## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=4.5, fig.height=3.5 ) ## ----------------------------------------------------------------------------- bias <- 0.7 od <- 0.01 seq <- 0.001 maxerr <- 0.05 ## ----message=FALSE------------------------------------------------------------ library(updog) ploidy <- 4 pgeno <- 2 gene_dist <- get_q_array(ploidy = ploidy)[pgeno + 1, pgeno + 1, ] ## ----message=FALSE------------------------------------------------------------ library(ggplot2) distdf <- data.frame(x = 0:ploidy, y = 0, yend = gene_dist) ggplot(distdf, mapping = aes(x = x, y = y, xend = x, yend = yend)) + geom_segment(lineend = "round", lwd = 2) + theme_bw() + xlab("Allele Dosage") + ylab("Probability") ## ----------------------------------------------------------------------------- err <- Inf depth <- 0 while(err > maxerr) { depth <- depth + 1 err <- oracle_mis(n = depth, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = gene_dist) } depth ## ----------------------------------------------------------------------------- depth <- 30 jd <- oracle_joint(n = depth, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = gene_dist) oracle_plot(jd) ## ----echo=FALSE--------------------------------------------------------------- omiss <- oracle_mis(n = depth, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = gene_dist) ocorr <- oracle_cor(n = depth, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = gene_dist) ## ----------------------------------------------------------------------------- ocorr <- oracle_cor(n = depth, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = gene_dist) ocorr