Package 'vimp'

August 28, 2023

Type Package

Title Perform Inference on Algorithm-Agnostic Variable Importance

Version 2.3.3

Description Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (JASA, 2021), and Williamson and Feng (ICML, 2020).

Depends R (>= 3.1.0)

Imports SuperLearner, stats, dplyr, magrittr, ROCR, tibble, rlang, MASS, boot, data.table

Suggests knitr, rmarkdown, gam, xgboost, glmnet, ranger, polspline, quadprog, covr, testthat, ggplot2, cowplot, cvAUC, tidyselect, WeightedROC, purrr

License MIT + file LICENSE

URL https://bdwilliamson.github.io/vimp/,

https://github.com/bdwilliamson/vimp,

http://bdwilliamson.github.io/vimp/

BugReports https://github.com/bdwilliamson/vimp/issues

RoxygenNote 7.2.3

VignetteBuilder knitr

LazyData true

Encoding UTF-8

NeedsCompilation no

Author Brian D. Williamson [aut, cre]

(<https://orcid.org/0000-0002-7024-548X>),
Jean Feng [ctb],
Charlie Wolock [ctb],
Noah Simon [ths] (<https://orcid.org/0000-0002-8985-2474>),
Marco Carone [ths] (<https://orcid.org/0000-0003-2106-0953>)

Maintainer Brian D. Williamson <brian.d.williamson@kp.org> Repository CRAN Date/Publication 2023-08-28 21:10:02 UTC

R topics documented:

average_vim
bootstrap_se
check_fitted_values
check_inputs
create_z
cv_vim
estimate
estimate.predictiveness_measure
estimate_eif_projection
estimate_nuisances
estimate_type_predictiveness
est_predictiveness
est_predictiveness_cv
extract_sampled_split_predictions
format.predictiveness_measure
format.vim
get_cv_sl_folds
get_full_type
get_test_set
make_folds
make_kfold
measure_accuracy
measure_anova
measure_auc
measure_average_value
measure_cross_entropy
measure_deviance
measure_mse
measure_r_squared
merge_vim
predictiveness_measure
print.predictiveness_measure
print.vim
process_arg_lst
run_sl
sample_subsets
scale_est
spvim_ics
spvim_se
sp_vim
vim

average_vim

vimp_accuracy	55
vimp_anova	60
vimp_auc	63
vimp_ci	68
vimp_deviance	69
vimp_hypothesis_test	74
vimp_regression	75
vimp_rsquared	78
vimp_se	83
vrc01	83
1	24

Index

average_vim Average multiple independent importance estimates

Description

Average the output from multiple calls to vimp_regression, for different independent groups, into a single estimate with a corresponding standard error and confidence interval.

Usage

```
average_vim(..., weights = rep(1/length(list(...)), length(list(...))))
```

Arguments

	an arbitrary number of vim objects.
weights	how to average the vims together, and must sum to 1; defaults to 1/(number of
	vims) for each vim, corresponding to the arithmetic mean

Value

an object of class vim containing the (weighted) average of the individual importance estimates, as well as the appropriate standard error and confidence interval. This results in a list containing:

- s a list of the column(s) to calculate variable importance for
- SL.library a list of the libraries of learners passed to SuperLearner
- full_fit a list of the fitted values of the chosen method fit to the full data
- red_fit a list of the fitted values of the chosen method fit to the reduced data
- est- a vector with the corrected estimates
- naive- a vector with the naive estimates
- update- a list with the influence curve-based updates
- mat a matrix with the estimated variable importance, the standard error, and the $(1 \alpha) \times 100\%$ confidence interval

- full_mod a list of the objects returned by the estimation procedure for the full data regression (if applicable)
- red_mod a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- y a list of the outcomes

Examples

```
# generate the data
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
# generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)</pre>
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")</pre>
# get estimates on independent splits of the data
samp <- sample(1:n, n/2, replace = FALSE)</pre>
# using Super Learner (with a small number of folds, for illustration only)
est_2 <- vimp_regression(Y = y[samp], X = x[samp, ], indx = 2, V = 2,</pre>
           run_regression = TRUE, alpha = 0.05,
           SL.library = learners, cvControl = list(V = 2))
est_1 <- vimp_regression(Y = y[-samp], X = x[-samp, ], indx = 2, V = 2,</pre>
           run_regression = TRUE, alpha = 0.05,
           SL.library = learners, cvControl = list(V = 2))
ests <- average_vim(est_1, est_2, weights = c(1/2, 1/2))</pre>
```

<pre>bootstrap_se</pre>

Compute bootstrap-based standard error estimates for variable importance

Description

Compute bootstrap-based standard error estimates for variable importance

bootstrap_se

Usage

```
bootstrap_se(
  Y = NULL,
  f1 = NULL,
  f2 = NULL,
  cluster_id = NULL,
  clustered = FALSE,
  type = "r_squared",
  b = 1000,
  boot_interval_type = "perc",
  alpha = 0.05
)
```

Arguments

Υ	the outcome.	
f1	the fitted values from a flexible estimation technique regressing Y on X. A vector of the same length as Y; if sample-splitting is desired, then the value of f1 at each position should be the result of predicting from a model trained without that observation.	
f2	the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx. A vector of the same length as Y; if sample-splitting is desired, then the value of f2 at each position should be the result of predicting from a model trained without that observation.	
cluster_id	vector of the same length as Y giving the cluster IDs used for the clustered boot- strap, if clustered is TRUE.	
clustered	should the bootstrap resamples be performed on clusters rather than individual observations? Defaults to FALSE.	
type	the type of importance to compute; defaults to r_squared, but other supported options are auc, accuracy, deviance, and anova.	
b	the number of bootstrap replicates (only used if bootstrap = TRUE and sample_splitting = FALSE); defaults to 1000.	
boot_interval_type		
	the type of bootstrap interval (one of "norm", "basic", "stud", "perc", or "bca", as in boot{boot.ci}) if requested. Defaults to "perc".	
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.	

Value

a bootstrap-based standard error estimate

check_fitted_values Check pre-computed fitted values for call to vim, cv_vim, or sp_vim

Description

Check pre-computed fitted values for call to vim, cv_vim, or sp_vim

Usage

```
check_fitted_values(
  Y = NULL,
  f1 = NULL,
  f2 = NULL,
  cross_fitted_f1 = NULL,
  cross_fitted_f2 = NULL,
  sample_splitting_folds = NULL,
  cross_fitting_folds = NULL,
  cross_fitted_se = TRUE,
  V = NULL,
  ss_V = NULL,
  cv = FALSE
)
```

Y	the outcome	
f1	estimator of the population-optimal prediction function using all covariates	
f2	estimator of the population-optimal prediction function using the reduced set of covariates	
cross_fitted_f1		
	cross-fitted estimator of the population-optimal prediction function using all co-variates	
cross_fitted_f2		
	cross-fitted estimator of the population-optimal prediction function using the reduced set of covariates	
<pre>sample_splittin</pre>	g_folds	
	the folds for sample-splitting (used for hypothesis testing)	
cross_fitting_folds		
	the folds for cross-fitting (used for point estimates of variable importance in cv_vim and sp_vim)	
cross_fitted_se		
	logical; should cross-fitting be used to estimate standard errors?	
V	the number of cross-fitting folds	
ss_V	the number of folds for CV (if sample_splitting is TRUE)	
CV	a logical flag indicating whether or not to use cross-fitting	

check_inputs

Details

Ensure that inputs to vim, cv_vim, and sp_vim follow the correct formats.

Value

None. Called for the side effect of stopping the algorithm if any inputs are in an unexpected format.

check_inputs Check inputs to a call to vim, cv_vim, or sp_vim

Description

Check inputs to a call to vim, cv_vim, or sp_vim

Usage

check_inputs(Y, X, f1, f2, indx)

Arguments

Υ	the outcome
Х	the covariates
f1	estimator of the population-optimal prediction function using all covariates
f2	estimator of the population-optimal prediction function using the reduced set of covariates
indx	the index or indices of the covariate(s) of interest

Details

Ensure that inputs to vim, cv_vim, and sp_vim follow the correct formats.

Value

None. Called for the side effect of stopping the algorithm if any inputs are in an unexpected format.

create_z

Description

Create complete-case outcome, weights, and Z

Usage

create_z(Y, C, Z, X, ipc_weights)

Arguments

Υ	the outcome
С	indicator of missing or observed
Z	the covariates observed in phase 1 and 2 data
Х	all covariates
ipc_weights	the weights

Value

a list, with the complete-case outcome, weights, and Z matrix

cv_vim	Nonparametric Intrinsic Variable Importance Estimates and Inference
	using Cross-fitting

Description

Compute estimates and confidence intervals using cross-fitting for nonparametric intrinsic variable importance based on the population-level contrast between the oracle predictiveness using the feature(s) of interest versus not.

Usage

```
cv_vim(
 Y = NULL,
 X = NULL,
 cross_fitted_f1 = NULL,
 cross_fitted_f2 = NULL,
 f1 = NULL,
 f2 = NULL,
 indx = 1,
 V = ifelse(is.null(cross_fitting_folds), 5, length(unique(cross_fitting_folds))),
```

cv_vim

```
sample_splitting = TRUE,
final_point_estimate = "split",
sample_splitting_folds = NULL,
cross_fitting_folds = NULL,
stratified = FALSE,
type = "r_squared",
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha = 0.05,
delta = 0,
scale = "identity",
na.rm = FALSE,
C = rep(1, length(Y)),
Z = NULL,
ipc_scale = "identity",
ipc_weights = rep(1, length(Y)),
ipc_est_type = "aipw",
scale_est = TRUE,
nuisance_estimators_full = NULL,
nuisance_estimators_reduced = NULL,
exposure_name = NULL,
cross_fitted_se = TRUE,
bootstrap = FALSE,
b = 1000,
boot_interval_type = "perc",
clustered = FALSE,
cluster_id = rep(NA, length(Y)),
```

Arguments

)

Y

Х

the outcome.

the covariates. If type = "average_value", then the exposure variable should be part of X, with its name provided in exposure_name.

cross_fitted_f1

the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).

cross_fitted_f2

the predicted values on validation data from a flexible estimation technique regressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X with-

	holding the columns in indx. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).
f1	the fitted values from a flexible estimation technique regressing Y on X. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
f2	the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
٧	the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
sample_splittir	ng
	should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variables with truly zero importance.
final_point_est	imate
	if sample splitting is used, should the final point estimates be based on only the sample-split folds used for inference ("split", the default), or should they instead be based on the full dataset ("full") or the average across the point estimates from each sample split ("average")? All three options result in valid point estimates – sample-splitting is only required for valid inference.
sample_splittir	
	the folds used for sample-splitting; these identify the observations that should be used to evaluate predictiveness based on the full and reduced sets of covariates, respectively. Only used if run_regression = FALSE.
cross_fitting_f	
	the folds for cross-fitting. Only used if run_regression = FALSE.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
type	the type of importance to compute; defaults to r_squared, but other supported options are auc, accuracy, deviance, and anova.
run_regression	if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.

delta

scale

- should we remove NAs in the outcome and fitted values in computation? (dena.rm faults to FALSE)
- С the indicator of coarsening (1 denotes observed, 0 denotes unobserved).

"log" and "logit")

- Ζ either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism. To specify the outcome, use "Y"; to specify covariates, use a character number corresponding to the desired position in X (e.g., "1").
- ipc_scale what scale should the inverse probability weight correction be applied on (if any)? Defaults to "identity". (other options are "log" and "logit")
- ipc_weights weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).
- the type of procedure used for coarsened-at-random settings; options are "ipw" ipc_est_type (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1.
- should the point estimate be scaled to be greater than or equal to 0? Defaults to scale_est TRUE.

nuisance_estimators_full

(only used if type = "average_value") a list of nuisance function estimators on the observed data (may be within a specified fold, for cross-fitted estimates). Specifically: an estimator of the optimal treatment rule; an estimator of the propensity score under the estimated optimal treatment rule; and an estimator of the outcome regression when treatment is assigned according to the estimated optimal rule.

nuisance_estimators_reduced

(only used if type = "average_value") a list of nuisance function estimators on the observed data (may be within a specified fold, for cross-fitted estimates). Specifically: an estimator of the optimal treatment rule; an estimator of the propensity score under the estimated optimal treatment rule; and an estimator of the outcome regression when treatment is assigned according to the estimated optimal rule.

