Package ‘DALEX’

October 16, 2025

Title moDel Agnostic Language for Exploration and eXplanation
Version 2.5.3

Description Any unverified black box model is the path to failure. Opaqueness leads to distrust.
Distrust leads to ignoration. Ignoration leads to rejection.
DALEX package xrays any model and helps to explore and explain its behaviour.
Machine Learning (ML) models are widely used and have various applications in classification
or regression. Models created with boosting, bagging, stacking or similar techniques are often
used due to their high performance. But such black-box models usually lack direct interpretability.
DALEX package contains various methods that help to understand the link between input vari-
ables
and model output. Implemented methods help to explore the model on the level of a single instance
as well as a level of the whole dataset.
All model explainers are model agnostic and can be compared across different models.
DALEX package is the cornerstone for 'DrWhy.Al' universe of packages for visual model explo-
ration.
Find more details in (Biecek 2018) <https://jmlr.org/papers/v19/18-416.html>.

License GPL
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Depends R (>=3.5)

Imports ggplot2, iBreakDown (>= 1.3.1), ingredients (>= 2.0),
kernelshap

Suggests gower, ranger, testthat, methods
URL https://modeloriented.github.io/DALEX/, https://dalex.drwhy.ai

BugReports https://github.com/ModelOriented/DALEX/issues
NeedsCompilation no

Author Przemyslaw Biecek [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8423-1823>),
Szymon Maksymiuk [aut] (ORCID: <https://orcid.org/0000-0002-3120-1601>),
Hubert Baniecki [aut] (ORCID: <https://orcid.org/0000-0001-6661-5364>)

1

https://jmlr.org/papers/v19/18-416.html
https://modeloriented.github.io/DALEX/
https://dalex.drwhy.ai
https://github.com/ModelOriented/DALEX/issues
https://orcid.org/0000-0001-8423-1823
https://orcid.org/0000-0002-3120-1601
https://orcid.org/0000-0001-6661-5364

2 Contents

Maintainer Przemyslaw Biecek <przemyslaw.biecek@gmail.com>
Repository CRAN
Date/Publication 2025-10-16 07:30:07 UTC

Contents
apartmentso e e e e e 3
colors_discrete_drwhy 3
covid . . oL 4
dragonso 5
explaindefault. 5
fifa 9
get_loss_yardstick 11
happiness e e e 12
HR . e 12
install_dependencies 13
JOSS_CIOSS_ENIIOPY . . . v v v v v o o e e e e e e e e e e e e 13
model_diagnostics e 15
model _info 16
model_parts e e e e e e 18
model_performance L. e 19
model_profile 21
plotlist 23
plot.model_diagnostics e e e e 24
plotmodel_parts 25
plotmodel_performance 26
plot.model_profile 27
plot.predict_diagnostics 29
plot.predict_parts 30
plot.predict_profile 31
plot.shap_aggregated 32
predict.explainer 33
predict_diagnostics L. e e e e 34
predict_partso e e e 36
predict_profile 39
print.description L e e e e e e 40
print.explainer e 41
print.model_diagnostics 42
printmodel_info L 42
print.model_performance oL 43
print.model_profile 43
print.predict_diagnostics Lo e 44
set_theme_dalex e 44
shap_aggregated L 45
theme_drwhy L 47
HEANIC e e e e 47

update_data L 49

apartments 3

update_label e e 49
variable_effect. 50
yhat . . e 51
Index 54
apartments Apartments Data
Description

Datasets apartments and apartments_test are artificial, generated form the same model. Struc-
ture of the dataset is copied from real dataset from PBImisc package, but they were generated in a
way to mimic effect of Anscombe quartet for complex black box models.

Usage

data(apartments)

Format

a data frame with 1000 rows and 6 columns

Details

* m?2.price - price per square meter

* surface - apartment area in square meters

¢ n.rooms - number of rooms (correlated with surface)

e district - district in which apartment is located, factor with 10 levels
* floor - floor

* construction.date - construction year

colors_discrete_drwhy DrWhy color palettes for ggplot objects

Description

DrWhy color palettes for ggplot objects

Usage

colors_discrete_drwhy(n = 2)
colors_diverging_drwhy()

colors_breakdown_drwhy ()

4 covid

Arguments

n number of colors for color palette

Value

color palette as vector of charactes

covid Data for early COVID mortality

Description

Two datasets of characteristics of patients infected with COVID. It is important to note that these
are not real patient data. This is simulated data, generated to have relationships consistent with
real data (obtained from NIH), but the data itself is not real. Fortunately, they are sufficient for the
purposes of our exercise.

Usage

data(covid_summer)
data(covid_spring)

Format

a data frame with 10 000 rows each and 12 columns

Details

The data is divided into two sets covid_spring and covid_summer. The first is acquired in spring
2020 and will be used as training data while the second dataset is acquired in summer and will be
used for validation. In machine learning, model validation is performed on a separate data set. This
controls the risk of overfitting an elastic model to the data. If we do not have a separate set then it
is generated using cross-validation, out of sample or out of time techniques.

It contains 20 000 rows related fo COVID mortality. it contains 11 variables such as: Gender, Age,
Cardiovascular.Diseases, Diabetes, Neurological.Diseases, Kidney.Diseases.

Source: https://github.com/BetaAndBit/RML

Source

https://github.com/BetaAndBit/RML

https://github.com/BetaAndBit/RML
https://github.com/BetaAndBit/RML

dragons 5

dragons Dragon Data

Description

Datasets dragons and dragons_test are artificial, generated form the same ground truth model,
but with sometimes different data distribution.

Usage

data(dragons)

Format

a data frame with 2000 rows and 8 columns

Details

Values are generated in a way to: - have nonlinearity in year_of_birth and height - have concept
drift in the test set

 year_of_birth - year in which the dragon was born. Negative year means year BC, eg: -1200
=1201 BC

 year_of_discovery - year in which the dragon was found.

* height - height of the dragon in yards.

* weight - weight of the dragon in tons.

* scars - number of scars.

* colour - colour of the dragon.

* number_of_lost_teeth - number of teeth that the dragon lost.

* life_length - life length of the dragon.

explain.default Create Model Explainer

Description

Black-box models may have very different structures. This function creates a unified representation
of a model, which can be further processed by functions for explanations.

6 explain.default

Usage

explain.default(
model,
data = NULL,
y = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
weights = NULL,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = NULL
)

explain(
model,
data = NULL,
y = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
weights = NULL,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,

type = NULL
)
Arguments

model object - a model to be explained

data data.frame or matrix - data which will be used to calculate the explanations. If
not provided, then it will be extracted from the model. Data should be passed
without a target column (this shall be provided as the y argument). NOTE: If the
target variable is present in the data, some of the functionalities may not work
properly.

y numeric vector with outputs/scores. If provided, then it shall have the same size
as data

predict_function
function that takes two arguments: model and new data and returns a numeric
vector with predictions. By default it is yhat.

explain.default 7

predict_function_target_column
Character or numeric containing either column name or column number in the
model prediction object of the class that should be considered as positive (i.e.
the class that is associated with probability 1). If NULL, the second column of
the output will be taken for binary classification. For a multiclass classification
setting, that parameter cause switch to binary classification mode with one vs
others probabilities.

residual_function
function that takes four arguments: model, data, target vector y and predict func-
tion (optionally). It should return a numeric vector with model residuals for
given data. If not provided, response residuals (y — ¢) are calculated. By default
itis residual_function_default.

weights numeric vector with sampling weights. By default it’s NULL. If provided, then it
shall have the same length as data

other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose logical. If TRUE (default) then diagnostic messages will be printed

precalculate logical. If TRUE (default) then predicted_values and residual are calcu-
lated when explainer is created. This will happen also if verbose is TRUE. Set
both verbose and precalculate to FALSE to omit calculations.

colorize logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized.
Will work only in the R console. Now by default it is FALSE while knitting and
TRUE otherwise.

model_info a named list (package, version, type) containing information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Details

Please NOTE that the model is the only required argument. But some explanations may expect that
other arguments will be provided too.

Value

An object of the class explainer.
It’s a list with the following fields:

* model the explained model.

* data the dataset used for training.

* y response for observations from data.

* weights sample weights for data. NULL if weights are not specified.
* y_hat calculated predictions.

e residuals calculated residuals.

8 explain.default

e predict_function function that may be used for model predictions, shall return a single
numerical value for each observation.

* residual_function function that returns residuals, shall return a single numerical value for
each observation.

e class class/classes of a model.
* label label of explainer.

* model_info named list contating basic information about model, like package, version of
package and type.

