Package ‘DSWE’

October 11, 2025

Title Data Science for Wind Energy
Version 1.8.4

Description Data science methods used in wind energy applications.
Current functionalities include creating a multi-dimensional power curve model,
performing power curve function comparison, covariate matching, and energy decomposition.
Relevant works for the developed functions are:
funGP() - Prakash et al. (2022) <doi:10.1080/00401706.2021.1905073>,
AMK() - Lee et al. (2015) <doi:10.1080/01621459.2014.977385>,
tempGP() - Prakash et al. (2022) <doi:10.1080/00401706.2022.2069158>,
ComparePCurve() - Ding et al. (2021) <doi:10.1016/j.renene.2021.02.136>,
deltaEnergy() - Latiffianti et al. (2022) <doi:10.1002/we.2722>,
syncSize() - Latiffianti et al. (2022) <doi:10.1002/we.2722>,
imptPower() - Latiffianti et al. (2022) <doi:10.1002/we.2722>,
All other functions - Ding (2019, ISBN:9780429956508).

Depends R (>=3.5.0)
License MIT + file LICENSE

URL https://github.com/TAMU-AML/DSWE-Package,
https://aml.engr.tamu.edu/book-dswe/

BugReports https://github.com/TAMU-AML/DSWE-Package/issues
Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

LinkingTo Rcpp (>=1.0.4.6) , RcppArmadillo (>= 0.9.870.2.0)

Imports Rcpp (>= 1.0.4.6) , matrixStats (>= 0.55.0) , FNN (>=1.1.3),
KernSmooth (>= 2.23-16) , mixtools (>= 1.1.0), gss (>= 2.2-2),
el071 (>=1.7-3), stats (>= 3.5.0), dplyr (>= 1.0.9), xgboost
>=1.7.7.1)

NeedsCompilation yes

Author Nitesh Kumar [aut],
Abhinav Prakash [aut],
Yu Ding [aut, cre],

https://doi.org/10.1080/00401706.2021.1905073
https://doi.org/10.1080/01621459.2014.977385
https://doi.org/10.1080/00401706.2022.2069158
https://doi.org/10.1016/j.renene.2021.02.136
https://doi.org/10.1002/we.2722
https://doi.org/10.1002/we.2722
https://doi.org/10.1002/we.2722
https://github.com/TAMU-AML/DSWE-Package
https://aml.engr.tamu.edu/book-dswe/
https://github.com/TAMU-AML/DSWE-Package/issues

AMK

Effi Latiffianti [ctb, cph],
Ahmadreza Chokhachian [ctb, cph]

Maintainer Yu Ding <yuding2007@gmail.com>
Repository CRAN
Date/Publication 2025-10-11 21:00:02 UTC

Contents
AMK . e 2
ComparePCurve e e e e 4
ComputeWeightedDifference L 6
CovMatch e 8
datal e 9
data2 L L e e 9
deltaEnergy e 10
funGP e 12
imptPower e e 13
KnnPCFit 15
KnnPredict e 16
KnnUpdate e 17
predict.tempGP 18
SplinePCFit e 19
SvmPCFit e 19
SYNCSIZE .+ . v v o e e e e e e e e e e e e e e 20
tempGP e 21
updateData L 23
updateData.tempGP 24
XgbPCFit e 25

Index 27

AMK Additive Multiplicative Kernel Regression
Description

An additive multiplicative kernel regression based on Lee et al. (2015).

Usage

AMK (
trainX,
trainy,
testX,
bw = "dpi_gap",
nMultiCov = 3,

AMK 3

fixedCov = c(1, 2),
cirCov = NA

)
Arguments
trainX a matrix or dataframe of input variable values in the training dataset.
trainY a numeric vector for response values in the training dataset.
testX a matrix or dataframe of test input variable values to compute predictions.
bw a numeric vector or a character input for bandwidth. If character, bandwidth
computed internally; the input should be either 'dpi' or 'dpi_gap'. Default is
'dpi_gap'. See details for more information.
nMultiCov an integer or a character input specifying the number of multiplicative covariates
in each additive term. Default is 3 (same as Lee et al., 2015). The character
inputs can be: 'all' for a completely multiplicative model, or 'none' for a
completely additive model. Ignored if the number of covariates is 1.
fixedCov an integer vector specifying the fixed covariates column number(s), default value
is ¢(1,2). Ignored if nMultiCov is setto "'all' or 'none’ or if the number of
covariates is less than 3.
cirCov an integer vector specifying the circular covariates column number(s) in trainX,
default value is NA.
Details

This function is based on Lee et al. (2015). Main features are:
* Flexible number of multiplicative covariates in each additive term, which can be set using
nMultiCov.

