
Package ‘EGM’
October 14, 2025

Title Intracardiac Electrograms

Version 0.1.1

Description A system for importing electrophysiological signal, based
on the 'Waveform Database (WFDB)' software package, written by Moody et al
2022 <doi:10.13026/gjvw-1m31>. A wrapper for utilizing 'WFDB' functions for
reading and writing signal data, as well as functions for visualization and
analysis are provided. A stable and broadly compatible class for working
with signal data, supporting the reading in of cardiac electrophysiological
files such as intracardiac electrograms, is introduced.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.2.0),

Imports vctrs (>= 0.5.0), data.table (>= 1.15.0), stats, fs, ggplot2,
lifecycle, rlang, utils, xml2, base64enc, checkmate, stringr,
signal,

Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0), withr, fastICA,
moments, cpp11

Config/testthat/edition 3

URL https://shah-in-boots.github.io/EGM/

BugReports https://github.com/shah-in-boots/EGM/issues

VignetteBuilder knitr

LinkingTo cpp11

NeedsCompilation yes

Author Anish S. Shah [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-9729-1558>),

Darren Seaney [ctb]

Maintainer Anish S. Shah <shah.in.boots@gmail.com>

Repository CRAN

Date/Publication 2025-10-14 08:00:39 UTC

1

https://doi.org/10.13026/gjvw-1m31
https://shah-in-boots.github.io/EGM/
https://github.com/shah-in-boots/EGM/issues
https://orcid.org/0000-0002-9729-1558

2 add_annotations

Contents
add_annotations . 2
add_colors . 3
analyze_atrial_signal . 4
annotation_table . 5
annotators . 7
as_ecg . 7
bard . 8
c.windowed . 9
calculate_approximate_entropy . 10
calculate_dominant_frequency . 11
colors . 12
color_channels . 12
detect_QRS . 13
ecg . 14
egm . 15
extract_f_waves . 16
extract_signal . 18
format.windowed . 19
ggm . 19
header_table . 20
is_windowed . 23
lapply.windowed . 23
muse . 24
print.windowed . 24
prucka . 25
segmentation . 26
signal_table . 28
standardize_windows . 28
wfdb . 31
wfdb_annotations . 32
wfdb_io . 34
wfdb_paths . 37
window . 37
windowed . 38
[.windowed . 39

Index 40

add_annotations Add annotations to a ggm object

Description

The add_annotations() adds annotations to a ggm object. It is specific to this class as it requires
the output of ggm() to included data stored in annotation_table().

add_colors 3

Usage

add_annotations(...)

Arguments

... Arguments passed on to ggm

data Data of the egm class, which includes header (meta) and signal informa-
tion together.

channels A character vector of which channels to use. Can give either the
channel label (e.g "CS 1-2") or the recording device/catheter type (e.g "His"
or "ECG"). If no channels are selected, the default is all channels.

time_frame A time range that should be displaced given in the format of a
vector with a length of 2. The left value is the start, and right value is the
end time. This is given in seconds (decimals may be used).

palette A character choice from the below options that describe the color
choices to be used for plotting. If set to the default, which is NULL, no
changes to the colors for individual channels will be performed. If a positive
choice is made, then the background mode argument will be set to dark as
the default, unless otherwise specified. WARNING: This is an experimental
argument, and may be moved in future version.

• NULL: no changes to the colors will be made. DEFAULT.
• material: a colorscheme based off of the Material Design color scheme

mode A character string from c("dark", "light") to describe the base/background
color settings to be used. If there are preset channel colors that were ex-
ported in the egm object, these colors will be used for the individual chan-
nels. If palette is specified, then the dark option will be set automatically
(a palette choice cannot be made without understanding the background to
plate it across). WARNING: This is an experimental argument, and may be
moved in future version.

• The dark theme mimics the "white on black" scheme seen in LabSystem
Pro format (and most other high-contrast visualizations), for minimiz-
ing eye strain. This calls the theme_egm_dark() function. DEFAULT.

• The light theme mimics the "black on white" colors seen in the Prucka
system.

• NULL removes any theme, and uses the default ggplot2::ggplot()
settings

add_colors Add color scheme to a ggm object

Description

Using add_colors() is part of the theme process for a ggm object, which in turn is a visual repre-
sentation of an egm object. Often, the egm dataset will contain default colors based on where the
signal data was brought in from. add_colors() can allow customization of those features to some
degree based on opinionated color palettes.

https://m3.material.io/styles/color/system/how-the-system-works

4 analyze_atrial_signal

Usage

add_colors(object, palette, mode)

Arguments

object A ggm object

palette A character choice from the below options that describe the color choices to
be used for plotting. If set to the default, which is NULL, no changes to the colors
for individual channels will be performed. If a positive choice is made, then the
background mode argument will be set to dark as the default, unless otherwise
specified. WARNING: This is an experimental argument, and may be moved in
future version.

• NULL: no changes to the colors will be made. DEFAULT.
• material: a colorscheme based off of the Material Design color scheme

mode A character string from c("dark", "light") to describe the base/background
color settings to be used. If there are preset channel colors that were exported in
the egm object, these colors will be used for the individual channels. If palette is
specified, then the dark option will be set automatically (a palette choice cannot
be made without understanding the background to plate it across). WARNING:
This is an experimental argument, and may be moved in future version.

• The dark theme mimics the "white on black" scheme seen in LabSystem
Pro format (and most other high-contrast visualizations), for minimizing
eye strain. This calls the theme_egm_dark() function. DEFAULT.

• The light theme mimics the "black on white" colors seen in the Prucka
system.

• NULL removes any theme, and uses the default ggplot2::ggplot() settings

Details

Currently, the color choices are individual decided based on the channel source (e.g. lead) and are
inspired by some modern palettes. The eventual goal for this function is to accept a multitude of
palette options using heuristics similar to what is found in {ggplot2} or other graphing packages.

Value

Returns an updated ggm object

analyze_atrial_signal Analyze F waves in atrial fibrillation ECG

Description

Analyze F waves in atrial fibrillation ECG

https://m3.material.io/styles/color/system/how-the-system-works

annotation_table 5

Usage

analyze_atrial_signal(
atrial_signal,
frequency,
characteristics = c("amplitude", "approximate_entropy", "dominant_frequency"),
...

)

Arguments

atrial_signal Numeric vector of the atrial signal

frequency Sampling frequency of the signal
characteristics

Vector of characteristics to analyze

... Additional parameters for specific analyses

Value

A list containing the results of the requested analyses

annotation_table Annotation Table

Description

annotation_table() modifies the data.table class to work with annotation data. The columns
are of all equal length, and each row describes a single annotation (although there may be duplicate
time points).

Usage

annotation_table(
annotator = character(),
time = character(),
sample = integer(),
frequency = integer(),
type = character(),
subtype = character(),
channel = integer(),
number = integer(),
...

