a journal according to f, yielding a list of journals. Often used interactively to have
information per sub-journal printed.

subset evaluates an expression in an environment that can access all fields of the journal. The
function is meant for interactive analysis; care is needed when it is used within other functions:
see Examples and the Manual.

summary provides summary statistics, such as number of trades and average buy/sell prices

toOrg converts a journal to an Org table; package orgutils must be available

For journals that have a length, missing arguments will be coded as NA except for id and account,
which become NULL. In zero-length (i.e. ‘empty’) journals, all fields have length 0. A zero-length
journal is created, for instance, by saying journal() or when an zero-row data.frame is passed to
as.journal.

Value

An object of class journal, which is a list of atomic vectors.

Author(s)

Enrico Schumann <es@enricoschumann.net>

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/R/packages/
PMwR/; in particular, see
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#journals

See Also

position, pl

Examples

j <- journal(timestamp = 1:3,
amount = c(1,2,3),
price = 101:103,
instrument = c("Stock A", "Stock A", "Stock B"))

*** subset *** in functions
this should work as expected ...
t0 <- 2.5
subset(j, timestamp > t0)

... but here?!
tradesAfterT <- function(j, t0)

subset(j, timestamp > t0)
tradesAfterT(j, 0)

if really required
tradesAfterT <- function(j, t0) {

https://enricoschumann.net/R/packages/PMwR/
https://enricoschumann.net/R/packages/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#journals

journal 19

e <- substitute(timestamp > t0, list(t0 = t0))
do.call(subset, list(j, e))

}
tradesAfterT(j, 0)

... or much simpler
tradesAfterT <- function(j, t0)

j[j$timestamp > t0]
tradesAfterT(j, 0)

*** aggregate ***
several buys and sells on two days
aim: find average buy/sell price per day
j <- journal(timestamp = structure(c(15950, 15951, 15950, 15951, 15950,

15950, 15951, 15951, 15951, 15951),
class = "Date"),

amount = c(-3, -4, -3, -1, 3, -2, 1, 3, 5, 3),
price = c(104, 102, 102, 110, 106, 104, 104, 106, 108, 107),
instrument = c("B", "B", "A", "A", "B", "B", "A", "B", "A", "A"))

by <- list(j$instrument, sign(j$amount), as.Date(j$timestamp))
fun <- function(x) {

journal(timestamp = as.Date(x$timestamp[1]),
amount = sum(x$amount),
price = sum(x$amount*x$price)/sum(x$amount),
instrument = x$instrument[1L])

}
aggregate(j, by = by, FUN = fun)

*** iterate over transactions in (previously defined) journal ***
for (j in split(j, seq_along(j)))

print(j)

as.journal with numeric vector
as.journal(1:3)
amount
1 1
2 2
3 3
##
3 transactions

as.journal with *named* numeric vector
x <- 1:3; names(x) <- LETTERS[1:3]
as.journal(x)
instrument amount
1 A 1
2 B 2
3 C 3

20 NAVseries

##
3 transactions

x <- 1:3; names(x) <- c("A", "B", "A")
as.journal(x)
instrument amount
1 A 1
2 B 2
3 A 3
##
3 transactions

NAVseries Net-Asset-Value (NAV) Series

Description

Create a net-asset-value (NAV) series.

Usage

NAVseries(NAV, timestamp,
instrument = NULL, title = NULL,
description = NULL,
drop.NA = NULL)

as.NAVseries(x, ...)

S3 method for class 'NAVseries'
print(x, ... , na.rm = FALSE)

S3 method for class 'NAVseries'
summary(object, ..., monthly.vol = TRUE,

bm = NULL, monthly.te = TRUE,
na.rm = FALSE, assume.daily = FALSE)

S3 method for class 'NAVseries'
plot(x, y, ..., xlab = "", ylab = "", type = "l")

S3 method for class 'NAVseries'
window(x, start = NULL, end = NULL, ...)

S3 method for class 'summary.NAVseries'
as.data.frame(x, ...)

NAVseries 21

Arguments

NAV numeric

timestamp time stamp, typically Date or POSIXct

instrument character

title character

description character

x an NAVseries or an object to be coerced to NAVseries

object an NAVseries

... further arguments. For summary, these can be NAVseries.

drop.NA logical. If NAV is the result of calling btest, then this controls whether unused
initial observations (‘burnin’) are dropped.

bm an optional NAVseries. If bm does not inherit from NAVseries, as.NAVseries
is tried.

monthly.vol if TRUE (default), volatility computations are done on monthly returns

monthly.te if TRUE (default), tracking-error computations are done on monthly returns

assume.daily logical

na.rm logical

y a second NAVseries to be plotted. Not supported yet.

xlab character. See plot.

ylab character. See plot.

type character. See plot.

start same class as timestamp; NULL means the first timestamp

end same class as timestamp; NULL means the last timestamp

Details

NAV series:
An NAV series is a numeric vector (the actual series) and additional information, attached as
attributes: timestamp, instrument, title, description. Of these attributes, timestamp is the most
useful, as it is used for several computations (e.g. when calling summary) and for plotting.
The ‘instrument’ is typically an internal label used to identify the series, such as a ticker; ‘title’ is
a label, too, but is intended to be human-readable; ‘description’ finally should be human-readable
as well, but may be longer than ‘title’.

Summaries:
The summary method returns a list of the original NAVseries plus various statistics, such as return
per year and volatility. The method may receive several NAV series as input.

Value

an NAVseries: see Details.

an NAVseries summary: a list of lists. If a benchmark series is present, the summary has an attribute
bm: an integer, specifying the position of the benchmark.

22 pl

Note

The semantics of handling NAVseries are not stable yet. Currently, objects of class NAVseries are
univariate: you create a single NAVseries, summarise it, plot it, and so one. In the future, at least
some of the methods will support the multi-variate case, i.e. be able to handle several series at once.

Author(s)

Enrico Schumann <es@enricoschumann.net>

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/;
in particular, see https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#NAVseries

See Also

btest, journal

For handling external cashflows, see unit_prices, split_adjust and div_adjust.

Examples

summary(NAVseries(DAX[[1]],
timestamp = as.Date(row.names(DAX)),
title = "DAX"))

pl Profit and Loss

Description

Compute profit and (or) loss of financial transactions.

Usage

pl(amount, ...)

Default S3 method:
pl(amount, price, timestamp = NULL,

instrument = NULL, multiplier = 1,
multiplier.regexp = FALSE,
along.timestamp = FALSE, approx = FALSE,
initial.position = NULL, initial.price = NULL,
vprice = NULL, tol = 1e-10, do.warn = TRUE,
do.sum = FALSE, pl.only = FALSE,
footnotes = TRUE, ...)

S3 method for class 'journal'

https://enricoschumann.net/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#NAVseries

pl 23

pl(amount, multiplier = 1,
multiplier.regexp = FALSE,
along.timestamp = FALSE, approx = FALSE,
initial.position = NULL, initial.price = NULL,
vprice = NULL, tol = 1e-10, do.warn = TRUE, ...)