* Flexible number and columns for fixed covariates, which can be set using fixedCov. The
default option c (1, 2) sets the first two columns as fixed covariates in each additive term.

» Handling the data with gaps when the direct plug-in estimator used in Lee et al. fails to return
a finite bandwidth. This is set using the option bw = 'dpi_gap' for bandwidth estimation.

Value

a numeric vector for predictions at the data points in testX.

References

Lee, Ding, Genton, and Xie, 2015, “Power curve estimation with multivariate environmental factors
for inland and offshore wind farms,” Journal of the American Statistical Association, Vol. 110, pp.
56-67, doi:10.1080/01621459.2014.977385.

https://doi.org/10.1080/01621459.2014.977385

4 ComparePCurve

Examples

data = datal

trainX = as.matrix(datalc(1:100),2])

trainY = datalc(1:100),7]

testX = as.matrix(datalc(101:110),21)

AMK_prediction = AMK(trainX, trainY, testX, bw = 'dpi_gap', cirCov = NA)

ComparePCurve Power curve comparison

Description

Power curve comparison

Usage

ComparePCurve(
data,
xCol,
xCol.circ = NULL,
yCol,
testCol,
testSet = NULL,
thrs = 0.2,
conflevel = 0.95,
gridSize = c(50, 50),
powerbins = 15,
baseline = 1,
limitMemory = TRUE,
opt_method = "nlminb”,
sampleSize = list(optimSize = 500, bandSize = 5000),

rngSeed = 1
)
Arguments
data A list of data sets to be compared, the difference in the mean function is always
computed as (f(data2) - f(datal))
xCol A numeric or vector stating column number of covariates
xCol.circ A numeric or vector stating column number of circular covariates
yCol A numeric value stating the column number of the response
testCol A numeric/vector stating column number of covariates to used in generating test

set. Maximum of two columns to be used.

ComparePCurve

testSet

thrs

conflevel

gridSize

powerbins

baseline

limitMemory

opt_method

sampleSize

rngSeed

Value

a list containing :

A matrix or dataframe consisting of test points, default value NULL, if NULL
computes test points internally using testCol variables. If not NULL, total num-
ber of test points must be less than or equal to 2500.

A numeric or vector representing threshold for each covariates

A numeric between (0,1) representing the statistical significance level for con-
structing the band

A numeric / vector to be used in constructing test set, should be provided when
testSet is NuLL, else it is ignored. Default is c(50,50) for 2-dim input which
is converted internally to a default of c(1000) for 1-dim input. Total number of
test points (product of gridSize vector components) must be less than or equal
to 2500.

A numeric stating the number of power bins for computing the scaled difference,
default is 15.

An integer between 0 to 2, where 1 indicates to use power curve of first dataset
as the base for metric calculation, 2 indicates to use the power curve of second
dataset as the base, and 0 indicates to use the average of both power curves as
the base. Default is set to 1.

A boolean (True/False) indicating whether to limit the memory use or not. De-
fault is true. If set to true, 5000 datapoints are randomly sampled from each
dataset under comparison for inference

A string specifying the optimization method to be used for hyperparameter es-
timation. Current options are: 'L-BFGS-B', 'BFGS', and 'nlminb'. Default is
setto 'nlminb’.

A named list of two integer items: optimSize and bandSize, denoting the
sample size for each dataset for hyperparameter optimization and confidence
band computation, respectively, when limitMemory = TRUE. Default value is
list(optimSize = 500, bandSize = 5000).

Random seed for sampling data when 1imitMemory = TRUE. Default is 1.

» weightedDiff - a numeric, % difference between the functions weighted using the density of

the covariates

» weightedStatDiff - a numeric, % statistically significant difference between the functions
weighted using the density of the covariates

* scaledDiff - a numeric, % difference between the functions scaled to the orginal data

* scaledStatDiff - a numeric, % statistically significant difference between the functions scaled
to the orginal data

* unweightedDiff - a numeric, % difference between the functions unweighted

» unweightedStatDiff - a numeric, % statistically significant difference between the functions

unweighted

* reductionRatio - a list consisting of shrinkage ratio of features used in testSet

6 Compute WeightedDifference

* mul - a vector of prediction on testset using the first data set
* mu?2 - a vector of prediction on testset using the second data set
» muDiff - a vector of the difference in prediction (mu2 - mul) for each test point

* band - a vector for the confidence band at all the testpoints for the two functions to be the same
at a given cofidence level.

 confLevel - a numeric representing the statistical significance level for constructing the band
* testSet - a vector/matrix of the test points either provided by user, or generated internally

* estimatedParams - a list of estimated hyperaparameters for the Gaussian process model

* matchedData - a list of two matched datasets as generated by covariate matching

References

For details, see Ding et al. (2021) available doi:10.1016/j.renene.2021.02.136.