(only used if type = "average_value") the name of the exposure of interest; exposure_name binary, with 1 indicating presence of the exposure and 0 indicating absence of the exposure.

cross_fitted_se

should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?

- should bootstrap-based standard error estimates be computed? Defaults to FALSE bootstrap (and currently may only be used if sample_splitting = FALSE).
- b the number of bootstrap replicates (only used if bootstrap = TRUE and sample_splitting = FALSE); defaults to 1000.

boot_interval_type		
	the type of bootstrap interval (one of "norm", "basic", "stud", "perc", or "bca", as in boot{boot.ci}) if requested. Defaults to "perc".	
clustered	should the bootstrap resamples be performed on clusters rather than individual observations? Defaults to FALSE.	
cluster_id	vector of the same length as Y giving the cluster IDs used for the clustered bootstrap, if clustered is TRUE.	
	other arguments to the estimation tool, see "See also".	

Details

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),$$

where f_0 is the population predictiveness maximizing function, $f_{0,s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_0 is the true data-generating distribution.

Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of cross-fitting is to estimate f_0 and $f_{0,s}$ on independent data from estimating P_0 ; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_0 and $f_{0,s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.

Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n,k}$ and $f_{n,k,s}$ of f_0 and $f_{0,s}$, respectively on the training data and estimator $P_{n,k}$ of P_0 using the test data; and finally, computing

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ V(f_{n,k}, P_{n,k}) - V(f_{n,k,s}, P_{n,k}) \}.$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into 2K folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n,k}$ of f_0 is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k} = V(f_{n,k}, P_{n,k}).$$

Similarly, for each fold k in the second group, estimator $f_{n,k,s}$ of $f_{0,s}$ is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k,s} = V(f_{n,k,s}, P_{n,k}).$$

Finally,

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ v_{n,k} - v_{n,k,s} \}.$$

cv_vim

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:

s the column(s) to calculate variable importance for

SL.library the library of learners passed to SuperLearner

full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)

red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data)

est the estimated variable importance

naive the naive estimator of variable importance

eif the estimated efficient influence function

eif_full the estimated efficient influence function for the full regression

eif_reduced the estimated efficient influence function for the reduced regression

se the standard error for the estimated variable importance

ci the $(1 - \alpha) \times 100\%$ confidence interval for the variable importance estimate

test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test

p_value a p-value based on the same test as test

full_mod the object returned by the estimation procedure for the full data regression (if applicable)

red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)

alpha the level, for confidence interval calculation

sample_splitting_folds the folds used for hypothesis testing

cross_fitting_folds the folds used for cross-fitting

y the outcome

ipc_weights the weights

cluster_id the cluster IDs

mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of class vim. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
n <- 100
p <- 2
# generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
# generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))</pre>
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm")</pre>
# ------
# using Super Learner (with a small number of folds, for illustration only)
# -------
set.seed(4747)
est <- cv_vim(Y = y, X = x, indx = 2, V = 2,
type = "r_squared", run_regression = TRUE,
SL.library = learners, cvControl = list(V = 2), alpha = 0.05)
# ------
# doing things by hand, and plugging them in
# (with a small number of folds, for illustration only)
# -----
# set up the folds
indx <- 2
V <- 2
Y \leq matrix(y)
set.seed(4747)
# Note that the CV.SuperLearner should be run with an outer layer
# of 2*V folds (for V-fold cross-fitted importance)
full_cv_fit <- suppressWarnings(SuperLearner::CV.SuperLearner(</pre>
Y = Y, X = x, SL.library = learners, cvControl = list(V = 2 * V),
innerCvControl = list(list(V = V))
))
full_cv_preds <- full_cv_fit$SL.predict</pre>
# use the same cross-fitting folds for reduced
reduced_cv_fit <- suppressWarnings(SuperLearner::CV.SuperLearner()</pre>
   Y = Y, X = x[, -indx, drop = FALSE], SL.library = learners,
   cvControl = SuperLearner::SuperLearner.CV.control(
       V = 2 * V, validRows = full_cv_fit$folds
    ),
    innerCvControl = list(list(V = V))
))
reduced_cv_preds <- reduced_cv_fit$SL.predict</pre>
# for hypothesis testing
cross_fitting_folds <- get_cv_sl_folds(full_cv_fit$folds)</pre>
set.seed(1234)
```

14

estimate

```
sample_splitting_folds <- make_folds(unique(cross_fitting_folds), V = 2)
set.seed(5678)
est <- cv_vim(Y = y, cross_fitted_f1 = full_cv_preds,
cross_fitted_f2 = reduced_cv_preds, indx = 2, delta = 0, V = V, type = "r_squared",
cross_fitting_folds = cross_fitting_folds,
sample_splitting_folds = sample_splitting_folds,
run_regression = FALSE, alpha = 0.05, na.rm = TRUE)</pre>
```

estimate

Estimate a Predictiveness Measure

Description

Generic function for estimating a predictiveness measure (e.g., R-squared or classification accuracy).

Usage

estimate(x, ...)

Arguments

х	An R object. Currently, there are methods for predictiveness_measure objects only.
	further arguments passed to or from other methods.

estimate.predictiveness_measure *Obtain a Point Estimate and Efficient Influence Function Estimate for a Given Predictiveness Measure*

Description

Obtain a Point Estimate and Efficient Influence Function Estimate for a Given Predictiveness Measure

Usage

```
## S3 method for class 'predictiveness_measure'
estimate(x, ...)
```

х	an object of class "predictiveness_measure"
	other arguments to type-specific predictiveness measures (currently unused)

Value

A list with the point estimate, naive point estimate (for ANOVA only), estimated EIF, and the predictions for coarsened data EIF (for coarsened data settings only)

```
estimate_eif_projection
```

Estimate projection of EIF on fully-observed variables

Description

Estimate projection of EIF on fully-observed variables

Usage

```
estimate_eif_projection(
   obs_grad = NULL,
   C = NULL,
   Z = NULL,
   ipc_fit_type = NULL,
   ipc_eif_preds = NULL,
   ...
)
```

Arguments

obs_grad	the estimated (observed) EIF
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.
ipc_fit_type	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.
ipc_eif_preds	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.
	other arguments to SuperLearner, if ipc_fit_type = "SL".

Value

the projection of the EIF onto the fully-observed variables

estimate_nuisances Estimate nuisance functions for average value-based VIMs

Description

Estimate nuisance functions for average value-based VIMs

Usage

```
estimate_nuisances(
   fit,
   X,
   exposure_name,
   V = 1,
   SL.library,
   sample_splitting,
   sample_splitting_folds,
   verbose,
   weights,
   cross_fitted_se,
   split = 1,
   ...
)
```

the fitted nuisance function estimator
the covariates. If type = "average_value", then the exposure variable should be part of X, with its name provided in exposure_name.
(only used if type = "average_value") the name of the exposure of interest; binary, with 1 indicating presence of the exposure and 0 indicating absence of the exposure.
the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
g
should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variables with truly zero importance.
g_folds
the folds used for sample-splitting; these identify the observations that should be used to evaluate predictiveness based on the full and reduced sets of covariates, respectively. Only used if run_regression = FALSE.

verbose	should we print progress? defaults to FALSE
weights	weights to pass to estimation procedure
cross_fitted_se	
	should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?
split	the sample split to use
	other arguments to the estimation tool, see "See also".

Value

nuisance function estimators for use in the average value VIM: the treatment assignment based on the estimated optimal rule (based on the estimated outcome regression); the expected outcome under the estimated optimal rule; and the estimated propensity score.

estimate_type_predictiveness *Estimate Predictiveness Given a Type*

Description

Estimate the specified type of predictiveness

Usage

```
estimate_type_predictiveness(arg_lst, type)
```

Arguments

arg_lst	a list of arguments; from, e.g., predictiveness_measure
type	the type of predictiveness, e.g., "r_squared"

est_predictiveness Estimate a nonparametric predictiveness functional

Description

Compute nonparametric estimates of the chosen measure of predictiveness.

est_predictiveness

Usage

```
est_predictiveness(
 fitted_values,
 у,
  a = NULL,
  full_y = NULL,
  type = "r_squared",
 C = rep(1, length(y)),
  Z = NULL,
  ipc_weights = rep(1, length(C)),
  ipc_fit_type = "external",
  ipc_eif_preds = rep(1, length(C)),
  ipc_est_type = "aipw",
  scale = "identity",
  na.rm = FALSE,
 nuisance_estimators = NULL,
  . . .
)
```

fitted_values	fitted values from a regression function using the observed data.
У	the observed outcome.
а	the observed treatment assignment (may be within a specified fold, for cross- fitted estimates). Only used if type = "average_value".
full_y	the observed outcome (from the entire dataset, for cross-fitted estimates).
type	which parameter are you estimating (defaults to r_squared, for R-squared-based variable importance)?
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.
ipc_weights	weights for inverse probability of coarsening (e.g., inverse weights from a two- phase sample) weighted estimation. Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the correction to the efficient influence function.
<pre>ipc_eif_preds</pre>	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.
<pre>ipc_est_type</pre>	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

nuisance_estimators

(only used if type = "average_value") a list of nuisance function estimators on the observed data (may be within a specified fold, for cross-fitted estimates). Specifically: an estimator of the optimal treatment rule; an estimator of the propensity score under the estimated optimal treatment rule; and an estimator of the outcome regression when treatment is assigned according to the estimated optimal rule.

```
... other arguments to SuperLearner, if ipc_fit_type = "SL".
```

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

A list, with: the estimated predictiveness; the estimated efficient influence function; and the predictions of the EIF based on inverse probability of censoring.

est_predictiveness_cv Estimate a nonparametric predictiveness functional using cross-fitting

Description

Compute nonparametric estimates of the chosen measure of predictiveness.

Usage

```
est_predictiveness_cv(
  fitted_values,
  у,
  full_y = NULL,
  folds,
  type = "r_squared",
  C = rep(1, length(y)),
  Z = NULL,
  folds_Z = folds,
  ipc_weights = rep(1, length(C)),
  ipc_fit_type = "external",
  ipc_eif_preds = rep(1, length(C)),
  ipc_est_type = "aipw",
  scale = "identity",
  na.rm = FALSE,
  . . .
)
```

Arguments

the same length as y.	rector of
y the observed outcome.	
full_y the observed outcome (from the entire dataset, for cross-fitted estimates)).
folds the cross-validation folds for the observed data.	
type which parameter are you estimating (defaults to r_squared, for R-so based variable importance)?	squared-
C the indicator of coarsening (1 denotes observed, 0 denotes unobserved).	
Z either NULL (if no coarsening) or a matrix-like object containing the fuserved data.	ully ob-
folds_Z either the cross-validation folds for the observed data (no coarsening) or a of folds for the fully observed data Z.	a vector
<pre>ipc_weights weights for inverse probability of coarsening (e.g., inverse weights from phase sample) weighted estimation. Assumed to be already inverted (i.e., = 1 / [estimated probability weights]).</pre>	
ipc_fit_type if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to det the correction to the efficient influence function.	etermine
<pre>ipc_eif_preds if ipc_fit_type = "external", the fitted values from a regression of t</pre>	
ipc_est_type IPC correction, either "ipw" (for classical inverse probability weight "aipw" (for augmented inverse probability weighting; the default).	ting) or
scale if doing an IPC correction, then the scale that the correction should be control on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and transform).	-
na.rm logical; should NA's be removed in computation? (defaults to FALSE)	
other arguments to SuperLearner, if ipc_fit_type = "SL".	

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest. If sample-splitting is also requested (recommended, since in this case inferences will be valid even if the variable has zero true importance), then the prediction functions are trained as if 2K-fold cross-validation were run, but are evaluated on only K sets (independent between the full and reduced nuisance regression).

Value

The estimated measure of predictiveness.

extract_sampled_split_predictions

Extract sampled-split predictions from a CV.SuperLearner object

Description

Use the cross-validated Super Learner and a set of specified sample-splitting folds to extract crossfitted predictions on separate splits of the data. This is primarily for use in cases where you have already fit a CV.SuperLearner and want to use the fitted values to compute variable importance without having to re-fit. The number of folds used in the CV.SuperLearner must be even.

Usage