References

Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.
drwhy.ai/

Examples

simple explainer for regression problem

aps_lm_model4 <- Im(m2.price ~., data = apartments)

aps_lm_explainer4 <- explain(aps_lm_model4, data = apartments, label = "model_4v")
aps_lm_explainer4

various parameters for the explain function
all defaults
aps_1lm <- explain(aps_lm_model4)

silent execution
aps_1lm <- explain(aps_lm_model4, verbose = FALSE)

set target variable

aps_1lm <- explain(aps_lm_model4, data = apartments, label = "model_4v", y = apartments$m2.price)

aps_1lm <- explain(aps_lm_model4, data = apartments, label = "model_4v", y = apartments$m2.price,
predict_function = predict)

user provided predict_function
aps_ranger <- ranger::ranger(m2.price~., data = apartments, num.trees = 50)
custom_predict <- function(X.model, newdata) {
predict(X.model, newdata)$predictions
3
aps_ranger_exp <- explain(aps_ranger, data = apartments, y = apartments$m2.price,
predict_function = custom_predict)

user provided residual_function
aps_ranger <- ranger::ranger(m2.price~., data = apartments, num.trees = 50)
custom_residual <- function(X.model, newdata, y, predict_function) {
abs(y - predict_function(X.model, newdata))
3
aps_ranger_exp <- explain(aps_ranger, data = apartments,
y = apartments$m2.price,
residual_function = custom_residual)

https://ema.drwhy.ai/
https://ema.drwhy.ai/

fifa 9

binary classification

titanic_ranger <- ranger::ranger(as.factor(survived)~., data = titanic_imputed, num.trees = 50,
probability = TRUE)

keep in mind that for binary classification y parameter has to be numeric with @ and 1 values

titanic_ranger_exp <- explain(titanic_ranger, data = titanic_imputed, y = titanic_imputed$survived)

multiclass task

hr_ranger <- ranger::ranger(status~., data = HR, num.trees = 50, probability = TRUE)
keep in mind that for multiclass y parameter has to be a factor,

with same levels as in training data

hr_ranger_exp <- explain(hr_ranger, data = HR, y = HR$status)

set model_info

model_info <- list(package = "stats”, ver = "3.6.2", type = "regression”)
aps_lm_model4 <- Im(m2.price ~., data = apartments)
aps_lm_explainer4 <- explain(aps_lm_model4, data = apartments, label = "model_4v",

model_info = model_info)

simple function

aps_fun <- function(x) 58+*x$surface

aps_fun_explainer <- explain(aps_fun, data = apartments, y = apartments$m2.price, label="sfun")
model_performance (aps_fun_explainer)

set model_info

model_info <- list(package = "stats”, ver = "3.6.2", type = "regression”)
aps_lm_model4 <- Im(m2.price ~., data = apartments)
aps_lm_explainer4 <- explain(aps_lm_model4, data = apartments, label = "model_4v",

model_info = model_info)

aps_lm_explainer4 <- explain(aps_lm_model4, data = apartments, label = "model_4v",
weights = as.numeric(apartments$construction.year > 2000))

more complex model

library("ranger")

aps_ranger_model4 <- ranger(m2.price ~., data = apartments, num.trees = 50)
aps_ranger_explainer4 <- explain(aps_ranger_model4, data = apartments, label = "model_ranger")
aps_ranger_explainer4

fifa FIFA 20 preprocessed data

Description

The fifa dataset is a preprocessed players_20.csv dataset which comes as a part of "FIFA 20
complete player dataset" at Kaggle.

10 fifa

Usage

data(fifa)

Format

a data frame with 5000 rows, 42 columns and rownames

Details

It contains 5000 overall’ best players and 43 variables. These are:

¢ short_name (rownames)
* nationality of the player (not used in modeling)
* overall, potential, value_eur, wage_eur (4 potential target variables)

* age, height, weight, attacking skills, defending skills, goalkeeping skills (37 variables)

It is advised to leave only one target variable for modeling.
Source: https://www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset

All transformations:

1. take 43 columns: [3, 5, 7:9, 11:14, 45:78] (R indexing)
. take rows with value_eur > @

. convert short_name to ASCII

2
3
4. remove rows with duplicated short_name (keep first)
5. sort rows on overall and take top 5000

6. set short_name column as rownames

7. transform nationality to factor

8. reorder columns

Source

The players_20.csv dataset was downloaded from the Kaggle site and went through few transfor-
mations. The complete dataset was obtained from https://www.kaggle.com/stefanoleone992/
fifa-20-complete-player-dataset#players_20.csv on January 1, 2020.

https://www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset
https://www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset#players_20.csv
https://www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset#players_20.csv

get_loss_yardstick 11

get_loss_yardstick Wrapper for Loss Functions from the yardstick Package

Description

The yardstick package provides many auxiliary functions for calculating the predictive performance
of the model. However, they have an interface that is consistent with the tidyverse philosophy. The
loss_yardstick function adapts loss functions from the yardstick package to functions understood
by DALEX. Type compatibility for y-values and for predictions must be guaranteed by the user.

Usage

get_loss_yardstick(loss, reverse = FALSE, reference = 1)

loss_yardstick(loss, reverse = FALSE, reference = 1)

Arguments
loss loss function from the yardstick package
reverse shall the metric be reversed? for loss metrics lower values are better. reverse =
TRUE is useful for accuracy-like metrics
reference if the metric is reverse then it is calculated as reference - loss. The default
value is 1.
Value

loss function that can be used in the model_parts function

Examples

titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial")
explainer_glm <- DALEX::explain(titanic_glm_model,
data = titanic_imputed[,-8],
y = factor(titanic_imputed$survived))
See the 'How to use DALEX with the yardstick package' vignette
which explains this model with measures implemented in the 'yardstick' package

12 HR

happiness World Happiness Report data

Description
The happiness_train and happiness_test datasets are generated based on the "World Happiness
Report".
Usage
data(happiness_train)
data(happiness_test)
Format

two data frames with total 781 rows, 7 columns ech and rownames

Details

It contains data for 781 countries and 7 variables. These are:

* score - Happiness score

» gdp_per_capita - GDP per capita

* social_support - Social support

* healthy_life_expectancy - Healthy life expectancy

* freedom_life_choices - Freedom to make life choices
* generosity - Generosity

* perceptions_of_corruption - Perceptions of corruption

Source

World Happiness Report data

HR Human Resources Data

Description

Datasets HR and HR_test are artificial, generated form the same model. Structure of the dataset is
based on a real data, from Human Resources department with information which employees were
promoted, which were fired.

Usage
data(HR)

install_dependencies 13

Format

a data frame with 10000 rows and 6 columns

Details

Values are generated in a way to: - have interaction between age and gender for the ’fired’ variable
- have non monotonic relation for the salary variable - have linear effects for hours and evaluation.

* gender - gender of an employee.

* age - age of an employee in the moment of evaluation.

* hours - average number of working hours per week.

* evaluation - evaluation in the scale 2 (bad) - 5 (very good).
* salary - level of salary in the scale O (lowest) - 5 (highest).

* status - target variable, either ‘fired‘ or ‘promoted‘ or ‘ok.

install_dependencies Install all dependencies for the DALEX package

Description

By default "heavy’ dependencies are not installed along DALEX. This function silently install all
required packages.

Usage
install_dependencies(packages = c("ingredients"”, "iBreakDown", "ggpubr"))
Arguments
packages which packages shall be installed?
loss_cross_entropy Calculate Loss Functions
Description

Calculate Loss Functions

14 loss_cross_entropy
Usage
loss_cross_entropy(observed, predicted, p_min = 1e-04, na.rm = TRUE)
loss_sum_of_squares(observed, predicted, na.rm = TRUE)
loss_root_mean_square(observed, predicted, na.rm = TRUE)
loss_accuracy(observed, predicted, na.rm = TRUE)
loss_one_minus_accuracy(observed, predicted, cutoff = 0.5, na.rm = TRUE)
get_loss_one_minus_accuracy(cutoff = 0.5, na.rm = TRUE)
loss_one_minus_auc(observed, predicted)
get_loss_default(x)

loss_default(x)

Arguments
observed observed scores or labels, these are supplied as explainer specific y
predicted predicted scores, either vector of matrix, these are returned from the model spe-
cific predict_function()
p_min for cross entropy, minimal value for probability to make sure that log will not
explode
na.rm logical, should missing values be removed?
cutoff classification threshold for the accuracy loss functions
X either an explainer or type of the model. One of "regression", "classification",
"multiclass".
Value

numeric - value of the loss function

Examples

library("ranger")

titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50,
probability = TRUE)

loss_one_minus_auc(titanic_imputed$survived, yhat(titanic_ranger_model, titanic_imputed))

HR_ranger_model_multi <- ranger(status~., data = HR, num.trees = 50, probability = TRUE)
loss_cross_entropy(as.numeric(HR$status), yhat(HR_ranger_model_multi, HR))

model_diagnostics 15

model_diagnostics Dataset Level Model Diagnostics

Description

This function performs model diagnostic of residuals. Residuals are calculated and plotted against
predictions, true y values or selected variables. Find information how to use this function here:
https://ema.drwhy.ai/residualDiagnostic.html.