S3 method for class 'pl'
pl(amount, ...)

S3 method for class 'pl'
print(x, ..., use.crayon = NULL, na.print = ".",

footnotes = TRUE)

S3 method for class 'pl'
as.data.frame(x, ...)

.pl(amount, price, tol = 1e-10, do.warn = TRUE)

.pl_stats(amount, price, tol = sqrt(.Machine$double.eps))

Arguments

amount numeric or a journal

price numeric

instrument character or numeric (though typically character)

timestamp An atomic vector of mode numeric or character. Timestamps should typically
be sortable.

along.timestamp

logical; or a vector of timestamps. If the latter, vprice must be specified as
well. See the vignette “Profit/Loss for Open Positions” (pl_open_positions)
for details. Timestamps must be in ascending order and will be sorted if they are
not (and vprice will then be sorted as well).

initial.position

a position

initial.price prices to evaluate initial position

vprice valuation price; a numeric vector. With several instruments, the prices must be
named, e.g. c(stock1 = 100, stock2 = 101). See Details.

multiplier numeric vector. When instrument is specified and the vector is named, the
names will be matched against instruments.

multiplier.regexp

logical. If TRUE, the names of multiplier are interpreted as regular expressions.
See Examples.

approx logical

tol numeric: threshold to consider a position zero.

x a pl object to be printed or to be coerced to a data.frame

24 pl

... further argument

use.crayon logical

na.print character: how to print NA values

do.warn logical: issue warnings?

do.sum logical: sum profit/loss across instruments?

pl.only logical: if TRUE, return only numeric vector of profit/loss

footnotes logical, with default TRUE: collect and print notes?

Details

Computes profit and/or loss and returns a list with several statistics (see Section Value, below). To
get only the profit/loss numbers as a numeric vector, set argument pl.only to TRUE.

pl is a generic function: The default input is vectors for amount, price, etc. Alternatively (and often
more conveniently), the function may also be called with a journal or a data.frame as its input.
For data frames, columns must be named amount, price, and so on, as in a journal.

pl may be called in two ways: either to compute total profit/loss from a list of trades, possibly
broken down by instrument and account; or to compute profit/loss over time. The latter case typ-
ically requires setting arguments along.timestamp and/or vprice (see Examples). Profit/loss over
time is always computed with time in ascending order: so if the timestamps in along.timestamp
are not sorted, the function will sort them (and vprice as well).

Using vprice: when along.timestamp is logical (FALSE or TRUE), vprice can be used to value an
open position. For a single asset, it should be a single number; for several assets, it should be named
vector, with names indicating the instrument. When along.timestamp is used to pass a custom
timestamp: for a single asset, vprice must be a vector with the same length as along.timestamp;
for several assets, it must be a numeric matrix with dimension length(along.timestamp) times
number of assets.

.pl and .pl_stats are helper functions that are called by pl. .pl_stats requires amount and
price to be sorted in time, and to be of length > 0.

To use package crayon – which is only sensible in interactive use –, either explicitly set use.crayon
to TRUE or set an option PMwR.use.crayon to TRUE.

Value

For pl, an object of class pl, which is a list of lists: one list for each instrument. Each such list
contains numeric vectors: pl, realised, unrealised, buy, sell, volume. If along.timestamp is
not FALSE, a vector timestamp is also present.

For .pl, a numeric vector with four elements: profit/loss in units of the instrument, sum of absolute
amounts, average buy price, average sell price. For zero-length vector, the function evaluates to
c(0, 0, NaN, NaN).

For .pl_stats, a list of two elements: the average entry-price, and the realized profit/loss. profit/loss
in units of the instrument, sum of absolute amounts, average buy price, average sell price. For zero-
length vector, the function evaluates to c(0, 0, NaN, NaN).

Author(s)

Enrico Schumann <es@enricoschumann.net>

pl 25

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/; in
particular https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#profit-and-loss

See Also

btest, returns

Examples

J <- journal(timestamp = c(1, 2, 3),
amount = c(1, 1, -2),
price = c(100, 102, 101))

pl(J)

pl(amount = c(1, 1, -2),
price = c(100, 102, 101)) ## without a 'journal'

J <- journal(timestamp = c(1, 2, 3, 1, 2, 3),
amount = c(1, 1, -2, 1, 1, -2),
price = c(100, 102, 101, 100, 102, 105),
instrument = c(rep("Bond A", 3), rep("Bond B", 3)))

pl(J)
Bond A
P/L total 0
average buy 101
average sell 101
cum. volume 4
##
Bond B
P/L total 8
average buy 101
average sell 105
cum. volume 4
##
'P/L total' is in units of instrument;
'volume' is sum of /absolute/ amounts.

as.data.frame(pl(J)) ## a single data.frame
pl buy sell volume
Bond A 0 101 101 4
Bond B 8 101 105 4

lapply(pl(J), as.data.frame) ## => a list of data.frames
$`Bond A`
pl realised unrealised buy sell volume
1 0 NA NA 101 101 4
##
$`Bond B`
pl realised unrealised buy sell volume

https://enricoschumann.net/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#profit-and-loss

26 pl

1 8 NA NA 101 105 4

pl(pl(J)) ## P/L as a numeric vector
Bond A Bond B
0 8

Example for 'vprice'
instrument <- c(rep("Bond A", 2), rep("Bond B", 2))
amount <- c(1, -2, 2, -1)
price <- c(100, 101, 100, 105)

... no p/l because positions not closed:
pl(amount, price, instrument = instrument, do.warn = FALSE)

... but with vprice specified, p/l is computed:
pl(amount, price, instrument = instrument,

vprice = c("Bond A" = 103, "Bond B" = 100))

... and is, except for volume, the same as here:
instrument <- c(rep("Bond A", 3), rep("Bond B", 3))
amount <- c(1, -2, 1, 2, -1, -1)
price <- c(100, 101, 103, 100, 105, 100)
pl(amount, price, instrument = instrument)

p/l over time: example for 'along.timestamp' and 'vprice'
j <- journal(amount = c(1, -1),

price = c(100, 101),
timestamp = as.Date(c("2017-07-05", "2017-07-06")))

pl(j)

pl(j,
along.timestamp = TRUE)

pl(j,
along.timestamp = seq(from = as.Date("2017-07-04"),

to = as.Date("2017-07-07"),
by = "1 day"),

vprice = 101:104)

Example for 'multiplier'
jnl <- read.table(text =
"instrument, price, amount
FGBL MAR 16, 165.20, 1
FGBL MAR 16, 165.37, -1
FGBL JUN 16, 164.12, 1
FGBL JUN 16, 164.13, -1

plot_trading_hours 27

FESX JUN 16, 2910, 5
FESX JUN 16, 2905, -5",

header = TRUE, stringsAsFactors = FALSE, sep = ",")

jnl <- as.journal(jnl)
pl(jnl, multiplier.regexp = TRUE, ## regexp matching is case sensitive

multiplier = c("FGBL" = 1000, "FESX" = 10))

use package 'crayon'
Not run:
on Windows, you may also need 'options(crayon.enabled = TRUE)'
options(PMwR.use.crayon = FALSE)
pl(amount = c(1, -1), price = c(1, 2))
options(PMwR.use.crayon = TRUE)
pl(amount = c(1, -1), price = c(1, 2))

End(Not run)

plot_trading_hours Plot Time Series During Trading Hours

Description

Plot a time series after removing weekends and specific times of the day.