)

is_annotation_table(x)

6 annotation_table

Arguments

annotator String that is the name of a WFDB-compatible annotation type, serving as the
extension for the file that is written containing that annotation. Please see read_annotation()
and write_annotation() for further details.

time A character time stamp of the annotation, written in the format of HH:MM:SS.SSS,
starting at 00:00:00.000. This is converted to the appropriate time based on the
header file (which records the actual start time and sampling frequency). This is
often a missing variable and is given for compatibility with the WFDB applica-
tions.

sample An integer representing the sample number of the annotation

frequency An integer that represents the sampling frequency in Hertz

type A character or string representing the type of the annotation

subtype A character or string representing the subtype of the annotation

channel An integer representing the channel number of the annotation, or a character
representing the channel name

number An additional integer value or number that classifies the annotation (allows for
compatibility with multiple annotation types)

... Additional arguments to be passed to the function

x A data.table object that represents an annotation table

Details

The annotation_table() function creates a compatible table that can be used with write_annotation()
and read_annotation() functions.

Value

A data.table that has invariant columns that are compatible with the WFDB library. The key
columns include the sample index, the type of annotation (and its subtype and number qualifier),
and the channel.

Annotation files

The following annotation file types are described below.

ecgpuwave:
ecgpuwave analyzes an ECG signal from the specified record, detecting the QRS complexes and
locating the beginning, peak, and end of the P, QRS, and ST-T waveforms. The output of ecg-
puwave is written as a standard WFDB-format annotation file (the extension is "*.ecgpuwave", as
would be expected). This file can be converted into text format using rdann. Further details are
given at the ECGPUWAVE page.
The type column can be p, t, or N for the peak of the P wave, T wave, and QRS (R peak) directly.
The output notation also includes waveform onset XXX and waveform offset XXX. The number
column gives further information about each of these type labels.

https://physionet.org/content/ecgpuwave/1.3.4/

annotators 7

The number column gives modifier information. If the type classifier is a T wave annotation, the
number column can be 0 (normal), 1 (inverted), 2 (positive), 3 (negative), 4 (biphasic negative-
positive), 5 (biphasic positive-negative). If the type is an waveform onset or offset, then number
can be 0 (P wave), 1 (QRS complex), 2 (T wave).

annotators Annotator systems for WFDB objects

Description

These functions create templates for annotation in R and extend the ability for developers to create
their own annotation systems that are stable for WFDB objects. They are compatible with WFDB
annotations and can be written out to a WFDB-compatible file. This also allows extensibility.

as_ecg Convert an egm object to an ecg object

Description

Converts a general egm object to a specialized ecg object for 12-lead ECG analysis.

Usage

as_ecg(x, ...)

Arguments

x An object of class egm

... Additional arguments

Value

An object of class ecg

8 bard

bard Read in ECG and EGM data from Bard (LabSystem Pro)

Description

This function allows for reading in LS Pro data based on their text export of signals. Signals can be
exported directly from the LS Pro system. The actual software is written by Bard.

The LabSystem Pro was acquired by Boston Scientific from the original company Bard. They
are a common electrophysiology signal processing device for visualization and measurement of
intracardiac signals.

Usage

read_bard(file, n = Inf)

read_bard_header(file)

read_bard_signal(file, n = Inf)

Arguments

file The path to the file where the data is located. It must be a *.txt file. See details
below about its format.

n Number of signal values to return (this will be the same for each channel of
data). Defaults to all values.

Value

An egm class object that is a list of EP signals the format of a data.table, with an attached header
attribute that contains additional recording data.

Data Export

The steps to data export are as follows.

1. Start LabSystem PRO

2. Open a patient record

3. Display a waveform recording in a Review Window

4. Scroll to a point of interest in a waveform recording

5. Right click on the review window to the left of the region of interest

6. Select an Export option, either a default time range or the entire visible page (which depends
on the sweep speed).

https://www.bostonscientific.com/en-EU/medical-specialties/electrophysiology/arrhythmias/cardiac-mapping-system/electrophysiology-recording-system.html
https://news.bostonscientific.com/2013-06-28-Boston-Scientific-To-Acquire-C-R-Bard-Electrophysiology-Business

c.windowed 9

Data Format

[Header] Recording info – contains (example):

[Header]<CR><LF>
File Type: 1<CR><LF>
Version: 1<CR><LF>
Channels exported: 22<CR><LF>
Samples per channel: 5000<CR><LF>
Start time: 6:55:24<CR><LF>
End time: 6:55:29<CR><LF>
Ch. Info. Pointer: 320<CR><LF>
Stamp Data: T<CR><LF>
Mux format: 0<CR><LF>
Mux Block Size: <CR><LF>
Data Format 1<CR><LF>
Sample Rate: 1000Hz<CR><LF>

[Header] Channel info (per channel example):

Channel #: 1<CR><LF>
Label: III<CR><LF>
Range: 5mv <CR><LF>
Low: 1Hz<CR><LF>
High: 100Hz<CR><LF>
Sample rate: 1000Hz<CR><LF>
Color: 0000FF<CR><LF>
Scale: -7<CR><LF>

[Data] As described below:

-256,-1056,576,-256,320,-736,144,576,-592,176,608,240,176,-560,496,-
144,0,0,-32,-48,-32,-80<CR><LF>

Channel Data is interleaved in the example above (sample indexed at 1):

1 2 3 ... 22
Ch1:1 Ch2:1 Ch3:1 ... Ch22:1
Ch1:2 Ch2:2 Ch3:2 ... Ch22:2
Ch1:3 Ch2:3 Ch3:3 ... Ch22:3
...
Ch1:5000 Ch2:5000 Ch3:5000 ... Ch22:5000

c.windowed Concatenate windowed objects

10 calculate_approximate_entropy

Description

Concatenate windowed objects

Usage

S3 method for class 'windowed'
c(...)

Arguments

... windowed objects to concatenate

Value

A windowed object containing all the elements of the input objects

calculate_approximate_entropy

Calculate Approximate Entropy (Ap_en) of a time series

Description

This function computes the approximate entropy (Ap_en) of a time series using the method de-
scribed by Pincus (1991). Ap_en is a measure of the regularity and complexity of the time series.
It is calculated by comparing vectors derived from the time series in an m-dimensional embedded
space and in an (m+1)-dimensional space. The basic steps are:

1. Embedding: The time series is embedded into vectors of length m (and m+1) by taking
successive elements. For a time series of length N, this produces (N - m + 1) (or (N - m) for
m+1) vectors.

2. Distance Calculation: For each pair of embedded vectors, the Chebyshev distance (i.e., the
maximum absolute difference among corresponding elements) is computed. If the distance
between two vectors is less than or equal to a tolerance r, they are considered "similar."

3. Counting and Averaging: For each embedded vector, the function counts the number of
similar vectors (including itself) and takes the natural logarithm of the ratio of this count to
the total number of vectors. These log-values are then averaged to yield a statistic phi.

4. Ap_en Calculation: The approximate entropy is the difference between the phi computed for
dimension m and the phi computed for dimension m+1, i.e., Ap_en = phi(m) - phi(m+1).