Usage
model_diagnostics(explainer, variables = NULL, ...)
Arguments
explainer a model to be explained, preprocessed by the explain function
variables character - name of variables to be explained. Default NULL stands for all vari-
ables
other parameters
Value

An object of the class model_diagnostics. It’s a data frame with residuals and selected variables.

References

Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.
drwhy.ai/

Examples

library(DALEX)
apartments_lm_model <- 1Im(m2.price ~ ., data = apartments)
explainer_lm <- explain(apartments_lm_model,
data = apartments,
y = apartments$m2.price)
diag_lm <- model_diagnostics(explainer_1lm)
diag_1lm
plot(diag_1lm)

library("ranger")
apartments_ranger_model <- ranger(m2.price ~ ., data = apartments)
explainer_ranger <- explain(apartments_ranger_model,
data = apartments,
y = apartments$m2.price)
diag_ranger <- model_diagnostics(explainer_ranger)
diag_ranger
plot(diag_ranger)

https://ema.drwhy.ai/residualDiagnostic.html
https://ema.drwhy.ai/
https://ema.drwhy.ai/

model_info

16
plot(diag_ranger, diag_lm)
plot(diag_ranger, diag_lm, variable = "y")
plot(diag_ranger, diag_lm, variable = "construction.year")
plot(diag_ranger, variable = "y", yvariable =
plot(diag_ranger, variable = "y", yvariable = "abs_residuals”)
plot(diag_ranger, variable = "ids")

model_info Exract info from model
Description

This generic function let user extract base information about model. The function returns a named
list of class model_info that contain about package of model, version and task type. For wrappers

like mlr or caret both, package and wrapper inforamtion are stored

Usage

model_info(model, is_multiclass = FALSE,

S3 method for class 'lm'
model_info(model, is_multiclass = FALSE,

S3 method for class 'randomForest'
model_info(model, is_multiclass = FALSE,

S3 method for class 'svm'
model_info(model, is_multiclass = FALSE,

S3 method for class 'glm'
model_info(model, is_multiclass = FALSE,

S3 method for class 'lrm'
model_info(model, is_multiclass = FALSE,

S3 method for class 'glmnet'
model_info(model, is_multiclass = FALSE,
S3 method for class 'cv.glmnet'
model_info(model, is_multiclass = FALSE,

S3 method for class 'ranger'
model_info(model, is_multiclass = FALSE,

S3 method for class 'gbm'
model_info(model, is_multiclass

FALSE,

model_info 17

S3 method for class 'model_fit'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'train'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'rpart'’
model_info(model, is_multiclass = FALSE, ...)

Default S3 method:

model_info(model, is_multiclass = FALSE, ...)
Arguments
model - model object
is_multiclass - if TRUE and task is classification, then multitask classification is set. Else is

omitted. If model_info was executed withing explain function. DALEX will
recognize subtype on it’s own.

- another arguments

Details
Currently supported packages are:

* class cv.glmnet and glmnet - models created with glmnet package

* class glm - generalized linear models

e class 1rm - models created with rms package,

e class model_fit - models created with parsnip package

* class 1m - linear models created with stats: :1m

e class ranger - models created with ranger package

* class randomForest - random forest models created with randomForest package
* class svm - support vector machines models created with the e1071 package

e class train - models created with caret package

* class gbm - models created with gbm package

Value

A named list of class model_info

Examples

aps_lm_model4 <- Im(m2.price ~., data = apartments)
model_info(aps_lm_model4)

library("ranger")

18

model_parts

model_regr_rf <- ranger::ranger(status~., data = HR, num.trees = 50, probability = TRUE)
model_info(model_regr_rf, is_multiclass = TRUE)

model_parts

Dataset Level Variable Importance as Change in Loss Function after
Variable Permutations

Description

From DALEX version 1.0 this function calls the feature_importance Find information how to
use this function here: https://ema.drwhy.ai/featureImportance.html.

Usage

model_parts(
explainer,

loss_function

L

= get_loss_default(explainer$model_info$type),

type = "variable_importance”,

N = n_sample,
1000

n_sample =

Arguments

explainer

loss_function

type

n_sample

Value

a model to be explained, preprocessed by the explain function

a function that will be used to assess variable importance. By default it is 1-
AUC for classification, cross entropy for multilabel classification and RMSE for
regression. Custom, user-made loss function should accept two obligatory pa-
rameters (observed, predicted), where observed states for actual values of the
target, while predicted for predicted values. If attribute loss_name is associ-
ated with function object, then it will be plotted as name of the loss function.

other parameters

character, type of transformation that should be applied for dropout loss. variable_importance
and raw results raw drop lossess, ratio returns drop_loss/drop_loss_full_model
while difference returns drop_loss - drop_loss_full_model

number of observations that should be sampled for calculation of variable im-
portance. If NULL then variable importance will be calculated on whole dataset
(no sampling).

alias for N held for backwards compatibility. number of observations that should
be sampled for calculation of variable importance.

An object of the class feature_importance. It’s a data frame with calculated average response.

https://ema.drwhy.ai/featureImportance.html

model_performance 19

References

Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.
drwhy.ai/

Examples

regression

library("ranger")
apartments_ranger_model <- ranger(m2.price~., data = apartments, num.trees = 50)
explainer_ranger <- explain(apartments_ranger_model, data = apartments[,-1],

y = apartments$m2.price, label = "Ranger Apartments")
model_parts_ranger_aps <- model_parts(explainer_ranger, type = "raw")
head(model_parts_ranger_aps, 8)
plot(model_parts_ranger_aps)

binary classification

titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial")
explainer_glm_titanic <- explain(titanic_glm_model, data = titanic_imputed[,-8],
y = titanic_imputed$survived)
logit <- function(x) exp(x)/(1+exp(x))
custom_loss <- function(observed, predicted){
sum((observed - logit(predicted))*2)
3
attr(custom_loss, "loss_name") <- "Logit residuals”
model_parts_glm_titanic <- model_parts(explainer_glm_titanic, type =
loss_function = custom_loss)

n "

raw”,

head(model_parts_glm_titanic, 8)
plot(model_parts_glm_titanic)

multilabel classification

HR_ranger_model_HR <- ranger(status~., data = HR, num.trees = 50,
probability = TRUE)
explainer_ranger_HR <- explain(HR_ranger_model_HR, data = HR[,-6],

y = HR$status, label = "Ranger HR")
model_parts_ranger_HR <- model_parts(explainer_ranger_HR, type = "raw")
head(model_parts_ranger_HR, 8)
plot(model_parts_ranger_HR)

model_performance Dataset Level Model Performance Measures

https://ema.drwhy.ai/
https://ema.drwhy.ai/

20 model_performance

Description

Function model_performance() calculates various performance measures for classification and re-
gression models. For classification models following measures are calculated: F1, accuracy, recall,
precision and AUC. For regression models following measures are calculated: mean squared error,
R squared, median absolute deviation.

Usage
model_performance(explainer, ..., cutoff = 0.5)
Arguments
explainer a model to be explained, preprocessed by the explain function
other parameters
cutoff a cutoff for classification models, needed for measures like recall, precision,
ACC, F1. By default 0.5.
Value

An object of the class model_performance.

It’s a list with following fields:

e residuals - data frame that contains residuals for each observation

* measures - list with calculated measures that are dedicated for the task, whether it is regres-
sion, binary classification or multiclass classification.

* type - character that specifies type of the task.

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.
drwhy.ai/

Examples

regression

library("ranger")

apartments_ranger_model <- ranger(m2.price~., data = apartments, num.trees = 50)
explainer_ranger_apartments <- explain(apartments_ranger_model, data = apartments[,-1],
y = apartments$m2.price, label = "Ranger Apartments")

model_performance_ranger_aps <- model_performance(explainer_ranger_apartments)
model_performance_ranger_aps

plot(model_performance_ranger_aps)

plot(model_performance_ranger_aps, geom = "boxplot")
plot(model_performance_ranger_aps, geom = "histogram")

binary classification

titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial")

https://ema.drwhy.ai/
https://ema.drwhy.ai/

model_profile 21

explainer_glm_titanic <- explain(titanic_glm_model, data = titanic_imputed[,-8],
y = titanic_imputed$survived)

model_performance_glm_titanic <- model_performance(explainer_glm_titanic)

model_performance_glm_titanic

plot(model_performance_glm_titanic)

plot(model_performance_glm_titanic, geom = "boxplot")

plot(model_performance_glm_titanic, geom = "histogram")

multilabel classification

HR_ranger_model <- ranger(status~., data = HR, num.trees = 50,
probability = TRUE)
explainer_ranger_HR <- explain(HR_ranger_model, data = HR[,-6],

y = HR$status, label = "Ranger HR")
model_performance_ranger_HR <- model_performance(explainer_ranger_HR)
model_performance_ranger_HR
plot(model_performance_ranger_HR)

plot(model_performance_ranger_HR, geom = "boxplot")
plot(model_performance_ranger_HR, geom = "histogram")
model_profile Dataset Level Variable Profile as Partial Dependence or Accumulated