```
extract_sampled_split_predictions(
    cvsl_obj = NULL,
    sample_splitting = TRUE,
    sample_splitting_folds = NULL,
    full = TRUE,
    preds = NULL,
    cross_fitting_folds = NULL,
    vector = TRUE
)
```

Arguments

cvsl_obj	An object of class "CV. SuperLearner"; must be entered unless preds is speci-	
	fied.	
sample_splitti	ng	
	logical; should we use sample-splitting or not? Defaults to TRUE.	
sample_splitting_folds		
	A vector of folds to use for sample splitting	
full	logical; is this the fit to all covariates (TRUE) or not (FALSE)?	
preds	a vector of predictions; must be entered unless cvsl_obj is specified.	
cross_fitting_folds		
	a vector of folds that were used in cross-fitting.	
vector	logical; should we return a vector (where each element is the prediction when the corresponding row is in the validation fold) or a list?	

Value

The predictions on validation data in each split-sample fold.

See Also

CV. SuperLearner for usage of the CV. SuperLearner function.

format.predictiveness_measure

Format a predictiveness_measure object

Description

Nicely formats the output from a predictiveness_measure object for printing.

Usage

```
## S3 method for class 'predictiveness_measure'
format(x, ...)
```

Arguments

х	the predictiveness_measure object of interest.
	other options, see the generic format function.

nat.vim Format a vim object

Description

Nicely formats the output from a vim object for printing.

Usage

S3 method for class 'vim'
format(x, ...)

х	the vim object of interest.
	other options, see the generic format function.

get_cv_sl_folds

Description

Get a numeric vector with cross-validation fold IDs from CV.SuperLearner

Usage

get_cv_sl_folds(cv_sl_folds)

Arguments

cv_sl_folds The folds from a call to CV. SuperLearner; a list.

Value

A numeric vector with the fold IDs.

get_full_type Obtain the type of VIM to estimate using partial matching

Description

Obtain the type of VIM to estimate using partial matching

Usage

get_full_type(type)

Arguments

type the partial string indicating the type of VIM

Value

the full string indicating the type of VIM

get_test_set Return test-set only data

Description

Return test-set only data

Usage

get_test_set(arg_lst, k)

Arguments

arg_lst	a list of estimates, data, etc.
k	the index of interest

Value

the test-set only data

make_folds	Create Folds for Cross-Fitting
------------	--------------------------------

Description

Create Folds for Cross-Fitting

Usage

make_folds(y, V = 2, stratified = FALSE, C = NULL, probs = rep(1/V, V))

Arguments

У	the outcome
V	the number of folds
stratified	should the folds be stratified based on the outcome?
С	a vector indicating whether or not the observation is fully observed; 1 denotes yes, 0 denotes no
probs	vector of proportions for each fold number

Value

a vector of folds

make_kfold

Description

Turn folds from 2K-fold cross-fitting into individual K-fold folds

Usage

```
make_kfold(
    cross_fitting_folds,
    sample_splitting_folds = rep(1, length(unique(cross_fitting_folds))),
    C = rep(1, length(cross_fitting_folds))
)
```

Arguments

cross_fitting_folds the vector of cross-fitting folds sample_splitting_folds the sample splitting folds C vector of whether or not we measured the observation in phase 2

Value

the two sets of testing folds for K-fold cross-fitting

measure_accuracy Estimate the classification accuracy

Description

Compute nonparametric estimate of classification accuracy.

Usage

```
measure_accuracy(
  fitted_values,
  y,
  full_y = NULL,
  C = rep(1, length(y)),
  Z = NULL,
  ipc_weights = rep(1, length(y)),
  ipc_fit_type = "external",
  ipc_eif_preds = rep(1, length(y)),
```

measure_accuracy

```
ipc_est_type = "aipw",
scale = "logit",
na.rm = FALSE,
nuisance_estimators = NULL,
a = NULL,
...
```

Arguments

fitted_values	fitted values from a regression function using the observed data (may be within a specified fold, for cross-fitted estimates).	
У	the observed outcome (may be within a specified fold, for cross-fitted estimates).	
full_y	the observed outcome (not used, defaults to NULL).	
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).	
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.	
ipc_weights	weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., ipc_weights = 1 / [estimated probability weights]).	
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.	
<pre>ipc_eif_preds</pre>	<pre>if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.</pre>	
ipc_est_type	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).	
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).	
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)	
nuisance_estimators		
	not used; for compatibility with measure_average_value.	
а	not used; for compatibility with measure_average_value.	
	other arguments to SuperLearner, if ipc_fit_type = "SL".	

Value

A named list of: (1) the estimated classification accuracy of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

measure_anova

Description

Estimate ANOVA decomposition-based variable importance.

Usage

```
measure_anova(
  full,
  reduced,
  у,
  full_y = NULL,
  C = rep(1, length(y)),
  Z = NULL,
  ipc_weights = rep(1, length(y)),
  ipc_fit_type = "external",
  ipc_eif_preds = rep(1, length(y)),
  ipc_est_type = "aipw",
  scale = "logit",
  na.rm = FALSE,
  nuisance_estimators = NULL,
  a = NULL,
  . . .
)
```

full	fitted values from a regression function of the observed outcome on the full set of covariates.
reduced	fitted values from a regression on the reduced set of observed covariates.
У	the observed outcome (may be within a specified fold, for cross-fitted estimates).
full_y	the observed outcome (not used, defaults to NULL).
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.
ipc_weights	weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., ipc_weights = 1 / [estimated probability weights]).
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.
<pre>ipc_eif_preds</pre>	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.

measure_auc

<pre>ipc_est_type</pre>	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).	
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).	
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)	
nuisance_estimators		
	not used; for compatibility with measure_average_value.	
а	not used; for compatibility with measure_average_value.	
	other arguments to SuperLearner, if ipc_fit_type = "SL".	

Value

A named list of: (1) the estimated ANOVA (based on a one-step correction) of the fitted regression functions; (2) the estimated influence function; (3) the naive ANOVA estimate; and (4) the IPC EIF predictions.

measure_auc

Estimate area under the receiver operating characteristic curve (AUC)

Description

Compute nonparametric estimate of AUC.

Usage

```
measure_auc(
  fitted_values,
 у,
  full_y = NULL,
 C = rep(1, length(y)),
  Z = NULL,
  ipc_weights = rep(1, length(y)),
  ipc_fit_type = "external",
  ipc_eif_preds = rep(1, length(y)),
  ipc_est_type = "aipw",
  scale = "logit",
  na.rm = FALSE,
  nuisance_estimators = NULL,
  a = NULL,
  . . .
)
```

Arguments

fitted_values	fitted values from a regression function using the observed data (may be within a specified fold, for cross-fitted estimates).	
У	the observed outcome (may be within a specified fold, for cross-fitted estimates).	
full_y	the observed outcome (not used, defaults to NULL).	
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).	
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.	
ipc_weights	weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., $ipc_weights = 1 / [estimated probability weights])$.	
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.	
<pre>ipc_eif_preds</pre>	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.	
<pre>ipc_est_type</pre>	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).	
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).	
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)	
nuisance_estimators		
	not used; for compatibility with measure_average_value.	
а	not used; for compatibility with measure_average_value.	
	other arguments to SuperLearner, if ipc_fit_type = "SL".	

Value

A named list of: (1) the estimated AUC of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

measure_average_value *Estimate the average value under the optimal treatment rule*

Description

Compute nonparametric estimate of the average value under the optimal treatment rule.

measure_average_value

Usage

```
measure_average_value(
   nuisance_estimators,
   y,
   a,
   full_y = NULL,
   C = rep(1, length(y)),
   Z = NULL,
   ipc_weights = rep(1, length(y)),
   ipc_fit_type = "external",
   ipc_eif_preds = rep(1, length(y)),
   ipc_est_type = "aipw",
   scale = "identity",
   na.rm = FALSE,
   ...
)
```

Arguments

nuisance_estimators

nuisance_estina	
	a list of nuisance function estimators on the observed data (may be within a spec- ified fold, for cross-fitted estimates). Specifically: an estimator of the optimal treatment rule; an estimator of the propensity score under the estimated optimal treatment rule; and an estimator of the outcome regression when treatment is assigned according to the estimated optimal rule.
У	the observed outcome (may be within a specified fold, for cross-fitted estimates).
а	the observed treatment assignment (may be within a specified fold, for cross-fitted estimates).
full_y	the observed outcome (not used, defaults to NULL).
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.
ipc_weights	weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., ipc_weights = 1 / [estimated probability weights]).
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.
<pre>ipc_eif_preds</pre>	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.
<pre>ipc_est_type</pre>	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)
	other arguments to SuperLearner, if ipc_fit_type = "SL".

Value

A named list of: (1) the estimated classification accuracy of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

measure_cross_entropy Estimate the cross-entropy

Description

Compute nonparametric estimate of cross-entropy.

Usage

```
measure_cross_entropy(
  fitted_values,
 у,
  full_y = NULL,
 C = rep(1, length(y)),
  Z = NULL,
  ipc_weights = rep(1, length(y)),
  ipc_fit_type = "external",
  ipc_eif_preds = rep(1, length(y)),
  ipc_est_type = "aipw",
  scale = "identity",
 na.rm = FALSE,
 nuisance_estimators = NULL,
 a = NULL,
  . . .
)
```

fitted_values	fitted values from a regression function using the observed data (may be within a specified fold, for cross-fitted estimates).
У	the observed outcome (may be within a specified fold, for cross-fitted estimates).
full_y	the observed outcome (not used, defaults to NULL).
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.
ipc_weights	weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., $ipc_weights = 1 / [estimated probability weights])$.
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.

<pre>ipc_eif_preds</pre>	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.	
<pre>ipc_est_type</pre>	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).	
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).	
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)	
nuisance_estimators		
	not used; for compatibility with measure_average_value.	
а	not used; for compatibility with measure_average_value.	
	other arguments to SuperLearner, if ipc_fit_type = "SL".	

Value

A named list of: (1) the estimated cross-entropy of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

measure_deviance Estimate the deviance

Description

Compute nonparametric estimate of deviance.

Usage

```
measure_deviance(
  fitted_values,
 у,
  full_y = NULL,
 C = rep(1, length(y)),
  Z = NULL,
  ipc_weights = rep(1, length(y)),
  ipc_fit_type = "external",
  ipc_eif_preds = rep(1, length(y)),
  ipc_est_type = "aipw",
  scale = "logit",
 na.rm = FALSE,
 nuisance_estimators = NULL,
 a = NULL,
  . . .
)
```

Arguments

fitted_values	fitted values from a regression function using the observed data (may be within a specified fold, for cross-fitted estimates).	
У	the observed outcome (may be within a specified fold, for cross-fitted estimates).	
full_y	the observed outcome (not used, defaults to NULL).	
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).	
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.	
ipc_weights	weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., $ipc_weights = 1 / [estimated probability weights])$.	
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.	
<pre>ipc_eif_preds</pre>	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.	
<pre>ipc_est_type</pre>	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).	
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).	
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)	
nuisance_estimators		
	not used; for compatibility with measure_average_value.	
а	not used; for compatibility with measure_average_value.	
	other arguments to SuperLearner, if ipc_fit_type = "SL".	

Value

A named list of: (1) the estimated deviance of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

measure_mse

Estimate mean squared error

Description

Compute nonparametric estimate of mean squared error.

measure_mse

Usage

```
measure_mse(
 fitted_values,
 у,
 full_y = NULL,
 C = rep(1, length(y)),
 Z = NULL,
 ipc_weights = rep(1, length(y)),
  ipc_fit_type = "external",
 ipc_eif_preds = rep(1, length(y)),
 ipc_est_type = "aipw",
 scale = "identity",
 na.rm = FALSE,
 nuisance_estimators = NULL,
 a = NULL,
  . . .
)
```

fitted_values	fitted values from a regression function using the observed data (may be within a specified fold, for cross-fitted estimates).	
У	the observed outcome (may be within a specified fold, for cross-fitted estimates).	
full_y	the observed outcome (not used, defaults to NULL).	
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).	
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.	
ipc_weights	weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., ipc_weights = 1 / [estimated probability weights]).	
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.	
<pre>ipc_eif_preds</pre>	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.	
<pre>ipc_est_type</pre>	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).	
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).	
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)	
nuisance_estimators		
	not used; for compatibility with measure_average_value.	
а	not used; for compatibility with measure_average_value.	
	other arguments to SuperLearner, if ipc_fit_type = "SL".	

Value

A named list of: (1) the estimated mean squared error of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

measure_r_squared Estimate R-squared

Description

Estimate R-squared

Usage