Usage

plot_trading_hours(x, t = NULL, interval = "5 min",
labels = "hours", label.format = NULL,
exclude.weekends = TRUE, holidays = NULL,
fromHHMMSS = "000000", toHHMMSS = "240000",
do.plot.axis = TRUE,
...,
from = NULL, to = NULL,
do.plot = TRUE,
axis1.par = list())

Arguments

x A numeric vector. Can also be of class zoo.

t A vector that inherits from class POSIXt. If x inherits from class zoo, then
index(x) is used (and any supplied value for t is ignored).

interval A character string like “num units”, in which num is a number, and units is
“sec”, “min”, “hour” or “day”. The space between num and units is mandatory.

28 plot_trading_hours

labels A character vector of length one, determining the grid for plot_trading_hours:
can be “hour”, “day”, “dayhour” or “month”.

label.format See strftime.
exclude.weekends

logical: default is TRUE

holidays a vector of class Date or a character vector in a format that is understood by
as.Date.

fromHHMMSS a character vector of length one in format “HHMMSS”

toHHMMSS a character vector of length one in format “HHMMSS”

do.plot.axis logical. Should axis(1) be plotted? Default is TRUE.

... parameters passed to plot (and typically par)

from POSIXct: start plot at (if not specified, plot starts at first data point)

to POSIXct: end plot at (if not specified, plot ends at last data point)

do.plot logical. Should anything be plotted? Default is TRUE. If FALSE, the function
returns a list of points.

axis1.par a list of named elements

Details

Plot a timeseries during specific times of day.

Value

A list (invisibly if do.plot is TRUE):

list(t, x, axis.pos = pos, axis.labels, timegrid)

t positions

x values

axis.pos positions of x-tickmarks

axis.labels labels at x-ticks

timegrid a POSIXct vector

map a function. See the manual (a link is under References).

Author(s)

Enrico Schumann <es@enricoschumann.net>

References

B.D. Ripley and K. Hornik. Date-Time Classes. R-News, 1(2):8–12, 2001.

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/; in
particular, see
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#plot-trading-hours

https://enricoschumann.net/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#plot-trading-hours

position 29

See Also

DateTimeClasses

Examples

t <- as.POSIXct("2012-08-31 08:00:00") + 0:32400
x <- runif(length(t))

par(tck = 0.001, mgp = c(3,1,0.5), bty = "n")
p <- plot_trading_hours(x, t,

interval = "5 min", labels = "hours",
xlab = "time", ylab = "random points",
col = "blue")

with ?lines
t <- as.POSIXct("2012-08-31 10:00:00") + 0:9000
x <- seq(0, 1, length.out = 9001)
lines(p$map(t)$t, x[p$map(t)$ix], pch = 19)

position Aggregate Transactions to Positions

Description

Use information on single trades to compute a position at a specific point in time.

Usage

position(amount, ...)

Default S3 method:
position(amount, timestamp, instrument, when,

drop.zero = FALSE, account = NULL,
use.names = NULL, ...)

S3 method for class 'journal'
position(amount, when, drop.zero = FALSE,

use.account = FALSE, ...)

S3 method for class 'position'
print(x, ..., sep = ":")

30 position

Arguments

when a timestamp or a vector of timestamps; alternatively, several keywords are sup-
ported. See Details.

amount numeric or an object of class journal. If amount is a one-dimensional array,
the dimension is dropped.

timestamp numeric or character: timestamps, must be sortable

instrument character: symbols to identify different instruments

account character: description of account. Ignored if NULL.

use.account logical. If TRUE, positions are computed by account and instrument; otherwise
by instrument only.

use.names logical or NULL. The argument handles whether names of amount are used as in-
struments. If NULL: if amount is named and instrument is not specified, names
of amount are interpreted as instruments. If use.names is FALSE, names of
amount are ignored. (Ignoring names was the default behaviour prior to PMwR
version 0.11.)

drop.zero If logical, drop instruments that have a zero position; default is FALSE. If nu-
meric, it is used as a tolerance; e.g., a value of 1-e12 will drop any position
whose absolute amount is smaller than 1-e12.

x An object of type position.

... arguments passed to print

sep A regular expression. Split instruments accordingly. Not implemented yet.

Details

position computes positions for lists of trades. position is a generic function; most useful is the
method for journals.

The function checks if timestamp is sorted (see is.unsorted) and sorts the journal by timestamp,
if required. If there are (some) NA values in timestamp, but timestamp is sorted otherwise, the
function will proceed (with a warning, though).

The argument when can also be specified as one of several keywords: last (or newest or latest)
provides the position at the latest timestamp; first (or oldest) provides the position at the earliest
timestamp; all provides the positions at all timestamps in the journal. endofday, endofmonth and
endofyear provide positions at the end of all calendar days, months and years within the timestamp
range of the journal. The latter keywords can only work if timestamp can be coerced to Date.

Computing with positions:
Several mathematical operators work specially for positions. Unary +/- work directly on posi-
tions, whereas unary ! returns a logical vector of the same dimensions as the initial position. (So
!!<position> shows whether a position is non-zero.)
Binary operations, such as +, - or >, work if both positions have the same timestamps (which
includes the case in which the timestamp of both is NA). Multiplication produces an error. Instru-
ments can differ, but must be non-NA, except for the special case of length-one NA.

position 31

Value

An object of class position, which is a numeric matrix with instrument and timestamp attributes.
Note that position will never drop the result’s dim attribute: it will always be a matrix of size
length(when) times length(unique(instrument)), which may not be obvious from the printed
output. (An operation such as < or ! results in a logical matrix of the same dimension.) The rows
of the matrix correspond to timestamps; the columns correspond to instruments.

To extract the numeric position matrix, use as.matrix(p).

Author(s)

Enrico Schumann

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/R/packages/
PMwR/; in particular, see
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#computing-balances

See Also

journal; internal computations are handled by cumsum and findInterval

Examples

position(amount = c(1, 1, -1, 3, -4),
timestamp = 1:5, when = 4.9)

using a journal
J <- journal(timestamp = 1:5, amount = c(1, 1, -1, 3, -4))
position(J, when = 4.9)

'declaring' a position, using named amounts
amount <- c(1, 1, 1)
instrument <- c("A", "A", "B")
position(amount = amount, instrument = instrument)
.... or equivalently
amount <- c(A = 2, B = 1)
position(amount)

ignore names of amount
position(amount, use.names = FALSE)

adding/subtracting positions
p1 <- position(c(A = 0.2, B = 0.8))
p2 <- position(c(B = 0.7, C = 0.3))
p1 - p2
A 0.2
B 0.1
C -0.3

https://enricoschumann.net/R/packages/PMwR/
https://enricoschumann.net/R/packages/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#computing-balances

32 pricetable

pricetable Price Table

Description

Create price table

Usage

pricetable(price, ...)