Examples

datal = datal[1:100,]
data2 = data2[1:100,]

data = list(datal, data2)
xCol = 2

xCol.circ = NULL

yCol =7

testCol = 2

testSet = NULL

thrs = 0.2

conflLevel = 0.95

gridSize = 20

function_comparison = ComparePCurve(data, xCol, xCol.circ, yCol,
testCol, testSet, thrs, conflLevel, gridSize)

ComputeWeightedDifference
Percentage weighted difference between power curves

Description

Computes percentage weighted difference between power curves based on user provided weights
instead of the weights computed from the data. Please see details for more information.

Usage
ComputeWeightedDifference(
muDiff,
weights,
base,
statDiff = FALSE,
confBand = NULL

https://doi.org/10.1016/j.renene.2021.02.136

Compute WeightedDifference 7

Arguments

muDiff a vector of pointwise difference between two power curves on a testset as ob-
tained from ComparePCurve() or funGP () function.

weights a vector of user specified weights for each element of muDiff. It can be based
on any probability distribution of user’s choice. The weights must sum to 1.

base a vector of predictions from a power curve; to be used as the denominator in
computing the percentage difference. It can be either mul or mu2 as obtained
from ComparePCurve () or funGP() function.

statDiff a boolean specifying whether to compute the statistical significant difference or

not. Default is set to FALSE, i.e. statistical significant difference is not computed.
If set to TRUE, confBand must be provided.

confBand a vector of pointwise confidence band for all the points in the testset as obtained
from ComparePCurve() or funGP() function, named as band. Should only be
provided when statDiff is set to TRUE. Default value is NULL.

Details

The function is a modification to the percentage weighted difference defined in Ding et al. (2021).
It computes a weighted difference between power curves on a testset, where the weights have to be
provided by the user based on any probability distribution of their choice rather than the weights
being computed from the data. The weights must sum to 1 to be valid.

Value

a numeric percentage weighted difference or statistical significant percetage weighted difference
based on whether statDiff is set to FALSE or TRUE.

References

For details, see Ding et al. (2021) available at doi:10.1016/j.renene.2021.02.136.

Examples

ws_test = as.matrix(seq(4.5,8.5,length.out = 10))

userweights = dweibull(ws_test, shape = 2.25, scale = 6.5)

userweights = userweights/sum(userweights)

datal = datal[1:100,]

data2 = data2[1:100,]

datalist = list(datal, data2)

xCol = 2

xCol.circ = NULL

yCol =7

testCol = 2

output = ComparePCurve(data = datalist, xCol = xCol, yCol = yCol,

testCol = testCol, testSet = ws_test)

weightedDiff = ComputeWeightedDifference(output$muDiff, userweights, output$mul)
weightedStatDiff = ComputeWeightedDifference(output$muDiff, userweights, output$mul,
statDiff = TRUE, confBand = output$band)

https://doi.org/10.1016/j.renene.2021.02.136

8 CovMatch

CovMatch Covariate Matching

Description
The function aims to take list of two data sets and returns the after matched data sets using user
specified covariates and threshold

Usage

CovMatch(data, xCol, xCol.circ, thrs, priority)

Arguments
data a list, consisting of data sets to match, also each of the individual data set can be
dataframe or a matrix
xCol a vector stating the column position of covariates used
xCol.circ a vector stating the column position of circular variables
thrs a numerical or a vector of threshold values for each covariates, against which
matching happens It should be a single value or a vector of values representing
threshold for each of the covariate
priority a boolean, default value False, otherwise computes the sequence of matching
Value

a list containing :

* originalData - The data sets provided for matching
» matchedData - The data sets after matching

* MinMaxOriginal - The minimum and maximum value in original data for each covariate used
in matching

¢ MinMaxMatched - The minimum and maximum value in matched data for each covariates
used in matching

References

Ding, Y. (2019). Data Science for Wind Energy. Chapman & Hall, Boca Raton, FL.

Examples

datal = datal[1:100,]

data2 = data2[1:100,]
data = list(datal, data2)
xCol = 2

xCol.circ = NULL
thrs = 0.1

datal

priority = FALSE
matched_data = CovMatch(data, xCol, xCol.circ, thrs, priority)

datal Wind Energy data set containing 47,542 data points

Description

A dataset containing the power produced and other attributes of almost 47,542 records.

Usage

data(datal)

Format

A data frame with 47,542 rows and 7 variables

Details

* Data.point - sequence of integers displaying each record
* V - wind speed

* D - wind direction

* air.density - air density

¢ |- turbulence intensity

e S b - wind shear

* Y - wind power

data2 Wind Energy data set containing 48,068 data points

Description

A dataset containing the power produced and other attributes of almost 48,068 records.

