## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval = FALSE------------------------------------------------------------ # library(windsoraiR) # my_data <- # windsor_fetch( # api_key = "your api key", # date_preset = "last_7d", # fields = c("source", "campaign", "clicks", # "medium", "sessions", "spend") # ) ## ---- echo = FALSE------------------------------------------------------------ library(windsoraiR) ## ----------------------------------------------------------------------------- str(my_data) ## ----------------------------------------------------------------------------- library(dplyr) library(ggplot2) top_10 <- my_data %>% filter(data.clicks > 0) %>% group_by(data.campaign) %>% summarise(n_clicks = sum(data.clicks)) %>% ungroup %>% arrange(desc(n_clicks)) %>% slice_head(n = 10) knitr::kable(top_10) ## ---- fig.width=7------------------------------------------------------------- ggplot(top_10, aes(x = n_clicks, y = data.campaign)) + geom_col() ## ----------------------------------------------------------------------------- top_10 <- my_data %>% filter(data.clicks > 0) %>% group_by(data.source, data.campaign) %>% summarise(n_clicks = sum(data.clicks)) %>% ungroup %>% arrange(desc(n_clicks)) %>% slice_head(n = 10) knitr::kable(top_10) ## ---- fig.width=7------------------------------------------------------------- ggplot(top_10, aes(x = n_clicks, y = data.campaign, fill = data.source)) + geom_col() ## ---- fig.width= 7------------------------------------------------------------ my_data %>% filter(data.clicks > 0) %>% group_by(data.campaign) %>% summarise(sum_spend = sum(as.numeric(data.spend))) %>% ungroup %>% arrange(desc(sum_spend)) %>% slice_head(n = 10) %>% ggplot(aes(x = sum_spend, y = data.campaign)) + geom_col() ## ---- fig.width=10------------------------------------------------------------ library(tidyr) my_data %>% filter(data.clicks > 0) %>% group_by(data.campaign) %>% summarise(n_clicks = sum(data.clicks), sum_spend = sum(as.numeric(data.spend))) %>% arrange(desc(sum_spend)) %>% slice_head(n = 10) %>% pivot_longer(cols = c("n_clicks", "sum_spend"), names_to = "aggreg", values_to = "values") %>% ggplot(aes(x = values, y = data.campaign, fill = aggreg)) + geom_col() + facet_wrap("aggreg", ncol = 2) + theme(legend.position="bottom")