Arguments

price a matrix

... further arguments, passed to methods

Details

pricetable is a helper function for extracting prices of particular instrument at specified dates.
For this, it first creates a table that merges series passed via . . . and appends a class attribute. A [
method then allows to extract prices. Importantly, if you ask for a subset of m rows and n columns,
the result will be a matrix of size m times n, even if times or instruments are missing.

pricetable is a generic function, currently with methods for numeric vectors (including vectors
with a dim, aka matrices) and for zoo objects.

Value

a numeric matrix with class attribute pricetable

Author(s)

Enrico Schumann

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/

See Also

match

https://enricoschumann.net/PMwR/

quote32 33

Examples

quickly creating a pricetable
pricetable(1:3)
pricetable(1:3, instrument = c("A", "B", "C"))
... and the same
pricetable(c(A = 1, B = 2, C = 3))

subsetting examples
m <- 3
n <- 2
price <- array(c(1:m, 1:m + 100), dim = c(m,n))
colnames(price) <- LETTERS[1:n]
pt <- pricetable(price, timestamp = 1:m)
A B
1 1 101
2 2 102
3 3 103

pt[, "A"]
A
1 1
2 2
3 3

pt[, c("X", "A", "X")]
X A X
1 NA 1 NA
2 NA 2 NA
3 NA 3 NA

pt[, c("X", "A", "X"), missing = 0]
X A X
1 0 1 0
2 0 2 0
3 0 3 0

pt[c(0, 1.5, 4), , missing = "locf"]
A B
0 NA NA
1.5 2 102
4 3 103

quote32 Treasury Quotes with 1/32nds of Point

Description

Print treasury quotes with 1/32nds of points.

34 quote32

Usage

quote32(price, sep = "(-|'|:)", warn = TRUE)
q32(price, sep = "(-|'|:)", warn = TRUE)

Arguments

price numeric or character. See Details.

sep character: a regular expression

warn logical. Warn about rounding errors?

Details

The function is meant for pretty-printing of US treasury bond quotes; it provides no other function-
ality.

If price is numeric, it is interpreted as a quote in decimal notation and ‘translated’ into a price
quoted in fractions of a point.

If price is character, it is interpreted as a quote in fractional notation.

q32 is a short-hand for quote32.

Value

A numeric vector of class quote32.

Author(s)

Enrico Schumann

References

CME Group (2020). Treasury Futures Price Rounding Conventions.

Examples

quote32(100 + 17/32 + 0.75/32)
q32("100-172")

q32("100-272") - q32("100-270")
as.numeric(q32("100-272") - q32("100-270"))

rc 35

rc Return Contribution

Description

Return contribution of portfolio segments.

Usage

rc(R, weights, timestamp, segments = NULL,
R.bm = NULL, weights.bm = NULL,
method = "contribution",
linking.method = NULL,
allocation.minus.bm = TRUE,
tol = sqrt(.Machine$double.eps))

Arguments

R returns: a numeric matrix. Rows are time periods; columns are assets.

weights the segment weights: a numeric matrix. weights[i, j] must correspond to
R[i, j]

timestamp character or numeric

segments character. If missing, column names of R or of weights are used (if they are not
NULL).

method a string; default is contribution, and also supported are attribution, bottomup
or topdown

linking.method NULL or a string. Currently supported are 0-cumulative, 1-cumulative, 0.5-cumulative
(geometric{0,1,0.5}) and logarithmic. See Examples.

allocation.minus.bm

logical

tol numeric: weights whose absolute value is below tol are considered zero and
not used for computations. Ignored if NA.

If portfolio returns are to be compared against benchmark returns, benchmark returns and weights
must be supplied:

R.bm benchmark returns: a numeric matrix

weights.bm the benchmark weights of segments: a numeric matrix. weights.bm[i, j] must
correspond to R.bm[i, j]

Details

The function computes segment contribution, potentially over time. Returns and weights must be
arranged in matrices, with rows corresponding to time periods and columns to portfolio segments.
If weights and R are atomic vectors, then they are interpreted as cross-sectional weights/returns for
a single period, i.e. they are handled like row vectors.

36 rc

Weights can be missing, in which case R is assumed to already comprise segment returns.

Note that the segment contributions need not come from asset classes; the computation works for
any additive single-period decomposition of portfolio returns.

Value

For method contribution, a list of two components:

period_contributions

a data.frame of single-period contributions, sorted in time
total_contributions

a numeric vector

Author(s)

Enrico Schumann

References

David R. Cariño (1999). Combining Attribution Effects Over Time. Journal of Performance Mea-
surement. 3 (4), 5–14.

Jon A. Christopherson and David R. Cariño and Wayne E. Ferson (2009), Portfolio Performance
Measurement and Benchmarking, McGraw-Hill.

Feibel, Bruce (2003), Investment Performance Measurement, Wiley.

Erik Valtonen (2002). Incremental Attribution with and without Notional Portfolios. Journal of
Performance Measurement. 7 (1), 68–83.

https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#return-contribution

See Also

returns

Examples

weights <- rbind(c(0.25, 0.75),
c(0.40, 0.60),
c(0.25, 0.75))

R <- rbind(c(1 , 0),
c(2.5, -1.0),
c(-2 , 0.5))/100

rc(R, weights, segment = c("equities", "bonds"))

EXAMPLE of Christopherson et al., ch 19
weights <- cbind(stocks = c(0.5, 0.55),

bonds = c(0.5, 0.45))
stocks bonds

https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#return-contribution

rc 37

[1,] 0.50 0.50
[2,] 0.55 0.45

R <- cbind(stocks = c(.4, 0.1),
bonds = c(.1, 0.2))

stocks bonds
[1,] 0.4 0.1
[2,] 0.1 0.2

==> contributions grow at portfolio rate-of-return
rc(R, weights, linking.method = "geometric1")

==> contributions are made on top of current portfolio-value
rc(R, weights, linking.method = "geometric0")

==> mixture
rc(R, weights, linking.method = "geometric0.5")

EXAMPLE from
https://quant.stackexchange.com/questions/36520/
how-to-calculate-the-annual-contribution-of-a-fund-to-a-portfolio-of-funds/
36530#36530
(unbreak the URL)

weights <- rbind(c(0.5, 0.5),
c(0.5, 0.5))

R <- rbind(c(10, 0),
c(0 , 10))/100

rc(R, weights, segment = c("F1", "F2"), timestamp = 1:2,
linking.method = "geometric1")

==> F1 contributed first, and so gets a higher total
contribution

rc(R, weights, segment = c("F1", "F2"), timestamp = 1:2,
linking.method = "geometric0")

==> F2 contributed later, and so gets a higher total
contribution because it started off a higher base
value

contribution for btest:
run a portfolio 10% equities, 90% bonds
P <- as.matrix(merge(DAX, REXP, by = "row.names")[, -1])
(bt <- btest(prices = list(P),

signal = function() c(0.1, 0.9),
convert.weights = TRUE,

38 rebalance

initial.cash = 100))

W <- bt$position*P/bt$wealth
rc(returns(P)*W[-nrow(W),])$total_contributions

rebalance Rebalance Portfolio

Description

Compute the differences between two portfolios.