```
measure_r_squared(
  fitted_values,
 у,
  full_y = NULL,
 C = rep(1, length(y)),
  Z = NULL,
  ipc_weights = rep(1, length(y)),
  ipc_fit_type = "external",
  ipc_eif_preds = rep(1, length(y)),
  ipc_est_type = "aipw",
  scale = "logit",
 na.rm = FALSE,
 nuisance_estimators = NULL,
 a = NULL,
  . . .
)
```

fitted_values	fitted values from a regression function using the observed data (may be within a specified fold, for cross-fitted estimates).
У	the observed outcome (may be within a specified fold, for cross-fitted estimates).
full_y	the observed outcome (not used, defaults to NULL).
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.
ipc_weights	weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., $ipc_weights = 1 / [estimated probability weights])$.
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.
merge_vim

<pre>ipc_eif_preds</pre>	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.	
<pre>ipc_est_type</pre>	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).	
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).	
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)	
nuisance_estimators		
	not used; for compatibility with measure_average_value.	
а	not used; for compatibility with measure_average_value.	
	other arguments to SuperLearner, if ipc_fit_type = "SL".	

Value

A named list of: (1) the estimated R-squared of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

merge_vim

Merge multiple vim objects into one

Description

Take the output from multiple different calls to vimp_regression and merge into a single vim object; mostly used for plotting results.

Usage

merge_vim(...)

Arguments

. . .

an arbitrary number of vim objects, separated by commas.

Value

an object of class vim containing all of the output from the individual vim objects. This results in a list containing:

- s a list of the column(s) to calculate variable importance for
- SL.library a list of the libraries of learners passed to SuperLearner
- full_fit a list of the fitted values of the chosen method fit to the full data
- red_fit a list of the fitted values of the chosen method fit to the reduced data
- est- a vector with the corrected estimates
- naive- a vector with the naive estimates

- eif- a list with the influence curve-based updates
- se- a vector with the standard errors
- ci- a matrix with the CIs
- mat a tibble with the estimated variable importance, the standard errors, and the $(1 \alpha) \times 100\%$ confidence intervals
- full_mod a list of the objects returned by the estimation procedure for the full data regression (if applicable)
- red_mod a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
- alpha a list of the levels, for confidence interval calculation

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
# generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)</pre>
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")</pre>
# using Super Learner (with a small number of folds, for illustration only)
est_2 <- vimp_regression(Y = y, X = x, indx = 2, V = 2,
           run_regression = TRUE, alpha = 0.05,
           SL.library = learners, cvControl = list(V = 2))
est_1 <- vimp_regression(Y = y, X = x, indx = 1, V = 2,</pre>
           run_regression = TRUE, alpha = 0.05,
           SL.library = learners, cvControl = list(V = 2))
ests <- merge_vim(est_1, est_2)</pre>
```

predictiveness_measure

Construct a Predictiveness Measure

Description

Construct a Predictiveness Measure

Usage

```
predictiveness_measure(
  type = character(),
 y = numeric(),
 a = numeric(),
  fitted_values = numeric(),
  cross_fitting_folds = rep(1, length(fitted_values)),
  full_y = NULL,
  nuisance_estimators = list(),
 C = rep(1, length(y)),
  Z = NULL,
  folds_Z = cross_fitting_folds,
  ipc_weights = rep(1, length(y)),
  ipc_fit_type = "SL",
  ipc_eif_preds = numeric(),
  ipc_est_type = "aipw",
  scale = "identity",
 na.rm = TRUE,
  . . .
)
```

type	the measure of interest (e.g., "accuracy", "auc", "r_squared")	
У	the outcome of interest	
а	the exposure of interest (only used if type = "average_value")	
fitted_values	fitted values from a regression function using the observed data (may be within a specified fold, for cross-fitted estimates).	
cross_fitting_f	olds	
	folds for cross-fitting, if used to obtain the fitted values. If not used, a vector of ones.	
full_y	the observed outcome (not used, defaults to NULL).	
nuisance_estima	tors	
	a list of nuisance function estimators on the observed data (may be within a specified fold, for cross-fitted estimates). For the average value measure: an estimator of the optimal treatment rule (f_n) ; an estimator of the propensity score under the estimated optimal treatment rule (g_n) ; and an estimator of the outcome regression when treatment is assigned according to the estimated optimal rule (q_n) .	
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).	
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.	
folds_Z	either the cross-validation folds for the observed data (no coarsening) or a vector of folds for the fully observed data Z.	

ipc_weights	weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., ipc_weights = 1 / [estimated probability weights]).
<pre>ipc_fit_type</pre>	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the IPC correction to the efficient influence function.
<pre>ipc_eif_preds</pre>	<pre>if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.</pre>
<pre>ipc_est_type</pre>	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)
	other arguments to SuperLearner, if ipc_fit_type = "SL".

Value

An object of class "predictiveness_measure", with the following attributes:

Description

Prints out a table of the point estimate and standard error for a predictiveness_measure object.

Usage

```
## S3 method for class 'predictiveness_measure'
print(x, ...)
```

х	the predictiveness_measure object of interest.
	other options, see the generic print function.

print.vim

Print vim objects

Description

Prints out the table of estimates, confidence intervals, and standard errors for a vim object.

Usage

S3 method for class 'vim'
print(x, ...)

Arguments

х	the vim object of interest.	
	other options, see the generic print function.	

process_arg_lst	Process argument list for Super Learner estimation of the EIF

Description

Process argument list for Super Learner estimation of the EIF

Usage

```
process_arg_lst(arg_lst)
```

Arguments

arg_lst the list of arguments for Super Learner

Value

a list of modified arguments for EIF estimation

run_sl

Description

Run a Super Learner for the provided subset of features

Usage

```
run_sl(
 Y = NULL,
 X = NULL,
 V = 5,
 SL.library = "SL.glm",
  univariate_SL.library = NULL,
  s = 1,
  cv_folds = NULL,
  sample_splitting = TRUE,
  ss_folds = NULL,
  split = 1,
  verbose = FALSE,
 progress_bar = NULL,
  indx = 1,
 weights = rep(1, nrow(X)),
  cross_fitted_se = TRUE,
  full = NULL,
  vector = TRUE,
  . . .
)
```

Y	the outcome	
Х	the covariates	
V	the number of folds	
SL.library	the library of candidate learners	
univariate_SL.library		
	the library of candidate learners for single-covariate regressions	
S	the subset of interest	
cv_folds	the CV folds	
sample_splitting		
	logical; should we use sample-splitting for predictiveness estimation?	
ss_folds	the sample-splitting folds; only used if sample_splitting = TRUE	
split	the split to use for sample-splitting; only used if sample_splitting = TRUE	

sample_subsets

verbose	should we print progress? defaults to FALSE	
progress_bar	the progress bar to print to (only if verbose = TRUE)	
indx	the index to pass to progress bar (only if verbose = TRUE)	
weights	weights to pass to estimation procedure	
cross_fitted_s	e	
	if TRUE, uses a cross-fitted estimator of the standard error; otherwise, uses the entire dataset	
full	should this be considered a "full" or "reduced" regression? If NULL (the default), this is determined automatically; a full regression corresponds to s being equal to the full covariate vector. For SPVIMs, can be entered manually.	
vector	should we return a vector (TRUE) or a list (FALSE)?	
	other arguments to Super Learner	

Value

a list of length V, with the results of predicting on the hold-out data for each v in 1 through V

sample_subsets Create necessary objects for SPVIMs

Description

Creates the Z and W matrices and a list of sampled subsets, S, for SPVIM estimation.

Usage

sample_subsets(p, gamma, n)

Arguments

р	the number of covariates
gamma	the fraction of the sample size to sample (e.g., gamma = 1 means sample n sub-
	sets)
n	the sample size

Value

a list, with elements Z (the matrix encoding presence/absence of each feature in the uniquely sampled subsets), S (the list of unique sampled subsets), W (the matrix of weights), and z_counts (the number of times each subset was sampled)

Examples

```
p <- 10
gamma <- 1
n <- 100
set.seed(100)
subset_lst <- sample_subsets(p, gamma, n)</pre>
```

scale_est

Description

Return an estimator on a different scale

Usage

```
scale_est(obs_est = NULL, grad = NULL, scale = "identity")
```

Arguments

obs_est	the observed VIM estimate	
grad	the estimated efficient influence function	
scale	the scale to compute on	

Details

It may be of interest to return an estimate (or confidence interval) on a different scale than originally measured. For example, computing a confidence interval (CI) for a VIM value that lies in (0,1) on the logit scale ensures that the CI also lies in (0, 1).

Value

the scaled estimate

spvim_ics

Influence function estimates for SPVIMs

Description

Compute the influence functions for the contribution from sampling observations and subsets.

Usage

```
spvim_ics(Z, z_counts, W, v, psi, G, c_n, ics, measure)
```

spvim_se

Arguments

Z	the matrix of presence/absence of each feature (columns) in each sampled subset (rows)
z_counts	the number of times each unique subset was sampled
W	the matrix of weights
v	the estimated predictiveness measures
psi	the estimated SPVIM values
G	the constraint matrix
c_n	the constraint values
ics	a list of influence function values for each predictiveness measure
measure	the type of measure (e.g., "r_squared" or "auc")

Details

The processes for sampling observations and sampling subsets are independent. Thus, we can compute the influence function separately for each sampling process. For further details, see the paper by Williamson and Feng (2020).

Value

a named list of length 2; contrib_v is the contribution from estimating V, while contrib_s is the contribution from sampling subsets.

spvim_	se
op 1 ±	

Standard error estimate for SPVIM values

Description

Compute standard error estimates based on the estimated influence function for a SPVIM value of interest.

Usage

```
spvim_se(ics, idx = 1, gamma = 1, na_rm = FALSE)
```

ics	the influence function estimates based on the contributions from sampling ob- servations and sampling subsets: a list of length two resulting from a call to spvim_ics.
idx	the index of interest
gamma	the proportion of the sample size used when sampling subsets
na_rm	remove NAs?

Since the processes for sampling observations and subsets are independent, the variance for a given SPVIM estimator is simply the sum of the variances based on sampling observations and on sampling subsets.

Value

The standard error estimate for the desired SPVIM value

See Also

spvim_ics for how the influence functions are estimated.

sp_vim	Shapley Population Variable Importance Measure (SPVIM) Estimates
	and Inference

Description

Compute estimates and confidence intervals for the SPVIMs, using cross-fitting.