The tolerance r is typically chosen as a multiple of the standard deviation of the time series (com-
monly 3.5 * sd(x)). If r is not provided (or is negative), it is calculated automatically.

Usage

calculate_approximate_entropy(x, m = 3, r = NULL, implementation = "C++")

calculate_dominant_frequency 11

Arguments

x Numeric vector of the time series

m Embedding dimension (sample size), default is 3

r Tolerance (threshold), default is 3.5 * sd(x)

implementation Method to use for calculation, default is "C++", but can also be done in "R".
The C++ implementation is faster.

Value

Approximate Entropy value

References

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the
National Academy of Sciences, 88(6), 2297-2301.

Examples

Example: Calculate approximate entropy for a random time series
set.seed(123)
x <- rnorm(1000)
calculate_approximate_entropy(x, m = 3, r = -1, implementation = "R")

calculate_dominant_frequency

Calculate Dominant Frequency of a time series

Description

Calculate Dominant Frequency of a time series

Usage

calculate_dominant_frequency(x, frequency, f_min = 4, f_max = 9)

Arguments

x Numeric vector of the time series

frequency Sampling frequency of the signal

f_min Minimum frequency to consider (default 4 Hz)

f_max Maximum frequency to consider (default 9 Hz)

Value

Dominant Frequency in Hz

12 color_channels

colors Theming and color options for ggm objects

Description

[Experimental]
The general purpose is to improve visualization of electrical signals. There is a pattern of colors that
are generally given from different recording software, and they can be replicated to help improve
visibility.

Usage

theme_egm()

theme_egm_light()

theme_egm_dark()

Value

A ggm object, with inheritance similar to ggplot2::theme_minimal()

color_channels Identify the color for a channel based on palettes

Description

This primarily restricts the colors to color-space safe options. It is intended to be used with
add_colors() to provide a color scheme for the ggm object. It has been exposed to users for
custom or advanced theming options.

Usage

color_channels(x, palette, mode = "dark")

Arguments

x Vector of character names of requested ECG or EGM leads

palette A character choice from the below options that describe the color choices to
be used for plotting. If set to the default, which is NULL, no changes to the colors
for individual channels will be performed. If a positive choice is made, then the
background mode argument will be set to dark as the default, unless otherwise
specified. WARNING: This is an experimental argument, and may be moved in
future version.

• NULL: no changes to the colors will be made. DEFAULT.

detect_QRS 13

• material: a colorscheme based off of the Material Design color scheme
mode A character string from c("dark", "light") to describe the base/background

color settings to be used. If there are preset channel colors that were exported in
the egm object, these colors will be used for the individual channels. If palette is
specified, then the dark option will be set automatically (a palette choice cannot
be made without understanding the background to plate it across). WARNING:
This is an experimental argument, and may be moved in future version.

• The dark theme mimics the "white on black" scheme seen in LabSystem
Pro format (and most other high-contrast visualizations), for minimizing
eye strain. This calls the theme_egm_dark() function. DEFAULT.

• The light theme mimics the "black on white" colors seen in the Prucka
system.

• NULL removes any theme, and uses the default ggplot2::ggplot() settings

Value

Vector of hex code colors as character based on the selected palette and light/dark mode

detect_QRS Detect QRS complexes in ECG signals

Description

detect_QRS() implements a modified Pan-Tompkins algorithm to detect QRS complexes in ECG
signals. The function applies a sequence of processing steps including bandpass filtering, differen-
tiation, squaring, and moving window integration to identify R peaks in the signal.

Usage

detect_QRS(signal, frequency, window_size = 0.15)

Arguments

signal Numeric vector representing the ECG signal
frequency Sampling frequency of the signal in Hz
window_size Width of the integration window in seconds, default is 0.150 seconds

Details

The Pan-Tompkins algorithm is a widely-used method for QRS detection in ECG signals. This
implementation follows these steps:

1. Bandpass filtering (5-15 Hz) to reduce noise and emphasize QRS complexes
2. Differentiation to highlight the steep slopes of QRS complexes 3. Squaring to amplify high-

frequency components 4. Moving window integration to consider the overall QRS morphol-
ogy 5. Adaptive thresholding to identify peaks 6. Application of a refractory period to prevent
multiple detections of the same QRS complex

The function is designed to work with single-lead ECG signals, typically sampled at 250-1000 Hz.

https://m3.material.io/styles/color/system/how-the-system-works

14 ecg

Value

Integer vector containing the sample indices of detected QRS complexes

References

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on
Biomedical Engineering, (3), 230-236. doi:10.1109/TBME.1985.325532

Examples

Not run:
Load ECG data
ecg_data <- read_muse(system.file("extdata", "muse-sinus.xml", package = "EGM"))

Extract lead II signal
signal <- ecg_data$signal$II

Get sampling frequency from header
freq <- attributes(ecg_data$header)$record_line$frequency

Detect QRS complexes
qrs_locations <- detect_QRS(signal, freq)

Plot ECG with detected QRS complexes
plot(signal, type = "l", xlab = "Sample", ylab = "Amplitude")
points(qrs_locations, signal[qrs_locations], col = "red", pch = 19)

End(Not run)

ecg Electrocardiogram data class for 12-lead ECG studies

Description

This class serves as a specialized extension of the egm class specifically for standard 12-lead elec-
trocardiogram data. It inherits all functionality from egm while providing additional validation and
methods specific to 12-lead ECG analysis.

Usage

ecg(
signal = signal_table(),
header = header_table(),
annotation = annotation_table(),
...

)

is_ecg(x)

https://doi.org/10.1109/TBME.1985.325532

egm 15

Arguments

signal A signal_table object generated by the signal_table() function containing
standard ECG leads

header A header_table object generated by the header_table() function

annotation A annotation_table object generated by the annotation_table() function

... Additional arguments to be passed to the function

x An ecg object to be used with support functions

Details

The ecg object contains the same three components as egm:

• signal data in multiple channels (specifically 12 standard ECG leads)

• header information

• annotation labels at specified time points

The primary difference is that this class enforces validation to ensure the data represents a standard
12-lead ECG with appropriate lead names.

Value

An object of class ecg (which inherits from egm) containing signal, header, and annotation compo-
nents.

egm Electrogram data class from electrophysiology studies

Description

This class serves as a combinatorial class to describe cardiovascular electrical signal data in R. It
is based off of the formats available in WFDB, but has been formatted for ease of use within the R
ecosystem. An egm object contains three components in a list:

• signal data in multiple channels

• header information

• annotation labels at specified time points

These components help to navigate, and visualize data. The egm class is the backbone for working
with WFDB objects in R, and provides an interface for integrating or converting other raw signal
data to a WFDB format.

16 extract_f_waves

Usage

egm(
signal = signal_table(),
header = header_table(),
annotation = annotation_table(),
...