Usage

data(data2)

Format

A data frame with 48,068 rows and 7 variables

10 deltaEnergy

Details

» Data.point - sequence of integers displaying each record
* V - wind speed

* D - wind direction

* air.density - air density

* I - turbulence intensity

* S_b - wind shear

* Y - wind power

deltaEnergy Energy decomposition for wind turbine performance comparison

Description

Energy decomposition compares energy production from two datasets and separates it into turbine
effects (deltaE.turb) and weather/environment effects (deltaE.weather).

Usage

deltaEnergy(
data,
powercol,
timecol = 0,
xcol,
sync.method = "minimum power",
imput = TRUE,
vcol = NULL,
vrange = NULL,
rated.power = NULL,
sample = TRUE,

size = 2500,
timestamp.min = 10
)
Arguments
data A list of two data sets to be compared. A difference is always computed as
(data2 - datal).
powercol A numeric stating the column number of power production.
timecol A numeric stating the column number of data time stamp. Default value is zero.
A value other than zero should be provided when sync.method = 'time'.
xcol A numeric or vector stating the column number(s) of power curve input covari-

ates/features (environmental or weather variables are recommended).

deltaEnergy

sync.method

imput

vcol

vrange

rated.power

sample

size

timestamp.min

Value

a list containing :

11

A string specifying data synchronization method. Default value 'minimum power';
other options include 'time' and 'random’.

A boolean (TRUE/FALSE) indicating whether power imputation should be per-
formed before calculating energy decomposition. The recommended and default
value is TRUE. Change to FALSE when data have been preprocessed or imputed
before.# @param vcol A numeric stating the column number of wind speed. It
is required when imput = TRUE.

A numeric stating the column number of wind speed.

A vector of cut-in, rated, and cut-out wind speed. Values should be provided
when imput = TRUE.

A numerical value stating the wind turbine rated power.

A boolean (TRUE/FALSE) indicating whether to use sample or the whole data
sets to train the power curve to be used for power imputation. Default value is
TRUE. It is only used when imput = TRUE.

A numeric stating the size of sample when sample = TRUE. Default value is
2500. It is only used when imput = TRUE and sample = TRUE.

A numerical value stating the resolution of the datasets in minutes. It is the
difference between two consecutive time stamps at which data were recorded.
Default value is 10.

e deltaE.turb - A numeric,

¢ deltaE.weather - A numeric,

¢ deltaE.hat - A numeric,

¢ deltaE.obs - A numeric,

* estimated.energy - A numeric vector of the total energy calculated from each of f1(x2), f1(x1),
f2(x2), f1(x2). If power is in kW, these values will be in kWh.

* data - A list of two datasets used to calculate energy decomposition, i.e. synchronized. When
imput = TRUE, the power column is the result from imputation.

References

Latiffianti, E, Ding, Y, Sheng, S, Williams, L, Morshedizadeh, M, Rodgers, M (2022). "Analysis
of leading edge protection application on wind turbine performance through energy and power
decomposition approaches". Wind Energy. 2022; 1-19. doi:10.1002/we.2722.

Examples

data = list(datal[1:50,], data2[1:60,1)

powercol = 7
timecol = 1
xcol = c(2:6)

sync.method = 'time'

https://doi.org/10.1002/we.2722

12 funGP

imput = TRUE
vcol = 2
vrange = ¢(5,12,25)

rated.power = 100

sample = FALSE

Decomposition = deltaEnergy(data, powercol, timecol, xcol, sync.method, imput,
vcol, vrange, rated.power, sample)

funGP Function comparison using Gaussian Process and Hypothesis testing

Description

Function comparison using Gaussian Process and Hypothesis testing

Usage

funGP(
datalist,
xCol,
yCol,
confLevel = 0.95,
testset,
limitMemory = TRUE,
opt_method = "nlminb",
sampleSize = list(optimSize = 500, bandSize = 5000),

rngSeed = 1
)
Arguments

datalist A list of data sets to compute a function for each of them

xCol A numeric or vector stating the column number of covariates

yCol A numeric value stating the column number of target

conflLevel A single value representing the statistical significance level for constructing the
band

testset Test points at which the functions will be compared

limitMemory A boolean (True/False) indicating whether to limit the memory use or not. De-
fault is true. If set to true, 5000 datapoints are randomly sampled from each
dataset under comparison for inference.

opt_method A string specifying the optimization method to be used for hyperparameter es-

timation. Current options are: 'L-BFGS-B', 'BFGS', and 'nlminb'. Default is
setto 'nlminb’.

imptPower 13

sampleSize A named list of two integer items: optimSize and bandSize, denoting the
sample size for each dataset for hyperparameter optimization and confidence
band computation, respectively, when limitMemory = TRUE. Default value is
list(optimSize =500, bandSize = 5000).

rngSeed Random seed for sampling data when 1imitMemory = TRUE. Default is 1.