Usage

)

```
sp_vim(
 Y = NULL,
 X = NULL
 V = 5,
  type = "r_squared",
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
 univariate_SL.library = NULL,
  gamma = 1,
  alpha = 0.05,
 delta = 0,
 na.rm = FALSE,
  stratified = FALSE,
  verbose = FALSE,
  sample_splitting = TRUE,
  final_point_estimate = "split",
  C = rep(1, length(Y)),
  Z = NULL,
  ipc_scale = "identity",
  ipc_weights = rep(1, length(Y)),
  ipc_est_type = "aipw",
  scale = "identity",
  scale_est = TRUE,
 cross_fitted_se = TRUE,
  . . .
```

sp_vim

Y	the outcome.
Х	the covariates. If type = "average_value", then the exposure variable should be part of X, with its name provided in exposure_name.
V	the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
type	the type of importance to compute; defaults to r_squared, but other supported options are auc, accuracy, deviance, and anova.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
univariate_SL.1	ibrary
	(optional) a character vector of learners to pass to SuperLearner for estimating univariate regression functions. Defaults to SL.polymars
gamma	the fraction of the sample size to use when sampling subsets (e.g., gamma = 1 samples the same number of subsets as the sample size)
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance < δ); defaults to 0.
na.rm	should we remove NAs in the outcome and fitted values in computation? (defaults to FALSE)
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
stratified verbose	
	the outcome (helps to ensure class balance across cross-validation folds) should sp_vim and SuperLearner print out progress? (defaults to FALSE)
verbose	the outcome (helps to ensure class balance across cross-validation folds) should sp_vim and SuperLearner print out progress? (defaults to FALSE)
verbose	the outcome (helps to ensure class balance across cross-validation folds) should sp_vim and SuperLearner print out progress? (defaults to FALSE) g should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variables with truly zero importance.
verbose sample_splittin	the outcome (helps to ensure class balance across cross-validation folds) should sp_vim and SuperLearner print out progress? (defaults to FALSE) g should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variables with truly zero importance.
verbose sample_splittin	<pre>the outcome (helps to ensure class balance across cross-validation folds) should sp_vim and SuperLearner print out progress? (defaults to FALSE) g should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variables with truly zero importance. imate if sample splitting is used, should the final point estimates be based on only the sample-split folds used for inference ("split", the default), or should they instead be based on the full dataset ("full") or the average across the point estimates from each sample split ("average")? All three options result in valid</pre>
verbose sample_splittin final_point_est	<pre>the outcome (helps to ensure class balance across cross-validation folds) should sp_vim and SuperLearner print out progress? (defaults to FALSE) g should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variables with truly zero importance. imate if sample splitting is used, should the final point estimates be based on only the sample-split folds used for inference ("split", the default), or should they instead be based on the full dataset ("full") or the average across the point estimates from each sample split ("average")? All three options result in valid point estimates – sample-splitting is only required for valid inference.</pre>

ipc_weights	weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).	
ipc_est_type	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1.	
scale	should CIs be computed on original ("identity") or another scale? (options are "log" and "logit")	
scale_est	should the point estimate be scaled to be greater than or equal to 0? Defaults to TRUE.	
cross_fitted_se		
	should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?	
	other arguments to the estimation tool, see "See also".	

We define the SPVIM as the weighted average of the population difference in predictiveness over all subsets of features not containing feature j.

This is equivalent to finding the solution to a population weighted least squares problem. This key fact allows us to estimate the SPVIM using weighted least squares, where we first sample subsets from the power set of all possible features using the Shapley sampling distribution; then use cross-fitting to obtain estimators of the predictiveness of each sampled subset; and finally, solve the least squares problem given in Williamson and Feng (2020).

See the paper by Williamson and Feng (2020) for more details on the mathematics behind this function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

SL.library the library of learners passed to SuperLearner

v the estimated predictiveness measure for each sampled subset

fit_lst the fitted values on the entire dataset from the chosen method for each sampled subset

preds_lst the cross-fitted predicted values from the chosen method for each sampled subset

est the estimated SPVIM value for each feature

ics the influence functions for each sampled subset

var_v_contribs the contibutions to the variance from estimating predictiveness

var_s_contribs the contributions to the variance from sampling subsets

ic_lst a list of the SPVIM influence function contributions

se the standard errors for the estimated variable importance

ci the $(1 - \alpha) \times 100\%$ confidence intervals based on the variable importance estimates

p_value p-values for the null hypothesis test of zero importance for each variable

test_statistic the test statistic for each null hypothesis test of zero importance

sp_vim

test a hypothesis testing decision for each null hypothesis test (for each variable having zero importance)

gamma the fraction of the sample size used when sampling subsets

alpha the level, for confidence interval calculation

delta the delta value used for hypothesis testing

y the outcome

ipc_weights the weights

scale the scale on which CIs were computed

mat - a tibble with the estimates, SEs, CIs, hypothesis testing decisions, and p-values

Value

An object of class vim. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
n <- 100
p <- 2
# generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
# generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))</pre>
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm")</pre>
# ------
# using Super Learner (with a small number of CV folds,
# for illustration only)
# ------
set.seed(4747)
est <- sp_vim(Y = y, X = x, V = 2, type = "r_squared",
SL.library = learners, alpha = 0.05)
```

Description

Compute estimates of and confidence intervals for nonparametric intrinsic variable importance based on the population-level contrast between the oracle predictiveness using the feature(s) of interest versus not.

Usage

```
vim(
  Y = NULL,
  X = NULL,
  f1 = NULL,
  f_2 = NULL,
  indx = 1,
  type = "r_squared",
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  scale = "identity",
  na.rm = FALSE,
  sample_splitting = TRUE,
  sample_splitting_folds = NULL,
  final_point_estimate = "split",
  stratified = FALSE,
  C = rep(1, length(Y)),
  Z = NULL,
  ipc_scale = "identity",
  ipc_weights = rep(1, length(Y)),
  ipc_est_type = "aipw",
  scale_est = TRUE,
  nuisance_estimators_full = NULL,
  nuisance_estimators_reduced = NULL,
  exposure_name = NULL,
  bootstrap = FALSE,
  b = 1000,
  boot_interval_type = "perc",
  clustered = FALSE,
  cluster_id = rep(NA, length(Y)),
)
```

Arguments

Y

the outcome.

vim

Х

Х	the covariates. If type = "average_value", then the exposure variable should be part of X, with its name provided in exposure_name.
f1	the fitted values from a flexible estimation technique regressing Y on X. A vector of the same length as Y; if sample-splitting is desired, then the value of f1 at each position should be the result of predicting from a model trained without that observation.
f2	the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx. A vector of the same length as Y; if sample-splitting is desired, then the value of f2 at each position should be the result of predicting from a model trained without that observation.
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
type	the type of importance to compute; defaults to r_squared, but other supported options are auc, accuracy, deviance, and anova.
run_regression	if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
scale	should CIs be computed on original ("identity") or another scale? (options are "log" and "logit")
na.rm	should we remove NAs in the outcome and fitted values in computation? (de-faults to FALSE)
<pre>sample_splittin</pre>	-
	should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variables with truly zero importance.
<pre>sample_splittin</pre>	
	the folds used for sample-splitting; these identify the observations that should be used to evaluate predictiveness based on the full and reduced sets of covariates, respectively. Only used if run_regression = FALSE.
final_point_est	imate
	if sample splitting is used, should the final point estimates be based on only the sample-split folds used for inference ("split", the default), or should they instead be based on the full dataset ("full") or the average across the point estimates from each sample split ("average")? All three options result in valid point estimates – sample-splitting is only required for valid inference.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).

Ζ either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are

	thought to play a role in the coarsening mechanism. To specify the outcome, use "Y"; to specify covariates, use a character number corresponding to the desired position in X (e.g., "1").
ipc_scale	what scale should the inverse probability weight correction be applied on (if any)? Defaults to "identity". (other options are "log" and "logit")
ipc_weights	weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).
ipc_est_type	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1.
scale_est	should the point estimate be scaled to be greater than or equal to 0? Defaults to TRUE.
nuisance_estim	ators_full
	(only used if type = "average_value") a list of nuisance function estimators on the observed data (may be within a specified fold, for cross-fitted estimates). Specifically: an estimator of the optimal treatment rule; an estimator of the propensity score under the estimated optimal treatment rule; and an estimator of the outcome regression when treatment is assigned according to the estimated optimal rule.
nuisance_estim	ators_reduced
	(only used if type = "average_value") a list of nuisance function estimators on the observed data (may be within a specified fold, for cross-fitted estimates). Specifically: an estimator of the optimal treatment rule; an estimator of the propensity score under the estimated optimal treatment rule; and an estimator of the outcome regression when treatment is assigned according to the estimated optimal rule.
exposure_name	(only used if type = "average_value") the name of the exposure of interest; binary, with 1 indicating presence of the exposure and 0 indicating absence of the exposure.
bootstrap	should bootstrap-based standard error estimates be computed? Defaults to FALSE (and currently may only be used if sample_splitting = FALSE).
b	the number of bootstrap replicates (only used if bootstrap = TRUE and sample_splitting = FALSE); defaults to 1000.
<pre>boot_interval_</pre>	type
	the type of bootstrap interval (one of "norm", "basic", "stud", "perc", or "bca", as in boot{boot.ci}) if requested. Defaults to "perc".
clustered	should the bootstrap resamples be performed on clusters rather than individual observations? Defaults to FALSE.
cluster_id	vector of the same length as Y giving the cluster IDs used for the clustered boot- strap, if clustered is TRUE.
	other arguments to the estimation tool, see "See also".

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),$$

where f_0 is the population predictiveness maximizing function, $f_{0,s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_0 is the true data-generating distribution. VIM estimates are obtained by obtaining estimators f_n and $f_{n,s}$ of f_0 and $f_{0,s}$, respectively; obtaining an estimator P_n of P_0 ; and finally, setting $\psi_{n,s} :=$ $V(f_n, P_n) - V(f_{n,s}, P_n)$.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:

s the column(s) to calculate variable importance for

SL.library the library of learners passed to SuperLearner

type the type of risk-based variable importance measured

full_fit the fitted values of the chosen method fit to the full data

red_fit the fitted values of the chosen method fit to the reduced data

est the estimated variable importance

naive the naive estimator of variable importance (only used if type = "anova")

eif the estimated efficient influence function

eif_full the estimated efficient influence function for the full regression

eif_reduced the estimated efficient influence function for the reduced regression

se the standard error for the estimated variable importance

ci the $(1 - \alpha) \times 100\%$ confidence interval for the variable importance estimate

test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test

p_value a p-value based on the same test as test

full_mod the object returned by the estimation procedure for the full data regression (if applicable)

red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)

alpha the level, for confidence interval calculation

sample_splitting_folds the folds used for sample-splitting (used for hypothesis testing)

y the outcome

ipc_weights the weights

cluster_id the cluster IDs

mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of classes vim and the type of risk-based measure. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))</pre>
# apply the function to the x's
f \le function(x) 0.5 + 0.3 \times x[1] + 0.2 \times x[2]
smooth <- apply(x, 1, function(z) f(z))</pre>
# generate Y ~ Bernoulli (smooth)
y <- matrix(rbinom(n, size = 1, prob = smooth))</pre>
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm")</pre>
# using Y and X; use class-balanced folds
est_1 <- vim(y, x, indx = 2, type = "accuracy",</pre>
           alpha = 0.05, run_regression = TRUE,
           SL.library = learners, cvControl = list(V = 2),
           stratified = TRUE)
# using pre-computed fitted values
set.seed(4747)
V <- 2
full_fit <- SuperLearner::CV.SuperLearner(Y = y, X = x,</pre>
                                            SL.library = learners,
                                             cvControl = list(V = 2),
                                             innerCvControl = list(list(V = V)))
full_fitted <- SuperLearner::predict.SuperLearner(full_fit)$pred</pre>
# fit the data with only X1
reduced_fit <- SuperLearner::CV.SuperLearner(Y = full_fitted,</pre>
                                                X = x[, -2, drop = FALSE],
                                                SL.library = learners,
                                       cvControl = list(V = 2, validRows = full_fit$folds),
                                                innerCvControl = list(list(V = V)))
reduced_fitted <- SuperLearner::predict.SuperLearner(reduced_fit)$pred</pre>
est_2 <- vim(Y = y, f1 = full_fitted, f2 = reduced_fitted,</pre>
            indx = 2, run_regression = FALSE, alpha = 0.05,
            stratified = TRUE, type = "accuracy",
            sample_splitting_folds = get_cv_sl_folds(full_fit$folds))
```

vimp_accuracy

Description

Compute estimates of and confidence intervals for nonparametric difference in classification accuracybased intrinsic variable importance. This is a wrapper function for cv_vim , with type = "accuracy".

Usage

```
vimp_accuracy(
 Y = NULL,
 X = NULL,
  cross_fitted_f1 = NULL,
  cross_fitted_f2 = NULL,
  f1 = NULL,
  f_2 = NULL,
  indx = 1,
 V = 10,
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  na.rm = FALSE,
  final_point_estimate = "split",
  cross_fitting_folds = NULL,
  sample_splitting_folds = NULL,
  stratified = TRUE,
  C = rep(1, length(Y)),
  Z = NULL,
  ipc_weights = rep(1, length(Y)),
  scale = "logit",
  ipc_est_type = "aipw",
  scale_est = TRUE,
  cross_fitted_se = TRUE,
)
```

Arguments

Y	the outcome.
Х	the covariates. If type = "average_value", then the exposure variable should be part of X, with its name provided in exposure_name.
cross_fitted_f1	
	the predicted values on validation data from a flexible estimation technique re-

gressing Y on X in the training data. Provided as either (a) a vector, where each

element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).

cross_fitted_f2

the predicted values on validation data from a flexible estimation technique regressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X withholding the columns in indx. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).