)

is_egm(x)

Arguments

signal A signal_table object generated by the signal_table() function

header A header_table object generated by the header_table() function

annotation A annotation_table object generated by the annotation_table() function

... Additional arguments to be passed to the function

x An egm object, typically generated by the egm() function, to be used with sup-
port functions (e.g. is_egm()

Details

The individual components of the class are further defined in their respective children functions
signal_table(), header_table(), annotation_table(). They are very simple classes that
build upon the data.table class that allow for class safety checks when working with different
data types (particularly WFDB).

IMPORTANT: The egm class can be built from ground-up by the user, however it is primarily
generated for the user using the other read/write functions, such as read_bard() or read_wfdb().

Value

An object of class egm that is always a list of the above three components. Oftentimes, the annotation_table
object may be missing, and it is replaced with an empty table as a place holder.

extract_f_waves Extract F wave features from ECG

Description

This function analyzes F waves in an ECG signal, extracting various characteristics.

extract_f_waves 17

Usage

extract_f_waves(
object,
lead = NULL,
qrs_method = "adaptive_svd",
f_characteristics = "amplitude",
verbose = TRUE,
.force_all = FALSE,
...

)

Arguments

object An object of class egm or of subclass ecg

lead Optional. A character string specifying the lead to analyze. If NULL (default),
all available surface leads will be processed.

qrs_method Method for ventricular signal removal. Default is "adaptive_svd" for adaptive
singular value decomposition.

f_characteristics

Vector of characteristics to analyze from ECG signal. Options: "amplitude",
"approximate_entropy", "dominant_frequency". Please see calculate_approximate_entropy()
and calculate_dominant_frequency() for more details.

verbose Logical. If TRUE, print information about which leads will be analyzed. Default
is TRUE.

.force_all Logical. If FALSE (default), only process surface ECG leads. If TRUE, process
all available leads. This parameter is ignored if the object is of class ’ecg’, in
which case all leads are processed.

... Additional arguments passed to methods

Value

A list containing F wave features for each processed lead

References

Park, Junbeom, Chungkeun Lee, Eran Leshem, Ira Blau, Sungsoo Kim, Jung Myung Lee, Jung-A
Hwang, Byung-il Choi, Moon-Hyoung Lee, and Hye Jin Hwang. "Early Differentiation of Long-
Standing Persistent Atrial Fibrillation Using the Characteristics of Fibrillatory Waves in Surface
ECG Multi-Leads." Scientific Reports 9 (February 26, 2019): 2746. https://doi.org/10.1038/s41598-
019-38928-6.

Hyvarinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications.
Neural Networks, 13(4-5), 411-430.

18 extract_signal

extract_signal Extract raw signal data from an egm object

Description

Raw signal data may be all that is required, particularly when storing or manipulating data, or for
example, feeding it into an analytical pipeline. This means the extraneous elements, such as the
meta information, may be unnecessary. This function helps to strip away and extract just the signal
data itself and channel names.

Usage

extract_signal(object, data_format = c("data.frame", "matrix", "array"), ...)

Arguments

object An egm object that contains the signal data to be extracted

data_format A character choice of either data.frame (default), matrix, or array that tells
how the data should be structured. Further explanation in the details.

... Additional arguments to be passed to the function

Details

The options to return the data vary based on need. The data can be extracted as follows:

• data.frame containing an equal number of rows to the number of samples, with each column
named after the recording channel it was derived from. Data frames, as they are columnar by
nature, will also include the sample index position.

• matrix containing an equal number of rows to the number of samples, with each column
named after the recording channel it was derived from

• array containing individual vectors of signal, each named after the channel they were derived
from

Value

An object as described by the format option

format.windowed 19

format.windowed Format a windowed object for printing

Description

Format a windowed object for printing

Usage

S3 method for class 'windowed'
format(x, ...)

Arguments

x A windowed object

... Additional arguments passed to methods

Value

Invisibly returns x

ggm Visualization of EGMs using ggplot

Description

[Experimental]

The ggm() function is used to plot objects of the egm class. This function however is more than just
a plotting function - it serves as a visualization tool and confirmation of patterns, annotations, and
underlying waveforms in the data. The power of this, instead of being a geom_*() object, is that
annotations, intervals, and measurements can be added incrementally.

Usage

ggm(
data,
channels = character(),
time_frame = NULL,
palette = NULL,
mode = "dark",
...

)

20 header_table

Arguments

data Data of the egm class, which includes header (meta) and signal information to-
gether.

channels A character vector of which channels to use. Can give either the channel label
(e.g "CS 1-2") or the recording device/catheter type (e.g "His" or "ECG"). If no
channels are selected, the default is all channels.

time_frame A time range that should be displaced given in the format of a vector with a
length of 2. The left value is the start, and right value is the end time. This is
given in seconds (decimals may be used).

palette A character choice from the below options that describe the color choices to
be used for plotting. If set to the default, which is NULL, no changes to the colors
for individual channels will be performed. If a positive choice is made, then the
background mode argument will be set to dark as the default, unless otherwise
specified. WARNING: This is an experimental argument, and may be moved in
future version.

• NULL: no changes to the colors will be made. DEFAULT.
• material: a colorscheme based off of the Material Design color scheme

mode A character string from c("dark", "light") to describe the base/background
color settings to be used. If there are preset channel colors that were exported in
the egm object, these colors will be used for the individual channels. If palette is
specified, then the dark option will be set automatically (a palette choice cannot
be made without understanding the background to plate it across). WARNING:
This is an experimental argument, and may be moved in future version.

• The dark theme mimics the "white on black" scheme seen in LabSystem
Pro format (and most other high-contrast visualizations), for minimizing
eye strain. This calls the theme_egm_dark() function. DEFAULT.

• The light theme mimics the "black on white" colors seen in the Prucka
system.

• NULL removes any theme, and uses the default ggplot2::ggplot() settings

... Additional arguments to be passed to the function

Value

An {ggplot2} compatible object with the ggm class, which contains additional elements about the
header and annotations of the original data.

header_table Header Table

Description

header_table() modifies the data.table class to work with header data. The header data is read
in from a similar format as to that of WFDB files and should be compatible/interchangeable when
writing out to disk. The details extensively cover the type of data that is input. Generally, this
function is called by read_*_header() functions and will generally not be called by the end-user.

https://m3.material.io/styles/color/system/how-the-system-works

header_table 21

Usage

header_table(
record_name = character(),
number_of_channels = integer(),
frequency = 250,
samples = integer(),
start_time = strptime(Sys.time(), "%Y-%m-%d %H:%M:%OSn"),
ADC_saturation = integer(),
file_name = character(),
storage_format = 16L,
ADC_gain = 200L,
ADC_baseline = ADC_zero,
ADC_units = "mV",
ADC_resolution = 12L,
ADC_zero = 0L,
initial_value = ADC_zero,
checksum = 0L,
blocksize = 0L,
label = character(),
info_strings = list(),
additional_gain = 1,
low_pass = integer(),
high_pass = integer(),
color = "#000000",
scale = integer()

)

is_header_table(x)