Local Dependence Explanations

Description

This function calculates explanations on a dataset level set that explore model response as a function
of selected variables. The explanations can be calulated as Partial Dependence Profile or Accumu-
lated Local Dependence Profile. Find information how to use this function here: https://ema.
drwhy.ai/partialDependenceProfiles.html. The variable_profile function is a copy of
model_profile

Usage

model_profile(
explainer,
variables = NULL,
N = 100,
groups = NULL,
k = NULL,
center = TRUE,
type = "partial”

variable_profile(

https://ema.drwhy.ai/partialDependenceProfiles.html
https://ema.drwhy.ai/partialDependenceProfiles.html

22 model_profile
explainer,
variables = NULL,
N = 100,
groups = NULL,
k = NULL,
center = TRUE,
type = "partial”
)
single_variable(explainer, variable, type = "pdp"”, ...)
Arguments
explainer a model to be explained, preprocessed by the explain function
variables character - names of variables to be explained
N number of observations used for calculation of aggregated profiles. By default
100. Use NULL to use all observations.
other parameters that will be passed to ingredients: :aggregate_profiles
groups a variable name that will be used for grouping. By default NULL which means
that no groups shall be calculated
k number of clusters for the hclust function (for clustered profiles)
center shall profiles be centered before clustering
type the type of variable profile. Either partial, conditional or accumulated.
variable deprecated, use variables instead
Details
Underneath this function calls the partial_dependence or accumulated_dependence functions
from the ingredients package.
Value
An object of the class model_profile. It’s a data frame with calculated average model responses.
References
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.
drwhy.ai/
Examples
titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial”)

explainer_glm <- explain(titanic_glm_model, data = titanic_imputed)
model_profile_glm_fare <- model_profile(explainer_glm, "fare")
plot(model_profile_glm_fare)

https://ema.drwhy.ai/
https://ema.drwhy.ai/

plot.list

library("ranger")

titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50,
probability = TRUE)

explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed)

model_profile_ranger <- model_profile(explainer_ranger)

plot(model_profile_ranger, geom = "profiles”)

model_profile_ranger_1 <- model_profile(explainer_ranger, type = "partial”,
variables = c("age”, "fare"))

plot(model_profile_ranger_1 , variables = c("age", "fare"), geom = "points")

model_profile_ranger_2 <- model_profile(explainer_ranger, type = "partial”, k = 3)

plot(model_profile_ranger_2 , geom = "profiles”)

model_profile_ranger_3 <- model_profile(explainer_ranger, type = "partial”, groups = "gender")

plot(model_profile_ranger_3 , geom = "profiles”)

model_profile_ranger_4 <- model_profile(explainer_ranger, type = "accumulated”)
plot(model_profile_ranger_4 , geom = "profiles”)

Multiple profiles
model_profile_ranger_fare <- model_profile(explainer_ranger, "fare")
plot(model_profile_ranger_fare, model_profile_glm_fare)

23

plot.list Plot List of Explanations

Description

Plot List of Explanations

Usage
S3 method for class 'list'
plot(x, ...)
Arguments
X a list of explanations of the same class
other parameters
Value

An object of the class ggplot.

24 plot.model_diagnostics

Examples

library("ranger")
titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50,
probability = TRUE)
explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed[,-8],
y = titanic_imputed$survived)
mp_ranger <- model_performance(explainer_ranger)

titanic_ranger_model2 <- ranger(survived~gender + fare, data = titanic_imputed,
num.trees = 50, probability = TRUE)
explainer_ranger2 <- explain(titanic_ranger_model2, data = titanic_imputed[,-8],
y = titanic_imputed$survived,
label = "ranger2")
mp_ranger2 <- model_performance(explainer_ranger2)

plot(list(mp_ranger, mp_ranger2), geom = "prc")
plot(list(mp_ranger, mp_ranger2), geom = "roc")
tmp <- list(mp_ranger, mp_ranger2)

names(tmp) <- c("ranger”, "ranger2")

plot(tmp)

plot.model_diagnostics
Plot Dataset Level Model Diagnostics

Description

Plot Dataset Level Model Diagnostics

Usage

S3 method for class 'model_diagnostics'

plot(x, ..., variable = "y_hat”, yvariable = "residuals"”, smooth = TRUE)
Arguments

X a data.frame to be explained, preprocessed by the model_diagnostics function

other object to be included to the plot

variable character - name of the variable on OX axis to be explained, by default y_hat
yvariable character - name of the variable on QY axis, by default residuals
smooth logical shall the smooth line be added

Value

an object of the class model_diagnostics_explainer.

plot.model_parts 25

Examples

apartments_lm_model <- 1Im(m2.price ~ ., data = apartments)
explainer_lm <- explain(apartments_lm_model,
data = apartments,
y = apartments$m2.price)
diag_lm <- model_diagnostics(explainer_1lm)
diag_Im
plot(diag_1lm)

library("ranger")
apartments_ranger_model <- ranger(m2.price ~ ., data = apartments)
explainer_ranger <- explain(apartments_ranger_model,

data = apartments,

y = apartments$m2.price)
diag_ranger <- model_diagnostics(explainer_ranger)
diag_ranger
plot(diag_ranger)
plot(diag_ranger, diag_lm)
plot(diag_ranger, diag_lm, variable = "y")
plot(diag_ranger, diag_lm, variable = "construction.year")

non

plot(diag_ranger, variable = "y", yvariable = "y_hat")

plot.model_parts Plot Variable Importance Explanations

Description

Plot Variable Importance Explanations

Usage
S3 method for class 'model_parts'
plot(x, ...)
Arguments
X an object of the class model_parts
other parameters described below
Value

An object of the class ggplot.

26 plot.model_performance

Plot options

variable_importance:

* max_vars — maximal number of features to be included in the plot. default value is 10

* show_boxplots —logical if TRUE (default) boxplot will be plotted to show permutation data.
e bar_width — width of bars. By default 10

* desc_sorting — logical. Should the bars be sorted descending? By default TRUE

e title —the plot’s title, by default 'Feature Importance’

* subtitle —a character. Plot subtitle. By default NULL - then subtitle is set to "created for the
XXX, YYY model", where XXX, YYY are labels of given explainers.

plot.model_performance
Plot Dataset Level Model Performance Explanations

Description

Plot Dataset Level Model Performance Explanations

Usage
S3 method for class 'model_performance'
plot(
X’
geom = "ecdf”,

show_outliers = 0,

ptlabel = "name”,

lossFunction = loss_function,

loss_function = function(x) sqrt(mean(x*2))

)
Arguments
X a model to be explained, preprocessed by the explain function
other parameters
geom either "prc”, "roc”, "ecdf”, "boxplot”, "gain”, "1ift" or "histogram"” de-

termines how residuals shall be summarized
show_outliers number of largest residuals to be presented (only when geom = boxplot).
ptlabel either "name” or "index" determines the naming convention of the outliers
lossFunction alias for loss_function held for backwards compatibility.

loss_function function that calculates the loss for a model based on model residuals. By default
it’s the root mean square. NOTE that this argument was called lossFunction.

plot.model_profile 27

Value

An object of the class model_performance.

Examples

library("ranger")
titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50,
probability = TRUE)
explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed[,-81],
y = titanic_imputed$survived)
mp_ranger <- model_performance(explainer_ranger)
plot(mp_ranger)
plot(mp_ranger, geom = "boxplot”, show_outliers = 1)

titanic_ranger_model2 <- ranger(survived~gender + fare, data = titanic_imputed,
num.trees = 50, probability = TRUE)
explainer_ranger2 <- explain(titanic_ranger_model2, data = titanic_imputed[,-8],
y = titanic_imputed$survived,
label = "ranger2")
mp_ranger2 <- model_performance(explainer_ranger2)

plot(mp_ranger, mp_ranger2, geom = "prc")
plot(mp_ranger, mp_ranger2, geom = "roc")
plot(mp_ranger, mp_ranger2, geom = "1ift")
plot(mp_ranger, mp_ranger2, geom = "gain")
plot(mp_ranger, mp_ranger2, geom = "boxplot")
plot(mp_ranger, mp_ranger2, geom = "histogram”)
plot(mp_ranger, mp_ranger2, geom = "ecdf")
titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial”)
explainer_glm <- explain(titanic_glm_model, data = titanic_imputed[,-8],
y = titanic_imputed$survived, label = "glm",
predict_function = function(m,x) predict.glm(m,x,type = "response”))

mp_glm <- model_performance(explainer_glm)
plot(mp_glm)

titanic_lm_model <- Im(survived~., data = titanic_imputed)

explainer_lm <- explain(titanic_lm_model, data = titanic_imputed[,-81,
y = titanic_imputed$survived, label = "1m")

mp_lm <- model_performance(explainer_1m)

plot(mp_1m)

plot(mp_ranger, mp_glm, mp_1lm)
plot(mp_ranger, mp_glm, mp_lm, geom = "boxplot")
plot(mp_ranger, mp_glm, mp_lm, geom = "boxplot”, show_outliers = 1)

plot.model_profile Plot Dataset Level Model Profile Explanations

28 plot.model_profile

Description

Plot Dataset Level Model Profile Explanations

Usage
S3 method for class 'model_profile'
plot(x, ..., geom = "aggregates")
Arguments
X a variable profile explanation, created with the model_profile function

other parameters

n o n non

geom either "aggregates”, "profiles”, "points"” determines which will be plotted

Value

An object of the class ggplot.

aggregates:

e color — a character. Either name of a color, or hex code for a color, or _label_ if models
shall be colored, or _ids_ if instances shall be colored

* size —anumeric. Size of lines to be plotted

* alpha — a numeric between @ and 1. Opacity of lines

e facet_ncol — number of columns for the facet_wrap

e variables —if not NULL then only variables will be presented

e title — a character. Partial and accumulated dependence explainers have deafult value.