Usage

rebalance(current, target, price,
notional = NULL, multiplier = 1,
truncate = TRUE, match.names = TRUE,
fraction = 1, drop.zero = FALSE,
current.weights = FALSE,
target.weights = TRUE)

S3 method for class 'rebalance'
print(x, ..., drop.zero = TRUE)

replace_weight(weights, ..., prefix = TRUE, sep = "::")

Arguments

current the current holdings: a (typically named) vector of position sizes; can also be a
position

target the target holdings: a (typically named) vector of weights; can also be a position

price a numeric vector: the current prices; may be named

notional a single number: the value of the portfolio; if missing, replaced by sum(current*prices)

multiplier numeric vector, possibly named

truncate truncate computed positions? Default is TRUE.

match.names logical

fraction numeric

x an object of class rebalance.

... rebalance: arguments passed to print; replace_weight: numeric vectors

drop.zero logical: should instruments with no difference between current and target be
included?
Note the different defaults for computing and printing.

current.weights

logical. If TRUE, the values in current are interpreted as weights. If FALSE,
current is interpreted as a position (i.e. notional/number of contracts).

rebalance 39

target.weights logical. If TRUE (the default), the values in target are interpreted as weights. If
FALSE, target is interpreted as a position (i.e. notional/number of contracts).

weights a numeric vector with named components

sep character

prefix logical

Details

The function computes the necessary trades to move from the current portfolio to a target port-
folio.

replace_weight is a helper function to split baskets into their components. All arguments passed
via ... should be named vectors. If names are not syntactically valid (see make.names), quote
them. The passed vectors themselves should be passed as named arguments: see Examples.

Value

An object of class rebalance, which is a data.frame:

instrument character, or NA when match.names is FALSE

price prices

current current portfolio, in units of instrument

target new portfolio, in units of instrument

difference the difference between current and target portfolio

Attached to the data.frame are several attributes:

notional a single number

match.names logical

multiplier a numeric vector with as many elements as the resulting data.frame has rows

Author(s)

Enrico Schumann

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/R/packages/
PMwR/; in particular, see
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#rebalance

See Also

journal

https://enricoschumann.net/R/packages/PMwR/
https://enricoschumann.net/R/packages/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#rebalance

40 returns

Examples

r <- rebalance(current = c(a = 100, b = 20),
target = c(a = 0.2, c = 0.3),
price = c(a = 1, b = 2, c = 3))

as.journal(r)

replace_weight: the passed vectors must be named;
'basket_3' is ignored because not
component of weights is named
'basket_3'

replace_weight(c(basket_1 = 0.3,
basket_2 = 0.7),

basket_1 = c(a = 0.1, b = 0.4, c = .5),
basket_2 = c(x = 0.1, y = 0.4, z = .5),
basket_3 = c(X = 0.5, Z = 0.5),
sep = "|")

returns Compute Returns

Description

Convert prices into returns.

Usage

returns(x, ...)

Default S3 method:
returns(x, t = NULL, period = NULL, complete.first = TRUE,

pad = NULL, position = NULL,
weights = NULL, rebalance.when = NULL,
lag = 1, na.rm = FALSE, ..., na.warn = FALSE)

S3 method for class 'zoo'
returns(x, period = NULL, complete.first = TRUE,

pad = NULL, position = NULL,
weights = NULL, rebalance.when = NULL, lag = 1, na.rm = FALSE, ...)

S3 method for class 'p_returns'
print(x, ..., year.rows = TRUE, month.names = NULL,

zero.print = "0", plus = FALSE, digits = 1,
na.print = NULL)

S3 method for class 'p_returns'
toLatex(object, ...,

year.rows = TRUE, ytd = "YTD", month.names = NULL,

returns 41

eol = "\\\\", stand.alone = FALSE)

S3 method for class 'p_returns'
toHTML(x, ...,

year.rows = TRUE, ytd = "YTD", month.names = NULL,
stand.alone = TRUE, table.style = NULL, table.class = NULL,
th.style = NULL, th.class = NULL,
td.style = "text-align:right; padding:0.5em;",
td.class = NULL, tr.style = NULL, tr.class = NULL,
browse = FALSE)

.returns(x, pad = NULL, lag)

Arguments

x for the default method, a numeric vector (possibly with a dim attribute; i.e.
a matrix) of prices. returns also supports x of other classes, such as zoo or
NAVseries. For time-series classes, argument t should be NULL.
For .returns, x must be numeric (for other classes, .returns may not work
properly).

t timestamps. See arguments period and rebalance.when.

period Typically a string. Supported are "hour", "day", "month", "quarter", "year",
"ann" (annualised), "ytd" (year-to-date), "mtd" (month-to-date), "itd" (inception-
to-date) or a single year, such as "2012". Instead of "itd", "total" may also be
used. The value of ‘period’ is used only when timestamp information is avail-
able: for instance, when t is not NULL or with zoo/xts objects. The exception
is "itd", which can be computed without timestamp information. Holding pe-
riod "ytd" produces a warning if the current year (as obtained from Sys.Date)
differs from the latest timestamp of the series. Specifying period as "ytd!"
suppresses the warning.
All returns are computed as simple returns. They will only be annualised with
option "ann"; they will not be annualised when the length of the time series is
less than one year. To force annualising in such a case, use "ann!". Annuali-
sation can only work when the timestamp t can be coerced to class Date. The
result will have an attribute is.annualised, which is a logical vector of length
one. Day-count convention for annualisation is act/365.

complete.first logical. For holding-period returns such an monthly or yearly, should the first
period (if incomplete) be used.

pad either NULL (no padding of initial lost observation) or a value used for padding
(reasonable values might be NA or 0)

na.rm logical; see Details

na.warn logical

position either a numeric vector of the same length as the number of assets (i.e. ncol(x)),
or a numeric matrix whose dimensions match those of prices (i.e. dim(x) must
equal dim(weights)), or a matrix with as many rows as rebalance.when has
elements

42 returns

weights either a numeric vector of the same length as the number of assets (i.e. ncol(x)),
or a numeric matrix whose dimensions match those of prices (i.e. dim(x) must
equal dim(weights)), or a matrix with as many rows as rebalance.when has
elements

rebalance.when a logical vector or a vector of integers indicating the x at which to rebalance. If
x inherits from a time-series class (such as zoo), it may also be of the same class
as the time index of x.