- f1 the fitted values from a flexible estimation technique regressing Y on X. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
- f2 the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
- indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
- V the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
- run_regression if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
- SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
- alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
- delta the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
- na.rm should we remove NAs in the outcome and fitted values in computation? (defaults to FALSE)

final_point_estimate

if sample splitting is used, should the final point estimates be based on only the sample-split folds used for inference ("split", the default), or should they instead be based on the full dataset ("full") or the average across the point estimates from each sample split ("average")? All three options result in valid point estimates – sample-splitting is only required for valid inference.

cross_fitting_folds		
	the folds for cross-fitting. Only used if run_regression = FALSE.	
sample_splitti	ng_folds the folds used for sample-splitting; these identify the observations that should be	
	used to evaluate predictiveness based on the full and reduced sets of covariates, respectively. Only used if run_regression = FALSE.	
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)	
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).	
Z	either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism. To specify the outcome, use "Y"; to specify covariates, use a character number corresponding to the desired position in X (e.g., "1").	
ipc_weights	weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).	
scale	should CIs be computed on original ("identity") or another scale? (options are "log" and "logit")	
<pre>ipc_est_type</pre>	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1.	
scale_est	should the point estimate be scaled to be greater than or equal to 0? Defaults to TRUE.	
cross_fitted_s		
	should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?	
	other arguments to the estimation tool, see "See also".	

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),$$

where f_0 is the population predictiveness maximizing function, $f_{0,s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_0 is the true data-generating distribution.

Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of cross-fitting is to estimate f_0 and $f_{0,s}$ on independent data from estimating P_0 ; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_0 and $f_{0,s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.

Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n,k}$ and $f_{n,k,s}$ of f_0 and $f_{0,s}$, respectively on the training data and estimator $P_{n,k}$ of P_0 using the test data; and finally, computing

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ V(f_{n,k}, P_{n,k}) - V(f_{n,k,s}, P_{n,k}) \}.$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into 2K folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n,k}$ of f_0 is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k} = V(f_{n,k}, P_{n,k}).$$

Similarly, for each fold k in the second group, estimator $f_{n,k,s}$ of $f_{0,s}$ is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k,s} = V(f_{n,k,s}, P_{n,k}).$$

Finally,

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ v_{n,k} - v_{n,k,s} \}.$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:

s the column(s) to calculate variable importance for

SL.library the library of learners passed to SuperLearner

full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)

red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data) **est** the estimated variable importance

naive the naive estimator of variable importance

eif the estimated efficient influence function

eif_full the estimated efficient influence function for the full regression

eif_reduced the estimated efficient influence function for the reduced regression

se the standard error for the estimated variable importance

ci the $(1 - \alpha) \times 100\%$ confidence interval for the variable importance estimate

test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test

p_value a p-value based on the same test as test

full_mod the object returned by the estimation procedure for the full data regression (if applicable)

red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)

alpha the level, for confidence interval calculation

sample_splitting_folds the folds used for hypothesis testing

cross_fitting_folds the folds used for cross-fitting

y the outcome

ipc_weights the weights

cluster_id the cluster IDs

mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of classes vim and vim_accuracy. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))</pre>
# apply the function to the x's
f \le function(x) 0.5 + 0.3 \times x[1] + 0.2 \times x[2]
smooth <- apply(x, 1, function(z) f(z))</pre>
# generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))</pre>
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")</pre>
# estimate (with a small number of folds, for illustration only)
est <- vimp_accuracy(y, x, indx = 2,</pre>
            alpha = 0.05, run_regression = TRUE,
            SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_anova

Description

Compute estimates of and confidence intervals for nonparametric ANOVA-based intrinsic variable importance. This is a wrapper function for cv_vim , with type = "anova". This type has limited functionality compared to other types; in particular, null hypothesis tests are not possible using type = "anova". If you want to do null hypothesis testing on an equivalent population parameter, use vimp_rsquared instead.

Usage

```
vimp_anova(
  Y = NULL,
  X = NULL,
  cross_fitted_f1 = NULL,
  cross_fitted_f2 = NULL,
  indx = 1,
  V = 10,
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  na.rm = FALSE,
  cross_fitting_folds = NULL,
  stratified = FALSE,
  C = rep(1, length(Y)),
  Z = NULL,
  ipc_weights = rep(1, length(Y)),
  scale = "logit",
  ipc_est_type = "aipw",
  scale_est = TRUE,
  cross_fitted_se = TRUE,
  . . .
)
```

Υ	the outcome.	
Х	the covariates. If type = "average_value", then the exposure variable should be part of X, with its name provided in exposure_name.	
cross_fitted_f1		
	the predicted values on validation data from a flexible estimation technique re- gressing Y on X in the training data. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation	

fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).

cross_fitted_f2

the predicted values on validation data from a flexible estimation technique regressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X withholding the columns in indx. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions). indx the indices of the covariate(s) to calculate variable importance for; defaults to 1. v the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation. run_regression if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values. SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean. alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval. delta the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0. should we remove NAs in the outcome and fitted values in computation? (dena.rm faults to FALSE) cross_fitting_folds the folds for cross-fitting. Only used if run_regression = FALSE. stratified if run regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds) С the indicator of coarsening (1 denotes observed, 0 denotes unobserved). Ζ either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism. To specify the outcome, use "Y"; to specify covariates, use a character number corresponding to the desired position in X (e.g., "1"). ipc_weights weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).

scale	should CIs be computed on original ("identity") or another scale? (options are "log" and "logit")	
<pre>ipc_est_type</pre>	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1.	
scale_est	should the point estimate be scaled to be greater than or equal to 0? Defaults to TRUE.	
cross_fitted_se		
	should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?	
	other arguments to the estimation tool, see "See also".	

We define the population ANOVA parameter for the group of features (or single feature) s by

$$\psi_{0,s} := E_0 \{ f_0(X) - f_{0,s}(X) \}^2 / var_0(Y),$$

where f_0 is the population conditional mean using all features, $f_{0,s}$ is the population conditional mean using the features with index not in s, and E_0 and var_0 denote expectation and variance under the true data-generating distribution, respectively.

Cross-fitted ANOVA estimates are computed by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n,k}$ and $f_{n,k,s}$ of f_0 and $f_{0,s}$, respectively on the training data and estimator $E_{n,k}$ of E_0 using the test data; and finally, computing

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} E_{n,k} \{ f_{n,k}(X) - f_{n,k,s}(X) \}^2 / var_n(Y),$$

where var_n is the empirical variance. See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function.

Value

An object of classes vim and vim_anova. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
```

vimp_auc

Nonparametric Intrinsic Variable Importance Estimates: AUC

Description

Compute estimates of and confidence intervals for nonparametric difference in AUC-based intrinsic variable importance. This is a wrapper function for cv_vim , with type = "auc".

Usage

```
vimp_auc(
 Y = NULL,
 X = NULL,
  cross_fitted_f1 = NULL,
  cross_fitted_f2 = NULL,
  f1 = NULL,
  f2 = NULL,
  indx = 1,
  V = 10,
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  na.rm = FALSE,
  final_point_estimate = "split",
  cross_fitting_folds = NULL,
  sample_splitting_folds = NULL,
  stratified = TRUE,
 C = rep(1, length(Y)),
  Z = NULL,
  ipc_weights = rep(1, length(Y)),
  scale = "logit",
  ipc_est_type = "aipw",
  scale_est = TRUE,
```

```
cross_fitted_se = TRUE,
...
)
```

the outcome.
the covariates. If type = "average_value", then the exposure variable should be part of X, with its name provided in exposure_name.
1
the predicted values on validation data from a flexible estimation technique re- gressing Y on X in the training data. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predic- tions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vec- tor should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).
2
the predicted values on validation data from a flexible estimation technique re- gressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X with- holding the columns in indx. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).
the fitted values from a flexible estimation technique regressing Y on X. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
the indices of the covariate(s) to calculate variable importance for; defaults to 1.
the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
na.rm	should we remove NAs in the outcome and fitted values in computation? (defaults to FALSE)
final_point_es	timate
	if sample splitting is used, should the final point estimates be based on only the sample-split folds used for inference ("split", the default), or should they instead be based on the full dataset ("full") or the average across the point estimates from each sample split ("average")? All three options result in valid point estimates – sample-splitting is only required for valid inference.
cross_fitting_	
sample_splitti	the folds for cross-fitting. Only used if run_regression = FALSE.
Sample_Spiitti	the folds used for sample-splitting; these identify the observations that should be
	used to evaluate predictiveness based on the full and reduced sets of covariates, respectively. Only used if run_regression = FALSE.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism. To specify the outcome, use "Y"; to specify covariates, use a character number corresponding to the desired position in X (e.g., "1").
ipc_weights	weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).
scale	should CIs be computed on original ("identity") or another scale? (options are "log" and "logit")
<pre>ipc_est_type</pre>	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1.
scale_est	should the point estimate be scaled to be greater than or equal to 0? Defaults to TRUE.
cross_fitted_s	
	should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?
•••	other arguments to the estimation tool, see "See also".

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),$$

where f_0 is the population predictiveness maximizing function, $f_{0,s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_0 is the true data-generating distribution.

Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of crossfitting is to estimate f_0 and $f_{0,s}$ on independent data from estimating P_0 ; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_0 and $f_{0,s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.

Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n,k}$ and $f_{n,k,s}$ of f_0 and $f_{0,s}$, respectively on the training data and estimator $P_{n,k}$ of P_0 using the test data; and finally, computing

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ V(f_{n,k}, P_{n,k}) - V(f_{n,k,s}, P_{n,k}) \}.$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into 2K folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n,k}$ of f_0 is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k} = V(f_{n,k}, P_{n,k}).$$

Similarly, for each fold k in the second group, estimator $f_{n,k,s}$ of $f_{0,s}$ is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k,s} = V(f_{n,k,s}, P_{n,k}).$$

Finally,

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ v_{n,k} - v_{n,k,s} \}.$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:

s the column(s) to calculate variable importance for

SL.library the library of learners passed to SuperLearner

full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)

red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data)

est the estimated variable importance

naive the naive estimator of variable importance

eif the estimated efficient influence function

eif_full the estimated efficient influence function for the full regression

eif_reduced the estimated efficient influence function for the reduced regression

se the standard error for the estimated variable importance

ci the $(1 - \alpha) \times 100\%$ confidence interval for the variable importance estimate

test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test

p_value a p-value based on the same test as test

full_mod the object returned by the estimation procedure for the full data regression (if applicable)

red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)

alpha the level, for confidence interval calculation

sample_splitting_folds the folds used for hypothesis testing

cross_fitting_folds the folds used for cross-fitting

y the outcome

ipc_weights the weights

cluster_id the cluster IDs

mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of classes vim and vim_auc. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package, and performance for specific usage of the ROCR package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))
# apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))
# generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")</pre>
```

vimp_ci

Confidence intervals for variable importance

Description

Compute confidence intervals for the true variable importance parameter.

Usage

```
vimp_ci(est, se, scale = "identity", level = 0.95, truncate = TRUE)
```

Arguments

est	estimate of variable importance, e.g., from a call to vimp_point_est.
se	estimate of the standard error of est, e.g., from a call to vimp_se.
scale	scale to compute interval estimate on (defaults to "identity": compute Wald-type CI).
level	confidence interval type (defaults to 0.95).
truncate	truncate CIs to have lower limit at (or above) zero?

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The Wald-based confidence interval for the true importance of the given group of left-out covariates.

68

vimp_deviance

Description

Compute estimates of and confidence intervals for nonparametric deviance-based intrinsic variable importance. This is a wrapper function for cv_vim , with type = "deviance".

Usage

```
vimp_deviance(
  Y = NULL,
 X = NULL,
  cross_fitted_f1 = NULL,
  cross_fitted_f2 = NULL,
  f1 = NULL,
  f2 = NULL,
  indx = 1,
 V = 10,
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  na.rm = FALSE,
  final_point_estimate = "split",
  cross_fitting_folds = NULL,
  sample_splitting_folds = NULL,
  stratified = TRUE,
 C = rep(1, length(Y)),
  Z = NULL,
  ipc_weights = rep(1, length(Y)),
  scale = "logit",
  ipc_est_type = "aipw",
  scale_est = TRUE,
  cross_fitted_se = TRUE,
  . . .
)
```

Arguments

Y	the outcome.
Х	the covariates. If type = "average_value", then the exposure variable should
	be part of X, with its name provided in exposure_name.
cross_fitted_f1	

the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).

cross_fitted_f2

the predicted values on validation data from a flexible estimation technique regressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X withholding the columns in indx. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).