* subtitle — a character. If NULL value will be dependent on model usage.

Examples

titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial")
explainer_glm <- explain(titanic_glm_model, data = titanic_imputed)

expl_glm <- model_profile(explainer_glm, "fare")

plot(expl_glm)

library("ranger")

titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50,
probability = TRUE)

explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed)

expl_ranger <- model_profile(explainer_ranger)

plot(expl_ranger)

plot(expl_ranger, geom = "aggregates”)

vp_ra <- model_profile(explainer_ranger, type = "partial”, variables = c("age", "fare"))
plot(vp_ra, variables = c("age"”, "fare"), geom = "points")
vp_ra <- model_profile(explainer_ranger, type = "partial”, k = 3)

plot(vp_ra)

plot.predict_diagnostics 29

plot(vp_ra, geom = "profiles”)
plot(vp_ra, geom = "points")

vp_ra <- model_profile(explainer_ranger, type = "partial”, groups = "gender")
plot(vp_ra)

plot(vp_ra, geom = "profiles")

plot(vp_ra, geom = "points")

vp_ra <- model_profile(explainer_ranger, type = "accumulated")
plot(vp_ra)

plot(vp_ra, geom = "profiles")

plot(vp_ra, geom = "points")

plot.predict_diagnostics
Plot Instance Level Residual Diagnostics

Description

Plot Instance Level Residual Diagnostics

Usage
S3 method for class 'predict_diagnostics'
plot(x, ...)
Arguments
X an object with instance level residual diagnostics created with predict_diagnostics
function
other parameters that will be passed to plot.ceteris_paribus_explaine.
Value

an ggplot2 object of the class gg.

Examples

library("ranger")
titanic_glm_model <- ranger(survived ~ gender + age + class + fare + sibsp + parch,
data = titanic_imputed)
explainer_glm <- explain(titanic_glm_model,
data = titanic_imputed,
y = titanic_imputed$survived)

n n

johny_d <- titanic_imputed[24, c("gender"”, "age", "class"”, "fare", "sibsp”, "parch")]

pl <- predict_diagnostics(explainer_glm, johny_d, variables = NULL)

30 plot.predict_parts

plot(pl)

pl <- predict_diagnostics(explainer_glm, johny_d,
neighbors = 10,
variables = c("age", "fare"))
plot(pl)

pl <- predict_diagnostics(explainer_glm,

johny_d,
neighbors = 10,
variables = c("class”, "gender"))
plot(pl)
plot.predict_parts Plot Variable Attribution Explanations
Description

Plot Variable Attribution Explanations

Usage
S3 method for class 'predict_parts'
plot(x, ...)
Arguments
X an object of the class predict_parts
other parameters described below
Value

An object of the class ggplot.

Plot options

break_down:

* max_features — maximal number of features to be included in the plot. default value is 10

e min_max — a range of OX axis. By default NA, therefore it will be extracted from the con-
tributions of x. But it can be set to some constants, useful if these plots are to be used for
comparisons.

* add_contributions —if TRUE, variable contributions will be added to the plot.

e shift_contributions — number describing how much labels should be shifted to the right,
as a fraction of range. By default equal to 0. @5.

* vcolors — If NA (default), DrWhy colors are used.

plot.predict_profile 31

vnames — a character vector, if specified then will be used as labels on OY axis. By default
NULL.

digits — number of decimal places (round) or significant digits (signif) to be used.
rounding_function — a function to be used for rounding numbers.

plot_distributions — if TRUE then distributions of conditional propotions will be plot-
ted. This requires keep_distributions=TRUE in the break_down, local_attributions,
or local_interactions.

baseline —if numeric then veritical line starts in baseline.
title — a character. Plot title. By default "Break Down profile”.

subtitle — a character. Plot subtitle. By default NULL - then subtitle is set to "created for the
XXX, YYY model", where XXX, YYY are labels of given explainers.

max_vars — alias for the max_features parameter.

shap:

show_boxplots — logical if TRUE (default) boxplot will be plotted to show uncertanity of
attributions.

vcolors — If NA (default), DrWhy colors are used.
max_features — maximal number of features to be included in the plot. default value is 10
max_vars — alias for the max_features parameter.

oscillations:

bar_width — width of bars. By default 10

plot.predict_profile Plot Variable Profile Explanations

Description

Plot Variable Profile Explanations

Usage
S3 method for class 'predict_profile’
plot(x, ...)
Arguments
X an object of the class predict_profile
other parameters
Value

An object of the class ggplot.

32 plot.shap_aggregated

Plot options

ceteris_paribus:

e color — a character. Either name of a color or name of a variable that should be used for
coloring

¢ size —anumeric. Size of lines to be plotted

* alpha — a numeric between @ and 1. Opacity of lines

e facet_ncol — number of columns for the facet_wrap

* variables —if not NULL then only variables will be presented

e variable_type —a character. If numerical then only numerical variables will be plotted. If
categorical then only categorical variables will be plotted.

e title —a character. Plot title. By default "Ceteris Paribus profile”.

* subtitle —a character. Plot subtitle. By default NULL - then subtitle is set to "created for the
XXX, YYY model", where XXX, YYY are labels of given explainers.

* categorical_type —acharacter. How categorical variables shall be plotted? Either "1ines”
(default) or "bars"”.

plot.shap_aggregated Plot Generic for Break Down Objects

Description

Displays a waterfall aggregated shap plot for objects of shap_aggregated class.

Usage

S3 method for class 'shap_aggregated'
plot(

X,

shift_contributions = 0.05,

add_contributions = TRUE,

add_boxplots = TRUE,

max_features = 10,

title = "Aggregated SHAP"

Arguments

X an explanation object created with function explain.
other parameters like vcolors, vnames, min_max, digits, rounding_function,
baseline, subtitle, baseline, max_vars.

shift_contributions

number describing how much labels should be shifted to the right, as a fraction
of range. By default equal to 0. 05.

predict.explainer 33

add_contributions
if TRUE, variable contributions will be added to the plot

add_boxplots if TRUE, boxplots of SHAP will be shown
max_features maximal number of features to be included in the plot. default value is 10.

title a character. Plot title. By default "Break Down profile”.

Value

a ggplot2 object.

Examples

library("DALEX")
set.seed(1313)
model_titanic_glm <- glm(survived ~ gender + age + fare,
data = titanic_imputed, family = "binomial”)

explain_titanic_glm <- explain(model_titanic_glm,

data = titanic_imputed,

y = titanic_imputed$survived,

label = "glm")

bd_glm <- shap_aggregated(explain_titanic_glm, titanic_imputed[1:10, 1)
bd_glm

plot(bd_glm)

plot(bd_glm, max_features = 3)

plot(bd_glm, max_features = 3,

non

vnames = c("average"”,"+ male”,"+ young","+ cheap ticket"”, "+ other factors”, "final"))

predict.explainer Predictions for the Explainer

Description

This is a generic predict() function works for explainer objects.

Usage

S3 method for class 'explainer'
predict(object, newdata, ...)

model_prediction(explainer, new_data, ...)

34

predict_diagnostics

Arguments
object a model to be explained, object of the class explainer
newdata data.frame or matrix - observations for prediction
other parameters that will be passed to the predict function
explainer a model to be explained, object of the class explainer
new_data data.frame or matrix - observations for prediction
Value

An numeric matrix of predictions

Examples

HR_glm_model <- glm(status == "fired"”~., data = HR, family = "binomial")
explainer_glm <- explain(HR_glm_model, data = HR)
predict(explainer_glm, HR[1:3,])

library("ranger")

HR_ranger_model <- ranger(status~., data = HR, num.trees = 50, probability = TRUE)

explainer_ranger <- explain(HR_ranger_model, data = HR)
predict(explainer_ranger, HR[1:3,])

model_prediction(explainer_ranger, HR[1:3,1)

predict_diagnostics Instance Level Residual Diagnostics

Description

This function performs local diagnostic of residuals. For a single instance its neighbors are identi-
fied in the validation data. Residuals are calculated for neighbors and plotted against residuals for all
data. Find information how to use this function here: https://ema.drwhy.ai/localDiagnostics.

html.