... further arguments to be passed to methods

year.rows logical. If TRUE (the default), print monthly returns with one row per year.

zero.print character. How to print zero values.

na.print character. How to print NA values. (Not supported yet.)

plus logical. Add a ‘+’ before positive numbers? Default is FALSE.

lag The lag for computing returns. A positive integer, defaults to one; ignored for
time-weighted returns or if t is supplied.

object an object of class p_returns (‘period returns’)

month.names character: names of months. Default is an abbreviated month name as provided
by the locale. That may cause trouble, notably with toLatex, if such names
contain non-ASCII characters: a safe choice is either the numbers 1 to 12, or the
character vector month.abb, which lives in the base package.

digits number of digits in table

ytd header for YTD

eol character

stand.alone logical or character

table.class character

table.style character

th.class character

th.style character

td.class character

td.style character

tr.class character

tr.style character

browse logical: open table in browser?

Details

returns is a generic function. It computes simple returns: current values divided by prior values
minus one. The default method works for numeric vectors/matrices. The function .returns does
the actual computations and may be used when a ‘raw’ return computation is needed.

Holding-Period Returns:
When a timestamp is available, returns can compute returns for specific calendar periods. See
argument period.

returns 43

Portfolio Returns:
returns may compute returns for a portfolio specified in weights or position. The portfolio is
rebalanced at rebalance.when; the default is every period. Weights need not sum to one. A zero-
weight portfolio, or a portfolio that never rebalances (e.g. with rebalance.when set to FALSE),
will result in a zero return.
rebalance.when may either be logical, integers or of the same class as a timestamp (e.g. Date).

Handling missing values:
Removing NAs (by setting na.rm to TRUE) is limited to the following types of holding-period
returns: ann, total/itd, ytd, mtd. In each case, the first and latest available finite values are
used for computing returns. For multivariate series x, this can lead to returns being computed for
differing periods.

Value

If called as returns(x): a numeric vector or matrix, possibly with a class attribute (e.g. for a zoo
series).

If called with a period argument: an object of class "p_returns" (period returns), which is a
numeric vector of returns with attributes t (timestamp) and period. Main use is to have methods
that pretty-print such period returns; currently, there are methods for toLatex and toHTML.

In some cases, additional attributes may be attached: when portfolio returns were computed (i.e.
argument weights was specified), there are attributes holdings and contributions. For holding-
period returns, there may be a logical attribute is.annualised, and an attribute from.to, which
tells the start and end date of the holding period.

Author(s)

Enrico Schumann <es@enricoschumann.net>

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/R/packages/
PMwR/; in particular, see
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#computing-returns

See Also

btest, pl

Examples

x <- 101:105
returns(x)
returns(x, pad = NA)
returns(x, pad = NA, lag = 2)

monthly returns
t <- seq(as.Date("2012-06-15"), as.Date("2012-12-31"), by = "1 day")

https://enricoschumann.net/R/packages/PMwR/
https://enricoschumann.net/R/packages/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#computing-returns

44 REXP

x <- seq_along(t) + 1000
returns(x, t = t, period = "month")
returns(x, t = t, period = "month", complete.first = FALSE)

formatting
print(returns(x, t = t, period = "month"), plus = TRUE, digits = 0)

returns per year (annualised returns)
returns(x, t = t, period = "ann") ## less than one year, not annualised
returns(x, t = t, period = "ann!") ## less than one year, *but* annualised

is.ann <- function(x)
attr(x, "is.annualised")

is.ann(returns(x, t = t, period = "ann")) ## FALSE
is.ann(returns(x, t = t, period = "ann!")) ## TRUE

with weights and fixed rebalancing times
prices <- cbind(p1 = 101:105,

p2 = rep(100, 5))
R <- returns(prices, weights = c(0.5, 0.5), rebalance.when = 1)
... => resulting weights
h <- attr(R, "holdings")
h*prices / rowSums(h*prices)
p1 p2
[1,] 0.5000000 0.5000000 ## <== only initial weights are .5/.5
[2,] 0.5024631 0.4975369
[3,] 0.5049020 0.4950980
[4,] 0.5073171 0.4926829
[5,] 0.5097087 0.4902913

REXP REXP

Description

Historical Prices of the REXP.

Usage

data("REXP")

Format

A data frame with 502 observations on the following variable:

REXP a numeric vector

scale1 45

Details

Daily prices.

Examples

str(REXP)

scale1 Scale Time Series

Description

Scale time series so that they can be better compared.

Usage

scale1(x, ...)

Default S3 method:
scale1(x, ..., when = "first.complete", level = 1,

centre = FALSE, scale = FALSE, geometric = TRUE,
total.g = NULL)

S3 method for class 'zoo'
scale1(x, ..., when = "first.complete", level = 1,

centre = FALSE, scale = FALSE, geometric = TRUE,
inflate = NULL, total.g = NULL)

Arguments

x a time series

when origin: for the default method, either a string or numeric (integer). Allowed
strings are "first.complete" (the default), "first", and "last". For the zoo
method, a value that matches the class of the index of x; for instance, with an
index of class Date, when should inherit from Date.

level numeric

centre logical

scale logical or numeric

geometric logical: if TRUE (the default), the geometric mean is deducted with centre is
TRUE; if FALSE, the arithmetic mean is used

inflate numeric: an annual rate at which the series is inflated (or deflated if negative)

total.g numeric: to total growth rate (or total return) of a series

... other arguments passed to methods

46 streaks

Details

This is a generic function, with methods for numeric vectors and matrices, and zoo objects.

Value

An object of the same type as x.

Author(s)

Enrico Schumann

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/; in
particular, see
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#scaling-series

See Also

scale

Examples

scale1(cumprod(1 + c(0, rnorm(20, sd = 0.02))), level = 100)

streaks Up and Down Streaks

Description

Compute up and down streaks for time-series.

Usage

streaks(x, ...)

Default S3 method:
streaks(x, up = 0.2, down = -up,

initial.state = NA, y = NULL, relative = TRUE, ...)
S3 method for class 'zoo'
streaks(x, up = 0.2, down = -up,

initial.state = NA, y = NULL, relative = TRUE, ...)
S3 method for class 'NAVseries'
streaks(x, up = 0.2, down = -up,

initial.state = NA, bm = NULL, relative = TRUE, ...)

https://enricoschumann.net/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#scaling-series

streaks 47

Arguments

x a price series

initial.state NA, "up" or "down"

up a number, such as 0.1 (i.e. 10%)

down a negative number, such as -0.1 (i.e. -10%)

y another price series

bm another price series. Mapped to ‘y’ in the default method.

relative logical

... other arguments passed to methods

Details

streaks is a generic function. It computes series of uninterrupted up and down movements (‘streaks’)
in a price series. Uninterrupted is meant in the sense that no countermovement of down (up) percent
or more occurs in up (down) movements.

There are methods for numeric vectors, and NAVseries and zoo objects.

The turning points (extreme points) are computed with the benefit of hindsight: the starting point
(the low) of an up streak can only be determined once the streak is triggered, i.e. the up streak has
already run its minimum amount. Vice versa for down streaks.