Arguments

record_name A character vector of record line information
number_of_channels

An integer describing number of signals

frequency A numeric value of sampling frequency, 250 Hz default

samples An integer for the number of samples

start_time The POSIXct time of recording, with miliseconds included. For example, strptime(start_time,
"%Y-%m-%d %H:%M%:%OSn") where as described in base::strptime()

ADC_saturation An integer representing ADC saturation

file_name A character for the signal specific information

storage_format An integer of the bits for the storage format, 16-bit default

ADC_gain An integer of ADC gain, default of 200

ADC_baseline An integer of ADC baseline, defaults to ADC_zero
ADC_units A character to describe ADC units, "mV" is default

ADC_resolution An integer for ADC resolution, default is 12

22 header_table

ADC_zero An integer for ADC zero, defaults to 0

initial_value An integer for the initial value, defaults to ADC_zero value

checksum An integer that serves as the checksum

blocksize An integer of the block size

label A character description of the signal

info_strings A list of strings that will be written as an appendix to the header file, usually
containing information about the channels, (e.g. list of colors, extra labels, etc).

additional_gain

A numeric Additional gain, defaults to 1.0

low_pass An integer Low pass filter

high_pass An integer High pass filter

color A character Color as hexadecimal format, defaults to black

scale An integer Scale

x A data.table object that serves as the header table

Details

The header_table object is relatively complex in that it directly deals with properties of the signal,
and allows compatibility with WFDB files and other raw header files for other signal objects. It can
be written out using write_wfdb().

Value

A header_table object that is an extension of the data.table class. This contains an adaptation
of the function arguments, allowing for compatibility with the WFDB class.

Header file structure

There are three components to the header file:

1. Record line that contains the following information, in the order documented, however pieces
may be missing based on different parameters. From left to right...

• Record name
• Number of signals: represents number of segments/channels
• Sampling frequency (optional)
• Number of samples (optional)
• Time: in HH:MM:SS format (optional)
• Date: in DD/MM/YYYY (optional)

2. Signal specification lines contains specifications for individual signals, and there must be as
many signal lines as there are reported by the above record line. From left to right....

• File name: usually *.dat
• Format integer: represents storage type, e.g. 8-bit or 16-bit
• ADC gain: ADC units per physical unit (optional)

– Baseline: corresponds to 0 physical units, sep = ’*(0)" (optional)

is_windowed 23

– Units: with ’/’ as a field separator e.g ’*/mV’ (optional)
• ADC resolution integer: bits, usually 8 or 16 (optional)
• ADC zero: represents middle of ADC input range (optional)
• Initial value (optional)
• Checksum (optional)
• Block size (optional)
• Description: text or label information (optional)

3. Info strings are unstructured lines that contains information about the record. Usually are
descriptive. Starts with initial ’#’ without preceding white space at beginning of line.

is_windowed Test if an object is a windowed object

Description

Test if an object is a windowed object

Usage

is_windowed(x)

Arguments

x An object to test

Value

TRUE if x is a windowed object, FALSE otherwise

lapply.windowed Apply a function to each element of a windowed object

Description

Apply a function to each element of a windowed object

Usage

lapply.windowed(X, FUN, ...)

Arguments

X A windowed object

FUN A function to apply to each element

... Additional arguments passed to FUN

24 print.windowed

Value

A list of the results of applying FUN to each element of X, or a new windowed object if all results
are egm objects

muse Read in ECG data from MUSE

Description

This function serves to read/convert XML based files from the MUSE system to digital signal. This
can subsequently be written into other formats. The MUSE system is somewhat proprietary, and
each version may or may not allow export options into XML.

Usage

read_muse(file)

Arguments

file An ECG file from MUSE in XML format

Details

GE Healthcare MUSE v9 is currently the model that is being used. These functions have not been
tested in older versions.

Value

An egm class object that is a list of eps signals the format of a data.table, with an attached header
attribute that contains additional recording data.

print.windowed Print a windowed object

Description

Print a windowed object

Usage

S3 method for class 'windowed'
print(x, ...)

prucka 25

Arguments

x A windowed object

... Additional arguments passed to methods

Value

Invisibly returns x

prucka Read Prucka System Files

Description

read_prucka() reads both the signal data (.txt) and header information (.inf) exported from the
Prucka cardiac electrophysiology system, which is the underlying recording software used in GE
Healthcare’s CardioLab EP system.

Usage

read_prucka(signal_file, header_file = NULL, n = Inf)

read_prucka_header(header_file)

read_prucka_signal(signal_file, n = Inf)

Arguments

signal_file Path to the *.txt signal data file

header_file Path to the *.inf header file. If NULL, will look for a file with the same base
name as signal_file but with .inf extension.

n Number of signal values to return (this will be the same for each channel of
data). Defaults to all values.

Details

Exporting from GE CardioLab/Prucka:
To export data from the GE CardioLab system:

1. Open the study/recording in CardioLab
2. Select the time segment you want to export
3. Navigate to File > Export or Tools > Export
4. Choose ASCII Export or Text Export format
5. Select the channels to export
6. Choose export location and filename
7. The system will create two files:

• X####.txt: Space-delimited signal data

26 segmentation

• X####.inf: Header file with metadata

File Format Details:
Signal file (*.txt):

• Space-delimited numeric data
• Each row represents one time point
• First column: sample index/time marker
• Subsequent columns: channel data in mV
• All channels sampled at the same rate

Header file (*.inf):
• Key-value pairs with "=" delimiter
• Patient information (name, date, description)
• Recording parameters (sampling rate, duration, channel count)
• Channel mapping section listing channel numbers and labels
• Channel numbers may be non-sequential (e.g., 1-12, 49-50, 75-76)

Both files must have the same base name (e.g., X001.txt and X001.inf).

Notes:
• Default units are mV for electrical signals and mmHg for pressure
• The system typically uses 16-bit ADC resolution
• Channel labels may include surface ECG leads (I, II, III, aVR, aVL, aVF, V1-V6) and intrac-

ardiac catheters (ABL, His, CS, RV, etc.)
• Export may be limited by system memory for very long recordings

Value

An egm class object that is a list of EP signals the format of a data.table, with an attached header
attribute that contains additional recording data.

segmentation Segmentation of electrical signal by wave specifications

Description

Segmentation of electrical signal by wave specifications

Usage

segmentation(
object,
by = "sinus",
pad = "before",
pad_length = 0L,
center = NULL

segmentation 27

)

segment_by_sinus(object)

pad_sequence(object, pad, pad_length)

center_sequence(object, center, pad_length)

Arguments

object Object of the egm class, which includes header, signal information, and annota-
tion information.

by A character string naming waveform type to segment by. Options include the
following:

• sinus = Will call segment_by_sinus() on egm object

pad character String to specify which side of sequence to pad (or both). Options
include c("before", "after", "both").
Default is before. If center is being used, then the this argument is ignored.

pad_length Offers padding of the segmented beats to a maximum length, as an integer.
The default is 0L, which means no padding will be applied. If pad > 0 then will
add the baseline value (specified within the header of the signal) to either before
or after the signal. You can also choose to center the sequence, which will
also only occur if pad > 0. I.e., if pad = 500 then each segmented object will
be increased TO a max length of 500. If the maximum size is larger than the
padding size, then a warning will be issued and the sequence will be truncated.

center A single Roman alphabetic letter character that utilizes the annotations given
in the egm object to center the sequence. This is found under the type variable
in the annotation table.
For example, if sinus waveforms were annotated as c("P", "R", "T") at their
peak, then could center around R. This will only occur if pad > 0L. This is case-
insensitive. The amount of padding will be determined by the pad_length argu-
ment

Details

Requires a 12-lead ECG that has been digitized, and input as an egm object. This object must have
an annotation file associated with it that contains demarcation annotations. Please see below for
approaches based on the annotation type. Current, the following are supported:

• sinus = supports using ecgpuwave as the annotator

Value

Returns a list of egm objects. Each item is a segmentation of an egm, using the selected channels
(if available). It will attempt to optimize and pick the best annotations to help create consistencies
between the signal channels as possible.