Value

a list containing :

» muDiff - A vector of pointwise difference between the predictions from the two datasets (mu2-
mul)

* mul - A vector of test prediction for first data set
* mu?2 - A vector of test prediction for second data set
* band - A vector of the allowed statistical difference between functions at testpoints in testset
» confLevel - A numeric representing the statistical significance level for constructing the band
* testset - A matrix of test points to compare the functions

* estimatedParams - A list of estimated hyperparameters for GP

References

Prakash, A., Tuo, R., & Ding, Y. (2022). "Gaussian process aided function comparison using noisy
scattered data," Technometrics, Vol. 64, No. 1, pp. 92-102, doi:10.1080/00401706.2021.1905073.

Examples

datalist = list(datal[1:50,], data2[1:50, 1)

xCol = 2

yCol =7

conflLevel = 0.95

testset = seq(4,10,length.out = 10)

function_diff = funGP(datalist, xCol, yCol, conflLevel, testset)

imptPower Power imputation

Description

Good power curve modeling requires valid power values in the region between cut-in and cut-out
wind speed. However, when turbine is not operating, the power production will be recorded as zero
or negative. This function replaces those values with predicted values obtained from the estimated
tempGP power curve model using one input variable - the wind speed.

https://doi.org/10.1080/00401706.2021.1905073

14

Usage

imptPower(
data,
powercol,
vcol,
vrange,

imptPower

rated.power = NULL,

sample =

Arguments
data
powercol
vcol
vrange
rated.power

sample

size

Value

TRUE,
size = 2500

A list of two data sets that require imputation.

A numeric stating the column number of power production.
A numeric stating the column number of wind speed.

A vector of cut-in, rated, and cut-out wind speed.

A numerical value stating the wind turbine rated power.

A boolean (TRUE/FALSE) indicating whether to use sample or the whole data
sets to train the power curve.

A numeric stating the size of sample when sample = TRUE. Default value is
2500. It is only used when sample = TRUE.

a list containing datasets with the imputed power.

References

Latiffianti, E, Ding, Y, Sheng, S, Williams, L, Morshedizadeh, M, Rodgers, M (2022). "Analysis
of leading edge protection application on wind turbine performance through energy and power
decomposition approaches". Wind Energy. 2022; 1-19. doi:10.1002/we.2722.

Examples

data = list(datal[1:100,], data2[1:120, 1)

powercol = 7
vcol = 2

vrange = c(5,12,25)

rated.power =
sample = FALSE

imputed.dat =

imptPower(data, powercol, vcol, vrange, rated.power, sample)

https://doi.org/10.1002/we.2722

KnnPCFit 15

KnnPCFit KNN : Fit

Description

The function models the powercurve using KNN, against supplied arguments

Usage

KnnPCFit(data, xCol, yCol, subsetSelection = FALSE)

Arguments
data a dataframe or a matrix, to be used in modelling
xCol a vector or numeric values stating the column number of features
yCol a numerical or a vector value stating the column number of target
subsetSelection
a boolean, default value is FALSE, if TRUE returns the best feature column
number as xCol
Value
a list containing :

data - The data set provided by user

xCol - The column number of features provided by user or the best subset column number
yCol - The column number of target provided by user

bestK - The best k nearest neighbor calculated using the function

RMSE - The RMSE calculated using the function for provided data using user defined features
and best obtained K

MAE - The MAE calculated using the function for provided data using user defined features
and best obtained K

Examples
data = datall[c(1:100),]
xCol = 2
yCol =7

subsetSelection = FALSE

knn_model = KnnPCFit(data, xCol, yCol, subsetSelection)

16 KnnPredict

KnnPredict KNN : Predict

Description

The function can be used to make prediction on test data using trained model

Usage

KnnPredict(knnMdl, testData)

Arguments
knnMd1 a list containing:
e knnMdl$data - The data set provided by user
* knnMdI$xCol - The column number of features provided by user or the best
subset column number
* knnMdI$yCol - The column number of target provided by user
* knn$bestK - The best k nearest neighbor calculated using the function Kn-
nFit
testData a data frame or matrix, to compute the predictions
Value

a numeric / vector with prediction on test data using model generated by KnnFit

Examples

data = datallc(1:100),]
xCol = 2
yCol =7
subsetSelection = FALSE

knn_model = KnnPCFit(data, xCol, yCol, subsetSelection)
testData = datal[c(101:110),]

prediction = KnnPredict(knn_model, testData)