Usage

predict_diagnostics(
explainer,
new_observation,
variables = NULL,
nbins = 20,
neighbors = 50,
distance = gower::gower_dist

https://ema.drwhy.ai/localDiagnostics.html
https://ema.drwhy.ai/localDiagnostics.html

predict_diagnostics 35

individual_diagnostics(
explainer,
new_observation,
variables = NULL,

nbins = 20,
neighbors = 50,
distance = gower::gower_dist

Arguments

explainer a model to be explained, preprocessed by the ’explain’ function
new_observation
a new observation for which predictions need to be explained

variables character - name of variables to be explained

other parameters

nbins number of bins for the histogram. By default 20

neighbors number of neighbors for histogram. By default 50.

distance the distance function, by default the gower_dist() function.
Value

An object of the class ’predict_diagnostics’. It’s a data frame with calculated distribution of resid-
uals.

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.
drwhy.ai/

Examples

library("ranger")
titanic_glm_model <- ranger(survived ~ gender + age + class + fare + sibsp + parch,
data = titanic_imputed)
explainer_glm <- explain(titanic_glm_model,
data = titanic_imputed,
y = titanic_imputed$survived)
johny_d <- titanic_imputed[24, c("gender"”, "age", "class"”, "fare", "sibsp”, "parch")]
id_johny <- predict_diagnostics(explainer_glm, johny_d, variables = NULL)
id_johny
plot(id_johny)

id_johny <- predict_diagnostics(explainer_glm, johny_d,
neighbors = 10,
variables = c("age", "fare"))

https://ema.drwhy.ai/
https://ema.drwhy.ai/

36 predict_parts

id_johny
plot(id_johny)

id_johny <- predict_diagnostics(explainer_glm,

johny_d,
neighbors = 10,
variables = c("class"”, "gender"))
id_johny
plot(id_johny)
predict_parts Instance Level Parts of the Model Predictions

Description

Instance Level Variable Attributions as Break Down, SHAP, aggregated SHAP or Oscillations
explanations. Model prediction is decomposed into parts that are attributed for particular vari-
ables. From DALEX version 1.0 this function calls the break_down or shap functions from the
iBreakDown package or ceteris_paribus from the ingredients package or kernelshap from
the kernelshap package. Find information how to use the break_down method here: https:
//ema.drwhy.ai/breakDown.html. Find information how to use the shap method here: https:
//ema.drwhy.ai/shapley.html. Find information how to use the oscillations method here:
https://ema.drwhy.ai/ceterisParibusOscillations.html. Find information how to use the
kernelshap method here: https://modeloriented.github.io/kernelshap/ aSHAP method
provides explanations for a set of observations based on SHAP.

Usage

predict_parts(
explainer,
new_observation,

N = if (substr(type, 1, 4) == "osci”) 500 else NULL,

type = "break_down"
)
predict_parts_oscillations(explainer, new_observation, ...)

predict_parts_oscillations_uni(
explainer,
new_observation,
variable_splits_type = "uniform”,

)

predict_parts_oscillations_emp(

https://ema.drwhy.ai/breakDown.html
https://ema.drwhy.ai/breakDown.html
https://ema.drwhy.ai/shapley.html
https://ema.drwhy.ai/shapley.html
https://ema.drwhy.ai/ceterisParibusOscillations.html
https://modeloriented.github.io/kernelshap/

predict_parts 37

explainer,

new_observation,

variable_splits = NULL,

variables = colnames(explainer$data),

)

predict_parts_break_down(explainer, new_observation, ...)
predict_parts_break_down_interactions(explainer, new_observation, ...)
predict_parts_shap(explainer, new_observation, ...)
predict_parts_shap_aggregated(explainer, new_observation, ...)
predict_parts_kernel_shap(explainer, new_observation, ...)
predict_parts_kernel_shap_break_down(explainer, new_observation, ...)
predict_parts_kernel_shap_aggreagted(explainer, new_observation, ...)

variable_attribution(
explainer,
new_observation,

L

N = if (substr(type, 1, 4) == "osci") 500 else NULL,

type = "break_down"
)
Arguments
explainer a model to be explained, preprocessed by the explain function

new_observation
a new observation for which predictions need to be explained

other parameters that will be passed to iBreakDown: : break_down

N the maximum number of observations used for calculation of attributions. By
default NULL (use all) or 500 (for oscillations).

type the type of variable attributions. Either shap, aggregated_shap, oscillations,
oscillations_uni, oscillations_emp, break_down, break_down_interactions,
kernel_shap, kernel_shap_break_down or kernel_shap_aggregated.
variable_splits_type
how variable grids shall be calculated? Will be passed to ceteris_paribus.
variable_splits
named list of splits for variables. It is used by oscillations based measures. Will
be passed to ceteris_paribus.

variables names of variables for which splits shall be calculated. Will be passed to ceteris_paribus.

38 predict_parts

Value

Depending on the type there are different classes of the resulting object. It’s a data frame with

calculated average response.

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.

drwhy.ai/
Examples

library(DALEX)

new_dragon <- data.frame(
year_of_birth = 200,

height = 80,
weight = 12.5,
scars = 0,

number_of_lost_teeth =5

)

model_Im <- lm(life_length ~ year_of_birth + height +
weight + scars + number_of_lost_teeth,
data = dragons)

explainer_lm <- explain(model_1m,
data = dragons,
y = dragons$year_of_birth,
label = "model_1m")

bd_lm <- predict_parts_break_down(explainer_lm, new_observation = new_dragon)
head(bd_1m)
plot(bd_1m)

library("ranger")

model_ranger <- ranger(life_length ~ year_of_birth + height +
weight + scars + number_of_lost_teeth,
data = dragons, num.trees = 50)

explainer_ranger <- explain(model_ranger,
data = dragons,
y = dragons$year_of_birth,
label = "model_ranger"”)

bd_ranger <- predict_parts_break_down(explainer_ranger, new_observation = new_dragon)
head(bd_ranger)
plot(bd_ranger)

https://ema.drwhy.ai/
https://ema.drwhy.ai/

predict_profile 39

predict_profile Instance Level Profile as Ceteris Paribus

Description

This function calculated individual profiles aka Ceteris Paribus Profiles. From DALEX version 1.0
this function calls the ceteris_paribus from the ingredients package. Find information how to
use this function here: https://ema.drwhy.ai/ceterisParibus.html.

Usage

predict_profile(
explainer,
new_observation,
variables = NULL,
type = "ceteris_paribus”,
variable_splits_type = "uniform’

)

i

individual_profile(
explainer,
new_observation,
variables = NULL,

L

type = "ceteris_paribus”,
variable_splits_type = "uniform”
)
Arguments
explainer a model to be explained, preprocessed by the explain function

new_observation
a new observation for which predictions need to be explained

variables character - names of variables to be explained
other parameters

type character, currently only the ceteris_paribus is implemented
variable_splits_type

how variable grids shall be calculated? Use "quantiles" (default) for percentiles
or "uniform" to get uniform grid of points. Will be passed to ‘ingredients".

Value

An object of the class ceteris_paribus_explainer. It’s a data frame with calculated average
response.

https://ema.drwhy.ai/ceterisParibus.html

40 print.description

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.
drwhy.ai/

Examples
new_dragon <- data.frame(year_of_birth = 200,
height = 80,
weight = 12.5,
scars = 0,

number_of_lost_teeth = 5)

dragon_lm_model4 <- Im(life_length ~ year_of_birth + height +
weight + scars + number_of_lost_teeth,
data = dragons)
dragon_lm_explainer4 <- explain(dragon_lm_model4, data = dragons, y = dragons$year_of_birth,
label = "model_4v")

dragon_lm_predict4 <- predict_profile(dragon_lm_explainer4,

new_observation = new_dragon,

variables = c("year_of_birth"”, "height", "scars"))
head(dragon_lm_predict4)
plot(dragon_lm_predict4,

variables = c("year_of_birth"”, "height"”, "scars"))

library("ranger")
dragon_ranger_model4 <- ranger(life_length ~ year_of_birth + height +
weight + scars + number_of_lost_teeth,

data = dragons, num.trees = 50)
dragon_ranger_explainer4 <- explain(dragon_ranger_model4, data = dragons, y = dragons$year_of_birth,

label = "model_ranger")
dragon_ranger_predict4 <- predict_profile(dragon_ranger_explainer4,

new_observation = new_dragon,

variables = c("year_of_birth"”, "height"”, "scars"))
head(dragon_ranger_predict4)
plot(dragon_ranger_predict4,
variables = c("year_of_birth"”, "height", "scars"))
print.description Print Natural Language Descriptions

Description

Generic function

Usage

S3 method for class 'description'
print(x, ...)

https://ema.drwhy.ai/
https://ema.drwhy.ai/

print.explainer 41
Arguments
X an individual explainer produced with the ‘describe()* function
other arguments
print.explainer Print Explainer Summary
Description

Print Explainer Summary

Usage
S3 method for class 'explainer'
print(x, ...)
Arguments
X a model explainer created with the ‘explain‘ function
other parameters
Examples
aps_lm_model4 <- Im(m2.price~., data = apartments)

aps_lm_explainer4 <- explain(aps_lm_model4, data = apartments, y = apartments$m2.price,

label = "model_4v")
aps_lm_explainer4

library("ranger")
titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees =
probability = TRUE)
explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed[,-8],
y = titanic_imputed$survived,
label = "model_ranger")
explainer_ranger

50,

42 print.model_info

print.model_diagnostics
Print Dataset Level Model Diagnostics

Description

Generic function

Usage
S3 method for class 'model_diagnostics'
print(x, ...)
Arguments
X an object with dataset level residual diagnostics created with model_diagnostics
function
other parameters
print.model_info Print model_info
Description

Function prints object of class model_info created with model_info

Usage
S3 method for class 'model_info'
print(x, ...)