28 standardize_windows

Sinus beat segmentation

Identify individual sinus beats on surface ECG and extract as individual beats, returning a list of
sinus beats in the form of the egm class. a consistent P, R, and T wave amongst all channels. If
a channel does not have, for example, a visible T wave, it will still label it as information gained
from other channels. This is based off of the algorithm from the annotation tool named ecgpuwave.
Please see read_annotation() for further details.

signal_table Signal tables

Description

The signal_table() function modifies the data.table class to work with electrical signal data.
The input should be a data set of equal number of rows. It will add a column of index positions
called sample if it does not already exist.

Usage

signal_table(...)

is_signal_table(x)

Arguments

... A list of equal lengths

x data.frame A data frame of signal data

Value

An object of class signal_table, which is an extension of the data.table class. The sample
column is invariant and will always be present. The other columns represent additional channels.

standardize_windows Standardize windows of signal data

Description

Standardizes windowed objects by applying various transformations to each window. This function
converts each egm object in a windowed list to a standardized data frame with uniform properties,
facilitating comparison and analysis.

standardize_windows 29

Usage

standardize_windows(
x,
standardization_method = c("time_normalize"),
target_samples = 500,
target_ms = NULL,
interpolation_method = c("linear", "spline", "step"),
align_feature = NULL,
preserve_amplitude = TRUE,
preserve_class = FALSE,
...

)

Arguments

x A windowed object to standardize
standardization_method

A character string specifying the standardization method. Currently supported:
"time_normalize".

target_samples The desired number of samples for each standardized window. Default is 500
samples. This parameter takes precedence if both target_samples and target_ms
are provided.

target_ms Alternative specification in milliseconds. If provided and target_samples is
NULL, the function will convert this to samples based on the signal’s sampling
frequency.

interpolation_method

The method used for interpolation when resampling. Options are "linear" (de-
fault), "spline", or "step".

align_feature Feature to align windows around, either a character string matching an annota-
tion type or a list of criteria for finding a specific annotation. Default is NULL
(no alignment).

preserve_amplitude

Logical. If TRUE (default), maintains original amplitude range after resampling.

preserve_class Logical. If TRUE, returns a windowed object with standardized data frames. If
FALSE (default), returns a plain list of data frames.

... Additional arguments passed to specific standardization methods.

Details

Currently supported standardization methods:

• time_normalize - Resamples each window to a standard length by either dilating or con-
tracting the signal. The result is a signal with a consistent number of samples regardless of the
original window duration.

Additional options:

30 standardize_windows

• align_feature - If provided, windows will be aligned to center around this feature (e.g., a
specific annotation type like "N" for R-peak). Can be a character string matching an annotation
type or a list of criteria for annotation matching.

• preserve_amplitude - If TRUE (default), maintains the original amplitude range after re-
sampling. If FALSE, the amplitudes may change due to interpolation.

Value

If preserve_class=TRUE, a windowed object containing standardized data frames. If preserve_class=FALSE,
a plain list of standardized data frames.

Examples

Not run:
Read in ECG data
ecg <- read_wfdb("ecg", test_path(), "ecgpuwave")

Create windows based on sinus rhythm
windows <- window_signal(

ecg,
method = "rhythm",
rhythm_type = "sinus",
onset_criteria = list(type = "(", number = 0),
offset_criteria = list(type = ")", number = 2),
reference_criteria = list(type = "N")

)

Standardize windows to exactly 500 samples
std_windows <- standardize_windows(

windows,
method = "time_normalize",
target_samples = 500

)

Alternatively, standardize to 500 milliseconds (depends on sampling frequency)
std_windows_ms <- standardize_windows(

windows,
method = "time_normalize",
target_ms = 500

)

Standardize windows with QRS alignment
aligned_windows <- standardize_windows(

windows,
method = "time_normalize",
target_samples = 500,
align_feature = "N" # Align on QRS complexes

)

End(Not run)

wfdb 31

wfdb Waveform Database (WFDB) Software Package

Description

This implementation of WFDB is a back-end for the WFDB using a combination of python, C++,
and C language. The related functions are documented separately. This serves as an overview of the
conversion of WFDB formats to R formats. In this documentation, the specific WFDB generated
files will be described.

Arguments

record String that will be used to name the WFDB record. Cannot include extensions,
and is not a filepath. alphanumeric characters are acceptable, as well as hyphens
(-) and underscores (_)

record_dir File path of directory that should be used read and write files. Defaults to current
directory.

annotator String that is the name of a WFDB-compatible annotation type, serving as the
extension for the file that is written containing that annotation. Please see read_annotation()
and write_annotation() for further details.

wfdb_path Path that leads to installed wfdb software package on device. Needs to be di-
rectly set using set_wfdb_path(). Obtained from the system options on load-
ing of the package, getOption('wfdb_path')

... Additional arguments to be passed to the function

WFDB

The WFDB (Waveform Database) Software Package has been developed over the past thirty years,
providing a large collection of software for processing and analyzing physiological waveforms.
The package is written in highly portable C and can be used on all popular platforms, including
GNU/Linux, MacOS X, MS-Windows, and all versions of Unix.

The foundation of the WFDB Software Package is the WFDB library, consisting of a set of functions
for reading and writing digitized signals and annotations. These functions can be used by programs
written in C, C++, or Fortran, running under any operating system for which an ANSI/ISO C com-
piler is available, including all versions of Unix, MS-DOS, MS-Windows, the Macintosh OS, and
VMS.

Data format

The records that the WFDB uses have three components...

1. Signals: integer values that are at equal intervals at a certain sampling frequency

2. Header attributes: recording information such as sample number, gain, sampling frequency

3. Annotations: information about the record such as a beat labels or alarm triggers

32 wfdb_annotations

Author(s)

Original software: George Moody, Tom Pollard, Benjamin Moody
R implementation: Anish S. Shah
Last updated: 2025-10-13

wfdb_annotations Read WFDB-compatible annotation file

Description

Individual annotation types are described as both a command-line tool for annotating WFDB-files,
as well as the extension that is appended to the record name to notate the type. Generally, the types
of annotations that are supported are described below:

• atr = manually reviewed and corrected reference annotation files

• ann = general annotator file

• ecgpuwave = files contain surface ECG demarcation (P, QRS, and T waves)

• sqrs/wqrs/gqrs = standard WFDB peak detection for R waves

A more thorough explanation is given in the details. Additionally, files when being read in are
converted from a binary format to a textual format. The raw data however may be inadequate, as
the original annotation may be erroneous. In these cases, an empty annotation_table object will
be returned.

