## ----------------------------------------------------------------------------- library(wikilake) ## ----category url, eval = FALSE----------------------------------------------- # res <- WikipediR::page_info("en", "wikipedia", # page = "Category:Lakes of Michigan") ## ----scrape names, eval = FALSE----------------------------------------------- # res <- xml2::read_html(res$query$pages[[1]]$canonicalurl) # res <- rvest::html_nodes(res, "#mw-pages .mw-category") # res <- rvest::html_nodes(res, "li") # res <- rvest::html_nodes(res, "a") # res <- rvest::html_attr(res, "title") ## ----remove junk names, eval = FALSE------------------------------------------ # res <- res[!(seq_len(length(res)) %in% grep("List", res))] # res <- res[!(seq_len(length(res)) %in% grep("Watershed", res))] # res <- res[!(seq_len(length(res)) %in% grep("lakes", res))] # res <- res[!(seq_len(length(res)) %in% grep("Mud Lake", res))] ## ----scrape tables, eval = FALSE---------------------------------------------- # res <- lapply(res, lake_wiki) # # # remove missing coordinates # res <- res[unlist(lapply(res, function(x) !is.na(x[, "Lat"])))] ## ----collapse list to data.frame, eval = FALSE-------------------------------- # res_df_names <- unique(unlist(lapply(res, names))) # res_df <- data.frame(matrix(NA, nrow = length(res), # ncol = length(res_df_names))) # names(res_df) <- res_df_names # for (i in seq_len(length(res))) { # dt_pad <- data.frame(matrix(NA, nrow = 1, # ncol = length(res_df_names) - ncol(res[[i]]))) # names(dt_pad) <- res_df_names[!(res_df_names %in% names(res[[i]]))] # dt <- cbind(res[[i]], dt_pad) # dt <- dt[, res_df_names] # res_df[i, ] <- dt # } ## ----echo=FALSE, eval=FALSE--------------------------------------------------- # good_cols <- data.frame(as.numeric(as.character(apply(res_df, # 2, function(x) sum(!is.na(x)))))) # good_cols <- cbind(good_cols, names(res_df)) # good_cols <- good_cols[good_cols[, 1] > 20, 2] # good_cols <- as.character(good_cols) # # res_df <- res_df[, good_cols] ## ----echo = FALSE------------------------------------------------------------- data(milakes) res_df <- milakes ## ----map lakes, fig.height=6,fig.align="center"------------------------------- library(sp) coordinates(res_df) <- ~ Lon + Lat map("state", region = "michigan", mar = c(0, 0, 0, 0)) points(res_df, col = "red", pch = 19) ## ----lake depth distribution-------------------------------------------------- hist(log(res_df$`Max. depth`), main = "", xlab = "Max depth (log(m))")