Arguments
X - an object of class model_info

- other parameters

print.model_performance 43

print.model_performance
Print Dataset Level Model Performance Summary

Description

Print Dataset Level Model Performance Summary

Usage
S3 method for class 'model_performance'
print(x, ...)
Arguments
X a model to be explained, object of the class 'model_performance_explainer’
other parameters
Examples

library("ranger")
titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 100,
probability = TRUE)
It's a good practice to pass data without target variable
explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed[,-8],
y = titanic_imputed$survived)
resulting dataframe has predicted values and residuals
mp_ex_rn <- model_performance(explainer_ranger)
mp_ex_rn
plot(mp_ex_rn)

print.model_profile Print Dataset Level Model Profile

Description

Generic function

Usage

S3 method for class 'model_profile'
print(x, ...)

44 set_theme_dalex

Arguments

X an object with dataset level profile created with model_profile function

other parameters

print.predict_diagnostics
Print Instance Level Residual Diagnostics

Description

Generic function

Usage
S3 method for class 'predict_diagnostics'
print(x, ...)
Arguments
X an object with instance level residual diagnostics created with predict_diagnostics
function
other parameters
set_theme_dalex Default Theme for DALEX plots
Description

Default Theme for DALEX plots

Usage

set_theme_dalex(
default_theme = "drwhy"”,
default_theme_vertical = default_theme

)

theme_default_dalex()

theme_vertical_default_dalex()

shap_aggregated 45

Arguments

default_theme object - string ("drwhy" or "ema") or an object of ggplot theme class. Will be
applied by default by DALEX to all horizontal plots
default_theme_vertical

object - string ("drwhy" or "ema") or an object of ggplot theme class. Will be
applied by default by DALEX to all vertical plots

Value

list with current default themes

Examples

old <- set_theme_dalex("ema")

library("ranger")
apartments_ranger_model <- ranger(m2.price~., data = apartments, num.trees = 50)
explainer_ranger <- explain(apartments_ranger_model, data = apartments[,-1],

y = apartments$m2.price, label = "Ranger Apartments")
model_parts_ranger_aps <- model_parts(explainer_ranger, type = "raw")
head(model_parts_ranger_aps, 8)
plot(model_parts_ranger_aps)

old <- set_theme_dalex(ggplot2::theme_void(), ggplot2::theme_void())
plot(model_parts_ranger_aps)

old <- set_theme_dalex("drwhy")

plot(model_parts_ranger_aps)

old <- set_theme_dalex(ggplot2::theme_void(), ggplot2::theme_void())
plot(model_parts_ranger_aps)

shap_aggregated SHAP aggregated values

Description

This function works in a similar way to shap function from iBreakDown but it calculates explana-
tions for a set of observation and then aggregates them.

Usage

shap_aggregated(
explainer,
new_observations,
order = NULL,
B = 25,

46 shap_aggregated

kernelshap = FALSE,

Arguments

explainer a model to be explained, preprocessed by the explain function

new_observations
a set of new observations with columns that correspond to variables used in the
model.

order if not NULL, then it will be a fixed order of variables. It can be a numeric vector
or vector with names of variables.

B number of random paths; works only if kernelshap=FALSE
kernelshap indicates whether the kernelshap method should be used

other parameters like label, predict_function, data, x

Value

an object of the shap_aggregated class.

References

Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.
drwhy.ai

Examples

library("DALEX")
set.seed(1313)
model_titanic_glm <- glm(survived ~ gender + age + fare,
data = titanic_imputed, family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,

data = titanic_imputed,

y = titanic_imputed$survived,

label = "glm")

bd_glm <- shap_aggregated(explain_titanic_glm, titanic_imputed[1:10, 1)
bd_glm
plot(bd_glm, max_features = 3)

https://ema.drwhy.ai
https://ema.drwhy.ai

theme_drwhy

47

theme_drwhy DrWhy Theme for ggplot objects

Description

DrWhy Theme for ggplot objects

Usage

theme_drwhy ()
theme_ema()
theme_drwhy_vertical()

theme_ema_vertical()

Value

theme for ggplot2 objects

titanic Passengers and Crew on the RMS Titanic Data

Description

The titanic data is a complete list of passengers and crew members on the RMS Titanic. It
includes a variable indicating whether a person did survive the sinking of the RMS Titanic on April

15, 1912.

Usage

data(titanic)
data(titanic_imputed)

Format

a data frame with 2207 rows and 9 columns

48 titanic

Details

This dataset was copied from the stablelearner package and went through few variable transfor-
mations. Levels in embarked was replaced with full names, sibsp, parch and fare were converted
to numerical variables and values for crew were replaced with 0. If you use this dataset please cite
the original package.

From stablelearner: The website https://www.encyclopedia-titanica.org offers detailed
information about passengers and crew members on the RMS Titanic. According to the website
1317 passengers and 890 crew member were abord. 8 musicians and 9 employees of the shipyard
company are listed as passengers, but travelled with a free ticket, which is why they have NA values
in fare. In addition to that, fare is truely missing for a few regular passengers.

» gender a factor with levels male and female.

* age a numeric value with the persons age on the day of the sinking.

* class a factor specifying the class for passengers or the type of service aboard for crew mem-
bers.

» embarked a factor with the persons place of of embarkment (Belfast/Cherbourg/Queenstown/Southampton).
* country a factor with the persons home country.

* fare a numeric value with the ticket price (@ for crew members, musicians and employees of
the shipyard company).

* sibsp an ordered factor specifying the number if siblings/spouses aboard; adopted from Van-
derbild data set (see below).

* parch an ordered factor specifying the number of parents/children aboard; adopted from Van-
derbild data set (see below).

* survived a factor with two levels (no and yes) specifying whether the person has survived the
sinking.
NOTE: The titanic_imputed dataset use following imputation rules.

* Missing ‘age’ is replaced with the mean of the observed ones, i.e., 30.

* For sibsp and parch, missing values are replaced by the most frequently observed value, i.e.,
0.

* For fare, mean fare for a given class is used, i.e., 0 pounds for crew, 89 pounds for the 1st, 22
pounds for the 2nd, and 13 pounds for the 3rd class.
Source

This dataset was copied from the stablelearner package and went through few variable transfor-
mations. The complete list of persons on the RMS titanic was downloaded from https://www.
encyclopedia-titanica.org on April 5, 2016. The information given in sibsp and parch was
adopoted from a data set obtained from Kaggle.

References

https://www.encyclopedia-titanica.organd https://CRAN.R-project.org/package=stablelearner

https://www.encyclopedia-titanica.org
https://www.encyclopedia-titanica.org
https://www.encyclopedia-titanica.org
https://www.encyclopedia-titanica.org
https://CRAN.R-project.org/package=stablelearner

update_data 49

update_data Update data of an explainer object

Description

Function allows users to update data an y of any explainer in a unified way. It doesn’t require
knowledge about structre of an explainer.

Usage

update_data(explainer, data, y = NULL, verbose = TRUE)

Arguments

explainer - explainer object that is supposed to be updated.

data - new data, is going to be passed to an explainer

y - new y, is going to be passed to an explainer

verbose - logical, indicates if information about update should be printed
Value

updated explainer object

Examples
aps_lm_model4 <- Im(m2.price ~., data = apartments)
aps_lm_explainer4 <- explain(aps_lm_model4, data = apartments, label = "model_4v")

explainer <- update_data(aps_lm_explainer4, data = apartmentsTest, y = apartmentsTest$m2.price)

update_label Update label of explainer object

Description

Function allows users to update label of any explainer in a unified way. It doesn’t require knowledge
about structre of an explainer.

