--- title: "0. One-Click Run All Models" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{0. One-Click Run All Models} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 10, fig.height = 8 ) ``` ```{r setup} library(E2E) ``` ```{r, include=FALSE} # Set up parallel processing cl <- parallel::makeCluster(2) doParallel::registerDoParallel(cl) ``` ## Overview E2E provides three powerful one-click functions that automatically run comprehensive modeling pipelines: * **`int_dia()`**: Diagnostic modeling pipeline (52 model variants) * **`int_imbalance()`**: Imbalanced data diagnostic pipeline (64 model variants) * **`int_pro()`**: Prognostic modeling pipeline (24 model variants) --- ## 1. Diagnostic Pipeline ```{r, eval=FALSE} # Run all diagnostic models results_dia <- int_dia( train_dia, test_dia, test_dia, #can be any other data tune = TRUE, n_estimators = 5, seed = 123 ) # Visualize results #plot_integrated_results(results_dia, metric_name = "AUROC") ``` --- ## 2. Imbalanced Data Pipeline ```{r, eval=FALSE} # Run all models including imbalance handling methods results_imb <- int_imbalance( train_dia, test_dia, test_dia, #can be any other data tune = TRUE, n_estimators = 5, seed = 123 ) # Visualize results #plot_integrated_results(results_imb, metric_name = "AUROC") ``` --- ## 3. Prognostic Pipeline ```{r, eval=FALSE} # Run all prognostic models results_pro <- int_pro( train_pro, test_pro, test_pro, #can be any other data tune = TRUE, n_estimators = 5, time_unit = "day", years_to_evaluate = c(1, 3, 5), seed = 123 ) # Visualize results (C-index) #plot_integrated_results(results_pro, metric_name = "C-index") ``` --- ## Key Features ✅ **Fully Automated**: Run dozens of models with one line of code ✅ **Multi-Dataset Evaluation**: Evaluate on training and multiple test sets simultaneously ✅ **Diverse Methods**: Covers single models, Bagging, Stacking, and Voting ✅ **Clear Visualization**: Heatmaps display all results intuitively ```{r, include=FALSE} # Stop parallel cluster parallel::stopCluster(cl) ```