When ‘up’ and ‘down’ are not equal, results may be inconsistent: in the current implementation,
streaks alternates between up and down streaks. Suppose up is large compared with down, i.e. it
takes long to trigger up streaks, but they are easily broken. Down streaks, on the other hand, are
quickly triggered but rarely broken. Now suppose that a down streak is broken by an up streak: it
may then well be that the up streak would never have been counted as such, because it was actually
broken itself by another down streak. The implementation for differing values of ‘up’ and ‘down’
may change in the future.

Value

A data.frame:

start beginning of streak

end end of streak

state up, down or NA

return, change the return over the streak. If y was specified, geometric excess return is com-
puted (see Examples). If relative is FALSE, the column is named change.

Author(s)

Enrico Schumann <es@enricoschumann.net>

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/; in
particular, see
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#drawdowns-streaks

https://enricoschumann.net/PMwR/
https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html#drawdowns-streaks

48 Trade-Analysis

See Also

drawdowns

Examples

streaks(DAX[[1]], t = as.Date(row.names(DAX)))

results <- streaks(x = <...>, y = <...>)
##
===> *arithmetic* excess returns
x[results$end]/x[results$start] -
y[results$end]/y[results$start]
===> *geometric* excess returns
x[results$end]/x[results$start] /
(y[results$end]/y[results$start]) - 1

toHTML Import from package textutils

Description

The toHTML function is imported from package textutils. Help is available at textutils::toHTML.
Say library("textutils") in your code to use the function.

Trade-Analysis Analysing Trades: Compute Profit/Loss, Resize and more

Description

Functions to help analyse trades (as opposed to profit-and-loss series)

Usage

scale_trades(amount, price, timestamp, aggregate = FALSE,
fun = NULL, ...)

split_trades(amount, price, timestamp, aggregate = FALSE,
drop.zero = FALSE)

limit(amount, price, timestamp, lim, tol = 1e-8)
scale_to_unity(amount)
close_on_first(amount)

tw_exposure(amount, timestamp, start, end, abs.value = TRUE)

Trade-Analysis 49

Arguments

amount notionals

price a vector of prices

timestamp a vector.

aggregate TRUE or FALSE

fun a function

lim a maximum absolute position size

start optional time

end optional time

drop.zero logical. If TRUE, trades with zero amounts are removed. See Examples.

abs.value logical. If TRUE, the absolute exposure is computed.

... passed on to fun

tol numeric

Details

scale_trades takes a vector of notionals, prices and scales all trades along the paths so that the
maximum exposure is 1.

The default fun divides every element of a vector n by max(abs(cumsum(n))). If user-specified,
the function fun needs to take a vector of notionals (changes in position.)

split_trades decomposes a trade list into single trades, where a single trade comprises those
trades from a zero position to the next zero position. Note that the trades must be sorted chronolog-
ically.

Value

Either a list or a list-of-lists.

Author(s)

Enrico Schumann

See Also

btest

Examples

n <- c(1,1,-3,-1,2)
p <- 100 + 1:length(n)
timestamp <- 1:length(n)

scale_trades(n, p, timestamp)
scale_trades(n, p, timestamp, TRUE) ## each _trade_ gets scaled

split_trades(n, p, timestamp)

50 unit_prices

split_trades(n, p, timestamp, TRUE) ## almost like the original series

effect of 'drop.zero'
P <- c(100, 99, 104, 103, 102, 105, 104) ## price series
S <- c(0, 1, 1, 0, 0, 1, 0) ## position to be held
dS <- c(0, diff(S)) ## change in position ==> trades
t <- seq_along(P)

==> 1) with all zero amounts
split_trades(amount = dS, price = P, timestamp = t)

==> 2) without zero-amount trades
split_trades(amount = dS, price = P, timestamp = t, drop.zero = TRUE)

==> 3) without all zero-amounts
zero <- dS == 0
split_trades(amount = dS[!zero], price = P[!zero], timestamp = t[!zero])

unit_prices Compute Prices for Portfolio Based on Units

Description

Compute prices for a portfolio based on outstanding shares (units).

Usage

unit_prices(NAV, cashflows,
initial.price, initial.units = 0,
cf.included = TRUE,
round.price = NULL, round.units = NULL)

Arguments

NAV a dataframe of two columns: timestamp and net asset value. There should be
no duplicated timestamps. Column names are ignored; the function assumes
timestamp is the first column, NAV the second.

cashflows a data.frame of two or three columns: timestamp, cashflow and (optionally) an
id or account. Column names are ignored; the function assumes timestamp is
the first column, the external cashflows the second, and an account/id the third.

initial.price initial price; ignored when initial.units is not zero
initial.units number of outstanding units before first cashflow
cf.included logical. If TRUE (the default), it is assumed that the NAV series at the time of

the cashflow already includes the cashflow.
round.price round unit prices: NULL (no rounding) or an integer
round.units round number of units: NULL (no rounding) or an integer

unit_prices 51

Details

This function is experimental, and its interface is not stable yet.
The function may be used to compute the returns for a portfolio with external cashflows, i.e. what is
usually called time-weighted returns. Note that ’cashflows’ can also comprise other positions that
are added or removed from the portfolio without affecting performance.

Value

A data.frame with one row for each row in NAV:

timestamp the timestamp, as provided in argument NAV

NAV total NAV, as provided in argument NAV

price NAV per unit

units outstanding units (i.e. shares) after cashflows

Attached as an attribute is a data.frame transactions, with as many rows as the provided argu-
ment cashflows, which provides the number of units created/destroyed for each cashflow.

Author(s)

Enrico Schumann

References

Schumann, E. (2025) Portfolio Management with R. https://enricoschumann.net/PMwR/

See Also

returns, pl

Examples

NAV <- data.frame(timestamp = seq(as.Date("2017-01-01"),
as.Date("2017-01-10"),
by = "1 day"),

NAV = c(100:104, 205:209))

cf <- data.frame(timestamp = c(as.Date("2017-01-01"),
as.Date("2017-01-06"),
as.Date("2017-01-06")),

cashflow = c(100, 50, 50),
account = c("A", "A", "B"))

(up <- unit_prices(NAV, cf, cf.included = TRUE))
timestamp NAV price units
1 2017-01-01 100 100.0000 1.000000
2 2017-01-02 101 101.0000 1.000000
3 2017-01-03 102 102.0000 1.000000
4 2017-01-04 103 103.0000 1.000000
5 2017-01-05 104 104.0000 1.000000

https://enricoschumann.net/PMwR/

52 valuation

6 2017-01-06 205 105.0000 1.952381
7 2017-01-07 206 105.5122 1.952381
8 2017-01-08 207 106.0244 1.952381
9 2017-01-09 208 106.5366 1.952381
10 2017-01-10 209 107.0488 1.952381

attr(up, "transactions")
timestamp cashflow account units
1 2017-01-01 100 A 1.0000000
2 2017-01-06 50 A 0.4761905
3 2017-01-06 50 B 0.4761905

valuation Valuation

Description

Valuation of financial objects: map an object into a quantity that is measured in a concrete (typically
currency) unit.