Usage

update_label(explainer, label, verbose = TRUE)

50 variable_effect

Arguments

explainer - explainer object that is supposed to be updated.

label - new label, is going to be passed to an explainer

verbose - logical, indicates if information about update should be printed
Value

updated explainer object

Examples
aps_lm_model4 <- Im(m2.price ~., data = apartments)
aps_lm_explainer4 <- explain(aps_lm_model4, data = apartments, label = "model_4v")
explainer <- update_label(aps_lm_explainer4, label = "1m")
variable_effect Dataset Level Variable Effect as Partial Dependency Profile or Accu-
mulated Local Effects
Description

From DALEX version 1.0 this function calls the accumulated_dependence or partial_dependence
from the ingredients package. Find information how to use this function here: https://ema.
drwhy.ai/partialDependenceProfiles.html.

Usage
variable_effect(explainer, variables, ..., type = "partial_dependency")
variable_effect_partial_dependency(explainer, variables, ...)
variable_effect_accumulated_dependency(explainer, variables, ...)
Arguments
explainer a model to be explained, preprocessed by the ’explain’ function
variables character - names of variables to be explained
other parameters
type character - type of the response to be calculated. Currently following options
are implemented: ’partial_dependency’ for Partial Dependency and ’accumu-
lated_dependency’ for Accumulated Local Effects
Value

An object of the class ’aggregated_profiles_explainer’. It’s a data frame with calculated average
response.

https://ema.drwhy.ai/partialDependenceProfiles.html
https://ema.drwhy.ai/partialDependenceProfiles.html

yhat 51

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.
drwhy.ai/

Examples
titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial”)
explainer_glm <- explain(titanic_glm_model, data = titanic_imputed)
expl_glm <- variable_effect(explainer_glm, "fare"”, "partial_dependency")

plot(expl_glm)

library("ranger")
titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50,
probability = TRUE)
explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed)
expl_ranger <- variable_effect(explainer_ranger, variables = "fare",
type = "partial_dependency"”)
plot(expl_ranger)
plot(expl_ranger, expl_glm)

Example for factor variable (with factorMerger)
expl_ranger_factor <- variable_effect(explainer_ranger, variables = "class")
plot(expl_ranger_factor)

yhat Wrap Various Predict Functions

Description

This function is a wrapper over various predict functions for different models and differnt model
structures. The wrapper returns a single numeric score for each new observation. To do this it
uses different extraction techniques for models from different classes, like for classification random
forest is forces the output to be probabilities not classes itself.

Usage
yhat(X.model, newdata, ...)

S3 method for class 'lm'
yhat(X.model, newdata, ...)

S3 method for class 'randomForest'
yhat(X.model, newdata, ...)

S3 method for class 'svm

https://ema.drwhy.ai/
https://ema.drwhy.ai/

52 yhat

yhat(X.model, newdata, ...)

S3 method for class 'gbm'
yhat(X.model, newdata, ...)

S3 method for class 'glm'
yhat(X.model, newdata, ...)

S3 method for class 'cv.glmnet'
yhat(X.model, newdata, ...)

S3 method for class 'glmnet'
yhat(X.model, newdata, ...)

S3 method for class 'ranger'
yhat(X.model, newdata, ...)

S3 method for class 'model_fit'
yhat(X.model, newdata, ...)

S3 method for class 'train'
yhat(X.model, newdata, ...)

S3 method for class 'lrm'
yhat(X.model, newdata, ...)

S3 method for class 'rpart'
yhat(X.model, newdata, ...)

S3 method for class '~function™'
yhat(X.model, newdata, ...)

S3 method for class 'party'
yhat(X.model, newdata, ...)

Default S3 method:

yhat(X.model, newdata, ...)
Arguments
X.model object - a model to be explained
newdata data.frame or matrix - observations for prediction

other parameters that will be passed to the predict function

Details
Currently supported packages are:

* class cv.glmnet and glmnet - models created with glmnet package,

yhat

* class glm - generalized linear models created with glm,

* class model_fit - models created with parsnip package,

e class 1m - linear models created with Im,

* class ranger - models created with ranger package,

* class randomForest - random forest models created with randomForest package,
* class svm - support vector machines models created with the e1071 package,

* class train - models created with caret package,

* class gbm - models created with gbm package,

* class 1rm - models created with rms package,

* class rpart - models created with rpart package.

Value

An numeric matrix of predictions

53

Index

+ HR
HR, 12

* apartments
apartments, 3

* covid_spring
covid, 4

* covid_summer
covid, 4

+ dragons
dragons, 5

« fifa
fifa, 9

* happiness_test
happiness, 12

* happiness_train
happiness, 12

* titanic
titanic, 47

accumulated_dependence, 22, 50
apartments, 3

apartments_test (apartments), 3
apartmentsTest (apartments), 3

break_down, 36

ceteris_paribus, 36, 37, 39
colors_breakdown_drwhy
(colors_discrete_drwhy), 3
colors_discrete_drwhy, 3
colors_diverging_drwhy
(colors_discrete_drwhy), 3
covid, 4
covid_spring (covid), 4
covid_summer (covid), 4

dragons, 5
dragons_test (dragons), 5

explain, 20, 26, 32
explain (explain.default), 5

54

explain.default, 5

facet_wrap, 28, 32
feature_importance, 18
feature_importance (model_parts), 18
fifa, 9

get_loss_default (loss_cross_entropy),
13

get_loss_one_minus_accuracy
(loss_cross_entropy), 13

get_loss_yardstick, 11

glm, 53

happiness, 12

happiness_test (happiness), 12
happiness_train (happiness), 12
HR, 12

HR_test (HR), 12

HRTest (HR), 12

individual_diagnostics
(predict_diagnostics), 34

individual_profile (predict_profile), 39

install_dependencies, 13

kernelshap, 36

1m, 53

loss_accuracy (loss_cross_entropy), 13

loss_cross_entropy, 13

loss_default (loss_cross_entropy), 13

loss_one_minus_accuracy
(loss_cross_entropy), 13

loss_one_minus_auc
(loss_cross_entropy), 13

loss_root_mean_square
(loss_cross_entropy), 13

loss_sum_of_squares
(loss_cross_entropy), 13

loss_yardstick (get_loss_yardstick), 11

INDEX

model_diagnostics, 15, 24, 42
model_info, 16, 42

model_parts, 18

model_performance, 19

model_prediction (predict.explainer), 33
model_profile, 21, 28, 44

partial_dependence, 22, 50
plot.list, 23
plot.model_diagnostics, 24
plot.model_parts, 25
plot.model_performance, 26
plot.model_profile, 27
plot.predict_diagnostics, 29
plot.predict_parts, 30
plot.predict_profile, 31
plot.shap_aggregated, 32
predict.explainer, 33
predict_diagnostics, 29, 34, 44
predict_parts, 36
predict_parts_break_down
(predict_parts), 36
predict_parts_break_down_interactions
(predict_parts), 36
predict_parts_ibreak_down
(predict_parts), 36
predict_parts_kernel_shap
(predict_parts), 36
predict_parts_kernel_shap_aggreagted
(predict_parts), 36
predict_parts_kernel_shap_break_down
(predict_parts), 36
predict_parts_oscillations
(predict_parts), 36
predict_parts_oscillations_emp
(predict_parts), 36
predict_parts_oscillations_uni
(predict_parts), 36
predict_parts_shap (predict_parts), 36
predict_parts_shap_aggregated
(predict_parts), 36
predict_profile, 39
print.description, 40
print.explainer, 41
print.model_diagnostics, 42
print.model_info, 42
print.model_performance, 43
print.model_profile, 43
print.predict_diagnostics, 44

55

round, 3/

set_theme_dalex, 44

shap, 36

shap_aggregated, 45

signif, 31

single_variable (model_profile), 21

theme_default_dalex (set_theme_dalex),
44

theme_drwhy, 47

theme_drwhy_vertical (theme_drwhy), 47

theme_ema (theme_drwhy), 47

theme_ema_vertical (theme_drwhy), 47

theme_vertical_default_dalex
(set_theme_dalex), 44

titanic, 47

titanic_imputed (titanic), 47

update_data, 49
update_label, 49

variable_attribution (predict_parts), 36
variable_effect, 50
variable_effect_accumulated_dependency
(variable_effect), 50
variable_effect_partial_dependency
(variable_effect), 50
variable_importance (model_parts), 18
variable_profile (model_profile), 21

yhat, 51

	apartments
	colors_discrete_drwhy
	covid
	dragons
	explain.default
	fifa
	get_loss_yardstick
	happiness
	HR
	install_dependencies
	loss_cross_entropy
	model_diagnostics
	model_info
	model_parts
	model_performance
	model_profile
	plot.list
	plot.model_diagnostics
	plot.model_parts
	plot.model_performance
	plot.model_profile
	plot.predict_diagnostics
	plot.predict_parts
	plot.predict_profile
	plot.shap_aggregated
	predict.explainer
	predict_diagnostics
	predict_parts
	predict_profile
	print.description
	print.explainer
	print.model_diagnostics
	print.model_info
	print.model_performance
	print.model_profile
	print.predict_diagnostics
	set_theme_dalex
	shap_aggregated
	theme_drwhy
	titanic
	update_data
	update_label
	variable_effect
	yhat
	Index