KnnUpdate 17

KnnUpdate KNN : Update

Description

The function can be used to update KNN model when new data is provided

Usage

KnnUpdate(knnMdl, newData)

Arguments
knnMd1 a list containing:
» knnMdl$data - The data set provided by user
* knnMdI$xCol - The column number of features provided by user or the best
subset column number
* knnMdI$yCol - The column number of target provided by user
* knn$bestK - The best k nearest neighbor calculated using the function Kn-
nFit
newData a dataframe or a matrix, to be used for updating the model
Value

a list containing :

e data - The updated data using old data set and new data
* xCol - The column number of features provided by user or the best subset column number
¢ yCol - The column number of target provided by user

* bestK - The best k nearest neighbor calculated for the new data using user specified features
and target

Examples

data = datallc(1:100),]
xCol = 2
yCol =7
subsetSelection = FALSE

knn_model = KnnPCFit(data, xCol, yCol, subsetSelection)
newData = datal[c(101:110), 1]

knn_newmodel = KnnUpdate(knn_model, newData)

18 predict.tempGP

predict.tempGP predict from temporal Gaussian process

Description

predict function for tempGP objects. This function computes the prediction f(x) or f(x) + g(t)
depending on the temporal distance between training and test points and whether the time indices
for the test points are provided.

Usage
S3 method for class 'tempGP'
predict(object, testX, testT = NULL, trainT = NULL, ...)
Arguments
object An object of class tempGP.
testX A matrix with each column corresponding to one input variable.
testT A vector of time indices of the test points. When NULL, only function f(x) is

used for prediction. Default is NULL.
trainT Optional argument to override the existing trainT indices of the tempGP object.

additional arguments for future development

Value

A vector of predictions at the testpoints in testX.

Examples

data = DSWE::datal

trainindex = 1:50 #using the first 50 data points to train the model
traindata = data[trainindex,]

xCol = 2 #input variable columns

yCol = 7 #response column

trainX = as.matrix(traindatal,xCol])

trainY = as.numeric(traindatal,yCol])

tempGPObject = tempGP(trainX, trainY)

testdata = DSWE::datal[101:110,] # defining test data
testX = as.matrix(testdatal,xCol, drop = FALSE])
predF = predict(tempGPObject, testX)

SplinePCFit 19

SplinePCFit Smoothing spline Anova method

Description

Smoothing spline Anova method

Usage

SplinePCFit(data, xCol, yCol, testX, modelFormula = NULL)

Arguments
data a matrix or dataframe to be used in modelling
xCol a numeric or vector stating the column number of feature covariates
yCol a numeric value stating the column number of target
testX a matrix or dataframe, to be used in computing the predictions

modelFormula default is NULL else a model formula specifying target and features.Please refer
*gss’ package documentation for more details

Value

a vector or numeric predictions on user provided test data

Examples
data = datallc(1:100),]
xCol = 2
yCol =7

testX = datal[c(101:110), 1]
Spline_prediction = SplinePCFit(data, xCol, yCol, testX)

SvmPCFit SVM based power curve modelling

Description

SVM based power curve modelling

Usage

SvmPCFit(trainX, trainY, testX, kernel = "radial")

20 syncSize

Arguments
trainX a matrix or dataframe to be used in modelling
trainyY a numeric or vector as a target
testX a matrix or dataframe, to be used in computing the predictions
kernel default is 'radial’ else can be ’linear’, ’polynomial’ and ’sigmoid’
Value

a vector or numeric predictions on user provided test data

Examples

data = datal

trainX = as.matrix(datalc(1:100),2])
trainY = datalc(1:100),7]

testX = as.matrix(datalc(101:110),21)

Svm_prediction = SvmPCFit(trainX, trainY, testX)

syncSize Data synchronization

Description

Data synchronization is meant to make a pair of data to have the same size. It is performed by
removing some data points from the larger dataset. This step is important when comparing energy
production between two data sets because energy production is time-based.

Usage
syncSize(data, powercol, timecol = @, xcol, method = "minimum power")
Arguments
data A list of two data sets to be synchronized.
powercol A numeric stating the column number of power production.
timecol A numeric stating the column number of data time stamp. Default value is zero.
A value other than zero should be provided when method = "time'.
xcol A numeric or vector stating the column number(s) of power curve input covari-
ates/features (to be used for energy decomposition).
method A string specifying data synchronization method. Default value 'minimum power';

other options include 'time' and 'random'.

tempGP 21

Value

a list containing the synchronized datasets.