- f1 the fitted values from a flexible estimation technique regressing Y on X. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
- f2 the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
- indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
- V the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
- run_regression if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
- SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
- alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
- delta the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
- na.rm should we remove NAs in the outcome and fitted values in computation? (defaults to FALSE)

final_point_estimate

if sample splitting is used, should the final point estimates be based on only the sample-split folds used for inference ("split", the default), or should they instead be based on the full dataset ("full") or the average across the point estimates from each sample split ("average")? All three options result in valid point estimates – sample-splitting is only required for valid inference.

cross_fitting_folds		
	the folds for cross-fitting. Only used if run_regression = FALSE.	
sample_splitting_folds		
	the folds used for sample-splitting; these identify the observations that should be used to evaluate predictiveness based on the full and reduced sets of covariates, respectively. Only used if run_regression = FALSE.	
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)	
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).	
Z	either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism. To specify the outcome, use "Y"; to specify covariates, use a character number corresponding to the desired position in X (e.g., "1").	
ipc_weights	weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).	
scale	should CIs be computed on original ("identity") or another scale? (options are "log" and "logit")	
<pre>ipc_est_type</pre>	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1.	
scale_est	should the point estimate be scaled to be greater than or equal to 0? Defaults to TRUE.	
cross_fitted_se		
	should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?	
	other arguments to the estimation tool, see "See also".	

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),$$

where f_0 is the population predictiveness maximizing function, $f_{0,s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_0 is the true data-generating distribution.

Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of cross-fitting is to estimate f_0 and $f_{0,s}$ on independent data from estimating P_0 ; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_0 and $f_{0,s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.

Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n,k}$ and $f_{n,k,s}$ of f_0 and $f_{0,s}$, respectively on the training data and estimator $P_{n,k}$ of P_0 using the test data; and finally, computing

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ V(f_{n,k}, P_{n,k}) - V(f_{n,k,s}, P_{n,k}) \}.$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into 2K folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n,k}$ of f_0 is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k} = V(f_{n,k}, P_{n,k}).$$

Similarly, for each fold k in the second group, estimator $f_{n,k,s}$ of $f_{0,s}$ is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k,s} = V(f_{n,k,s}, P_{n,k}).$$

Finally,

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ v_{n,k} - v_{n,k,s} \}.$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:

s the column(s) to calculate variable importance for

SL.library the library of learners passed to SuperLearner

full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)

red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data) **est** the estimated variable importance

naive the naive estimator of variable importance

eif the estimated efficient influence function

eif_full the estimated efficient influence function for the full regression

eif_reduced the estimated efficient influence function for the reduced regression

se the standard error for the estimated variable importance

ci the $(1 - \alpha) \times 100\%$ confidence interval for the variable importance estimate

test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test

p_value a p-value based on the same test as test

full_mod the object returned by the estimation procedure for the full data regression (if applicable)
red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)

alpha the level, for confidence interval calculation

sample_splitting_folds the folds used for hypothesis testing

cross_fitting_folds the folds used for cross-fitting

y the outcome

ipc_weights the weights

cluster_id the cluster IDs

mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of classes vim and vim_deviance. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))</pre>
# apply the function to the x's
f \le function(x) 0.5 + 0.3 \times x[1] + 0.2 \times x[2]
smooth <- apply(x, 1, function(z) f(z))</pre>
# generate Y ~ Normal (smooth, 1)
y <- matrix(stats::rbinom(n, size = 1, prob = smooth))</pre>
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")</pre>
# estimate (with a small number of folds, for illustration only)
est <- vimp_deviance(y, x, indx = 2,</pre>
            alpha = 0.05, run_regression = TRUE,
            SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_hypothesis_test Perform a hypothesis test against the null hypothesis of δ importance

Description

Perform a hypothesis test against the null hypothesis of zero importance by: (i) for a user-specified level α , compute a $(1 - \alpha) \times 100\%$ confidence interval around the predictiveness for both the full and reduced regression functions (these must be estimated on independent splits of the data); (ii) if the intervals do not overlap, reject the null hypothesis.

Usage

```
vimp_hypothesis_test(
    predictiveness_full,
    predictiveness_reduced,
    se,
    delta = 0,
    alpha = 0.05
)
```

Arguments

predictiveness_full		
	the estimated predictiveness of the regression including the covariate(s) of inter-	
	est.	
predictiveness_reduced		
	the estimated predictiveness of the regression excluding the covariate(s) of interest.	
se	the estimated standard error of the variable importance estimator	
delta	the value of the δ -null (i.e., testing if importance $\langle \delta \rangle$; defaults to 0.	
alpha	the desired type I error rate (defaults to 0.05).	

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

a list, with: the hypothesis testing decision (TRUE if the null hypothesis is rejected, FALSE otherwise); the p-value from the hypothesis test; and the test statistic from the hypothesis test.

vimp_regression

Description

Compute estimates of and confidence intervals for nonparametric ANOVA-based intrinsic variable importance. This is a wrapper function for cv_vim , with type = "anova". This function is deprecated in vimp version 2.0.0.

Usage

```
vimp_regression(
 Y = NULL,
 X = NULL,
  cross_fitted_f1 = NULL,
  cross_fitted_f2 = NULL,
  indx = 1,
  V = 10,
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  na.rm = FALSE,
  cross_fitting_folds = NULL,
  stratified = FALSE,
  C = rep(1, length(Y)),
  Z = NULL,
  ipc_weights = rep(1, length(Y)),
  scale = "identity",
  ipc_est_type = "aipw",
  scale_est = TRUE,
  cross_fitted_se = TRUE,
)
```

Arguments

Х

the covariates. If type = "average_value", then the exposure variable should be part of X, with its name provided in exposure_name.

cross_fitted_f1

the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested,

	then these must be estimated specially; see Details. However, the resulting vec- tor should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).
cross_fitted_f2	-
	the predicted values on validation data from a flexible estimation technique re- gressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X with- holding the columns in indx. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V	the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
run_regression	if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance < δ); defaults to 0.
na.rm	should we remove NAs in the outcome and fitted values in computation? (de-faults to FALSE)
cross_fitting_f	
	the folds for cross-fitting. Only used if run_regression = FALSE.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Ζ	either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism. To specify the outcome, use "Y"; to specify covariates, use a character number corresponding to the desired position in X (e.g., "1").
ipc_weights	weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).
scale	should CIs be computed on original ("identity") or another scale? (options are "log" and "logit")

<pre>ipc_est_type</pre>	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1.	
scale_est	should the point estimate be scaled to be greater than or equal to 0? Defaults to TRUE.	
cross_fitted_se		
	should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?	
	other arguments to the estimation tool, see "See also".	

Details

We define the population ANOVA parameter for the group of features (or single feature) s by

 $\psi_{0,s} := E_0 \{ f_0(X) - f_{0,s}(X) \}^2 / var_0(Y),$

where f_0 is the population conditional mean using all features, $f_{0,s}$ is the population conditional mean using the features with index not in s, and E_0 and var_0 denote expectation and variance under the true data-generating distribution, respectively.

Cross-fitted ANOVA estimates are computed by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n,k}$ and $f_{n,k,s}$ of f_0 and $f_{0,s}$, respectively on the training data and estimator $E_{n,k}$ of E_0 using the test data; and finally, computing

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} E_{n,k} \{ f_{n,k}(X) - f_{n,k,s}(X) \}^2 / var_n(Y),$$

where var_n is the empirical variance. See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function.

Value

An object of classes vim and vim_regression. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
# generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)</pre>
```

vimp_rsquared

Nonparametric Intrinsic Variable Importance Estimates: R-squared

Description

Compute estimates of and confidence intervals for nonparametric R^2 -based intrinsic variable importance. This is a wrapper function for cv_vim, with type = "r_squared".

Usage

```
vimp_rsquared(
 Y = NULL,
 X = NULL,
 cross_fitted_f1 = NULL,
  cross_fitted_f2 = NULL,
  f1 = NULL,
  f_2 = NULL,
  indx = 1,
  V = 10,
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
 delta = 0,
  na.rm = FALSE,
  final_point_estimate = "split",
  cross_fitting_folds = NULL,
  sample_splitting_folds = NULL,
  stratified = FALSE,
  C = rep(1, length(Y)),
  Z = NULL,
  ipc_weights = rep(1, length(Y)),
  scale = "logit",
  ipc_est_type = "aipw",
  scale_est = TRUE,
 cross_fitted_se = TRUE,
  . . .
)
```

Arguments

Y	the outcome.
Х	the covariates. If type = "average_value", then the exposure variable should
	be part of X, with its name provided in exposure_name.
cross_fitted_f1	

the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).

cross_fitted_f2

the predicted values on validation data from a flexible estimation technique re- gressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X with- holding the columns in indx. Provided as either (a) a vector, where each element is the predicted value when that observation is part of the validation fold; or (b) a list of length V, where each element in the list is a set of predictions on the corresponding validation data fold. If sample-splitting is requested, then these must be estimated specially; see Details. However, the resulting vector should be the same length as Y; if using a list, then the summed length of each element across the list should be the same length as Y (i.e., each observation is included in the predictions).
the fitted values from a flexible estimation technique regressing Y on X. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
the indices of the covariate(s) to calculate variable importance for; defaults to 1.
the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.

na.rm	should we remove NAs in the outcome and fitted values in computation? (defaults to FALSE)	
final_point_est	imate	
	if sample splitting is used, should the final point estimates be based on only the sample-split folds used for inference ("split", the default), or should they instead be based on the full dataset ("full") or the average across the point estimates from each sample split ("average")? All three options result in valid point estimates – sample-splitting is only required for valid inference.	
cross_fitting_f	olds	
	the folds for cross-fitting. Only used if run_regression = FALSE.	
<pre>sample_splittin</pre>	g_folds	
	the folds used for sample-splitting; these identify the observations that should be used to evaluate predictiveness based on the full and reduced sets of covariates, respectively. Only used if run_regression = FALSE.	
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)	
С	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).	
Z	either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism. To specify the outcome, use "Y"; to specify covariates, use a character number corresponding to the desired position in X (e.g., "1").	
ipc_weights	weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).	
scale	should CIs be computed on original ("identity") or another scale? (options are "log" and "logit")	
<pre>ipc_est_type</pre>	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1.	
scale_est	should the point estimate be scaled to be greater than or equal to 0? Defaults to TRUE.	
cross_fitted_se		
	should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?	
	other arguments to the estimation tool, see "See also".	

Details

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),$$

where f_0 is the population predictiveness maximizing function, $f_{0,s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_0 is the true data-generating distribution.

Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of crossfitting is to estimate f_0 and $f_{0,s}$ on independent data from estimating P_0 ; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_0 and $f_{0,s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.

Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n,k}$ and $f_{n,k,s}$ of f_0 and $f_{0,s}$, respectively on the training data and estimator $P_{n,k}$ of P_0 using the test data; and finally, computing

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ V(f_{n,k}, P_{n,k}) - V(f_{n,k,s}, P_{n,k}) \}.$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into 2K folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n,k}$ of f_0 is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k} = V(f_{n,k}, P_{n,k}).$$

Similarly, for each fold k in the second group, estimator $f_{n,k,s}$ of $f_{0,s}$ is constructed using all data besides the kth fold in the group (i.e., (2K - 1)/(2K) of the data) and estimator $P_{n,k}$ of P_0 is constructed using the held-out data (i.e., 1/2K of the data); then, computing

$$v_{n,k,s} = V(f_{n,k,s}, P_{n,k}).$$

Finally,

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ v_{n,k} - v_{n,k,s} \}.$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:

s the column(s) to calculate variable importance for

SL.library the library of learners passed to SuperLearner

full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)

red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data)

est the estimated variable importance

naive the naive estimator of variable importance

eif the estimated efficient influence function

eif_full the estimated efficient influence function for the full regression

eif_reduced the estimated efficient influence function for the reduced regression

- se the standard error for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence interval for the variable importance estimate
- **test** a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test

p_value a p-value based on the same test as test

full_mod the object returned by the estimation procedure for the full data regression (if applicable)

red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)

alpha the level, for confidence interval calculation

sample_splitting_folds the folds used for hypothesis testing

cross_fitting_folds the folds used for cross-fitting

 \mathbf{y} the outcome

ipc_weights the weights

cluster_id the cluster IDs

mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of classes vim and vim_rsquared. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
# generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)</pre>
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")</pre>
# estimate (with a small number of folds, for illustration only)
est <- vimp_rsquared(y, x, indx = 2,</pre>
           alpha = 0.05, run_regression = TRUE,
           SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_se

Description

Compute standard error estimates for estimates of variable importance.

Usage

