\documentclass[11pt,a4paper,onecolumn]{tiet-question-paper} \date{28 May 2024} \institute{Alpha} \instlogo{images/tiet-logo.pdf} \schoolordepartment{% Computer Science \& Engineering Department} \examname{% End Semester Examination} \coursecode{UCS505} \coursename{Computer Graphics} \timeduration{3 hours} \maxmarks{45} \faculty{ANG,AMK,HPS,YDS,RGB} \begin{document} \maketitle \textbf{Instructions:} \begin{enumerate} \item Attempt any 5 questions; \item Attempt all the subparts of a question at one place. \end{enumerate} \bvrhrule[0.4pt] \begin{enumerate} \item \begin{enumerate} \item Given the control polygon $\textbf{b}_0, \textbf{b}_1, \textbf{b}_2, \textbf{b}_3$ of a Cubic Bezier curve; determine the coordinates for parameter values $\forall t\in T$. \hfill [7 marks] \begin{align*} T \equiv & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\ \begin{bmatrix} \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3 \end{bmatrix} \equiv & \begin{bmatrix} 1&2&4&3\\ 1&3&3&1 \end{bmatrix} \end{align*} \item Explain the role of convex hull in curves. \hfill[2 marks] \end{enumerate} \end{enumerate} \bvrhrule[0.4pt] \begin{enumerate}[resume] \item \begin{enumerate} \item Describe the continuity conditions for curvilinear geometry. \hfill[5 marks] \item Define formally, a B-Spline curve. \hfill [2 marks] \item How is a Bezier curve different from a B-Spline curve? \end{enumerate} \end{enumerate} \bvrhrule[0.4pt] \begin{enumerate}[resume] \item \begin{enumerate} \item Given a triangle, with vertices defined by column vectors of $P$; find its vertices after reflection across XZ plane. \hfill [3 marks] \begin{align*} P\equiv &\begin{bmatrix} 3&6&5 \\ 4&4&6 \\ 1&2&3 \end{bmatrix} \end{align*} \item Given a pyramid with vertices defined by the column vectors of $P$, and an axis of rotation $A$ with direction $\textbf{v}$ and passing through $\textbf{p}$. Find the coordinates of the vertices after rotation about $A$ by an angle of $\theta=\pi/4$.\hfill [6 marks] \begin{align*} P\equiv &\begin{bmatrix} 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1 \end{bmatrix} \\ \begin{bmatrix} \mathbf{v} & \mathbf{p} \end{bmatrix}\equiv &\begin{bmatrix} 0&0 \\1&1\\1&0 \end{bmatrix} \end{align*} \end{enumerate} \end{enumerate} \bvrhrule[0.4pt] \begin{enumerate}[resume] \item \begin{enumerate} \item Explain the two winding number rules for inside outside tests. \hfill [4 marks] \item Explain the working principle of a CRT. \hfill [5 marks] \end{enumerate} \end{enumerate} \bvrhrule[0.4pt] \begin{enumerate}[resume] \item \begin{enumerate} \item Given a projection plane $P$ defined by normal $\textbf{n}$ and a reference point $\textbf{a}$; and the centre of projection as $\mathbf{p}_0$; find the perspective projection of the point $\textbf{x}$ on $P$. \hfill [5 marks] \begin{align*} \begin{bmatrix} \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x} \end{bmatrix}\equiv & \begin{bmatrix} 3&-1&1&8\\4&2&1&10\\5&-1&3&6 \end{bmatrix} \end{align*} \item Given a geometry $G$, which is a standard unit cube scaled uniformly by half and viewed through a Cavelier projection bearing $\theta=\pi/4$ wrt. $X$-axis. \hfill [2 marks] \item Given a view coordinate system (VCS) with origin at $\textbf{p}_v$ and euler angles ZYX $\boldsymbol{\theta}$ wrt. world coordinate system (WCS); find the location $\mathbf{x}_v$ in VCS, corresponding to the point $\textbf{x}_w$ in WCS. \hfill [2 marks] \begin{align*} \begin{bmatrix} \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w \end{bmatrix}\equiv &\begin{bmatrix} 5&\pi/3&10\\5&0&10\\0&0&0 \end{bmatrix} \end{align*} \end{enumerate} \end{enumerate} \bvrhrule[0.4pt] \begin{enumerate}[resume] \item \begin{enumerate} \item Describe the visible surface detection problem in about 25 words. \hfill [1 mark] \item To render a scene with $N$ polygons into a display with height $H$; what are the space and time complexities respectively of a typical image-space method. \hfill [2 marks] \item Given a 3D space bounded within $[0\quad0\quad0]$ and $[7\quad7\quad-7]$, containing two infinite planes each defined by 3 incident points $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ and $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$ respectively bearing colours (RGB) as $\mathbf{c}_a$ and $\textbf{c}_b$ respectively. \begin{align*} \begin{bmatrix} \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2 &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2 &\mathbf{c}_a&\mathbf{c}_b \end{bmatrix}\equiv &\begin{bmatrix} 1&6&1&6&1&6&1&0 \\ 1&3&6&6&3&1&0&0 \\ -1&-6&-1&-1&-6&-1&0&1 \end{bmatrix} \end{align*} Compute and/ or determine using the depth-buffer method, the colour at pixel $\mathbf{x}=(2,4)$ on a display resolved into $7\times7$ pixels. The projection plane is at $Z=0$, looking at $-Z$. \hfill [6 marks] \end{enumerate} \end{enumerate} \bvrhrule[0.4pt] \end{document}