References

Latiffianti, E, Ding, Y, Sheng, S, Williams, L, Morshedizadeh, M, Rodgers, M (2022). "Analysis
of leading edge protection application on wind turbine performance through energy and power
decomposition approaches”. Wind Energy. 2022; 1-19. doi:10.1002/we.2722.

Examples

data = list(datal[1:200,], data2[1:180, 1)

powercol = 7

timecol = 1

xcol = c(2:6)

method = 'random'’

sync.dat = syncSize(data, powercol, timecol, xcol, method)

data = list(datal[500:700,], data2[600:750, 1)

powercol = 7

timecol = 1

xcol = c(2:6)

method = 'time'

sync.dat = syncSize(data, powercol, timecol, xcol, method)

tempGP temporal Gaussian process

Description

A Gaussian process based power curve model which explicitly models the temporal aspect of the
power curve. The model consists of two parts: f(x) and g(t).

Usage

tempGP (
trainX,
trainy,
trainT = NULL,
fast_computation = TRUE,
limit_memory = 5000L,
max_thinning_number = 20L,
vecchia = TRUE,
optim_control = list(batch_size = 100L, learn_rate = 0.05, max_iter = 5000L, tol =
1e-06, betal = 0.9, beta2 = 0.999, epsilon = 1e-08, logfile = NULL)

https://doi.org/10.1002/we.2722

22 tempGP

Arguments
trainX A matrix with each column corresponding to one input variable.
trainy A vector with each element corresponding to the output at the corresponding
row of trainX.
trainT A vector for time indices of the data points. By default, the function assigns

natural numbers starting from 1 as the time indices.

fast_computation
A Boolean that specifies whether to do exact inference or fast approximation.
Default is TRUE.

limit_memory An integer or NULL. The integer is used sample training points during prediction
to limit the total memory requirement. Setting the value to NULL would result
in no sampling, that is, full training data is used for prediction. Default value is
5000.
max_thinning_number
An integer specifying the max lag to compute the thinning number. If the PACF
does not become insignificant till max_thinning_number, then max_thinning_number
is used for thinning.

vecchia A Boolean that specifies whether to do exact inference or vecchia approxima-
tion. Default is TRUE.

optim_control A list parameters passed to the Adam optimizer when fast_computation is
set to TRUE. The default values have been tested rigorously and tend to strike a
balance between accuracy and speed.
* batch_size: Number of training points sampled at each iteration of Adam.
* learn_rate: The step size for the Adam optimizer.
* max_iter: The maximum number of iterations to be performed by Adam.
 tol: Gradient tolerance.
* betal: Decay rate for the first moment of the gradient.
* beta2: Decay rate for the second moment of the gradient.
* epsilon: A small number to avoid division by zero.

* logfile: A string specifying a file name to store hyperparameters value
for each iteration.

Value
An object of class tempGP with the following attributes:

* trainX - same as the input matrix trainX.

* trainY - same as the input vector trainy.

¢ thinningNumber - the thinning number computed by the algorithm.

* modelF - A list containing the details of the model for predicting function f (x):

— X - The input variable matrix for computing the cross-covariance for predictions, same
as trainX unless the model is updated. See updateData. tempGP method for details on
updating the model.

— y - The response vector, again same as trainY unless the model is updated.

updateData 23

— weightedY - The weighted response, that is, the response left multiplied by the inverse of
the covariance matrix.

* modelG - A list containing the details of the model for predicting function g(t):

— residuals - The residuals after subtracting function f(x) from the response. Used to
predict g(t). See updateData.tempGP method for updating the residuals.

— time_index - The time indices of the residuals, same as trainT.

* estimatedParams - Estimated hyperparameters for function f (x).

llval - log-likelihood value of the hyperparameter optimization for f (x).

* gradval - gradient vector at the optimal log-likelihood value.

References

Prakash, A., Tuo, R., & Ding, Y. (2022). "The temporal overfitting problem with applications in
wind power curve modeling." Technometrics. doi:10.1080/00401706.2022.2069158.

Katzfuss, M., & Guinness, J. (2021). "A General Framework for Vecchia Approximations of Gaus-
sian Processes." Statistical Science. doi:10.1214/19STS755.

Guinness, J. (2018). "Permutation and Grouping Methods for Sharpening Gaussian Process Ap-
proximations." Technometrics. doi:10.1080/00401706.2018.1437476.

See Also

predict. tempGP for computing predictions and updateData. tempGP for updating data in a tempGP
object.