```
vimp_se(
  eif_full,
  eif_reduced,
  cross_fit = TRUE,
  sample_split = TRUE,
  na.rm = FALSE
)
```

Arguments

eif_full	the estimated efficient influence function (EIF) based on the full set of covari- ates.
eif_reduced	the estimated EIF based on the reduced set of covariates.
cross_fit	logical; was cross-fitting used to compute the EIFs? (defaults to TRUE)
<pre>sample_split</pre>	logical; was sample-splitting used? (defaults to TRUE)
na.rm	logical; should NA's be removed in computation? (defaults to FALSE).

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The standard error for the estimated variable importance for the given group of left-out covariates.

vrc01

Neutralization sensitivity of HIV viruses to antibody VRC01

Description

A dataset containing neutralization sensitivity – measured using inhibitory concentration, the quantity of antibody necessary to neutralize a fraction of viruses in a given sample – and viral features including: amino acid sequence features (measured using HXB2 coordinates), geographic region of origin, subtype, and viral geometry. Accessed from the Los Alamos National Laboratory's (LANL's) Compile, Analyze, and tally Neutralizing Antibody Panels (CATNAP) database.

Usage

data("vrc01")

Format

A data frame with 611 rows and 837 variables:

seqname Viral sequence identifiers

- subtype.is.01_AE Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- subtype.is.02_AG Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- subtype.is.07_BC Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- subtype.is.A1 Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- **subtype.is.A1C** Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- subtype.is.A1D Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- **subtype.is.B** Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- **subtype.is.C** Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- **subtype.is.D** Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- **subtype.is.O** Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- subtype.is.Other Dummy variables encoding the viral subtype as 0/1. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
- geographic.region.of.origin.is.Asia Dummy variables encoding the geographic region of origin as 0/1. Regions are Asia, Europe/Americas, North Africa, and Southern Africa.
- geographic.region.of.origin.is.Europe.Americas Dummy variables encoding the geographic region of origin as 0/1. Regions are Asia, Europe/Americas, North Africa, and Southern Africa.
- geographic.region.of.origin.is.N.Africa Dummy variables encoding the geographic region of origin as 0/1. Regions are Asia, Europe/Americas, North Africa, and Southern Africa.
- **geographic.region.of.origin.is.S.Africa** Dummy variables encoding the geographic region of origin as 0/1. Regions are Asia, Europe/Americas, North Africa, and Southern Africa.
- **ic50.censored** A binary indicator of whether or not the IC-50 (the concentration at which 50 Rightcensoring is a proxy for a resistant virus.
- **ic80.censored** A binary indicator of whether or not the IC-80 (the concentration at which 80 Rightcensoring is a proxy for a resistant virus.

- **ic50.geometric.mean.imputed** Continuous IC-50. If neutralization sensitivity for the virus was assessed in multiple studies, the geometric mean was taken.
- **ic80.geometric.mean.imputed** Continuous IC-90. If neutralization sensitivity for the virus was assessed in multiple studies, the geometric mean was taken.
- hxb2.46.E.1mer Amino acid sequence features denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site. For example, hxb2.46.E.1mer records the presence of an E at HXB2-referenced site 46.
- **hxb2.46.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.46.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.46.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.46.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.61.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.61.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.61.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.61.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.97.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.97.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.97.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.97.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.124.F.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.124.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.125.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.125.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.127.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.127.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.130.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.130.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.132.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.X.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.132.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.C.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.138.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.138.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.C.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.139.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.F.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.143.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.143.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.144.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.144.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.144.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.150.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.156.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.156.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.156.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.156.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.156.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.156.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.179.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.179.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.179.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.179.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.179.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.179.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.179.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.179.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.179.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.181.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.181.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.181.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.181.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.186.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.187.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.187.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.187.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.187.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.187.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.187.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.187.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.187.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.187.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.187.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.187.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.F.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.190.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.197.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.197.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.197.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.198.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.198.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.198.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.198.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.241.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.241.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.241.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.241.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.276.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.276.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.276.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.276.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.278.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.278.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.278.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.278.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.278.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.279.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.279.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.279.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.279.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.279.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.280.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.280.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.280.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.280.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.281.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.281.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.281.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.281.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.281.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.281.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.281.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.282.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.282.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.282.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.282.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.282.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.282.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.283.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.283.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.283.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.283.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.289.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.289.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.289.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.289.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.289.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.289.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.289.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.289.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.290.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.290.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.290.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.290.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.290.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.290.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.290.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.290.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.290.X.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.321.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.321.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.321.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.321.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.321.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.321.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.321.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.321.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.321.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.321.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.321.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.328.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.328.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.328.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.328.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.328.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.328.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.328.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.328.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.339.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.339.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.339.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.354.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.354.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.355.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.355.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.355.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.355.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.355.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.355.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.355.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.355.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.362.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.362.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.362.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.362.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.362.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.362.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.362.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.362.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.362.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.362.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.363.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.363.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.363.X.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.365.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.365.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.365.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.365.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.365.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.365.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.365.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.365.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.369.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.369.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.369.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.369.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.369.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.369.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.371.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.371.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.371.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.371.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.374.F.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.374.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.374.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.386.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.386.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.386.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.386.X.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.386.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.389.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.389.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.392.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.392.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.392.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.392.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.392.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.392.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.392.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.392.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.392.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.394.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.394.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.394.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.394.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.394.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.394.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.394.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.394.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.394.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.394.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.394.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.F.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.396.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.396.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.W.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.396.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.C.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.F.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.397.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.W.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.X.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.397.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.397.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.F.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.W.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.406.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.408.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.F.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.408.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.408.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.C.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.410.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.410.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.415.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.415.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.415.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.415.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.415.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.415.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.415.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.415.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.415.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.415.X.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.425.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.425.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.426.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.426.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.426.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.426.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.426.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.428.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.428.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.428.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.429.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.429.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.429.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.429.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.429.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.429.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.429.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.430.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.430.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.430.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.430.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.430.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.431.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.431.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.432.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.432.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.432.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.432.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.442.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.442.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.442.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.448.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.448.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.448.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.448.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.448.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.448.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.448.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.448.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.455.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.455.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.455.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.455.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.455.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.455.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.456.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.456.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.456.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.456.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.456.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.456.W.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.456.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.457.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.458.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.458.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.458.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.458.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.459.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.459.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.459.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.459.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.459.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.459.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.460.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.460.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.461.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.461.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.X.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.462.gap.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.463.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.463.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.P.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.465.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.466.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.466.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.466.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.466.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.466.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.466.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.466.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.467.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.467.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.467.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.469.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.471.A.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.471.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.471.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.471.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.471.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.471.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.471.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.471.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.474.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.474.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.474.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.475.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.475.M.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.476.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.476.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.477.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.477.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.544.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.544.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.569.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.569.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.569.X.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.589.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.589.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.655.E.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.655.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.655.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.655.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.655.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.655.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.655.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.655.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.668.D.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.668.G.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.668.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.668.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.668.T.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.675.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.675.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.677.H.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.677.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.677.N.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.677.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.677.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.677.S.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.680.W.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.681.Y.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.683.K.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.683.Q.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.683.R.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.688.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.688.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.702.F.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.702.I.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.702.L.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.702.V.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.29.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.49.sequon_actual.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.59.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.88.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.130.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.132.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.133.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.134.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.135.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.136.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.137.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.138.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.139.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.140.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.141.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.142.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.143.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.144.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.145.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.146.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.147.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.148.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.149.sequon_actual.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.150.sequon_actual.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.156.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.160.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.171.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.185.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.186.sequon_actual.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.187.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.188.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.197.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.229.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.230.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.232.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.234.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.241.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.268.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.276.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.278.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.289.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.293.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.295.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.301.sequon_actual.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.302.sequon_actual.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.324.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.332.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.334.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.337.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.339.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.343.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.344.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.350.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.354.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.355.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.356.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.358.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.360.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.362.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.363.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.386.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.392.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.393.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.394.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.395.sequon_actual.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- **hxb2.396.sequon_actual.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.397.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.398.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.399.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.400.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.401.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.402.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.403.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.404.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.405.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.406.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.407.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.408.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.409.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.410.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.411.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.412.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.413.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.442.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.444.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.

- **hxb2.446.sequon_actual.1mer** Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.448.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.460.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.461.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.462.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.463.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.465.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.611.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.616.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.618.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.619.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.624.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.625.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.637.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.674.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.743.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.750.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.787.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.816.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- hxb2.824.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
- sequons.total.env The total number of sequons in various areas of the HIV viral envelope protein.
- **sequons.total.gp120** The total number of sequons in various areas of the HIV viral envelope protein.

- sequons.total.v5 The total number of sequons in various areas of the HIV viral envelope protein.sequons.total.loop.d The total number of sequons in various areas of the HIV viral envelope protein.
- **sequons.total.loop.e** The total number of sequons in various areas of the HIV viral envelope protein.
- sequons.total.vrc01 The total number of sequons in various areas of the HIV viral envelope protein.
- sequons.total.cd4 The total number of sequons in various areas of the HIV viral envelope protein.
- sequons.total.sj.fence The total number of sequons in various areas of the HIV viral envelope protein.
- **sequons.total.sj.trimer** The total number of sequons in various areas of the HIV viral envelope protein.

cysteines.total.env The number of cysteines in various areas of the HIV viral envelope protein.

- cysteines.total.gp120 The number of cysteines in various areas of the HIV viral envelope protein.
- cysteines.total.v5 The number of cysteines in various areas of the HIV viral envelope protein.

cysteines.total.vrc01 The number of cysteines in various areas of the HIV viral envelope protein.

length.env The length of various areas of the HIV viral envelope protein.

length.gp120 The length of various areas of the HIV viral envelope protein.

length.v5 The length of various areas of the HIV viral envelope protein.

length.v5.outliers The length of various areas of the HIV viral envelope protein.

length.loop.e The length of various areas of the HIV viral envelope protein.

length.loop.e.outliers The length of various areas of the HIV viral envelope protein.

taylor.small.total.v5 The steric bulk of residues at critical locations.

taylor.small.total.loop.d The steric bulk of residues at critical locations.

taylor.small.total.cd4 The steric bulk of residues at critical locations.

Source

https://github.com/benkeser/vrc01/blob/master/data/fulldata.csv

Index

* datasets vrc01,83 average_vim, 3 boot, 5, 12, 52 bootstrap_se, 4 check_fitted_values, 6 check_inputs, 7 create_z, 8 CV.SuperLearner, 22 cv_vim, 8 est_predictiveness, 18 est_predictiveness_cv, 20 estimate, 15 estimate.predictiveness_measure, 15 estimate_eif_projection, 16 estimate_nuisances, 17 estimate_type_predictiveness, 18 extract_sampled_split_predictions, 22 format.predictiveness_measure, 23 format.vim, 23 get_cv_sl_folds, 24 get_full_type, 24 get_test_set, 25 make_folds, 25 make_kfold, 26 measure_accuracy, 26 measure_anova, 28 $measure_auc, 29$ measure_average_value, 30 measure_cross_entropy, 32 measure_deviance, 33 measure_mse, 34 measure_r_squared, 36 merge_vim, 37

performance, 67
predictiveness_measure, 38
print.predictiveness_measure, 40
print.vim, 41
process_arg_lst, 41

run_s1, 42

vim, 50 vimp_accuracy, 55 vimp_anova, 60 vimp_auc, 63 vimp_ci, 68 vimp_deviance, 69 vimp_hypothesis_test, 74 vimp_regression, 75 vimp_rsquared, 78 vimp_se, 83 vrc01, 83