Usage

read_annotation(
record,
record_dir = ".",
annotator,
wfdb_path = getOption("wfdb_path"),
begin = "00:00:00",
end = NA_character_,
...

)

write_annotation(
data,
annotator,
record,
record_dir = ".",
wfdb_path = getOption("wfdb_path"),
...

)

wfdb_annotations 33

annotate_wfdb(
record,
record_dir,
annotator,
wfdb_path = getOption("wfdb_path"),
...

)

Arguments

record String that will be used to name the WFDB record. Cannot include extensions,
and is not a filepath. alphanumeric characters are acceptable, as well as hyphens
(-) and underscores (_)

record_dir File path of directory that should be used read and write files. Defaults to current
directory.

annotator String that is the name of a WFDB-compatible annotation type, serving as the
extension for the file that is written containing that annotation. Please see read_annotation()
and write_annotation() for further details.

wfdb_path Path that leads to installed wfdb software package on device. Needs to be di-
rectly set using set_wfdb_path(). Obtained from the system options on load-
ing of the package, getOption('wfdb_path')

begin, end A character in the format of HH:MM:SS that will be used to help parse the
time of the annotation. These parameters together create the time range to ex-
tract. The default of 0 is a shortcut for 00:00:00. The seconds argument can
include a decimal place.

... Additional arguments to be passed to the function

data An annotation_table containing the 6 invariant columns required by the annotation_table()
function

Value

This function will either read in an annotation using the read_annotation() function in the format
of an annotation_table object, or write to file/disk an annotation_table to a WFDB-compatible
annotation file using the write_annotation() function.

IMPORTANT: as annotation files are created by annotators that were developed independently,
there is a higher chance of an erroroneous file being created on disk. As such, this function will
note an error an return an empty annotation_table at times.

Annotation files

The following annotation file types are described below.

ecgpuwave:
ecgpuwave analyzes an ECG signal from the specified record, detecting the QRS complexes and
locating the beginning, peak, and end of the P, QRS, and ST-T waveforms. The output of ecg-
puwave is written as a standard WFDB-format annotation file (the extension is "*.ecgpuwave", as

34 wfdb_io

would be expected). This file can be converted into text format using rdann. Further details are
given at the ECGPUWAVE page.
The type column can be p, t, or N for the peak of the P wave, T wave, and QRS (R peak) directly.
The output notation also includes waveform onset XXX and waveform offset XXX. The number
column gives further information about each of these type labels.
The number column gives modifier information. If the type classifier is a T wave annotation, the
number column can be 0 (normal), 1 (inverted), 2 (positive), 3 (negative), 4 (biphasic negative-
positive), 5 (biphasic positive-negative). If the type is an waveform onset or offset, then number
can be 0 (P wave), 1 (QRS complex), 2 (T wave).

wfdb_io I/O of WFDB-compatible signal & header files from EP recording sys-
tems

Description

This function allows for WFDB files to be read from any WFDB-compatible system, and also allows
writing out WFDB-compatible files from specific EP recording systems, as indicated in the details
section. Writing WFDB leads to creation of both a dat (signal) and hea (header) file. These are
both required for reading in files as well.

Usage

write_wfdb(
data,
record,
record_dir,
wfdb_path = getOption("wfdb_path"),
header = list(frequency = 250, gain = 200L, label = character()),
info_strings = list(),
...

)

read_wfdb(
record,
record_dir = ".",
annotator = NA_character_,
wfdb_path = getOption("wfdb_path"),
begin = 0,
end = NA_integer_,
interval = NA_integer_,
units = "digital",
channels = character(),
...

)

read_signal(

https://physionet.org/content/ecgpuwave/1.3.4/

wfdb_io 35

record,
record_dir = ".",
wfdb_path = getOption("wfdb_path"),
begin = 0L,
end = NA_integer_,
interval = NA_integer_,
units = "digital",
channels = character(),
...

)

read_header(record, record_dir = ".", wfdb_path = getOption("wfdb_path"), ...)

Arguments

data Can either be an egm object, or a data.frame (or similar) object. The function
will appropriately set defaults based on the type.

• egm = Will extract signal and header data directly from object, and thus is
simplest to convert to a WFDB format

• signal_table = This is a customized data.table class that has an invari-
ant column containing sample information.

• data.frame or data.table = Must have a column that represents a time
point or index, and columns that represent signal values (preferably inte-
gers)

record String that will be used to name the WFDB record. Cannot include extensions,
and is not a filepath. alphanumeric characters are acceptable, as well as hyphens
(-) and underscores (_)

record_dir File path of directory that should be used read and write files. Defaults to current
directory.

wfdb_path Path that leads to installed wfdb software package on device. Needs to be di-
rectly set using set_wfdb_path(). Obtained from the system options on load-
ing of the package, getOption('wfdb_path')

header A header file is an optional named list of parameters that will be used to organize
and describe the signal input from the data argument. If the type is given,
specific additional elements will be searched for, such as the low or high pass
filters, colors, or other signal attributes. At minimum, the following elements
are required (as cannot be calculated):

• frequency = sample frequency in Hertz as integer
• label = vector of names for each channel as character
• start_time = date/time object

info_strings A list of strings that will be written as an appendix to the header file, usually
containing information about the channels, (e.g. list of colors, extra labels, etc).

... Additional arguments to be passed to the function

annotator String that is the name of a WFDB-compatible annotation type, serving as the
extension for the file that is written containing that annotation. Please see read_annotation()
and write_annotation() for further details.

36 wfdb_io

begin, end, interval
Timepoint as an integer (representing seconds), which is converted to an index
position based on sampling frequency. The default is to start at the beginning of
the record. If end or interval are given, the earlier of the two will be returned.
The end argument gives a time index to read until. The interval argument is
the length of time past the start point.

units A character string representing either digital (DEFAULT) or physical units
that should be used, if available.

• digital = Index in sample number, signal in integers (A/D units)

• physical = Index in elapsed time, signal in decimal voltage (e.g. mV). This
will include 1 additional row over the header/column names that de-
scribes units

channels Either the signal/channel in a character vector as a name or number. Allows
for duplication of signal or to re-order signal if needed. If nothing is given, will
default to all channels available.

Value

Depends on if it is a reading or writing function. For writing, will output an WFDB-based object
reflecting the function. For reading, will output an extension of a data.table object reflecting the
underlying function (e.g. signal_table() will return an object of class).

Functions

• write_wfdb(): Writes out signal and header data into a WFDB-compatible format from R.