Usage

valuation(x, ...)

S3 method for class 'journal'
valuation(x, multiplier = 1,

cashflow = function(x, ...) x$amount * x$price,
instrument = function(x, ...) "cash",
flip.sign = TRUE, ...)

S3 method for class 'position'
valuation(x, vprice, multiplier = 1,

do.sum = FALSE,
price.unit,
use.names = FALSE,
verbose = TRUE, do.warn = TRUE, ...)

Arguments

x an object

multiplier a numeric vector, typically with named elements

cashflow either a numeric vector or a function that takes on argument (a journal) and
transforms it into a numeric vector

instrument either a character vector or a function that takes on argument (a journal) and
transforms it into a character vector

valuation 53

flip.sign logical. If TRUE (the default), a positive amount gets mapped into a negative
cashflow.

vprice numeric: a matrix whose elements correspond to those in x. If only a single
timestamp is used and the position is named, this may also be a named numeric
vector; see Examples. The argument behaves like vprice in pl; but for valua-
tion those prices need not be sorted in time.

do.sum logical: sum over positions

use.names logical: use names of vprice?

price.unit a named character vector. Not implemented.

verbose logical

do.warn logical

... other arguments passed to methods

Details

This function is experimental, and the methods’ interfaces are not stable yet.
valuation is a generic function. Its semantics suggest that an object (e.g. a financial instrument or
a position) is mapped into a concrete quantity (such as an amount of some currency).

The journal method transforms the transactions in a journal into amounts of currency (e.g, a sale
of 100 shares of a company is transformed into the value of these 100 shares).

The position method takes a position and returns the value (in currency units) of the position.

Value

depends on the object: for journals, a journal

Author(s)

Enrico Schumann <es@enricoschumann.net>

References

Schumann, E. (2020) Portfolio Management with R. https://enricoschumann.net/R/packages/
PMwR/

See Also

journal

Examples

valuing a JOURNAL

j <- journal(amount = 10, price = 2)
amount price
1 10 2
##

https://enricoschumann.net/R/packages/PMwR/
https://enricoschumann.net/R/packages/PMwR/

54 valuation

1 transaction

valuation(j, instrument = NA)
amount price
1 -20 1
##
1 transaction

valuing a POSITION
pos <- position(c(AMZN = -10, MSFT = 200))

contructing a price table:
==> P[i, j] must correspond to pos[i, j]
P <- array(c(2200, 170), dim = c(1, 2))
colnames(P) <- instrument(pos)

valuation(pos, vprice = P)
AMZN MSFT
[1,] -22000 34000

contructing a price table, alternative:
a named vector
==> only works when there is only a single timestamp
valuation(pos, vprice = c(MSFT = 170, AMZN = 2200))

all.equal(valuation(pos, vprice = P),
valuation(pos, vprice = c(MSFT = 170, AMZN = 2200)))

Index

∗ Backtesting
btest, 5

∗ chron
plot_trading_hours, 27

∗ datasets
DAX, 11
REXP, 44

∗ hplot
plot_trading_hours, 27

∗ package
PMwR-package, 2

∗ ts
plot_trading_hours, 27

.pl (pl), 22

.pl_stats (pl), 22

.returns (returns), 40
[.journal (journal), 15
[.pricetable (pricetable), 32
[<-.journal (journal), 15

Adjust-Series, 3
aggregate.journal (journal), 15
all.equal.journal (journal), 15
as.data.frame, 17
as.data.frame.journal (journal), 15
as.data.frame.pl (pl), 22
as.data.frame.summary.NAVseries

(NAVseries), 20
as.Date, 28
as.journal (journal), 15
as.matrix.position (position), 29
as.NAVseries, 21
as.NAVseries (NAVseries), 20

btest, 5, 17, 22, 25, 43, 49

c, 17
c.journal (journal), 15
character, 23
close_on_first (Trade-Analysis), 48

cumsum, 31

data.frame, 12, 17, 24, 47, 51
Date, 6, 21, 28, 30, 41, 43, 45
DateTimeClasses, 29
DAX, 11
dim, 32
div_adjust, 22
div_adjust (Adjust-Series), 3
drawdown, 12
drawdowns, 11, 48

environment, 8

FALSE, 8, 14, 24
findInterval, 31

grep, 16, 17
grepl, 17

head.journal (journal), 15

instrument, 13
instrument<- (instrument), 13
is.journal (journal), 15
is.unsorted, 30
is_valid_ISIN, 14
is_valid_SEDOL (is_valid_ISIN), 14

journal, 9, 15, 22–24, 30, 31, 39, 53

length.journal (journal), 15
limit (Trade-Analysis), 48
logical, 50

make.names, 39
match, 32
month.abb, 42

NA, 7, 9, 12, 14, 18, 30, 35, 41, 43, 47
NAVseries, 20, 41, 47

55

56 INDEX

NULL, 18, 30
numeric, 23

options, 16

p_returns (returns), 40
par, 28
pl, 18, 22, 43, 51, 53
plot, 21, 28
plot.NAVseries (NAVseries), 20
plot_trading_hours, 27
plotTradingHours (plot_trading_hours),

27
PMwR (PMwR-package), 2
PMwR-package, 2
position, 13, 18, 23, 29, 53
POSIXct, 6, 21
pricetable, 32
print, 30, 38
print.journal (journal), 15
print.NAVseries (NAVseries), 20
print.p_returns (returns), 40
print.pl (pl), 22
print.position (position), 29
print.rebalance (rebalance), 38

q32 (quote32), 33
quote32, 33

rc, 35
rebalance, 38
replace_weight (rebalance), 38
returns, 25, 36, 40, 51
REXP, 44

scale, 46
scale1, 45
scale_to_unity (Trade-Analysis), 48
scale_trades (Trade-Analysis), 48
sort, 16
sort.journal (journal), 15
split.journal (journal), 15
split_adjust, 22
split_adjust (Adjust-Series), 3
split_trades (Trade-Analysis), 48
streaks, 12, 46
strftime, 28
subset.journal (journal), 15
summary, 21

summary.journal (journal), 15
summary.NAVseries (NAVseries), 20
Sys.Date, 41

tail.journal (journal), 15
textutils::toHTML, 48
toHTML, 43, 48
toHTML.p_returns (returns), 40
toLatex, 43
toLatex.p_returns (returns), 40
Trade-Analysis, 48
TRUE, 4, 14, 30, 43, 50
tw_exposure (Trade-Analysis), 48
txtProgressBar, 7

unit_prices, 22, 50

valuation, 52

window.NAVseries (NAVseries), 20

zoo, 32

	PMwR-package
	Adjust-Series
	btest
	DAX
	drawdowns
	instrument
	is_valid_ISIN
	journal
	NAVseries
	pl
	plot_trading_hours
	position
	pricetable
	quote32
	rc
	rebalance
	returns
	REXP
	scale1
	streaks
	toHTML
	Trade-Analysis
	unit_prices
	valuation
	Index