Examples

data = DSWE::datal

trainindex = 1:50 #using the first 50 data points to train the model
traindata = data[trainindex,]

xCol = 2 #input variable columns

yCol = 7 #response column

trainX = as.matrix(traindatal,xCol])

trainY = as.numeric(traindatal,yCol])

tempGPObject = tempGP(trainX, trainY)

updateData Updating data in a model

Description

updateData is a generic function to update data in a model.

Usage

updateData(object, ...)

https://doi.org/10.1080/00401706.2022.2069158
https://doi.org/10.1214/19-STS755
https://doi.org/10.1080/00401706.2018.1437476

24 updateData.tempGP

Arguments
object A model object
additional arguments for passing to specific methods
Value

The returned value would depend on the class of its argument object.

See Also

updateData. tempGP

updateData.tempGP Update the data in a tempGP object

Description

This function updates trainX, trainY, and trainT in a tempGP object. By default, if the new
data has m data points, the function removes top m data points from the tempGP object and appends
the new data at the bottom, thus keeping the total number of data points the same. This can be
overwritten by setting replace = FALSE to keep all the data points (old and new). The method
also updates modelG by computing and updating residuals at the new data points. modelF can be
also be updated by setting the argument updateModelF to TRUE, though not required generally (see
comments in the Arguments.)

Usage

S3 method for class 'tempGP'
updateData(

object,

newX,

newy,

newT = NULL,

replace = TRUE,

updateModelF = FALSE,

)
Arguments
object An object of class tempGP.
newX A matrix with each column corresponding to one input variable.
newY A vector with each element corresponding to the output at the corresponding
row of newX.
newT A vector with time indices of the new datapoints. If NULL, the function assigns

natural numbers starting with one larger than the existing time indices in trainT.

XgbPCFit 25

replace A boolean to specify whether to replace the old data with the new one, or to
add the new data while still keeping all the old data. Default is TRUE, which
replaces the top m rows from the old data, where m is the number of data points
in the new data.

updateModelF A boolean to specify whether to update modelF as well. If the original tempGP
model is trained on a sufficiently large dataset (say one year), updating modelF
regularly may not result in any significant improvement, but can be computa-
tionally expensive.

additional arguments for future development

Value

An updated object of class tempGP.

Examples

data = DSWE::datal

trainindex = 1:50 #using the first 50 data points to train the model
traindata = data[trainindex,]

xCol = 2 #input variable columns

yCol = 7 #response column

trainX = as.matrix(traindatal,xCol])

trainY = as.numeric(traindatal,yCol])

tempGPObject = tempGP(trainX, trainY)

newdata = DSWE::datal[101:110,] # defining new data
newX = as.matrix(newdatal[,xCol, drop = FALSE])

newY = as.numeric(newdatal,yCol])

tempGPupdated = updateData(tempGPObject, newX, newY)

XgbPCFit xgboost based power curve modelling

Description

xgboost based power curve modelling

Usage

XgbPCFit(
trainX,
trainy,
testX,
max.depth = 8,
eta = 0.25,
nthread = 2,
nrounds = 5

26 XgbPCFit

Arguments
trainX a matrix or dataframe to be used in modelling
trainy a numeric or vector as a target
testX a matrix or dataframe, to be used in computing the predictions
max.depth maximum depth of a tree
eta learning rate
nthread This parameter specifies the number of CPU threads that XGBoost
nrounds number of boosting rounds or trees to build
Value

a vector or numeric predictions on user provided test data

References

Chen, T., & Guestrin, C. (2016). "XGBoost: A Scalable Tree Boosting System." Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
785-794. doi:10.1145/2939672.2939785.

Examples

data = datal

trainX = as.matrix(datalc(1:100),2])
trainY = datal[c(1:100),7]

testX = as.matrix(datalc(101:110),2])

Xgb_prediction = XgbPCFit(trainX, trainY, testX)

https://doi.org/10.1145/2939672.2939785

Index

x datasets
datal, 9
data2, 9

AMK, 2

ComparePCurve, 4
ComputeWeightedDifference, 6
CovMatch, 8

datal, 9
data2, 9
deltaEnergy, 10

funGP, 12
imptPower, 13

KnnPCFit, 15
KnnPredict, 16
KnnUpdate, 17

predict.tempGP, 18, 23
SplinePCFit, 19
SvmPCFit, 19
syncSize, 20
tempGP, 21

updateData, 23
updateData. tempGP, 22-24, 24

XgbPCFit, 25

27

	AMK
	ComparePCurve
	ComputeWeightedDifference
	CovMatch
	data1
	data2
	deltaEnergy
	funGP
	imptPower
	KnnPCFit
	KnnPredict
	KnnUpdate
	predict.tempGP
	SplinePCFit
	SvmPCFit
	syncSize
	tempGP
	updateData
	updateData.tempGP
	XgbPCFit
	Index