• read_wfdb(): Reads a multicomponent WFDB-formatted set of files directly into an egm ob-
ject. This serves to pull together read_signal(), read_header(), and read_annotation()
for simplicity.

• read_signal(): Specifically reads the signal data from the WFDB binary format, returning
a signal_table object for evaluation in the R environment

• read_header(): Specifically reads the header data from the WFDB header text format, re-
turning a header_table object for evaluation in the R environment

Recording systems

Type of signal data, as specified by the recording system, that are currently supported.

• bard = Bard (LabSystem Pro), e.g. read_bard()

• muse = MUSE (GE), e.g. read_muse()

• prucka = Prucka (CardioLab), e.g. read_prucka()

wfdb_paths 37

wfdb_paths WFDB path utilities

Description

These functions are used to help find and locate commands from the installation of WFDB. They
are helpful in setting and getting path options and specific WFDB commands. They are primarily
internal helper functions, but are documented for troubleshooting purposes.

Usage

find_wfdb_software()

set_wfdb_path(.path)

find_wfdb_command(.app, .path = getOption("wfdb_path"))

Arguments

.path A character string that describes the path to the WFDB binary directory

.app The name of WFDB software command or application as a character

Value

These functions are helper functions to work with the user-installed WFDB software. They do not
always return an object, and are primarily used for their side effects. They are primarily developer
functions, but are exposed to the user to help troubleshoot issues with their installation of WFDB.

window Window signal data based on different methods

Description

[Experimental]
Creates windows of signal data using various methods, such as rhythm patterns, time intervals, or
reference points. Each window is returned as an individual egm object for further analysis.

Usage

window(object, window_method = c("rhythm"), ...)

window_by_rhythm(
object,
rhythm_type = "sinus",
onset_criteria,

38 windowed

offset_criteria,
reference_criteria = NULL,
adjust_sample_indices = TRUE,
...

)

Arguments

object Object of the egm class, which includes header, signal information, and annota-
tion information.

window_method A character string specifying the windowing method. Options include:
• rhythm - Windows based on rhythm patterns (requires rhythm_type and

criteria)
... Additional arguments passed to specific windowing methods.
rhythm_type A character string specifying the rhythm type (e.g., "sinus"). Currently sup-

ported: "sinus" (requires reference check).
onset_criteria A named list of criteria to identify onset points. Names should match column

names in the annotation table.
offset_criteria

A named list of criteria to identify offset points. Names should match column
names in the annotation table.

reference_criteria

A named list of criteria to identify reference points that must exist between onset
and offset. Set to NULL to skip reference validation.

adjust_sample_indices

Logical, whether to adjust annotation sample indices in the returned windows to
be relative to the window start. Default is TRUE.

Details

This function provides a modular approach to windowing electrophysiological signals. The method
parameter determines the windowing strategy, with each method requiring its own set of additional
parameters.

Value

A list of egm objects, each representing a window of the original signal.

windowed Create a windowed object containing a list of egm segments

Description

[Experimental]
windowed objects are lists of egm objects that represent segments or windows of the original signal.
This allows for specialized methods to be applied to collections of signal windows. This function
primarily serves as the class generation function, and only applies class attributes. It is used by the
window() function to ensure appropriate class and properties.

[.windowed 39

Usage

windowed(
x = list(),
window_method = "rhythm",
source_record = character(),
...

)

Arguments

x A list of egm objects

window_method The windowing method used to create the list

source_record The name of the original record

... Additional arguments passed to methods

Value

An object of class windowed which inherits from list

[.windowed Subset a windowed object

Description

Subset a windowed object

Usage

S3 method for class 'windowed'
x[i, ...]

Arguments

x A windowed object

i Index to subset

... Additional arguments passed to methods

Value

A windowed object with the specified subset of elements

Index

[.windowed, 39

add_annotations, 2
add_colors, 3
add_colors(), 12
analyze_atrial_signal, 4
annotate_wfdb (wfdb_annotations), 32
annotation_table, 5
annotation_table(), 2, 15, 16, 33
annotators, 7
as_ecg, 7

bard, 8
base::strptime(), 21

c.windowed, 9
calculate_approximate_entropy, 10
calculate_approximate_entropy(), 17
calculate_dominant_frequency, 11
calculate_dominant_frequency(), 17
center_sequence (segmentation), 26
color_channels, 12
colors, 12

detect_QRS, 13

ecg, 14
egm, 15
egm(), 16
extract_f_waves, 16
extract_signal, 18

find_wfdb_command (wfdb_paths), 37
find_wfdb_software (wfdb_paths), 37
format.windowed, 19

ggm, 3, 19
ggm(), 2
ggplot2::ggplot(), 3, 4, 13, 20
ggplot2::theme_minimal(), 12

header_table, 20
header_table(), 15, 16

is_annotation_table (annotation_table),
5

is_ecg (ecg), 14
is_egm (egm), 15
is_egm(), 16
is_header_table (header_table), 20
is_signal_table (signal_table), 28
is_windowed, 23

lapply.windowed, 23

muse, 24

pad_sequence (segmentation), 26
print.windowed, 24
prucka, 25

read_annotation (wfdb_annotations), 32
read_annotation(), 6, 28, 31, 33, 35, 36
read_bard (bard), 8
read_bard(), 16, 36
read_bard_header (bard), 8
read_bard_signal (bard), 8
read_header (wfdb_io), 34
read_header(), 36
read_muse (muse), 24
read_muse(), 36
read_prucka (prucka), 25
read_prucka(), 36
read_prucka_header (prucka), 25
read_prucka_signal (prucka), 25
read_signal (wfdb_io), 34
read_signal(), 36
read_wfdb (wfdb_io), 34
read_wfdb(), 16

segment_by_sinus (segmentation), 26
segment_by_sinus(), 27

40

INDEX 41

segmentation, 26
set_wfdb_path (wfdb_paths), 37
signal_table, 28
signal_table(), 15, 16
standardize_windows, 28

theme_egm (colors), 12
theme_egm_dark (colors), 12
theme_egm_dark(), 3, 4, 13, 20
theme_egm_light (colors), 12

wfdb, 31
wfdb_annotations, 32
wfdb_io, 34
wfdb_paths, 37
window, 37
window(), 38
window_by_rhythm (window), 37
windowed, 38
write_annotation (wfdb_annotations), 32
write_annotation(), 6, 31, 33, 35
write_wfdb (wfdb_io), 34
write_wfdb(), 22

	add_annotations
	add_colors
	analyze_atrial_signal
	annotation_table
	annotators
	as_ecg
	bard
	c.windowed
	calculate_approximate_entropy
	calculate_dominant_frequency
	colors
	color_channels
	detect_QRS
	ecg
	egm
	extract_f_waves
	extract_signal
	format.windowed
	ggm
	header_table
	is_windowed
	lapply.windowed
	muse
	print.windowed
	prucka
	segmentation
	signal_table
	standardize_windows
	wfdb
	wfdb_annotations
	wfdb_io
	wfdb_paths
	window
	windowed
	[.windowed
	Index

